新人教版高中数学—必修1全部学案
人教版(新教材)高中数学必修1(第一册)学案:2.2 第2课时 基本不等式的应用
第2课时 基本不等式的应用学习目标 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点 用基本不等式求最值用基本不等式x +y2≥xy 求最值应注意:(1)x ,y 是正数;(2)①如果xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P ; ②如果x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.(3)讨论等号成立的条件是否满足. 预习小测 自我检验1.已知0<x <12,则y =x (1-2x )的最大值为________.『答 案』 18『解 析』 y =x (1-2x )=12·2x ·(1-2x )≤12⎝ ⎛⎭⎪⎫2x +1-2x 22=18, 当且仅当2x =1-2x ,即x =14时取“=”.2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________. 『答 案』 20『解 析』 总运费与总存储费用之和 y =4x +400x ×4=4x +1600x ≥24x ·1600x=160,当且仅当4x =1600x ,即x =20时取等号.3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司每台机器年平均利润的最大值是________万元. 『答 案』 8『解 析』 年平均利润y x =-x +18-25x =-⎝⎛⎭⎫x +25x +18≤-225x·x +18=-10+18=8,当且仅当x =5时取“=”.4.已知x >2,则x +4x -2的最小值为________.『答 案』 6 『解 析』 x +4x -2=x -2+4x -2+2, ∵x -2>0,∴x -2+4x -2+2≥24+2=4+2=6.当且仅当x -2=4x -2,即x =4时取“=”.一、利用基本不等式变形求最值例1 已知x >0,y >0,且1x +9y =1,求x +y 的最小值.解 方法一 ∵x >0,y >0,1x +9y =1,∴x +y =⎝⎛⎭⎫1x +9y (x +y )=y x +9xy +10 ≥6+10=16, 当且仅当y x =9xy,又1x +9y =1,即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.方法二 由1x +9y =1,得(x -1)(y -9)=9(定值).由1x +9y =1可知x >1,y >9, ∴x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=16,当且仅当x -1=y -9=3, 即x =4,y =12时上式取等号, 故当x =4,y =12时,(x +y )min =16.延伸探究 若将条件换为:x >0,y >0且2x +8y =xy ,求x +y 的最小值. 解 方法一 由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2xx -8=x +(2x -16)+16x -8=(x -8)+16x -8+10≥2(x -8)×16x -8+10=18.当且仅当x -8=16x -8,即x =12时,等号成立.∴x +y 的最小值是18.方法二 由2x +8y -xy =0及x >0,y >0, 得8x +2y=1. ∴x +y =(x +y )⎝⎛⎭⎫8x +2y =8y x +2xy+10≥28y x ·2xy+10=18. 当且仅当8y x =2xy ,即x =2y =12时等号成立.∴x +y 的最小值是18.反思感悟 应根据已知条件适当进行“拆”“拼”“凑”“合”“变形”,创造应用基本不等式及使等号成立的条件.当连续应用基本不等式时,要注意各不等式取等号时的条件要一致,否则也不能求出最值;特别注意“1”的代换.跟踪训练1 已知正数x ,y 满足x +y =1,则1x +4y 的最小值是________.『答 案』 9『解 析』 ∵x +y =1, ∴1x +4y =(x +y )⎝⎛⎭⎫1x +4y =1+4+y x +4x y.∵x >0,y >0,∴y x >0,4xy >0,∴y x +4xy≥2y x ·4xy=4, ∴5+y x +4x y≥9.当且仅当⎩⎪⎨⎪⎧x +y =1,y x =4x y,即x =13,y =23时等号成立.∴⎝⎛⎭⎫1x +4y min =9.二、基本不等式在实际问题中的应用例2 “足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品二次加工后进行推广促销,预计该批产品销售量Q 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为Q =x +12(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本2⎝⎛⎭⎫Q +1Q 万元(不包含推广促销费用),若加工后的每件成品的销售价格定为⎝⎛⎭⎫2+20Q 元/件. 那么当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?(利润=销售额-成本-推广促销费) 解 设该批产品的利润为y , 由题意知y =⎝⎛⎭⎫2+20Q ·Q -2⎝⎛⎭⎫Q +1Q -x =2Q +20-2Q -2Q -x =20-2Q-x=20-4x +1-x =21-⎣⎢⎡⎦⎥⎤4x +1+(x +1),0≤x ≤3.∵21-⎣⎢⎡⎦⎥⎤4x +1+(x +1)≤21-24=17,当且仅当x =1时,上式取“=”, ∴当x =1时,y max =17.答 当推广促销费投入1万元时,利润最大为17万元.反思感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用基本不等式求最值,要注意验证等号是否成立. 跟踪训练2 2016年11月3日20点43分我国长征五号运载火箭在海南文昌发射中心成功发射,它被公认为是我国从航天大国向航天强国迈进的重要标志.长征五号运载火箭的设计生产采用了很多新技术新产品,甲工厂承担了某种产品的生产,并以x 千克/时的速度匀速生产时(为保证质量要求1≤x ≤10),每小时可消耗A 材料kx 2+9千克,已知每小时生产1千克该产品时,消耗A 材料10千克.消耗A 材料总重量为y 千克,那么要使生产1000千克该产品消耗A 材料最少,工厂应选取何种生产速度?并求消耗的A 材料最少为多少. 解 由题意,得k +9=10,即k =1, 生产1000千克该产品需要的时间是1000x ,所以生产1000千克该产品消耗的A 材料为 y =1000x (x 2+9)=1000⎝⎛⎭⎫x +9x ≥1000×29=6000, 当且仅当x =9x,即x =3时,等号成立,且1<3<10.故工厂应选取3千克/时的生产速度,消耗的A 材料最少,最少为6000千克.基本不等式在实际问题中的应用典例 围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图.已知旧墙的维修费用为45元/m ,新墙的造价为180 元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解 设矩形的另一边长为a m ,则y =45x +180(x -2)+180×2a =225x +360a -360.由已知xa =360,得a =360x ,∴y =225x +3602x -360.∵x >0,∴225x +3602x ≥2225×3602=10800.∴y =225x +3602x -360≥10440.当且仅当225x =3602x时,等号成立.即当x =24m 时,修建围墙的总费用最小,最小总费用是10440元.『素养提升』 数学建模是对现实问题进行数学抽象,建立和求解模型的过程耗时费力,所以建立的模型要有广泛的应用才有价值.本例中所涉及的y =x +ax (a >0)就是一个应用广泛的函数模型.1.设x >0,则3-3x -1x 的最大值是( )A .3B .3-2 2C .-1D .3-2 3『答 案』 D『解 析』 ∵x >0,∴3x +1x≥23x ·1x =23,当且仅当x =33时取等号,∴-⎝⎛⎭⎫3x +1x ≤-23,则3-3x -1x≤3-23,故选D.2.已知x 2-x +1x -1(x >1)在x =t 时取得最小值,则t 等于( )A .1+ 2B .2C .3D .4『答 案』 B『解 析』 x 2-x +1x -1=x (x -1)+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x -1=1x -1,即x =2时,等号成立.3.将一根铁丝切割成三段做一个面积为2m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5mB .6.8mC .7mD .7.2m 『答 案』 C『解 析』 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l=a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C.4.已知正数a ,b 满足a +2b =2,则2a +1b 的最小值为________.『答 案』 4『解 析』 2a +1b =⎝⎛⎭⎫2a +1b ×12(a +2b ) =12⎝⎛⎭⎫4+a b +4b a ≥12(4+24)=4. 当且仅当a b =4b a ,即a =1,b =12时等号成立,∴2a +1b的最小值为4. 5.设计用32m 2的材料制造某种长方体车厢(无盖),按交通法规定厢宽为2m ,则车厢的最大容积是________m 3. 『答 案』 16『解 析』 设车厢的长为b m ,高为a m. 由已知得2b +2ab +4a =32,即b =16-2aa +1,∴V =a ·16-2a a +1·2=2·16a -2a 2a +1.设a +1=t ,则V =2⎝⎛⎭⎫20-2t -18t ≤2⎝⎛⎭⎫20-22t ·18t =16,当且仅当t=3,即a=2,b=4时等号成立.1.知识清单:(1)已知x,y是正数.①若x+y=S(和为定值),则当x=y时,积xy取得最大值.②若x·y=P(积为定值),则当x=y时,和x+y取得最小值.即:“和定积最大,积定和最小”.(2)求解应用题的方法与步骤.①审题,②建模(列式),③解模,④作答.2.方法归纳:注意条件的变换,常用“1”的代换方法求最值.3.常见误区:缺少等号成立的条件.。
