温度对非饱和土壤水分运动的影响

温度对非饱和土壤水分运动的影响
温度对非饱和土壤水分运动的影响

第28卷 第4期西北农业大学学报V ol.28N o.4 2000年8月Ac ta U niv.Ag ric.Bo reali-o ccidentalis Aug.2000 [文章编号]1000-2782(2000)04-0028-06

温度对非饱和土壤水分运动的影响⒇

刘思春,张一平,朱建楚,马爱生

(西北农林科技大学资源与环境科学系,陕西杨陵712100)

[摘 要] 研究了不同温度下,土壤水势(j)和土壤含水量对土壤水分运动的影响。结

果表明,在相同温度下,提高j(或增加土壤含水量)可提高非饱和土壤导水率(K),并有黄绵

土>土娄土的趋势。根据K的对数值与j拟合出线性方程,在生产实践中测定j值,用此方程

可计算出K值,随着土壤含水量增加,K也提高,且呈正相关,在同一土壤含水量条件下,增

加温度可提高K,增加幅度土娄土>黄绵土。由K对数值与温度(t)回归出线性方程可看出,土娄

土和黄绵土的水势温度效应(d j/d t)与K温度效应(dln K/d t)随j增加而降低。

[关键词] 非饱和导水率;土壤水势;温度;导水率温度效应(dln K/d t)

[中图分类号] S152.7+2 [文献标识码] A

目前对土壤水分能量的研究,不只是着眼于土壤本身,而是把土壤-植物-大气作为一个连接体系,统一考虑其能量关系,这是土壤水分能量研究的必然趋势[1~3]。在土壤水分运动研究中,有关土壤水分运动参数与土壤水势关系的研究虽有报道,但均未考虑温度因素,达西定律也未考虑由于温度不同所导致的水流通量变化[4,5]。但非饱和流是土壤中常见的水分运动方式,特别在干旱、半干旱地区更是如此。由于这些地区气温日变幅较大,相应土壤上下层温差大(即土壤垂直方向温度梯度较大),因此,在这些地区的土壤水分研究中,更应重视温度对土壤水分运动的影响[6]。本研究利用稳态流法测定非饱和土壤导水率,对土娄土、黄绵土在不同温度条件下,重点就非饱和土壤水分运动参数与水势(含水量)的关系进行了初步研究。

1 材料和方法

1.1 材 料

选择陕西省杨陵土娄土和延安黄绵土两种土壤作为供试土样,其基本性质见表1。

表1 供试土样的基本性质

土样深度/

cm

有机质/

(g·kg-1)

比表面/

(m2·g-1)

各级颗粒含量/(g·kg-1)

1.0~

0.25

0.25~

0.05

0.05~

0.01

0.01~

0.005

0.005~

0.001<0.001

土娄土0~2011.42789.674.0403.0136.0176.0201.4黄绵土0~207.1524627.0181.0529.064.087.0116.0

注:有机质用重铬酸钾容量法测定;比表面用乙二醇乙醚吸附法测定;颗粒含量用六偏磷酸钠为分散剂的吸管法测定。

⒇[收稿日期] 1999-08-04

[基金项目] 国家自然科学基金资助项目(48970035)

[作者简介] 刘思春(1962-),男,农艺师。

1.2 方 法

用直径80mm ,长138mm 的塑料筒,装入通过2m m 筛孔的土样,制成长130mm 的人工土柱,土柱容重 1.35g /cm 3,将每个土样土柱的起始含水量配成240g /kg ,在塑料筒上的两小园孔中插入水银张力计(南京土壤研究所物理室U 型管式),筒上下加盖密封,放入恒温箱内,使张力计的上部露于箱外,同时在箱内放置一温度计,在恒温下平衡。平衡后,示差张力计一端的密封盖换为有孔盖,用以控制蒸发速率,使蒸发速率保持相对稳定,土柱中的水即会由于蒸发而向蒸发面流动。用称重法确定土柱内水分含量变化,分别记录同一温度下,含水量为240,235,230,220,210,200,190,180和175g /kg 时的张力计读数,以及各含水量变化阶段所需时间及土壤水分质量减少量。恒温箱用日本岛津公司W MN K-402型温度指示控制仪控温。

土壤非饱和水与饱和水的运动规律一样,也符合达西定律,即土壤水流通量与作用的水势梯度成正比。在一短水平土柱中,土柱的一端保持相对稳定的蒸发条件,水流便通过

一定长度的土柱以稳定流速向蒸发面传去。土壤非饱和导水率K (μm ·d -1)公式为[7]

:

K =ΔW 24 L Δt S 2Δh

-式中,ΔW 为两次称重差(g );L 为张力计两陶土头之间距离(cm );Δt 为两次称重段间隙时间(h );S 为蒸发面积(cm 2);Δh -为两陶瓷头间吸力差(kPa)。

2 结果与讨论

2.1 温度与土壤水势和导水率的关系

温度与土壤水势和导水率的关系见图1,2。温度对土壤水势具有明显的影响,在一定含水量时,土娄土、黄绵土皆呈现随温度升高土壤水势增大的趋势,在测定的含水量范围内,温度与土壤水势之间呈线性极显著的正相关(图1,2),相关系数(r )土娄土为0.988~0.999,黄绵土为0.998~0.999(n =5),其温度与土壤水势间回归方程如表2所示。因此,温度升高有助于土壤水分能量的提高。

图1 土壤水分特征曲线

1.15℃;

2.20℃;

3.25℃;

4.30℃;

5.35℃(图4同)

29

第4期刘思春等:温度对非饱和土壤水分运动的影响

图2 温度对土壤水势的影响

1.175g /kg;

2.180g /kg;

3.190g /kg;

4.200g /k g;

5.210g /k g;

6.220g /kg;

7.230g /kg;

8.240g /kg

表2 温度(t )与土壤水势(j )的回归方程

土 壤

土壤含水量/

(g ·k g -1)

回归方程相关系数土 壤土壤含水量/(g ·k g -1)

回归方程

相关系数土娄 土

175j =-105.95+ 1.26t 0.9986180j =-103.38+ 1.25t 0.9992190j =-97.01+ 1.27t 0.9669200j =-86.39+ 1.18t 0.9882210j =-71.27+ 1.02t 0.9923220j =-59.20+0.99t 0.9965230j =-46.51+0.86t 0.9982235j =-39.56+0.78t 0.9982

240

j

=-32.96+0.74t 0.9994

黄绵土

175j =-72.55+0.79t 0.9987180j =-69.08+0.74t 0.9981190j =-62.93+0.71t 0.9990200j =-53.94+0.72t 0.9913210j =-41.81+0.68t 0.9860220j =-28.30+0.54t 0.9960230j =-20.82+0.51t 0.9987235j =-16.06+0.42t 0.9962

240

j

=-12.00+0.32t 0.9955

在研究土壤含水量范围,随温度升高,土壤非饱和导水率也随之增大,导水率对数值与温度呈线性正相关(表3)。这是因为温度升高时,水的粘滞度和表面张力降低所致。

土娄土和黄绵土的水势和导水率温度效应[8]

总的趋势是随含水量增加,水势温度效应

和导水率温度效应均降低。两种土壤比较,土娄土比黄绵土水势温度效应相对较高,表明土娄土水势对温度的反应更为灵敏,随温度升高土壤水分有效性提高较大,这与土娄土质地较重,有机质含量较高有关。

由表3还可看出,两种土壤导水率温度效应(dln K d t

)随土壤含水量增加呈降低趋势,

相同含水量时,dln K d t 均为土娄土>黄绵土,在含水量为175~235g /kg 时,土娄土dln K d t

0.0490~0.0769,而黄绵土为0.0199~0.0311。这与土娄土粘粒、有机质含量较高,比表面较大,导致土壤孔隙表面水粘度较大,而升温对降低水粘度起较大作用有关。由导水率对数值与温度(t )进行线性回归,得到ln K 与t 的相关方程(表3)。由表3可见,两种土壤ln K -t 均呈显著、极显著正相关;在相同含水量条件下,导水率(K )的试验所得方程计算值与测定值差异很小。这表明在一定土壤含水量条件下,研究的温度范围内ln K -t 相关

方程有良好的适应性,可为供试土壤利用某一温度下土壤水势换算导水率提供方便。

30

西北农业大学学报第28卷

表3 土壤导水率(K )与温度的相关方程及K 的计算和测量值的比较

土 样

含水量/(g ·kg -1)

相 关 方 程相关系数K 1/(μm ·d -1)K 2/(μm ·d -1)(K 2-K 1)/(μm ·d -1)土娄 土

175ln K =-70.257+0.769t

r =0.986

69.61470.1400.526180ln K =-67.408

+0.694t r =0.99675.15689.6080.178190ln K =-63.066+0.601t r =0.98689.52689.6080.082200ln K =-60.152

+0.553t r =0.989104.850104.8840.034210ln K =-59.846

+0.629t r =0.994133.948133.636-0.312220ln K =-57.890+0.707t r =0.994202.734202.466-0.268230ln K =-49.585+0.546t r =0.991295.914295.894-0.020235ln K =-46.169+0.490t r =0.986357.950356.990-0.960黄绵土

175ln K =-48.377+0.263t r =0.996155.588155.6120.024180ln K =-47.316+0.245t r =0.998165.094165.042-0.052190ln K =-46.325+0.251t r =0.995185.144185.024-0.020200ln K =-44.963+0.297t r =0.998239.260239.4820.222210ln K =-40.580+0.288t r =0.998363.846363.486-0.360220ln K =-37.929+0.300t r =0.996502.932502.196-0.736230ln K =-22.919+0.229t r =0.997667.042667.8180.760235

ln K =-30.873+0.199t

r =0.997

756.984

757.906

0.922

注:K 1为恒定含水量下不同温度土壤的导水率测定值;K 2为恒定含水量下不同温度利用ln K -t 关系式计算的导

水率平均值。

2.2 土壤水势与非饱和导水率的关系

从图1可看出,不同温度条件下,土娄土、黄绵土的水分特征曲线皆呈现一定的规律性,在相同含水量条件下,土壤水势土娄土<黄绵土,说明在同一含水量条件下,土壤水分能量黄绵土>土娄土,土壤水分有效性也是黄绵土高,这与土娄土的粘粒含量高,比表面较大有关,与一般的结论相符[9,10]。土壤水势反映土壤水的能量状态,土壤水势梯度是非饱和土壤水分运动的驱动力

图3 土娄土和黄绵土水势与导水率关系曲线

由图1,3可看出,在一定温度条件和研究的含水量范围内,两种土壤水势与导水率均呈正相关。并且在不同温度下,同一土壤水势条件,非饱和土壤导水率黄绵土明显大于土娄土,例如:在温度25℃条件下,土娄土水势j =-30.24k Pa,K =262.7μm /d;黄绵土

31

第4期刘思春等:温度对非饱和土壤水分运动的影响

j =-30.89kPa,K =299.6μm /d 。这与黄绵土质地轻,大孔隙多、水分能量高等有关[10]

在同一温度相应含水量条件下,对平均土壤水势与导水率的自然对数进行线性回归,得ln K -j 相关方程(见表4)。从表中回归方程可以看出,两种土壤的ln K 与j 均呈显著、极显著正相关,而且,在不同温度条件下,导水率(K )试验所得方程的计算值与测量值在

土壤含水量<210g /kg 时的差异很小。例如:含水量<210g /kg 时,20℃土娄土K 3与K 4

相差0.024~0.96μm /d ,这说明在试验温度和土壤低含水量范围内,K -j -的相关方程有很好的适应性。可以通过此方程,在田间用张力计测得土壤水势条件下,大约计算出相应条件下土壤非饱和导水率,为确定土壤水分运动提供参考。

表4 土壤导水率(K )与水势j 相关方程及K 的测定值和计算值比较

土样

温度/℃

相 关 方 程相关系数K 3/(μm ·d -1)K 4/(μm ·d -1)(K 4-K 3)/(μm ·d -1)土娄 土

15

ln K =-33.031+0.307j

-r =0.978

82.81380.528-2.28520

ln K =-31.684+0.288j

-r =0.979121.955117.561-4.39625ln K =-31.356+0.280j

-r =0.978144.425141.713-2.71230ln K =-28.929+0.280j

-r =0.972210.041206.756-3.28535ln K =-26.820+0.307j

-r =0.981271.828267.335-4.493黄绵土15ln K =-27.209+0.318j

-r =0.965288.319279.990-8.32920

ln K =-26.149+0.325j -r =0.983330.994325.665-5.32925ln K =-25.664+0.335j

-r =0.985377.215371.800-5.41530ln K =-25.052+0.350j

-r =0.986421.113415.115-6.01535

ln K =-24.793+0.359j

-r =0.985

479.225

472.826

-6.399

 注:K 3为定温下不同含水量土壤导水率测定值;K 4为定温下不同含水量利用ln K -j

-关系式计算的导水率平均值。 土娄土和黄绵土含水量与导水率关系见图4。由图4可以看出,随着土壤含水量的增加,土壤非饱和导水率也提高,土壤含水量与导水率呈现正相关。两种土壤相比,同一含水量、温度下,黄绵土导水率明显大于土娄土,这与前述黄绵土的性质有关

图4 土娄土和黄绵土含水量与导水率关系曲线

32

西北农业大学学报第28卷

[参考文献]

[1] 朱祖祥.土壤水分能量概念及其意义[J].土壤学进展,1979,(1):1-21.

[2] 张君常.运用能量概念研究土壤及生物科学是今后发展必然趋势[J].陕西农业科学,1980,(6):12-16.

[3] 张一平,白锦鳞,张君常,等.土壤水分热力学函数研究[J].西北农业大学学报,1990,(3):43-49.

[4] Giakou makis S G,Tsakiris G P.Eliminating th e effect of temperature form uns atu rated s oil h ydraulic functions

[J].J ounal of Hyd rolog y,1991,129:109-125.

[5] Hopmans J W.Dan e J H.Effect of temperature-dep endent Hydraulic p roperties on soil water M ovemen t[J].Soil

Sci Soc Am J,1985,49:51-58.

[6] 高俊凤,白锦鳞,张一平,等.温度梯度对非饱和土壤水分运动的影响[J].西北农业大学学报,1994,(1):44-49.

[7] 陈志雄,于德芬.稳定流法测定非饱和土壤导水率[A].重庆全国土壤物理专业委员会学会论文集[C],1989,10:

112-118.

[8] 刘思春,白锦鳞,张一平,等.不同水分状况下SPAC水分热力学函数特征和水势温度效应[J].西北农业大学学

报,1990,(4):51-55.

[9] 袁剑航.土壤水分特征曲线和土壤水分的滞后现象[J].土壤通报,1986,(1):43-47.

[10] 张一平,白锦鳞,张君常,等.温度对土壤水势影响的研究[J].土壤学报,1990,(4):454-458.

Effect of tempera ture on unstura ted soil w ater m ov em ent

LIU Si-chun,ZHA N G Yi-ping,ZHU Jian-chu,MA Ai-sheng

(Depar tment of Res ources and En vironmen tal Scien c e,North west Science and Technolog y

University of Ag riculture and Forestry,Yang lin g,Shaanx i712100,Ch ina)

Abstract:The effect of tem perature on unsatura ted soil wa ter mov em ent is studied in this paper.The results indicate:(1)At the same tempera ture,unsatura ted soil w ater conductiv ty is increased as soil wa ter po tential increases,w hich sho w s a positiv e cor relation.The increment in Huangmia n soil is mo re than that in Lou soil.There is a linea r relation betw een soil w ater potential and unsaturated soil w ater co nductivity lo garithm.Thus,the unsatura ted soil w ater co nductvity ca n be calculated w ith observ ed soil w ater po tential by this way.(2)At the sam e soil wa ter content,unsa turated soil w ater conductiv ity is decreased as the temperature increases.The increm ent in Luo soil

is mo re than that in Huang mian soil.The soil w ater po tential tempera ture effect(d j d t

)

and unsatura ted soil w ater co nductivity tem perature effect(dln K

d t)o f thes

e tw o soils

a re decreased with soil wa ter content increasing.