高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系
1.2 集合间的基本关系学习目标1.了解集合之间包含与相等的含义,能识别给定集合的子集;2.理解子集、真子集的概念;3.能使用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想.重点难点重点:集合间的包含与相等关系,子集与其子集的概念;难点:属于关系与包含关系的区别.知识梳理1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B (或B 包含A ).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B读作:A 等于B. 图示:2. 真子集 若集合A B ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集.记作:A B (或B A )读作:A 真包含于B (或B 真包含A )3.空集不含有任何元素的集合称为空集,记作:∅.规定:空集是任何集合的子集.学习目标探究一子集1.观察以下几组集合,并指出它们元素间的关系:①A ={1,2,3},B ={1,2,3,4,5};②A 为立德中学高一(2)班全体女生组成的集合, B 为这个班全体学生组成的集合; ③A ={x |x >2},B ={x |x >1}.2.子集定义:一般地,对于两个集合A 、B ,如果集合A 中都是集合B 中的元素,我们就说这两个 集合有包含关系,称集合A 为集合B 的.记作:(A B B A ⊆⊇或)读作:(或“”)符号语言:任意有则.3.韦恩图(Venn 图):用一条封闭曲线(圆、椭圆、长方形等)的内部来代表集合叫集合的韦恩图表示.牛刀小试1:图中A 是否为集合B 的子集?牛刀小试2:判断集合A 是否为集合B 的子集,若是则在()打√,若不是则在()打×:①A ={1,3,5}, B ={1,2,3,4,5,6} ( )②A ={1,3,5}, B ={1,3,6,9} ( )③A ={0}, B={x | x 2+2=0} ( )④A ={a,b,c,d }, B ={d,b,c,a } ( )探究二集合相等BB A,A1.观察下列两个集合,并指出它们元素间的关系(1)A ={x |x 是两条边相等的三角形},B ={x |x 是等腰三角形};2.定义:如果集合A 的都是集合B 的元素,同时集合B 都是集合A 的元素,我们就说集合A 等于集合B ,记作.牛刀小试3:()(){}{}12012A x x x B A B =++==--,,.集合与什么关系?探究三真子集1.观察以下几组集合,并指出它们元素间的关系:(1)A ={1,3,5}, B ={1,2,3,4,5,6};(2)A ={四边形}, B ={多边形}.2.定义:如果集合A ⊆B ,但存在元素,且,称集合A 是集合B 的真子集.记作:(或)读作:“A 真含于B ”(或B 真包含A ).探究四空集1.我们把的集合叫做空集,记为φ,并规定:空集是任何集合的子集.空集是任何非空集合的真子集.即φB ,(B φ≠) 例如:方程x 2+1=0没有实数根,所以方程 x 2+1=0的实数根组成的集合为φ.问题:你还能举几个空集的例子吗?2.深化概念:(1)包含关系{}a A ⊆与属于关系a A ∈有什么区别?(2)集合A B 与集合A B ⊆有什么区别?(3)0,{0}与 Φ三者之间有什么关系?3.结论:由上述集合之间的基本关系,可以得到下列结论:(1)任何一个集合是它本身的子集,即.(2)对于集合A 、B 、C ,若,,A B B C ⊆⊆则(类比b a ≤,c b ≤则c a ≤). 例1.写出集合{a ,b }的所有子集,并指出哪些是它的真子集.例2.判断下列各题中集合A 是否为集合B 的子集,并说明理由.(1)A ={1,2,3},B ={x |x 是8的约数};(2)A ={x |x 是长方形},B ={x |x 是两条对角线相等的平行四边形}达标检测1.集合A ={-1,0,1},A 的子集中含有元素0的子集共有( )A .2个B .4个C .6个D .8个2.已知集合M={x|-3<x<2,x∈Z},则下列集合是集合M的子集的为( ) A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}3.①0∈{0},②∅{0},③{0,1}⊆{(0,1)},④{(a,b)}={(b,a)}.上面关系中正确的个数为( )A.1 B.2C.3 D.44.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}5.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.——★ 参*考*答*案★——学习过程:探究一1.集合A的元素都属于集合B2.任何一个元素子集集合A含于集合B集合B包含集合Ax∈A,x∈BA⊆B牛刀小试1 集合A不是集合B的子集牛刀小试2 ①√ ②×③×④√探究二集合相等1.(1)中集合A中的元素和集合B中的元素相同.2.任何一个元素任何一个元素A=B牛刀小试3 A=B探究三真子集1.集合A中元素都是集合B的元素,但集合B有的元素不属于集合A.2.x∈Bx AA BB A探究四空集1.不含任何元素2.(1)前者为集合之间关系,后者为元素与集合之间的关系.(2) A = B或A B(3){0}与Φ :{0}是含有一个元素0的集合,Φ是不含任何元素的集合.如Φ{0}不能写成Φ ={0},Φ ∈{0}3.(1)(2)例1.解:集合{a,b}的子集:,{a},{b} ,{a, b}.集合{a,b}真子集:,{a},{b}.例2.解:(1)因为3不是8的约数,所以集合A不是集合B的子集.三、达标检测1.『解析』根据题意,在集合A的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1}四个,故选B.『答案』B2.『解析』集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P 中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S={0,1}中的任意一个元素都在集合M中,所以S⊆M.故选D.『答案』D3.『解析』①正确,0是集合{0}的元素;②正确,∅是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.『答案』B4.『解析』由A={x|1<x<2},B={x|x<a},A⊆B,则{a|a≥2}.『答案』D5.『解』因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.。
新人教版高一数学必修一教案(实用13篇)
新人教版高一数学必修一教案(实用13篇)高一数学必修二教案(1)理解函数的概念;。
(2)了解区间的概念;。
2、目标解析。
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;。
【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。
要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
【教学过程】。
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t 按照给定的图象,都有的一个臭氧层空洞面积s与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
高一数学必修一第三章教案细胞膜、细胞壁、细胞核、细胞质均不是细胞器。
一、细胞器之间分工。
1.线粒体:细胞进行有氧呼吸的主要场所。
双层膜(内膜向内折叠形成脊),分布在动植物细胞体内。
2.叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。
3.内质网:蛋白质合成和加工,以及脂质合成的“车间”,单层膜,动植物都有。
分为光面内质网和粗面内质网(上有核糖体附着)。
人教版高一数学必修一教案(优秀4篇)
人教版高一数学必修一教案(优秀4篇)人教版高一数学必修一教案篇一教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课型:新授课教学重点:集合的交集与并集的概念;教学难点:集合的交集与并集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。