Key words:unsa turated wa ter co nductivity;soil wa ter po tential;temperature;

conductiv ity temperature effect(dln K

d t

)

33

第4期刘思春等:温度对非饱和土壤水分运动的影响

肥料对植物生长的影响

肥料对植物生长的影响 植物除了从土壤中吸收水分外,还要吸收矿质元素和氮素以及有机物质,以维持正常的生命活动。所以,土壤中矿质元素和有机物质的多少直接影响植物的生长和发育。在栽培条件下,肥料的种类和使用量可改变土壤中养分的比例关系,为植物生长提供良好的养分环境。1.氮 1.1氮对植物生长的影响 根系吸收氮肥主要是无机态氮,即铵态氮和硝态氮。也可吸收一部分有机态氮,如尿素。氮是蛋白质(包括一些酶和辅酶)、核酸、磷脂的主要成分,他们是原生质、细胞核和生物膜的重要组成部分,在植物生命活动中具有特殊的作用。氮也是某些植物激素的成分,他们对生命具有调节作用。氮是叶绿素的成分,与光合作用有密切关系。因此氮的多少会直接影响细胞分裂和生长。当氮肥供应充足时,枝叶繁茂,植株高大,分枝能力强,果实活种植中蛋白质含量高。植物的必须元素中,除碳、氢、氧外,氮的需求量最大。因此在农业生产中要特别需要氮肥的供应,常用人粪尿、尿素、硝酸铵、硫酸铵碳酸氢铵等肥料,主要提供氮元素。 缺氮时,蛋白质、核酸、磷脂等合成受阻,植物生长矮小、分枝能力弱,叶片小而薄,花果少且易脱落。缺氮,叶绿素合成受阻,枝叶变黄,甚至干枯,导致产量降低。氮在植物体内移动性大,老叶中的氮分解后可运输到幼嫩组织中去重复利用,所以缺氮时叶片发黄,并由下部叶片开始逐渐向上。 氮过多时,叶片大而深绿,柔软披散,植株徒长。另外,氮素过多时,体内含糖量相对不足,茎干中的机械组织不发达,易倒伏和被病虫危害。 1.2氮的测定 1.2.1肥料中硝态氮含量测定 1.2.1.1还原法 复混肥料中硝态氮和铵态氮在检测中的差别是两者样品在处理过程。前者需要通过铬粉(不含酰氨态氮时用定氮合金)还原处理,使硝态氮还原成铵态氮;后者对试样不需作还原处理。目前,肥料中硝态氮含量的测定常用定氮合金法(德瓦达合金还原法)和铬-盐酸还原法。 两种方法的原理基本相同,一般采取三步检测:第一步,在样品处理中使用铬粉(不含酰氨态氮时用定氮合金)还原硝态氮后,按标准检测方法检测复混肥试样中总氮含量;第二步,在试样处理过程中不使用还原剂,按标准检测方法检测复混肥试样中不含硝态氮时复混肥料中的总氮含量;第三步,用第一步检测结果减去第二步检测结果,即可得出复混肥料中硝态氮含量。 1.2.1.2高效液相色谱法 通常测定硝态氮的方法有:气体法、还原法、重量法、扣除法、比色法、紫外线吸收法。高效液相色谱法测定肥料中的硝态氮含量,其原理是硝酸根在紫外光区190~240nm有较强吸收,通过色谱柱分离后在紫外分光光度计上检测硝酸根含量,再将其换算为氮含量。 高效液相色谱法使用C18柱,以0.04molL-1磷酸二氢钾水溶液为流动相,在230nm波长下测定硝态氮含量,相关系数为0.9997,最低检测浓度为1×106mgmL。此法具有准确度和精密度高,定量分析简便、快捷、准确的特点。 1.2.2复合肥料中总氮测定 1.2.2.1凯氏定氮法 测定原理:将硝酸盐在酸性介质环境中还原成铵盐;在触媒存在下,用浓硫酸进行消化,将有机态氮或尿素态氮和氰氨态氮转化为硫酸铵;将从碱性溶液中蒸馏出的氮,吸收在硼酸溶液中;在甲基红、甲酚绿混合指示剂存在下,用硫酸或盐酸标准溶液进行滴定分析。 凯氏定氮法测定复合肥料总氮含量的实测结果与理论值非常接近,该方法检测速度快,消耗

气象对园林植物的影响

气象对园林植物的影响 摘要:概述各种气象因子对园林植物的影响,研究气象与园林植物的关系;具体分析光、温度、水分及空气对园林植物的影响,探寻其实践应用方法。 关键词:气象园林植物光照温度水分空气 一、气象与园林植物的关系 影响植物生长的因素有很多,而气象对园林植物就有深远的影响,大到植物带的分布小到植物的生长发育。气象学包括各种气象因素,而对于园林植物来说,气象对其影响有很多方面,如植物的生长发育离不开气象这个大环境,植物的分布、色彩大小等等都离不开它。而最普遍的影响因素莫过于光、温度、水分和空气。故气象与园林植物的关系就是影响与被影响的关系,而我们接下来要探讨的就是四大气象因素对园林植物的影响。 二、气象因子的具体影响 (一)光照因子对园林植物的影响 植物生长离不开光,绿色植物通过光合作用将光能转化为化学能,储存在有机物中,各种植物都要求在一定的光照条件下才能正常生长,太阳辐射在地球表面随时间和空间发生有规律的变化,直接影响着植物的生长和发育。所以光因子对园林植物的影响居重要地位,为此我们应该具体分析: 1)光谱对植物的影响 不同波长的光照因子对植物的生长发育、种子萌发、叶绿素合成及形态形成的作用是不一样的。太阳辐射光谱不能全被植物吸收。植物吸收用于光合作用的辐射能称为生理辐射,主要指红橙光、蓝紫光和紫外线。 ①红橙光被叶绿素吸收最多,光合作用活性最大,蓝紫光的同化效率仅为红橙光的14%。红橙光有利于叶绿素的形成及碳水化合物的合成,加速长日照植物的生长发育,延迟短日照植物的发育,促进种子萌发; ②蓝紫光有利于蛋白质合成,加速短日照植物的发育,延迟长日照植物的发育。紫外线有利于维生素C的合成。 ③在紫外线辐射下,许多微生物死亡,能大大减少植物病虫害的传播。紫外线也能抑制植物茎的伸长,引起向光敏感性和促进花青素的形成。 在诱导形态建成、向光性及色素形成等方面,不同波长的光,其作用也不同。如蓝紫光抑制植物的伸长,使植物形成矮小的形态;而红光有利于植物的伸长,如用红光偏多的白炽灯照射植物,可引起植物生长过盛的现象。青蓝紫光还能引起植物的向光敏感性,并促进花青素等植物色素的形成。紫外线能抑制植物体内某些生长素的形成,以至于植物的白天生长速度常不及夜间。 生长期内生长素受侧方光线的影响,在迎光一面生长素少于背光面,造成背光面生长速度快于迎光面,产生所谓植物向光运动。 2)光照强度对植物的影响 光照强度主要影响园林植物的生长和开花。园林植物对光强的要求,通常通过补偿点和

全球变化条件下的土壤呼吸效应_彭少麟

第17卷第5期2002年10月 地球科学进展 ADVANCE IN EARTH SCIENCES Vol.17 No.5 Oct.,2002 文章编号:1001-8166(2002)05-0705-09 全球变化条件下的土壤呼吸效应 彭少麟,李跃林,任 海,赵 平 (中国科学院华南植物研究所,广东 广州 510650) 摘 要:土壤呼吸是陆地植物固定CO2尔后又释放CO2返回大气的主要途径,是与全球变化有关的一个重要过程。综述了全球变化下CO2浓度上升、全球增温、耕作方式的改变及氮沉降增加的土壤呼吸效应。大气CO2浓度的上升将增加土壤中CO2的释放通量,同时将促进土壤的碳吸存; 在全球增温的情形下,土壤可能向大气中释放更多的CO2,传统的土地利用方式可能是引发温室气体CO2产生的重要原因,所有这些全球变化对土壤呼吸的作用具有不确定性。认为土壤碳库的碳储量增加并不能减缓21世纪大气CO2浓度的上升。据此讨论了该问题的对策并提出了今后土壤呼吸的一些研究方向。其中强调,尽管森林土壤碳固定能力有限,但植树造林、森林保护是一项缓解大气CO2上升的可行性对策;基于现有田间尺度CO2通量测定在不确定性方面的进展,今后应继续朝大尺度田间和模拟程序方面努力;着重回答全球变化条件下的土壤呼吸过程机理;区分土壤呼吸的不同来源以及弄清土壤呼吸黑箱系统中土壤微生物及土壤动物的功能。当然,土壤呼吸的测定方法尚有待改善。 关 键 词:土壤呼吸;碳循环;全球变化 中图分类号:Q142.3 文献标识码:A 土壤呼吸是植物固定碳后,又以CO2形式返回大气的主要途径。土壤碳库在全球变化研究中的地位已日益突出,而土壤呼吸作为土壤碳库碳平衡的一个重要相关过程不容忽视,研究土壤呼吸有助于揭示土壤碳库动态机理。在大气与土壤界面,土壤CO2释放的驱动因子是多种多样的,在全球变化条件下研究相关因子与土壤呼吸是全球变化研究的一个重要内容。全球变化有不同的定义,1990年美国的《全球变化研究议案》,将全球变化定义为“可能改变地球承载生物能力的全球环境变化(包括气候、土地生产力、海洋和其它水资源、大气化学以及生态系统的改变)”。狭义的全球变化问题主要指大气臭氧层的损耗、大气中氧化作用的减弱和全球气候变暖[1,2]。土壤呼吸研究工作的开展,从研究对象来说,涉及农田、森林、草地等,从研究的地域来说从低纬至高纬均有研究,其中大部分研究集中于中纬度的草地和森林,目前,北极冻原也有研究报道[3]。 本文对在全球CO2浓度升高、气温上升、大气氮沉降等发生变化的背景下,土壤呼吸的响应作一综述,以促进土壤呼吸的研究,加深人们(特别是政策决策层)对土壤呼吸的认识。 1 大气CO2浓度升高的土壤呼吸效应 早期的土壤呼吸的测定基于表土层CO2的释放,开始于80多年前[4]。随着科学研究的发展,时至今日,土壤呼吸因为其全球的CO2总释放量已被  收稿日期:2002-01-04;修回日期:2002-05-31. *基金项目:国家自然科学基金重大项目“中国东部样带主要农业生态系统与全球变化相互作用机理研究”(编号:39899370);中国科学院知识创新工程重要方向项目“南方丘陵坡地农林复合生态系统构建机理与可持续性研究”(编号:KZCX2-407);广东省重大基金项目“广东省主要农业生态系统与全球变化相互作用机理研究”(编号:980952)资助.  作者简介:彭少麟(1957-),男,广东人,研究员,主要从事生态学方面的研究工作.E-mail:slpeng@https://www.360docs.net/doc/6416033741.html,

《探究水分对植物生存的影响》教学设计

《探究水分对植物生存的影响》教学设计 一、设计思路: 1.指导思想: 面向全体学生、提高生物科学素养、倡导探究性学习,秉承着《课程标准》的理念我设计了本次实验。本次实验是继“尝试探究水温的变化对金鱼呼吸的影响”后的又一重要探究实验。在上次的实验中,学生的探究实验效果不是很好,毕竟第一次接触探究实验,出现这种情况是可以理解的,第二次实验我对学生的期望要稍微高一点,因为具备一定的生物科学素养是中学生必备的。教师在指导学生进行探究活动时,要在怎样控制实验变量和怎样设置对照实验上多加指导,以便为日后的实验设计打好基础。 2.理论依据: 本节内容主要是通过“探究水分对植物生存的影响”,使学生了解水分是影响生物生存的一个环境因素。在此基础上,通过多种方式引导学生“分析非生物因素对生物生存的影响”和“分析生物因素对生物生存的影响”,认识环境(因素)对生物生存的影响,从而让学生理解生物的生存依赖于一定的环境。 3.教学特色: 教材中提供的实验材料是雏菊、玉米、青菜等植物的多株幼苗,对于我们宁夏中卫地区来说,由于受温度的影响,此时大地里的这些植物还没发芽,即使室内自己培育也需要很长时间,所以,取材不容易。吊兰作为一种常见的室内植物,其最大的特点在于成熟的植株会不时长出走茎,先端均会长出小植株。小植株用水泡几天就可长出新根来,利用吊兰的这一生长特点,可以很方便地取得植株进行实验,并且泡出新根的植物体插在口杯或透明烧杯中即可观察生长情况,省去了很多不必要的步骤。所以,本次实验改进其实更大程度上是对实验材料的选取上。 二、实验教学分析: 1.内容分析: 本节内容主要是通过“探究水分对植物生存的影响”,使学生了解水分是影响生物生存的一个环境因素。生物的生命活动离不开水,土壤里的水分过多或过少,植物都会萎蔫,但是原因各不相同。土壤里缺少水分会影响植物吸收水分;土壤里水分过多,会导致土壤里的氧气减少,影响植物呼吸,进而影响植物的生存。 2.学情分析: 七年级学生刚开始接触探究实验,虽然在第一章中已经学习了科学探究的基本过程,但也只停留在理论层面,学生对基本操作步骤还不很熟悉,所以,在本次实验中,我对他们的要求

温度与园林植物

第二节温度与园林植物 一、三基点温度对植物的生态作用 最低温、最适温和最高温称酶活性的“三基点”温度。植物的生长与温度的关系也服从“三基点”温度。 最低温:在该温度以上酶才开始表现活性,并在一定范围内酶的活性与温度呈正相关。 最适温:该温度时酶活性最高。 最高温:达到该温度时酶失去活性。 一般原产低纬度地区的植物,生长温度的三基点温度高,耐热性好,抗寒性差;反之。两者之间有过渡。 作物生命活动过程的最适温度、最低温度和最高温度的总称。在最适温度下,作物生长发育迅速而良好;在最高和最低温度下,作物停止生长发育,但仍维持生命。如果温度继续升高或降低,就会对作物产生不同程度的危害,直至死亡。 三基点温度之外,还可以确定使植物受害或致死的最高与最低温度指标,称为五个基本点温度。作物生命活动的各个过程都须在一定的温度范围内进行。通常维持作物生命的温度范围大致在一10℃到50℃之间,而适宜农作物生长的温度,约为5℃到40℃,农作物发育要求的温度则又在生长温度范围之内,通常为20~30℃。在发育温度范围外,作物发育将停止,但生长仍可维持;当温度不断降低,达到一定程度后,不但作物生长停止,而且生命活动亦受到阻碍,受低温危害,甚至受冻致死,大多数作物生命活动的最高温度为40~50℃之间。 0℃:土壤解冻或冻结的标志 5℃:喜凉植物开始生长的标志。 10℃:喜温植物开始播种或停止生长的标志。 15℃:大于15℃期间为喜温植物的活跃生长期。 20℃:热带植物开始生长的标志。 不同作物或不同品种的不同生育时期,三基点温度是不同的。作物生长发育时期的不同生理过程,如进行光合作用、呼吸作用时等的三基点温度也不同。光合作用的最低温度为0~5℃,最适温度为20~25℃,最高温度为40~50℃;而呼吸作用分别为一10℃,36~40℃与50℃。有人研究,马铃薯在20℃时光合作用达最大值,而呼吸作用只有最大值的12%;温度升到48℃时,呼吸率达最大值,而光合率却下降为0。 虽然作物生命活动的三基点温度受作物种类、生育时期、生理状况等因素的影响变化,但各种作物生命活动的三基点温度仍有一些共同的特征: (1)最高温度、最低温度和最适温度都不是一个具体的温度数值,而有一定的变化范围。 (2)无论是生存、生长还是发育,其最适温度基本上是同一个变幅范围。(3)各种作物的最低温度不同,其温度的最低点之间差异很大,耐寒作物可以忍受一10~一20℃以下的低温,而喜温作物甚至不能安全度过0℃左右的温度,