二、新课教学1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∪A,或x∪B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题1求集合A与B的并集① A={6,8,10,12} B={3,6,9,12}② A={x|-1≤x≤2} B={x|0≤x≤3}(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
2、交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”即:A∩B={x|∪A,且x∪B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题2求集合A与B的交集③ A={6,8,10,12} B={3,6,9,12}④ A={x|-1≤x≤2} B={x|0≤x≤3}拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3、例题讲解例3(P12例1):理解所给集合的含义,可借助venn图分析例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。
人教版高中数学必修1全册教案
人教版高中数学必修1全册教案一、教学目标本教案旨在帮助学生:1. 掌握高中数学的基本概念和基本工具;2. 培养数学思维和解决问题的能力;3. 培养学生合作研究和自主研究的能力;4. 提高学生对数学的兴趣和研究动机。
二、教学内容本教案涵盖了人教版高中数学必修1全册的所有内容,包括但不限于以下几个单元:1. 数与式2. 二次函数与一元二次方程3. 三角函数与解三角形4. 平面坐标系与参数方程5. 二次函数与简单二次方程6. 平面向量初步三、教学方法针对不同的教学内容,本教案采用了多种教学方法,如:1. 讲授法:通过教师的讲解、示范和解释,帮助学生理解数学的概念和原理;2. 实践法:通过实际的例题、练和探究活动,培养学生解决问题的能力;3. 小组合作研究:组织学生进行小组合作研究,提高学生的交流和合作能力;4. 自主研究:引导学生进行自主研究,培养学生的自主研究和自我管理能力;四、教学评估本教案采用多种形式的教学评估方式,如:1. 课堂练:通过课堂上的小测验和练,检验学生对知识的掌握情况;2. 作业布置:通过作业的批改和评价,评估学生的研究效果;3. 期中考试:通过期中考试,评估学生对整个教学内容的掌握情况;4. 期末考试:通过期末考试,评估学生对整个学期的研究效果。
五、教学资源本教案所需的教学资源包括但不限于以下几个方面:1. 课本和教辅材料:学生使用的教科书和相关教辅材料;2. 多媒体设备:投影仪、电脑等多媒体设备;3. 实验器材:实验课时所需的实验器材;4. 额外参考资料:学生自主研究时所需的额外参考资料。
以上是本教案的主要内容和要点,请根据需要进行调整和补充。
教师在教学过程中应根据学生的实际情况和学习进度,灵活运用教学方法和评估方式,以达到最佳的教学效果。
新人教高中数学必修一全套学案
集合学案 §1.1集合(1)一、知识归纳:1、 集合:某些 的对象集在一起就形成一个集合,简称集。
元素:集合中的每个 叫做这个集合的元素。
2、集合的表示方法⎩⎨⎧描述法:列举法:3、集合的分类⎪⎩⎪⎨⎧空集:无限集:有限集:二、例题选讲:例1、观察下列实例:① 小于11的全体非负偶数; ②整数12的正因数;③抛物线12+=x y 图象上所有的点; ④所有的直角三角形;⑤高一(1)班的全体同学; ⑥班上的高个子同学; 回答下列问题: ⑴哪些对象能组成一个集合.⑵用适当的方法表示它.⑶指出以上集合哪些集合是有限集. 例2、用适当的方法表示以下集合:⑴平方后与原数相等的数的集合;⑵设b a ,为非零实数,bb aa +可能表示的数的取值集合;⑶不等式62<x 的解集; ⑷坐标轴上的点组成的集合; ⑸第二象限内的点组成的集合; ⑹方程组⎩⎨⎧=-=+15y x y x 的解集。
三、针对训练:1.课本P5第1题: 2.课本P6第1、2题 3.已知集合{}012|2=++=x ax x A⑴若A 中只有一个元素,求a 及A ;⑵若,Φ=A 求a 的取值范围。
§1.1集合(2)一、知识归纳:4、集合的符号表示:⑴集合用 表示,元素用 表示。
⑵如果a 是集合A 的元素,就说a 属于集合A ,记作: 如果a 不是集合A 的元素,就说a 不属于集合A ,记作: ⑶常用数集符号:非负整数集(或自然数集): 正整数集: 整数集: 有理数集: 实数集: 5、 元素的性质:(1) (2) (3) 二、例题选讲:例3 用符号∉∈与填空:⑴0 *NZ ;0 N ;0)1(- *N ;23+ Q ;34Q 。
⑵3{}3,2;3(){}3,2;()3,2 (){}3,2; ()2,3 (){}3,2例4 (1)已知{}52<<=x x A ,判断b a 、是否属于A ?7=a ,︒+︒=31tan 42sin b(2)已知{}{},.,1,,2B A b B a a A ===求b a ,三、针对训练: 1.课本P5第2题2.习题1.13.已知:}{Nx x y y A ∈+==且1|2{}22|),(2+-==x x y y x B ,用符号∉∈与填空⑴0 A ; 5.3 A ; 10 A ; (1,2) A 。
高中数学人教版必修1全套教案
第一章 集合与函数§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.a b c d…4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母,,,表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么,a b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.∈.如果a是集合A的元素,就说a属于集合A,记作a A∉.如果a不是集合A的元素,就说a不属于集合A,记作a A(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
新课标人教A版高中数学必修1全册教案完整版
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
高中数学必修1教案 最新人教版高一数学必修一教案(大全(优秀11篇)
高中数学必修1教案最新人教版高一数学必修一教案(大全(优秀11篇)高中数学必修一教案全套篇一本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。
本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。
更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。
因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。
二、教学目标定位为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。
根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:一、知识与技能.理解合力、分力、力的合成的概念。
理解力的合成本质上是从等效的角度进行力的替代。
.探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。
二、过程与方法.通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。
.通过实验探究方案的设计与实施,体验科学探究的过程。
三、情感态度与价值观.培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。
.培养认真细致、实事求是的实验态度。
根据以上分析确定本节课的重点与难点如下:一、重点.合力和分力的概念以及它们的关系。
.实验探究力的合成所遵循的法则。
二、难点平行四边形定则的理解和运用。
三、重、难点突破方法——教法简介本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。
因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。
体现学生主体性。
实验归纳法的步骤如下。
新课标高中数学人教A版必修1全册导学案及答案(105页)
课题:1.1.1集合的含义与表示(1)一、三维目标:知识与技能:了解集合的含义,体会元素与集合的属于关系;掌握常用数集及其记法、集合中元素的三个特征。
过程与方法:通过实例了解,体会元素与集合的属于关系。
情感态度与价值观:培养学生的应用意识。
二、学习重、难点:重点:掌握集合的基本概念。
难点:元素与集合的关系。
三、学法指导:认真阅读教材P 1-P 3,对照学习目标,完成导学案,适当总结。
四、知识链接:军训前学校通知:8月13日8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?初中时你听说过“集合”这一词吗?你在学习那些知识点中提到了“集合” 这一词?(试举几例)五、学习过程:1、阅读教材P 2 页8个例子问题1:总结出集合与元素的概念:问题2:集合中元素的三个特征:问题3:集合相等:问题4:课本P 3的思考题,并再列举一些集合例子和不能构成集合的例子。
2、集合与元素的字母表示: 集合通常用大写的拉丁字母A ,B ,C …表示,集合的元素用小写的拉丁字母a,b,c,…表示。