土壤呼吸强度的测定

土壤呼吸强度的测定 土壤空气的变化过程主要是氧的消耗和二氧化碳的累积。土壤空气中二氧化碳浓度大,对作物根系是不利的,若排出二氧化碳,不仅可消除其不利影响,而且可促进作物光合作用。因此,反映土壤排出二氧化碳能力的土壤呼吸强度是—个重要的土壤性质。 土壤中的生物活动,包括根系呼吸及微生物活动,是产生二氧化碳的主要来源,因此测定土壤呼吸强度还可反映土壤中生物活性,作为土壤肥力的一项指标。 (一)测定原理 用Na0H吸收土壤呼吸放出的CO2,生成Na2CO3: 2Na0H+C02——→Na2CO3+H20 (1) 先以酚酞作指示剂,用HCl滴定,中和剩余的Na0H,并使(1)式生成的Na2CO3转变为NaHCO3: Na0H + HCl——→NaCl+H20 (2) Na2CO3+ HCl——→NaHCO3十NaCl (3) 再以甲基橙作指示剂,用HCl滴定,这时所有的NaHC03均变为NaCl: NaHCO3+ HCl——→ NaCl+H20+CO2 (4) 从(3)、(4)式可见,用甲基橙作指示剂时所消耗HCl量的2倍,即为中和Na2CO3的用量,从而可计算出吸收CO2的数量。 (二)测定方法 方法(一) 1、称取相当于干土重20克的新鲜土样,置于150毫升烧杯或铝盒中(也可用容重圈采取原状土); 2、准确吸取2molL-1NaOH l0毫升于另一150毫升烧杯中; 3、将两只烧杯同时放入无干燥剂的干燥器中,加盖密闭,放置1—2天; 4、取出盛Na0H的烧杯,洗入250毫升容量瓶中,稀释至刻度; 5、吸取稀释液25毫升,加酚酞1滴,用标准0.05molL-1HCl滴定至无色,再加甲基橙1滴,继续用0.05 molL-1 HCl滴定至溶液由橙黄色变为桔红色,记录后者所用HCl的毫升数(或用溴酚兰代替甲基橙,滴定颜色由兰变黄); 6、再在另一干燥器中,只放NaOH,不放土壤,用同法测定,作为空白。 7、计算:

土壤水分对农业生产的影响讨论

土壤水分对农业生产的影响讨论 土壤水分是影响农业生产的重要因子之一,掌握土壤水分资料对农业生产实践有重要意义。土壤中水分的变化不仅与水分消耗有关,而且也与水分收入诸如降水、融雪和地下水流以及其它因素有关。在作物地,还与地面特性、作物种类及其发育期、作物地上部和根系状况有关。因此,土壤水分在时间和空间上的变化是很大的。 为了确切地取得土壤水分的可靠数据,近年来研究出不少测定和计算方法,本文不讨论这些具体测定和计算方法,主要目的是讨论有关土壤水分测定中几个共同性问题。 1 试验资料 本文所用数据取自北京农业大学曲周实验站土壤水分试验场,该地属半湿润季风气候区,对黄淮海平原有一定的代表性,测定地段为裸地和冬小麦地,土壤水分用土壤水分仪测定一次,取4次重复,每10cm为一土层,测至1.5m或2.om深度。土壤为盐化潮土,地下水埋深3.5~4.om,测定时间为1981年~1987年。 2 讨论和分析 浏定深度根据河北曲周1982年(属典型年份)裸地各季土壤水分垂直变化资料分析〔功,按土壤垂直剖面的水分变化状况,作出了土壤水分垂直分层,所划分的三个层次为

土壤水分极活跃层,土壤水分活跃层和土壤水分稳定层。各层的特点见表1.另据1986~1987年冬小麦地(施氮肥15kg/亩)于麦收后选100x100cm2五行麦茬地挖土壤剖面,修平剖面后,用水冲去土粒露出根系,统计smm长的根数,其根量随剖面深度的分布“幻如表2所示。 分析表1,2,3中的数据,可以看出:在上述条件下,为了掌握土壤水分不同时间的垂直变化特点,通常在裸地测定深度达lm即可,因为在lm深以下的土层中,土壤水分垂直分布的季节变化和各季水分的垂直梯度均不大。在作物地,从冬小麦根系随深度的分布和不同作物利用水分的有效土层来看,测至lm深度也够了。在一些作物的生育初期和浅根作物的一些生育期,利用水分的有效土层较浅,一般在sm 左右,这主要是由于根系分布状况所决定的。在冬小麦生育后期,0~50cm土层的根系数量占。~100”m土层根般的90%以上,因此侧定深度不能浅于50cm.0~20cm土层内冬小麦根量占。~100cm土层的2邝左右,且该土层土壤水分变化激烈,故。~20cm土层是土壤水分测定的重要土层。 2.2N.J定层次按A.A.罗杰的说法,测定层次的确定要考虑土壤发生层,即一个测定层次不要包括两个上壤发生层,也就是在同一土壤发生层内考虑选取测定层次,因为在不同土壤发生层内土壤水分的差异可能较大,如此才能清晰地看出土壤水分的垂直变化川。通常,在土壤水分垂直梯度大的

第4章 温度对植物生产的影响

第4章温度对植物生产的影响 【学习目标】 了解温度在植物生命活动中的作用以及温周期现象 理解土壤、空气温度的时空变化规律和调节温度的农业技术措施 掌握植物生产的基点温度、积温、有效积温、界限温度以及应用 熟练掌握温度表,土温表的使用技术 温度是植物生产环境的重要因子之一。植物在它整个生命周期中所发生的一切生理生化作用,都必须在其所处的环境具有一定的温度条件下进行。 温度对植物生命活动的作用主要表现在几个方面:在常温下温度的变化对植物生长发育的影响;温度变化对植物产量和品质的影响;温度过高或者过低对植物的伤害。 每一种植物,甚至同一植物的不同发育时期要求一个最低的起始发育温度。一般来讲,在此温度以上,温度越高,植物的发育越快,同时植物完成某一发育时期,要求一定的温度积累,植物为完成某一发育阶段,需要的积温却是相对稳定。根据植物阶段发育的理论,植物的发育就是导致生殖器官形成所经理的一系列生理变化过程。许多植物必须通过春化和光照两个阶段,才能开花结实。有些植物的种子或者植株,再起发育过程中有一段休眠时期,他们常要求一段相当时期的低温,否则不能完成发育过程。 温度对植物生长,发育的影响,最终会影响到植物的产量和品质。以小麦为例:要想达到好产量,就必须要有足够的苗数,穗数,粒数和较大的粒重,这就和各个时期的温度息息相关。不同时期作物对温度的要求和当地温度的季节性变化之间的良好配好对产量的大笑也是直观重要的。温度对植物产品品质有多方面的影响,其中温度的变化有重要作用,如白天温度较高时,往往有较强的光照,利于光合作用。夜间温度较低,减少呼吸消耗,有利于有机物质的积累。所以在温度日差较大的地区,瓜果含糖量高。另外,温度过低或者过高都会因对植物造成伤害甚至死亡。 第一节植物生长发育与温度 一.温度 1.温度是表示物体冷热程度的物理量,温度的微观实质是物体分子平均动能大小的度量。 2.温度的分类: 气象学及农业气象学中使用的温度常指气温,地温,水温,植物体温和夜温等五种类型(1)气温 就是空气温度,在地面气象观测上,通常指的是距离地面1.5m左右,处于通风防辐射条件下温度表读取的温度。气温在地球表面的平均分布由大气以及地表面的辐射状况,海陆下垫面的性质,大气环流的状况以及受环流制约的气团的移动等因素决定。在自由大气中,气温的变化和空气的绝热上升和下降有密切关系。在对流层中,气温一般随高度而递减。在平流层中,气温一般随高度缓慢增高。对流层中有时会出现气温随高度升高的逆温层。 (2)地温 指地面温度和不同深度的土壤温度的统称。在农业气象中常称土壤温度。前者指土壤水平暴露面的温度,后者指一定深度的土壤温度。由置于不同深度的温度表测得。 (3)水温 水体各层的温度,通常指水面温度。即水体表面的温度。海面温度代表接近海洋界面之下表面混合层中水温的状况。由于海洋面积占全球面积的71%,而且水的比热大,因此,海面水温通过海洋与大气界面的热量交换直接影响大气的温度,对天气过程的形成具有一定的作