问题5:元素与集合之间的关系?A 例1:设A 表示“1----20以内的所有质数”组成的集合,则3、4与A 的关系?B 例2:若+∈N x ,则N x ∈,对吗?六、达标检测:A 1.判断以下元素的全体是否组成集合:(1)大于3小于11的偶数; ( ) (2)我国的小河流; ( ) (3)非负奇数; ( ) (4)本校2009级新生; ( ) (5)血压很高的人; ( ) (6)著名的数学家; ( ) (7)平面直角坐标系内所有第三象限的点 ( ) A 2.用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4; (5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A ;B 3.下面有四个语句:①集合N 中最小的数是1;②若N a ∉-,则N a ∈;③若N a ∈,N b ∈,则b a +的最小值是2;④x x 442=+的解集中含有2个元素;其中正确语句的个数是( )A.0B.1C.2D.3B 4.已知集合S 中的三个元素a,b,c 是∆ABC 的三边长,那么∆ABC 一定不是 ( )A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形B 5. 已知集合A 含有三个元素2,4,6,且当A a ∈,有6-a ∈A ,那么a 为 ( )A .2 B.2或4 C.4 D.0B 6. 设双元素集合A 是方程x 2-4x+m=0的解集,求实数m 的取值范围。
人教版(新教材)高中数学必修1(第一册)学案:4.3.2 对数的运算
4.3.2 对数的运算学习目标 1.掌握积、商、幂的对数运算性质,理解其推导过程和成立条件.2.掌握换底公式及其推论.3.能熟练运用对数的运算性质进行化简求值.知识点一 对数运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ). 知识点二 换底公式1.log a b =log c blog c a (a >0,且a ≠1;c >0,且c ≠1;b >0).2.对数换底公式的重要推论:(1)log a N =1log N a (N >0,且N ≠1;a >0,且a ≠1);(2)log n m a b =mnlog a b (a >0,且a ≠1,b >0);(3)log a b ·log b c ·log c d =log a d (a >0,b >0,c >0,d >0,且a ≠1,b ≠1,c ≠1). 预习小测 自我检验1.计算log 84+log 82=________. 『答 案』 12.计算log 510-log 52________. 『答 案』 13.(1)lg 10=________;(2)已知ln a =0.2,则ln ea =________.『答 案』 (1)12 (2)0.84.log 29log 23=________. 『答 案』 2一、对数运算性质的应用 例1 计算下列各式: (1)log 53625;(2)log 2(32×42); (3)log 535-2log 573+log 57-log 595.解 (1)原式=13log 5625=13log 554=43.(2)原式=log 232+log 242=5+4=9.(3)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2log 55=2. 反思感悟 对数式化简与求值的基本原则和方法 (1)基本原则对数式的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行. (2)两种常用的方法①“收”,将同底的两对数的和(差)收成积(商)的对数; ②“拆”,将积(商)的对数拆成同底的两对数的和(差). 跟踪训练1 计算下列各式的值: (1)(lg5)2+2lg2-(lg2)2; (2)lg3+25lg9-35lg 27lg81-lg27.解 (1)原式=(lg5+lg2)(lg5-lg2)+2lg2 =lg10(lg5-lg2)+2lg2 =lg5-lg2+2lg2 =lg5+lg2=1.(2)原式=lg3+45lg3-910lg34lg3-3lg3=⎝⎛⎭⎫1+45-910lg3(4-3)lg3=910. 二、对数换底公式的应用例2 (1)计算:(log 43+log 83)log 32=________. 『答 案』 56『解 析』 原式=⎝⎛⎭⎫1log 34+1log 38log 32 =⎝⎛⎭⎫12log 32+13log 32log 32 =12+13=56. (2)已知log 189=a ,18b =5,求log 3645.(用a ,b 表示) 解 因为18b =5,所以b =log 185. 所以log 3645=log 1845log 1836=log 18(5×9)log 18(2×18)=log 185+log 189log 182+log 1818=a +b 1+log 182=a +b 1+log 18189=a +b 2-log 189=a +b 2-a .延伸探究若本例(2)条件不变,求log 915.(用a ,b 表示) 解 因为18b =5,所以log 185=b . 所以log 915=log 1815log 189=log 18(3×5)log 189=log 183+log 185a =log 189+ba=1218log9ba=12log189+ba=12a+ba=a+2b2a.反思感悟 利用换底公式化简与求值的思路跟踪训练2 (1)log 89log 23的值是( )A.23B.32C .1D .2 『答 案』 A『解 析』 方法一 将分子、分母利用换底公式转化为常用对数, 即log 89log 23=lg9lg8lg3lg2=2lg33lg2·lg2lg3=23. 方法二 将分子利用换底公式转化为以2为底的对数, 即log 89log 23=log 29log 28log 23=2log 233log 23=23. (2)计算:log 52·log 79log 513·log 734.解 原式=log 52log 513·log 79log 73423122114233log 2log log 23log 3==⋅=-12·log 32·3log 23=-32.三、对数的综合应用例3 2018年我国国民生产总值为a 亿元,如果平均每年增长8%,估计约经过多少年后国民生产总值是2018年的2倍?(lg2≈0.3010,lg1.08≈0.0334,精确到1年) 解 设经过x 年后国民生产总值为2018年的2倍. 经过1年,国民生产总值为a (1+8%), 经过2年,国民生产总值为a (1+8%)2, …,经过x 年,国民生产总值为a (1+8%)x =2a , 所以1.08x =2,所以x =log 1.082=lg2lg1.08=0.30100.0334≈9,故约经过9年后国民生产总值是2018年的2倍. 反思感悟 解决对数应用题的一般步骤跟踪训练3 在不考虑空气阻力的情况下,火箭的最大速度v (单位:m/s)和燃料的质量M (单位:kg),火箭(除燃料外)的质量m (单位:kg)满足e v =⎝⎛⎭⎫1+Mm 2000(e 为自然对数的底数,ln3≈1.099).当燃料质量M 为火箭(除燃料外)质量m 的两倍时,求火箭的最大速度(单位:m/s).解 因为v =ln ⎝⎛⎭⎫1+Mm 2000 =2000·ln ⎝⎛⎭⎫1+M m , 所以v =2000·ln3≈2000×1.099=2198(m/s).故当燃料质量M 为火箭质量m 的两倍时,火箭的最大速度为2198m/s.1.计算:log 123+log 124等于( ) A .1B .2C .3D .4 『答 案』 A2.若lg2=m ,则lg5等于( ) A .m B.1m C .1-m D.10m『答 案』 C 『解 析』 lg 5=lg102=lg 10-lg 2=1-m . 3.化简12log 612-2log 62的结果为( )A .62B .122C .log 63D.12『答 案』 C『解 析』 原式=log 612-log 62=log 6122=log 6 3. 4.下列各等式正确的为( ) A .log 23·log 25=log 2(3×5) B .lg3+lg4=lg(3+4) C .log 2xy=log 2x -log 2yD .lg nm =1n lg m (m >0,n >1,n ∈N *)『答 案』 D『解 析』 A ,B 显然错误,C 中,当x ,y 均为负数时,等式右边无意义. 5.计算:log 513·log 36·log 6125=________.『答 案』 2『解 析』 原式=lg 13lg5·lg6lg3·lg 125lg6=-lg3lg5·lg6lg3·-2lg5lg6=2.1.知识清单: (1)对数的运算性质. (2)换底公式. (3)对数的实际应用. 2.方法归纳:(1)利用对数的运算性质,可以把乘、除、乘方运算转化为加、减、乘的运算,加快计算速度. (2)利用结论log a b ·log b a =1,log n m a b =m n log a b 化简求值更方便.3.常见误区:要注意对数的运算性质(1)(2)的结构形式,易混淆.。
人教版高一数学必修一教案(3篇)
人教版高一数学必修一教案(3篇)篇一:人教版高一数学必修一教案篇一一、教学目标1.知识与技能:(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法:(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
四、教学过程(一)创设情景,揭示课题1、由六根火柴最多可搭成几个三角形?(空间:4个)2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?3、展示具有柱、锥、台、球结构特征的空间物体。
问题:请根据某种标准对以上空间物体进行分类。
(二)、研探新知空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;旋转体(轴):圆柱、圆锥、圆台、球。
1、棱柱的结构特征:(1)观察棱柱的几何物体以及投影出棱柱的图片,思考:它们各自的特点是什么?共同特点是什么?(学生讨论)(2)棱柱的主要结构特征(棱柱的概念):①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。
(3)棱柱的表示法及分类:(4)相关概念:底面(底)、侧面、侧棱、顶点。
2、棱锥、棱台的结构特征:(1)实物模型演示,投影图片;(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
高中数学人教版(新教材)必修1学案 1.5.2 全称量词命题和存在量词命题的否定
1.5 全称量词与存在量词1.5.1 全称量词与存在量词1.5.2全称量词命题和存在量词命题的否定课前自主学习知识点1全称量词和全称量词命题(1)短语“”“”在逻辑中通常叫做全称量词,并用符号“”表示.含有全称量词的命题,叫做全称量词命题.(2)将含有变量x的语句用p(x),q(x),r(x),…表示,变量x的取值范围用M表示.那么,全称量词命题“对M中任意一个x,p(x)成立”可用符号简记为:.『微体验』1.思考辨析(1)命题“任意一个自然数都是正整数”是全称量词命题.()(2)命题“三角形的内角和是180°”是全称量词命题.()(3)命题“存在一个菱形,它的四条边不相等”是全称量词命题.()2.下列命题中,不是全称量词命题的是()A.任何一个实数乘以0都等于0B.自然数都是正整数C.每一个向量都有大小D.一定存在没有最大值的二次函数知识点2存在量词和存在量词命题(1)短语“”“”在逻辑中通常叫做存在量词,并用符号“”表示.含有存在量词的命题,叫做存在量词命题.(2)存在量词命题“存在M中的元素x,p(x)成立”可用符号简记为:.『微体验』1.思考辨析(1)命题“有些菱形是正方形”是全称命题.()(2)命题“存在一个菱形,它的四条边不相等”是存在量词命题.()(3)命题“有的无理数的平方不是有理数”是存在量词命题.()2.以下量词“所有”“任何”“一切”“有的”“有些”“有一个”“至少”中是存在量词的有() A.2个B.3个C.4个D.5个知识点3全称量词命题和存在量词命题的否定(1)全称量词命题的否定:一般来说,对含有一个量词的全称量词命题进行否定,我们只需把“所有的”“任意一个”等全称量词,变成“并非所有的”“并非任意一个”等短语即可.也就是说,假定全称量词命题为“∀x∈M,p(x)”,则它的否定为“并非∀x∈M,p(x)”,也就是“∃x∈M,p(x)不成立”.通常,用符号“¬p(x)”表示“p(x)不成立”.(2)对于含有一个量词的全称量词命题的否定,有下面的结论:全称量词命题:∀x∈M,p(x),它的否定:∃x∈M,.也就是说,全称量词命题的否定是命题.(3)存在量词命题的否定:一般来说,对含有一个量词的存在量词命题进行否定,我们只需把“存在一个”“至少有一个”“有些”等存在量词,变成“不存在一个”“没有一个”等短语即可.也就是说,假定存在量词命题为“∃x∈M,p(x)”,则它的否定为“不存在x∈M,使p(x)成立”,也就是“∀x∈M,p(x)不成立”.(4)对于含有一个量词的存在量词命题的否定,有下面的结论:存在量词命题:∃x∈M,p(x),它的否定:∀x∈M,.也就是说,存在量词命题的否定是命题.『微体验』1.思考辨析(1)命题¬p的否定是p.()(2)∃x∈M,p(x)与∀x∈M,¬p(x)的真假性相反.()(3)从存在量词命题的否定看,是对“量词”和“p (x )”同时否定.( )2.若命题p :∃x >0,x 2-3x +2>0,则命题¬p 为( )A .∃x >0,x 2-3x +2≤0B .∃x ≤0,x 2-3x +2≤0C .∀x >0,x 2-3x +2≤0D .∀x ≤0,x 2-3x +2≤03.已知命题p :∀x >2,x 3-8>0,那么¬p 是__________.课堂互动探究探究一 全称量词命题和存在量词命题的判定例1 (1)下列命题中全称量词命题的个数是( )①任意一个自然数都是正整数;②有的等差数列也是等比数列;③三角形的内角和是180°.A .0B .1C .2D .3(2)下列语句不是存在量词命题的是( )A .有的无理数的平方是有理数B .有的无理数的平方不是有理数C .对于任意x ∈Z ,2x +1是奇数D .存在x ∈R ,2x +1是奇数『方法总结』判断一个语句是全称量词命题还是存在量词命题的思路跟踪训练1 用全称量词或存在量词表示下列语句.(1)不等式x 2+x +1>0恒成立;(2)当x 为有理数时,13x 2+12x +1也是有理数; (3)方程3x -2y =10有整数解.探究二全称量词命题和存在量词命题的真假判断例2 (多选题)下面的命题中正确的是()A.∀x∈R,x2+2>0B.∀x∈N,x4≥1C.∃x∈Z,x3<1D.∃x∈Q,x2=3『方法总结』全称量词命题与存在量词命题的真假判断的技巧(1)全称量词命题的真假判断要判定一个全称量词命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称量词命题是假命题,却只要能举出集合M中的一个x,使得p(x)不成立即可(这就是通常所说的“举出一个反例”).(2)存在量词命题的真假判断要判定一个存在量词命题是真命题,只要在限定集合M中,找到一个x,使p(x)成立即可;否则,这一存在量词命题就是假命题.跟踪训练2判断下列命题的真假.(1)∀x∈{1,3,5},3x+1是偶数;(2)∃x∈R,x2-6x-5=0;(3)∃x∈R,x2-x+1=0;(4)∀x∈R,|x+1|>0.探究三全称量词命题和存在量词命题的否定例3 写出下列命题的否定,并判断真假.(1)任何一个平行四边形的对边都平行;(2)非负数的平方是正数;(3)有的四边形没有外接圆;(4)∃x,y∈Z,使得2x+y=3.『方法总结』对含有一个量词的命题的否定要注意以下问题(1)确定命题类型,是全称量词命题还是存在量词命题.(2)改变量词:把全称量词改为恰当的存在量词;把存在量词改为恰当的全称量词.(3)否定结论:原命题中的“是”“有”“存在”“成立”等改为“不是”“没有”“不存在”“不成立”等.(4)无量词的全称命题要先补回量词再否定.跟踪训练3 判断下列命题的真假,并写出它们的否定.(1)对任意x ∈R ,x 3-x 2+1≤0;(2)所有能被5整除的整数都是奇数;(3)对任意的x ∈Q ,13x 2+12x +1是有理数.随堂本课小结1.判定一个命题是全称量词命题还是存在量词命题时,主要方法是看命题中是否含有全称量词或存在量词,要注意的是有些全称量词命题中并不含有全称量词,这时我们就要根据命题所涉及的意义去判断.2.含有一个量词的命题的否定(1)全称量词命题的否定是存在量词命题.全称量词命题p :∀x ∈M ,p (x );¬p :∃x ∈M ,¬p (x ).(2)存在量词命题的否定是全称量词命题.存在量词命题p :∃x ∈M ,p (x );¬p :∀x ∈M ,¬p (x ).——★ 参*考*答*案 ★——课前自主学习知识点1全称量词和全称量词命题(1)所有的任意一个∀(2)∀x∈M,p(x)『微体验』1.(1)√(2)√(3)×2.D『解析』A,B,C都是全称命题,D是特称命题.知识点2存在量词和存在量词命题(1)存在一个至少有一个∃(2)∃x∈M,p(x)『微体验』1.(1)×(2)√(3)√2.C『解析』“有的”“有些”“有一个”“至少”都是存在量词.知识点3全称量词命题和存在量词命题的否定(2)¬p(x) 存在量词(4)¬p(x) 全称量词『微体验』1.(1)√(2)√(3)√2.C『解析』命题p是一个存在量词命题,¬p为:∀x>0,x2-3x+2≤0.3.∃x>2,x3-8≤0『解析』命题p为全称量词命题,其否定为存在量词命题,则¬p:∃x>2,x3-8≤0.课堂互动探究探究一全称量词命题和存在量词命题的判定例1 (1)C『解析』观察分析命题是否含有“任意”“所有的”“每一个”等全称量词.命题①含有全称量词,而命题③可以叙述为“每一个三角形的内角和都是180° ”,故有两个全称命题.(2)C『解析』因为“有的”“存在”为存在量词,“任意”为全称量词,所以选项A ,B ,D 均为存在量词命题,选项C 为全称量词命题.跟踪训练1 解 (1)对任意实数x ,不等式x 2+x +1>0成立.(2)对任意有理数x ,13x 2+12x +1是有理数. (3)存在一对整数x ,y ,使3x -2y =10成立.探究二 全称量词命题和存在量词命题的真假判断例2 AC『解析』对A ,由于∀x ∈R ,都有x 2≥0,因而有x 2+2≥2>0,即x 2+2>0.所以命题“∀x ∈R ,x 2+2>0”是真命题.对B ,由于0∈N ,当x =0时,x 4≥1不成立.所以命题“∀x ∈N ,x 4≥1”是假命题.对C ,由于-1∈Z ,当x =-1时,x 3<1成立.所以命题“∃x ∈Z ,x 3<1”是真命题.对D ,由于使x 2=3成立的数只有±3,±3都不是有理数,因此没有任何一个有理数的平方等于3.所以命题“∃x ∈Q ,x 2=3”是假命题.跟踪训练2 解 (1)∵3×1+1=4,3×3+1=10,3×5+1=16,它们均为偶数,∴该命题是真命题.(2)∵方程x 2-6x -5=0中,Δ=36+20=56>0,∴方程有两个不相等的实根.∴该命题是真命题.(3)∵方程x 2-x +1=0中,Δ=1-4=-3<0,∴x 2-x +1=0无实数解.∴该命题是假命题.(4)∵x =-1时,|-1+1|=0,∴该命题是假命题.探究三 全称量词命题和存在量词命题的否定例3 解 (1)命题的否定:“存在一个平行四边形的对边不都平行”.由平行四边形的定义知,这是假命题.(2)命题的否定:“存在一个非负数的平方不是正数”.因为02=0,不是正数,所以该命题是真命题.(3)命题的否定:“所有四边形都有外接圆”.因为只有对角互补的四边形才有外接圆,所以原命题为真,所以命题的否定为假命题.(4)命题的否定:“∀x ,y ∈Z ,都有2x +y ≠3”.∵当x =0,y =3时,2x +y =3,∴原命题为真,命题的否定为假命题.跟踪训练3 解 (1)当x =2时,23-22+1=5>0,故(1)是假命题.命题的否定:存在x ∈R ,x 3-x 2+1>0.(2)10能被5整除,10是偶数,故(2)是假命题.命题的否定:存在一个能被5整除的整数不是奇数.(3)有理数经过加、减、乘运算后仍是有理数,故(3)是真命题.命题的否定:存在x ∈Q ,13x 2+12x +1不是有理数.。