空气湿度对植物生长的影响

空气湿度对植物生长的影响 温室内空气湿度环境概况: 温室内的空气湿度是由土壤水分的蒸发、喷雾补充水分和植物体内水分的蒸腾在设施密闭情况下形成的。 温室内作物生长势强、代谢旺盛、作物叶面积指数高,通过蒸腾作用释放出大量水蒸气。同时,由于设施内的空间小、气流比较稳定,在密不透风的环境下,棚室内水蒸气经常接近或者达到饱和状态,空气绝对湿度和相对湿度均比露地栽培高得多。(空气绝对湿度:单位体积空气内水汽的含量。空气相对湿度:空气中的实际水气压与同温度下的饱和水气压的比值) 高湿是园艺设施湿度环境的突出特点。尤其是在夜间,设施处于密闭状态,室内空气湿度大,外界气温低,会引起室内空气骤冷而形成雾。到了白天,在室外气温和太阳辐射的共同作用下,设施内温度迅速升高,结雾消散,空气湿度相对下降(相对湿度下降)。在温暖季节,白天棚室往往开窗通风,室内空气湿度进一步下降(绝对湿度下降),与室外趋于一致。在采暖季节,夜间需进行加温,空气绝对湿度不变,而相对湿度降低,也会减少结雾现象。此外,伴随着结雾现象的产生,还常常发生结露,主要是作物体表面结露以及塑料薄膜内表面严重结露而密布水滴,这是由温差造成的。温差的存在使得相对湿度分布差异较大,因此,在冷的地方就会出现冷凝水,冷凝水的出现与积聚就会出现物体表面的结露现象。作物表面的结露造成了作物沾湿,此外,塑料

薄膜上露滴落到叶面上以及由于根压使作物体内的水分从叶片水孔排出溢液(吐水现象)也会造成作物沾湿,这是作物很易发生病害的重要原因。 综上可知,设施内空气湿度主要与土壤蒸发、喷雾补水和植物蒸腾有关,其次,就是通风和加热,另外,棚室内壁等对水分的吸收和蒸发也会在一定程度上影响到室内湿度。 温室内的空气湿度对温室作物的蒸腾、光合、病害发生及生理失调具有显著影响。 1、空气湿度影响蒸腾作用,蒸腾作用除了是水分吸收的动力,还是矿质营养运输的动力。空气湿度大,蒸腾作用弱,植物运输矿质营养的能力就下降。蒸腾作用还可调节叶片的温度,如果温度高,空气湿度大,蒸腾作用弱,叶片就有可能被灼伤。对蒸腾作用的影响会间接的影响盆土的干湿交替,不利于肥水管理;空气湿度长期过低,会造成叶片边缘以及叶尖的坏死,主要原因是因为叶片内部气腔水气压与外界水气压相差过大,造成叶片内部水汽供应不足而坏死 2、空气湿度的大小影响植物气孔的开闭,空气湿度过大或过小都会导致气孔关闭,植物气孔关闭,CO2不能进入叶肉细胞,光合作用减慢甚至停止。 3、空气湿度的过大有利于病菌的繁殖,大多数真菌孢子的萌发、菌丝的发育都需要较高湿度,过低有利于虫害的的发生,比如红蜘蛛等螨类的发生一般在高温低湿的环境中

植物生长的水分环境

第四章植物生长的水分环境 第一节水分对植物的生态作用 一、植物对水分的吸收 (一)水分对植物的生理作用 水是细胞原生质的重要成分;水是代谢过程的重要物质;水是各种生理生化反应和物质运输 的介质;水分使植物保持固有的姿态;水分具有重要的生态作用。 (二)植物细胞吸水 细胞吸水有三种方式: 1.渗透吸水——由于胞外溶液浓度低而引起的细胞吸水。 2.吸胀吸水——如干燥的种子对水分的吸收。 3.降压吸水——指因压力势降低而引发的细胞吸水。 (三)植物根系吸水 1.水在植物体内外的吸收和运输途径 2.植物根系吸水的动力根系吸水的动力主要有根压和蒸腾拉力两种。 3.植物根系吸水的途径水分在根内的径向运转也有两种途径,即质外体途径和共质体途径。 4.影响根系吸水的主要因素有土壤水分、土壤温度、土壤通气状况、土壤溶液浓度等。 二、植物的蒸腾作用 蒸腾作用是指植物体内的水分以气态散失到大气中去的过程。 (一)蒸腾作用的生理意义 1.能产生蒸腾拉力 2.能促进矿物质的运输和合理分配 3.能降低植物体的温度 4.有利于CO2的同化 (二)蒸腾作用的方式 1.角质蒸腾植物体内水分通过角质层蒸腾。 2.气孔蒸腾植物体内的水分通过气孔蒸腾。植物以气孔蒸腾为主。 (三)蒸腾作用的指标 1.蒸腾速率植物在单位时间、单位叶面积上通过蒸腾作用散失的水量。单位:g/(m2 h)、 mg/(dm2 h)。多数植物白天为 15~250 g/(m2 h),晚上为1~20 g/(m2 h)。 2.蒸腾效率植物每蒸腾1千克水时所生成的干物质的克数。单位:g/kg。一般植物的蒸腾效率为1~8 g/kg。 3.蒸腾系数指植物每制造1克干物质所消耗水分的克数。一般植物的蒸腾系数在125~1 000之间。 (四)蒸腾作用的影响因素与调节 1.影响蒸腾作用的因素(1)内部因素;(2)光照;(3)空气湿度;(4)温度;(5)风速; (6)土壤条件。 2.蒸腾作用的调节在植物生产上,采取有效措施可适当减少蒸腾消耗:(1)减少蒸腾面积。 移栽植物时,可去掉一些枝叶;(2)降低蒸腾速率。在午后或阴天移栽植物,或栽后搭棚遮阳, 或实行设施栽培;(3)使用抗蒸腾剂,如叶面喷洒脱落酸等抗蒸腾剂。 三、植物的需水规律和合理灌溉 (一)植物的需水规律植物有两个关键需水时期:一是植物需水临界期。二是植物最大需水期。 (二)合理灌溉的指标 1.土壤指标植物根系活动层土壤含水量低于田间持水量的60%~80%,应及时灌溉。 2.形态指标植物幼嫩的茎叶在中午前后发生萎蔫,生长速度下降,叶、茎颜色呈绿色 或有时变红等情况下,要及时进行灌溉。