人教版高中数学必修①教案学案
人教版高中数学必修①教案-学案一、教学目标1. 理解有理数的概念,掌握有理数的运算方法。
2. 了解实数的概念,能够正确运用实数解决问题。
3. 理解绝对值的概念,掌握绝对值的运算方法。
二、教学内容1. 有理数:整数、分数的概念与运算。
2. 实数:实数的概念、实数的运算。
3. 绝对值:绝对值的概念、绝对值的运算。
三、教学重点与难点1. 重点:有理数的概念,实数的概念,绝对值的概念。
2. 难点:有理数的运算,实数的运算,绝对值的运算。
四、教学方法1. 采用问题导入法,引导学生思考和探索。
2. 通过例题讲解,让学生理解和掌握运算方法。
3. 利用练习题进行巩固,提高学生的解题能力。
五、教学过程1. 引入:讲解有理数的概念,引导学生理解有理数的定义和特点。
2. 讲解整数的运算方法,包括加法、减法、乘法、除法。
3. 讲解分数的运算方法,包括加法、减法、乘法、除法。
4. 引入实数的概念,讲解实数的运算方法,包括加法、减法、乘法、除法。
5. 引入绝对值的概念,讲解绝对值的运算方法,包括绝对值的定义和计算方法。
6. 通过例题讲解,让学生理解和掌握有理数、实数和绝对值的运算方法。
7. 布置练习题,让学生巩固所学内容,提高解题能力。
教学评价:通过课堂讲解、练习题和作业的完成情况,评价学生对有理数、实数和绝对值的概念和运算方法的掌握程度。
六、教学目标1. 掌握函数的概念,理解函数的性质。
2. 学会使用函数关系式,解决实际问题。
3. 理解一次函数和二次函数的概念,掌握它们的性质和图像。
七、教学内容1. 函数:函数的概念,函数的性质。
2. 一次函数:一次函数的定义,一次函数的性质,一次函数的图像。
3. 二次函数:二次函数的定义,二次函数的性质,二次函数的图像。
八、教学重点与难点1. 重点:函数的概念,一次函数和二次函数的性质和图像。
2. 难点:理解函数的性质,掌握一次函数和二次函数的图像分析。
九、教学方法1. 采用案例分析法,通过实际问题引入函数概念。
新人教版高中数学必修1教案全套
新人教版高中数学必修1教案全套1.1.1集合的含义与表示教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法. 教学重难点:1、元素与集合间的关系 2、集合的表示法教学过程:一、集合的概念实例引入:⑴ 1~20以内的所有质数;⑵ 我国从1991~2021的13年内所发射的所有人造卫星; ⑶ 金星汽车厂2021年生产的所有汽车;⑷ 2021年1月1日之前与我国建立外交关系的所有国家; ⑸ 所有的正方形;⑹ 黄图盛中学2021年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素. (3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴ 2,3,4 ⑵ (2,3),(3,4)⑶ 三角形⑷ 2,4,6,8,?⑸ 1,2,(1,2),{1,2} ⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A (2)如果a不是集合A的元素,就说a不属于A,记作a∈A 五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例 1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成。
人教版高一数学必修一全套教案
1.1.1集合的含义与表示(一)【课型】新授课【教学目标】(1)了解集合、元素的概念,体会集合中元素的三个特征;(2)理解元素与集合的“属于”和“不属于”关系;(3)掌握常用数集及其记法;【教学重点】掌握集合的基本概念;【教学难点】元素与集合的关系;【教学过程】一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-5内容二、新课教学(一)集合的有关概念1.一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;x+=的解;(4)方程210(5)某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
2.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
3.元素与集合的关系;(1)如果a是集合A的元素,就说a属于A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于A,记作:a∉A例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A,等等。
4.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示;集合的元素用小写的拉丁字母a,b,c,…表示。
新人教版高中数学必修一第一章、第二章复习导学案大全
人教版高中数学《必修1》复习导学案1第一章 集合与函数1.1.1 集合的含义与表示【学习目标】1.了解集合的含义,明确集合元素的特征; 2.掌握集合的表示方法;3.体会元素与集合的“从属”关系.【知识回顾】(一)知识点填空:1.一般地,我们把统称为元素,把一些元素的叫做集合,集合中的元素是的、的、的. 2.集合的表示方法: (1);(2).3.元素与集合的关系是.(二)课前检测:1、用“∈”或“∉”填空:(1)0N ; (2)πQ ; (3)1-; (4)a {}a ;(5N *;2、用适当的方法表示下列集合: (1)奇数集合;(2)5除余1的数的集合; (3)不等式237x ->解集; (4)方程组的解集; (5);(6)抛物线22y x x =-+上的点组成的集合. 解:(1)(2) (3) (4) (5) (6)【例题讲解】例1、用列举法表示集合 A=.例2、用描述法表示图中阴影部分(含边界) 的点组成的集合.例3、已知{}232,25,12a a a -∈-+,求a 的值.【跟踪训练】1、已知集合M=,求a 的值.2、已知集合A=(){}222,1,33a a a a ++++,若1∈A ,求实数a 的值.1.1.2 集合间的基本关系【学习目标】第一章 集合与函数概念21.区别元素与集合、集合与集合之间的关系; 2.理解集合的包含关系及相关概念; 3.能用Venn 图表示集合间的关系;4.理解空集、集合相等的概念,会判断集合是否相等;5.能利用集合之间的关系解决相关的参数问题.【知识回顾】(一)知识点填空:1.对于集合A 和B ,如果集合A 的任何一个元素都是集合B 的元素,就说集合A 与集合B 具有关系,集合是集合的子集,记作A (或),如果A ,且存在元素x ∈B ,但x ∉A ,就说集合A 是集合B 的真子集,记作 AB (或)2.不含任何元素的集合叫做,记作. 3.子集的性质:(1)A ;(2);(3)如果A ,B ,那么A.4.对于两个集合,如果它们的元素完全相同,就说这两个集合,记作.用子集来定义就是:如果A ,B ,那么A=B.(二)课前检测:1.用“” 填空:(1){}a {},a b ; (2)∅{}0; (3)0{}0;(4){}0,1N ; (5)QR ;(6).2.写出集合{}1,2,3的所有子集.3.已知集合P={},,a b c ,那么满足Q 的集合Q 的个数是( )A.5;B.6;C.7;D.8.4.已知A=,B=,C=,D=,用Venn 图表示四个集合之间的关系,并用符号表示四个集合中的所有包含关系.【例题讲解】例1、已知集合M=,集合N=,若NM ,求实数a 的取值范围.例2、已知集合A={}1,x y -,B={}0,x y +,若A=B ,求2x y +的值.【跟踪训练】 1、设A=,B=,若AB ,则a 的取值范围是( )A.2a ≥;B.1a ≤;C.1a ≥;D.2a ≤.2、集合M=与集合N=之间的关系是( )A. ;B. ;C.D..3、满足条件 的集合B 有个.4、设集合A=,B=,若,求实数a 的取值范围.1.1.3 集合的基本运算(1)【学习目标】1、 掌握集合的交集与并集的含义,会求两个集合的交集与并集;2、 能用Venn 图表达集合的关系与运算,体会直观图示对理解抽象概念的作用.【知识回顾】(一)知识点填空:1、由所有的元素组成的集合称为集合A 与集合B 的并集,记作,由所有的元素组成的集合称为集合A 与集合B 的交集,记作,用符号语言可表示为: , . 用Venn 图表示为: ①②3(二)课前检测:1、设集合{}12M =,,{}=2,3N ,则等于( )A. {}1223,,,; B. {}2; C. {}123,,; D. {}13,. 2、设集合P={}1-,0,1,Q={}24-,,则等于( )A.;B. {}11014--,,,,;C. {}4;D. {}01,. 3、设集合A={}79,;B={}3a ,,,则a =. 4、设全集U={}1,2,4,8,M={}14,,则 . 5、已知M=,N=,则等于( )A.,B.;C. R ;D..6、已知全集U ,集合A= ,求集合B.【例题讲解】例1、设{}2|20A x x x =--=,{}2|0B x x x a =++=,若A B A = ,求实数a 的取值范围.【跟踪训练】1、设全集U={}13568,,,,,A={}16,,B={}568,,,则()U A B ð等于( )A. {}6;B. {}58,;C. {}68,; D. {}3,5,6,8. 2、已知全集U={}|4x x ≤,集合A={}|23x x -<<,B={}|31x x -<≤,求: (1)U A ð;(2)A B ;(3)()U A B ð;(4)()UA B ð.3、已知集合A=[]25,, B={}2|0x x px q ++=,A B A = ,{}5A B = ,求p 、q 的值.第一章 集合与函数概念41.2.1 函数的概念及表示方法【学习目标】1、理解函数的概念,了解构成函数的三个要素;2、会求一些简单函数的定义域,能够正确使用区间表示函数的定义域;3、理解实际问题中对定义域的要求.【知识回顾】1、设A 、B 是两个数集,如果按照某种对应法则f ,对于集合A 中的元素x ,在集合B 中都有的数y 和它对应,那么就称f A B →:为从集合A 到集合B 的一个函数,记作()y f x x A =∈,,其中x 叫作 ,x 的取值范围A 叫做函数的 ,与x 的值对应的y 的值叫做 ,函数值的集合{}()|f x x A ∈叫做函数()y f x =的.是集合B 的子集.2、构成函数的三要素是:、和.它们是判断两个函数是否为同一函数的依据..3、基本初等函数的定义域和值域: (1)一次函数:(2)反比例函数:(3)二次函数:4、用区间表示数集(略)【课前检测】1、判断下列各组函数是否相等(对的打“√”,错的打“×”):(1)24()2()2x f x x g x x -=+=-,( );(2)()2()1()1f x x g x x =-=-,( );(3)2()()f x x g x ==,( );(4)22()1()1f x x x g t t t =++=++,( ). 2、区间[)5,8表示的集合是( )A. {}|58x x x ≤>或;B. {}|58x x <≤;C. {}|58x x ≤<;D. {}|58x x ≤≤. 3、函数21y x =+的定义域是,值域是.4、函数y =的定义域是. 5、已知函数2()2(12)f x x x x =--≤≤, (1)画出函数()f x 图象的简图;(2)根据图象写出函数的值域.【题型讲解】例1、已知1()(1)1f x x R x x =∈≠-+且,2()2()g x x x R =+∈.(1)求(2)f 、(2)g 的值;(2)求[](3)f g 的值.例2、(1)已知函数(21)f x -的定义域为[)01,,求(13)f x -的定义域;(2)若函数(3)f x +的定义域为[]5,2--,求()(1)(1)F x f x f x =++-的定义域.例3、已知()f x 为一次函数,且人教版高中数学《必修1》复习导学案5[]()43f f x x =+,求函数()f x 的解析式.例4、已知111f x x ⎛⎫+=-⎪⎝⎭,求()f x 的解析式.例5、已知2()()32f x f x x +-=+,求()f x 的解析式.例6、已知函数()()21f x x x =-+. (1)作出函数()f x 的图象;(2)判断关于x 的方程()21x x a -+=的解的个数.【跟踪训练】1、函数1()11f x x =+-的定义域是.2、函数22y x =-的定义域是{}1012-,,,,其值域是.3、设221()1x f x x -=+,则(2)12f f =⎛⎫⎪⎝⎭.4、已知则(3)f =,(2)f -=.5、函数2()=43f x x x +-的值域是.6、若函数()21f x x =+,则函数(23)f x -的表达式为(23)f x -=.7、已知一次函数()f x 满足(0)5f =,且图象经过点()2,1-,求()f x 的解析式.8、已知2(1)2f x x x +=+,求()f x .9、已知函数()f x 满足:()2()f x f x x +-=,求()f x .10、(1)已知函数()f x 的定义域是[]1,4-,求函数(21)f x +的定义域.(2)已知函数(21)f x -的定义域是[]3,3-,求函数()f x 的定义域.第一章 集合与函数概念61.2.2函数的表示方法(续)【学习目标】1、了解分段函数的概念,能在实际问题中列出分段函数,并能解决有关问题;2、了解映射的概念,会判断给出的对应是不是映射.【知识回顾】1、如果一个函数在定义域的不同部分有不同的对应关系(或不同的表达式),这样的函数就叫做分段函数.2、设A 、B 是两个非空的集合,如果按照某一个确定的对应关系f ,使对于集合中A的任意一个元素x ,在集合B 中都有唯一的元素y 与之对应,那么就称对应f 为集合A 到集合B 的一个映射,记作“f A B →:”.注意:函数是特殊的映射,但映射不一定是函数.【课前检测】1、已知函数()2230()3(0)x x f x x x ⎧-≥⎪=⎨-<⎪⎩, 则()1f f =⎡⎤⎣⎦.2、已知函数()210()2(0)x x f x x x ⎧+≤⎪=⎨->⎪⎩, 若()10f t =,则t 的值为.3、分别画出函数()1f x x =-与函数()1f x x =-的图象.4、下列对应不是映射的是( )A . B. C. D.【题型讲解】例1、画出下列函数的图象:(1)22y x x =+;(2)21y x x =-++;(3)243y x x =-+例2、某汽车以53km/h 的速度从A 地到260km 远x x O xy O xx O x O x O x x人教版高中数学《必修1》复习导学案7处的B 地,在B 地停留112h 后,再以65km/h 的速度返回A 地.写出汽车离开A 地后行走的路程S (km )与时间(t )的函数关系式.例3、已知函数221(1)()2(1)x x f x x x x -+<⎧=⎨-≥⎩.(1)试比较()3f f -⎡⎤⎣⎦与()3f f ⎡⎤⎣⎦的大小;(2)求使()3f x =的x 的值.例4、下列对应为集合到集合的映射的是( )A.{},|0,A R B x x f x y x ==>→=:;B.2,,A Z B N f x y x *==→=:;C.,,A Z B Z f x y ==→=:D.[]{}1,1,0,0A B f x y =-=→=:.1.3 函数的基本性质1.3.1 函数的单调性与最大(小)值 【学习目标】1、 理解函数单调性的概念,会判断函数的单调性,会求函数的单调区间;2、 会用定义证明函数的单调性;3、 理解函数最值的概念及其几何意义;4、 掌握简单函数最值的求法.【知识回顾】1、函数单调性的概念(1)设函数()f x 的定义域为I ,如果对于定义域I 内的某个区间D 上的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数,如果对于定义域I 内的某个区间D 上的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数.如果一个函数在某个区间上M 上是增函数或减函数,就说这个函数在这个区间M 上具有单调性,区间M 称为单调区间.2、证明函数单调性的一般步骤:(1)取值:在区间D 上任取两个值1x 、2x ,且12x x <;(2)作差:计算12()()f x f x -; (3)断号:判断12()()f x f x -的符号; (4)定论:作出函数单调性的结论.3、设函数()y f x =的定义域为A ,如果存在实数M 满足:(1)对于任意的x A ∈,都有()f x M ≤或()f x M ≥;(2)存在实数0x A ∈,使得0()f x M =, 那么就称M 为函数()f x 的最大值或最小值.【课前检测】1、如图为函数()f x ,[]4,7x ∈-的图象,则它的单调增区间为,单调减区间为,最大值为,最小值为.3、函数()11y x x =++的最大值为.4、证明函数3()f x x x =+在R 上是增函数.x第一章 集合与函数概念85、求函数2()12f x x x =--的单调区间.【题型讲解】例1、证明函数1()f x x x=+在区间()0,1上是减函数.例2、设()f x 是定义的()0+∞,上的增函数,且()()()f xy f x f y =+,若(3)f =,且()()12f a f a >-+,求实数a 的取值范围.例3、已知()2()212f x x a x =+-+在(],4-∞上是减函数,求实数a 的取值范围. \例4、求二次函数2()22f x x ax =-+在[]2,4上的最大值与最小值.例5、已知函数()f x 对任意的x 、y R ∈,都有()()()f x f y f x y +=+,且当0x >时2()0,(1)3f x f <=. (1)求证:()f x 是R 上的减函数; (2)求()f x 在[]3,3-上的最大值和最小值.95、函数()1()11f x x x =++的最大值为.6、函数2()368f x x x =++在区间[]3,2-上的最大值为.7、用定义法证明函数1()1x f x x -=+在区间(),1-∞-上是增函数.8、画出函数124y x x =-+-的图象, 并写出该函数的单调区间.函数也不是偶函数.4、奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,确切一点说:“奇函数的图象是中心对称图形,对称中心是原点;偶函数的图象是轴对称图形,对称轴是y 轴.5、若奇函数()f x 的定义域内有0,则()00f =.6、奇函数在关于原点对称的两个区间上的单调性一致,偶函数则相反.【课前检测】1、下列结论正确的是( )A .偶函数的图象一定与轴相交;B .奇函数的图象一定过原点;C .偶函数的图象若不经过原点,则它与轴的交点的个数一定是偶数;D .