温度对农作物生长的影响

温度对农作物生长的影响 农作物生长的三基点温度 农作物生长的三基点温度指农作物生长的最适温度、最低温度和最高温度。 在最高温度和最低温度时,农作物生长发育停止,在最适温度时,农作物生长速度最快。 在最高温度和最低温度时再升高或降低,农作物开始出现伤害甚至致死。 (白 多, 于西藏白天的高温配合较强的太阳辐射,积累的有机物质多,晚上的低温消耗的有机物质少的原因。 积温在农业生产中的应用 在农作物生长所需的其它因子得到基本满足,在一定的温度范围内,气温和农作物生长发育速度成正相关,即气温越高,农作物生长发育越快。当活动温度累积到一定的总和时,农作物才能完成整个发育周期(或者说农作物才能开花结果),这一温度总和称为积温。 高于生物学下限温度的温度值为活动温度。 活动温度与生物学下限温度之差称为有效温度。 积温表现了作物全生长期(或某一发育期)内对热量的总要求。 作物全生育期(或某一生育期)中活动温度的总和,称活动积温。 2019-8-5

作物全生育期(或某一生育期)中有效温度的总和,称有效积温。 生物学下限温度,又称生物学零度,指作物有效生长的下限温度,也就是作物生长三基点的最低温度。一般情况温带作物的生物学下限温度为5℃,亚热带作物为10℃,热带作物为18℃。籼稻为12℃,粳稻为10℃,油菜为4—5℃。 如计算水稻的有效温度: 早稻播后,4月8号的平均气温为16℃,其有效温度为16℃-12℃=4℃ 4月14号的平均气温为8℃,低于水稻生长下限温度,则4月14号的有效温度为0。 活动积温计算公式: Y=∑ti>B Y为活动积温,B为生物学下限温度,ti>B为高于下限温度的日平均温度,即活动温度。∑ 10~ 热带植物-棕榈树寒温带高寒区泰加林仙人掌蓝藻地球上各地带的植物需要的最适温度的范围是不同的。热带植物生活最适温度范围多在30~35℃;温带植物多在25~30℃,而寒带植物的最适温度一般稍高于0℃。 2019-8-5

森林土壤呼吸及其对全球变化的响应_杨玉盛

第24卷第3期 2004年3月生 态 学 报ACT A ECOLOGICA SINICA V ol.24,N o.3M ar.,2004 森林土壤呼吸及其对全球变化的响应 杨玉盛1,董 彬2,谢锦升2,陈光水1,高 人1,李 灵2,王小国2,郭剑芬 2 (1.福建师范大学地理科学学院,福建福州 350007;2.福建农林大学林学院,福建南平 353001)基金项目:高等学校优秀青年教师教学科研奖励计划资助项目;福建省重大基础研究资助项目(2000F004)收稿日期:2003-11-20;修订日期:2004-02-15 作者简介:杨玉盛(1964~),男,福建仙游人,博士,教授,主要从事亚热带常绿阔叶林C 、N 等元素循环的研究。E-mail:ffcyys@pub lic.np https://www.360docs.net/doc/6416033741.html, Foundation item :T he T eaching an d Res earch Aw ard Prog ram for M OE P.R. C.(TRAPOYT )and th e Key Basic Res earch Project of Fujian Province (No.2000F004) Received date :2003-11-20;Accepted date :2004-03-15 Biography :YANG Yu -S heng,Ph.D.Profes sor,rincipally engaged in study on C an d N cycling in sub tropical evergreen br oad-leaved fores ts.E-mail :ffcyys @public .npptt .fj .cn 摘要:森林土壤呼吸是全球碳循环的重要流通途径之一,其动态变化将直接影响全球C 平衡。森林土壤呼吸由自养呼吸和异养呼吸组成,不同森林类型、测定季节和测定方法等直接影响其所占比例。土壤温度和湿度是影响森林土壤呼吸的最主要因素,共同解释了森林土壤呼吸变化的大部分。因树种组成、生产力和枯落物数量等不同而使不同森林类型土壤呼吸速率表现出明显差异。采伐对森林土壤呼吸的影响结果有增加、降低或无影响,因采伐方式、森林类型、采伐迹地上植被恢复进程和气候条件等而异。火烧一般导致土壤呼吸速率降低。因肥料种类、施用剂量和立地条件不同,施肥对森林土壤呼吸的影响出现增加、降低或无影响等不同结果。大气CO 2浓度升高和升温均可促进森林土壤呼吸。N 沉降有可能刺激了土壤呼吸,而酸沉降则可能降低了土壤呼吸。臭氧浓度和U V -B 辐射强度亦会在一定程度上影响森林土壤呼吸。但目前全球变化对森林土壤呼吸的综合影响尚不清楚,深入探讨森林土壤呼吸的调控因素及其对全球变化和营林措施的响应等仍是今后努力的主要方向。 关键词:森林土壤呼吸;全球变化;碳循环;影响因素 Soil respiration of forest ecosystems and its respondence to global change YANG Yu -Sheng 1,DONG Bin 2,XIE Jin -Sheng 2,CHEN Guang -Shui 1,GAO Ren 1,LI Ling 2,WAN G Xiao-Guo 2,GU O Jian-Fen 2 (1.College of Geogr ap hy S cience ,Fuj ian N or mal Unive rsity ,F uz hou 350007,China ; 2.College of Forestry ,Fuj ian A gr icultur e and F or estry Univ ersity ,N anp ing 353001,China ).Acta Ecologica Sinica ,2004,24(3):583~591. Abstract :Soil r espir ation in for est ecosystems is o ne of the major pat hway s of C flux in the g lo bal C cy cle,seco nd only t o the gr o ss prim ary pr oductivity ,a nd is markablely a ffect ed by the global chang e .T he rev iew summar ized t he im po rta nt r ole of for est soil r espir ation in g lo bal car bo n cy cle ,its components ,its co ntro lling factor s ,and its r esponse to the global chang e . Fo r est so il r espirat ion is the sum of heter otr ophic (micr obes ,so il fauna )and a uto tr ophic (r oo t )r espir atio n .T he contr ibutio n o f each g r oup needs to be under st oo d to evaluate the implicatio ns o f env ir onmental chang es o n so il car bon cycling and car bon sequestrat ion .T here is a larg e var iation in t he r elat ive contr ibutio ns of auto tr ophic and heter ot ro phic r espir ation to to tal so il CO 2efflux ,and t he est imated contr ibutio ns fr om ro ot respir atio n rang e fro m 10%to as hig h as 90%.Some o f this var iat ion may co me fr om differ ences in methodolog y a nd fro m differences in for est and so il types .T he cr itical facto rs influencing for est so il r espirat ion include soil temperatur e ,soil moistur e ,for est t ypes (subst rate qualit y ,net eco system pro ductiv ity ,t he r elat ive allocatio n o f N PP abo ve -and below g ro und )and for est management (land -use and /or dist ur bance reg imes ,fert ilizatio n ).T he temperat ur e effect is alw ay s described as an ex ponent ial function .T he effect o f soil mo isture ,in contr ast,has been descr ibed by numer ous equations including linear ,log arithmic,quadr atic,and parabo lic functio ns.Soil respir atio n is frequent ly max imized when soil is at an inter mediate w ater co ntent.So il temperatur e and so il humidity t og ether ex plain a larg e par t of var iat ions in so il r espirat ion.F or est types m ay affect so il r espirat ion by influencing the soil micr oclimate and str uctur e,the quant ity and quality of substr ate,and the o ver all ra te o f ro ot r espiration.A t the global scale,soil

土壤呼吸的影响因素及全球尺度下温度的影响

土壤呼吸的影响因素及全球尺度下温度的影响 土壤呼吸是指土壤释放CO 2的过程, 主要是由微生物氧化有机物和根系呼吸产生, 另有极少的部分来 自于土壤动物的呼吸和化学氧化 土壤生物 活性和土壤肥力乃至透气性的指标受到重视[ 通量(flux)是物理学的用语,是指单位时间内通过一定面积输送的能量和物质等物理量的数量。 二氧化碳通量就是一定时间通过一定面积的二氧化碳的量。 土壤作为 一个巨大的碳库(11394×1018gC[12]), 是大气CO 2的重要的源或汇, 其通量(约68±4×1015gC?a[13])如此巨 大(燃料燃烧每年释放约512×1015gC[14]), 使得即使轻微的变化也会引起大气中CO 2浓度的明显改变。因 此, 在土壤呼吸的研究中, CO 2通量的精确测定已成为十分迫切的问题。 土壤呼吸影响因素:土壤温度,湿度,透气性,有机质含量,生物,植被及地表覆盖,土地利用,施肥,PH,风速,其他因素。诸如单宁酸 [25]、可溶性有机物(DOM)中的 低分子化合物(LMW )[62]等都对土壤CO2释放速率有显著 的影响.,,,采伐,火烧, 有关生物过程的影响 绝大部 分的CO 2是由于土壤中的生物过程产生的。土壤呼吸的实质是土壤微生物、土壤无脊椎动物和植物根系呼 吸的总和 地表凋落物作为土壤有 机质的主要来源以及作为影响地表环境条件——如温度、湿度等因子对土壤呼吸也产生显著作用

土壤呼吸与土壤温度、水分含量之间的关系 在土壤水分含量充 足、不成为限制因素的条件下土壤呼吸与土壤温度 呈正相关(表1)[4, 15, 19, 21, 25~32]。而在水分含量成为限 制因子的干旱、半干旱地区, 水分含量和温度共同 起作用[18, 3 抑制作用的影响 目前已有文献表明对根系和微生物呼吸的抑制作用在土壤空气CO 2浓度较高时会发生 这也就意味着在大气CO 2浓度升高 时, 土壤呼吸也会受到抑制。 土壤呼吸随纬度的变化 从图3可知, 土壤呼吸量随着纬度的增加而逐渐降低, 可得到一拟合方程: y = 1586e- 010237x(R2= 0147) (1) 其中, y 为土壤呼吸量, x 为纬度 温度与土壤呼吸的关系 最终得到全球尺度下温度对土壤呼吸的影响大小的尺度——Q 10值。Q10值表示温度每升高10度,土壤呼吸速率增加的 倍数 [45 - 46 ] 得到了全球森林植被的土壤呼吸速率与年均温的关系, 即: y = 349166e010449x(R3= 0147) (3) 其中, y 为呼吸速率, x 为年均温。 得到了全球范围的Q 10值= 1157。与已报道的各样点的Q 10值相比全球尺度下的Q 10 值较低, 也就是就, 随温度的上升, 呼吸速率的增加较慢一些 土壤呼吸的测量方法问题及其影响 。测量方法可以分为直接测量和间接测量法[51]。直接测量法中又包括静态法和动态法[52]。其中, 由于实 际工作中具体条件的限制, 目前采用较为广泛的是静态法。CO 2的具体测量技术又有碱吸收法和红外吸收

论温度对农业生产的影响

论温度对农业生产的影响

论温度对农业生产的影响适宜的温度是作物生存及生长发育的重要条件之一,一方面温度直接影响作物生长、分布界限和产量;另一方面,温度也影响着作物的发育速度,从而影响作物生育期的长短与各发育期的长短与各发育期出现的早晚。此外,温度还影响着作物病虫害的发生、发展。 一、植物在环境中生长的要求。 (一)三基点温度。 植物的三基点温度植物生长发育都有三个温度基本点,即维持生长发育的生物学下限温度(最低温度)、最适温度和生物学上限温度(最高温度),这三者合称为三基点温度。在最适温度下,植物的生命活动最强,生长发育速度最快;在最高和最低温度下,植物停止发育,但仍能维持生命。如果温度继续升高或降低,就会对植物产生不同程度的影响,所以在植物温度三基点之外,还可以确定使植物受害或致死的最高与最低温度指标,即最高致死温度和最低致死温度,合成为五基点温度。不同的植物对三基点的温度要求不同,同一植物不同生命阶段的三基点温度也不相同,生长发育的不同生理过程的三基点温度也不相同。 对大多数植物来说,维持生命温度一般在-10~50℃,生长温度在5~40℃,发育温度在10~35℃。

在最适温度下植物生长发育迅速而良好,在生长发育的最低和最高温度下植物停止生长发育。但仍能维持生命;如果温度继续上升或降低,就会发生不同程度的危害,达到生命最低或最高温度时,植物开始死亡。在三基点温度之外,还可以确定最高与最低致死温度,统称为5个基本温度指标。 不同作物或同一种作物的不同发育期,三基点温度是不相同的。 三基点温度是最基本的温度指标,用途很广。在确定温度的有效性、作物的种植季节和分布区域,计算作物生产潜力等方面都必须考虑三基点。 (二)受害、致死温度 植物遇低温导致的受害或致死,称为冷害或冻害。在0℃以上的低温危害称冷害或寒害,在0℃以下的危害则为冻害。植物因温度过高而造成的危害称热害。 二、周期性变温对植物的影响。 据研究,植物的生长和产品品质,在有一定昼夜变温的条件下比恒温条件下要好。这种现象称“温周期变化”。在一定的温度范围内,白天温度高,光合作用强,夜间温度低,作物呼吸消耗少即温度日较差大有利于有机质的积累。温度日较差大有利于有机质作物品质的提高。在昼夜温差较大的条件下,生长的瓜肉和肉质直根类作物,含糖量增加,小麦千粒重及蛋白质含量均提高。

第三章 温度与园林植物

第三章温度与园林植物 ?温度影响着生物的生长和生物的发育,并决定着生物的地理分布。 ?任何一种生物都必须在一定的温度范围内才能正常生长发育。当环境温度高于或低于生物所 能忍受的温度范围时,生物的生长发育就会受阻,甚至造成死亡。此外,地球表面的温度在时间上有四季变化和昼夜变化,温度的这些变化都能给生物带来多方面的深刻影响。 ?温度的变化能引起环境中其他因子的变化 温度的生态作用 一、地球上温度的分布 太阳辐射是地球表面的热源。大气温度主要取决于太阳辐射和地球表面水陆分布。(一)地表大气温度的分布与变化 (二)温度变化规律 第一节城市温度环境 一、温度及其变化规律 R=(S+S`+Ea)—[(S+S`)a+Ee] 二、城市温度条件 伦敦市最低气温热岛图 城市热岛温度剖面图 城市热岛的形成原因 广州市热岛图 (二)影响城市热岛效应的因素 (三)城市热岛对生态环境的影响 城市热岛环流模式 2、夏季,热岛效应可加强城市气温酷热程度 易产生高温灾害,影响健康舒适。增加了能源的消耗和环境污染,影响环境质量。 3、影响取暖季节的能耗冬季,中高纬度地区城市,热岛效应使城市取暖季节比郊区缩短,节省取暖的能源消耗,可消减城市大气污染。 5、影响无霜期和物候期热岛效应会使春天来得早,秋季结束晚,城市无霜期延长,极端低温趋向缓和,有利于树木生长。 (四)防治热岛效应的对策 三、城市小环境温度变化 气温: 冬季,楼南侧气温最高,北侧最低,东侧与西侧居中, 夏季,楼西侧气温比南侧略高。 地温: 楼南侧冻土期比露天对照减少1倍左右,而北侧冻土期比露天对照略长 第二节温度对园林植物的生态作用 一、温度对植物生理活动的影响 最低温、最适温和最高温称酶活性的?°三基点?±温度。植物的生长与温度的关系也服从?°三基点?±温度。一般地,植物生长的温度范围为4-36℃。 最低温:在该温度以上酶才开始表现活性,并在一定范围内酶的活性与温度呈正相关。

相关文档
最新文档