奇函数在定义域上一定单调. 2、若函数(),y f x x R =∈是奇函数,且()()12f f <,则必有( )A .()()12f f -<-;B .()()12f f ->-;C .()()11f f -=;D .()()21f f -=. 3、判断下列函数的奇偶性:第一章 集合与函数概念10(1)()21x f x x+=;(2)()42231f x x x =-+;(3)()11f x x x =++-;(4)()21x xf x x -=-.【题型讲解】例1、判断下列函数的奇偶性:(1)()()()2200x x x f x x x x ⎧+<⎪=⎨->⎪; (2)()f x =例2、已知奇函数()f x 当0x >时,()21f x x x =--,求()f x 的解析式.例3、设()f x 是(),-∞+∞上的奇函数,且()()2f x f x +=-,当01x ≤≤,()f x x =,则()7.5f =( )A .0.5;B .0.5-;C .1.5;D .1.5-.例4、若()f x 为偶函数,其定义域为R ,且()f x 在[)0,+∞上为增函数,试比较34f ⎛⎫- ⎪⎝⎭与()21f a a -+的大小.【跟踪训练】1、若函数()f x 为偶函数,且当0x >时,()1f x x =-,则当0x <时,()f x =.2、若函数()f x 是偶函数,且()0f x =有两个根1x 、2x ,那么12x x +=.3、已知函数()()()()2212712f x m x m x m x =-+-+-+为偶函数,则m 的值是.4、若偶函数()f x 在(],1-∞-上是增函数,则下列关系式成立的是( )A .()()3122f f f ⎛⎫-<-< ⎪⎝⎭;B .()()3122f f f ⎛⎫-<-< ⎪⎝⎭; C .()()3212f f f ⎛⎫<-<- ⎪⎝⎭;D .()()3212f f f ⎛⎫<-<- ⎪⎝⎭.5、若()1f x x a=-是奇函数,则下列关系式成立的是( )A .()()34f f <;B .()()34f f <--;C .()()34f f -<-;D .()()34f f -<-.6、已知()24f x ax bx =+-,其中a 、b 为常数,若()22f -=,则()2f 的值为( )A .2-;B .4-;C .6-;D .10-.7、判断函数()2223,00,023,0x x x f x x x x x ⎧++<⎪==⎨⎪-+->⎩的奇偶性.8、已知定义在()1,1-上的奇函数()f x 为减函数,且()()1120f a f a -+->,求实数a 的取值范围.第二章 基本初等函函数2.1指数函数2.1.1 指数与指数幂的运算 【学习目标】1、 理解n 次方根及根式的概念,理解指数幂的含义,掌握根式与指数幂的互化,明确根式与指数幂有意义的条件;2、掌握根式及指数幂的有关性质,能运用相关性质进行根式的化简与运算.【知识回顾】1、一般地,如果一个数的n 次方等于,那么这个数叫做a 的n其中n 叫做根指数,a 叫做被开方数.当n为奇数时,a 为任意实数都有意义;当n 为偶数时,对于非负实数a 都有意义,对于负实数a 没有意义.2、na =a =.3、m na =,m na-=0a >,,1m n Nn 、且*∈>.41mna =(0,,1,1)a m n N m n *>∈>>、且. 5、整数数指数幂的运算法则对于分数指数幂同样适用.【课前检测】1、(1=;(2=;(3=; (4)()____a b =<;(5)______=;2、用根式表示分数指数幂:(1)233_______=;(2)34_______a =;(3)125_______-=.3、用分数指数幂表示根式: (1)______=;(2______=;(32______=.4、设33x -<<,【题型讲解】例1、将下列根式化为分数指数幂的形式:(1(2例2、计算:(1)()()401130.7532370.0642160.018---⎛⎫⎡⎤--+-++-⎪⎣⎦⎝⎭; (2)0a >.例3、(1)已知22x xa -+=,求88x x-+的值;(2)已知12x y +=,9xy =,且x y <, 求11221122x y x y-+的值.【跟踪训练】1、1481625-⎛⎫⎪⎝⎭的值是( ) A .35; B .53; C .325; D .259.230)a a >的结果是( )A .1;B .a ;C .12a ; D .1710a . 3、计算22⋅的结果是( ) A .a ; B .2a ; C .4a ; D .8a .4、计算: (1))21313410.027256317--⎛⎫--+-+ ⎪⎝⎭;(2)-+ (3),0a b >.2.1.2指数函数及其性质【学习目标】1、 理解指数函数的概念,明确指数函数的图象的形状;2、 通过指数函数的图象研究指数函数的性质;3、 应用指数函数的性质解决简单的问题.【知识回顾】1、 形如()01x ya a a =>≠且的函数叫做指数函数.2、 指数函数的图象及性质:(略)【题型讲解】例1、指出下列函数中,哪些是指数函数: (1)4x y =;(2)4y x =; (3)4x y =-;(4)()4xy =-;(5)x y π=;(6)24y x =,(7)x y x =; (8)()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭且. 例2、求下列函数的定义域和值域: (1)y =2)112x y -=;(3)22312x x y --⎛⎫=⎪⎝⎭.例3、比较大小: (1) 2.51.5与 3.21.5; (2) 1.20.5-与 1.50.5-;(3)0.31.5与 1.20.8.【跟踪练习】1、函数y =的定义域是( )A .(]0,2;B .(],2-∞;C .()2,+∞;D .[)2,+∞. 2、函数()220,1x y aa a -=+>≠的图象必经过定点( )A .()01,;B .()11,;C .()22,; D .()23,. 3、已知0.70.8a =,0.90.8b =,0.81.2c =,则a 、b 、c 的大小关系是( )A .a b c >>;B .b a c >>;C .c b a >>;D .c a b >>. 4、函数(0,1)x y a a a =>≠且,对于任意实数都有( )A .()()()f xy f x f y =⋅;B .()()()f xy f x f y =+;C .()()()f x y f x f y +=⋅;D .()()()f x y f x f y +=+.5、函数2121x x y +=-是( )A .奇函数;B .偶函数;C .非奇非偶函数;D .既是奇函数又是偶函数.6、若1112x +⎛⎫< ⎪⎝⎭,则x 的取值范围是.7、若()121x f x a =+-是奇函数, 则_____a =.8、函数10xy =与y x =-的图象的交点的个数为个.9、已知函数11642x xy 骣骣鼢珑=-+鼢珑鼢珑桫桫,求当[]3,4x ?时y 的值域.10、已知0x >,函数()215xy a =-的值恒大于1,求实数a 的取值范围.2.1对数与对数函数一、知识要点:(一)对数及其运算1、如果(01)baN a a =>≠且,那么b 叫做以a 为底N 的对数,记作log a b N =.a 叫做底数,N 叫做真数.以10为底的对数叫做常用对数,记作lg N ,以e 为底的对数叫做自然对数,记作ln N由对数的定义得:①a log a N =N (对数恒等式);②log 1a a =(底数的对数等于1);③log 10a =(1的对数等于0).2、对数的性质:①log log log aa a M N M N ⋅=+;②log log log aa a MM N N =-; ③log log na a M n M =3、对数换底公式:log log log m a m ab b=.由对数换底公式可得:①log log mn a a nb b m=;②log log 1a b b a ⋅=;③log log log a b a b c c ⋅=.(二)对数函数及其性质:形如log (0,1)a yx a a =>≠且的函数叫做对数函数,其定义域为()0,+∞,值域为R .对数函数的图象过定点(1,0);当01a <<时,对数函数log a y x =是减函数,当1a >时,对数函数log a y x =是增函数.二、题型讲解例1、填空: (1)log 3=;(2)e=;(3)5log 715-⎛⎫= ⎪⎝⎭;(4)252log 7log 545+=; (5)13log =.例2、求下列各式中的x : (1)已知82log 3x =-,则x =; (2)3log 274x =,则x =. (3)若()2log lg 1x =,则x =;若()25log log 0x =,则x =.例3、(1)已知lg 2a =,lg3b =,用a 、b 表示lg15例4、计算:(1)235log 25log 4log 9⋅⋅ (2)()2lg 25lg 2lg50lg 2+⋅+例5、解答下列各题:(1)设45100ab==,求122a b ⎛⎫+⎪⎝⎭的值; (2)若2.51000x =,0.251000y=,求11x y-的值.例6、求下列函数的定义域: (1)y =)12(log 21-x ;(2)2log (164)xy =-; (3)()()21log 6x y x x +=-++.例7、作函数()2log 11y x =++的图象例8、比较大小: (1)124log 5与126log 7;(2)12log 3与13log 3;例9、(1)比较0.7log 6与60.7及0.76;(2)已知()lg f x x =,比较13f ⎛⎫ ⎪⎝⎭与()2f 的大小.例10、解不等式:()()22log 21log 5x x -<-+例11、.求下列函数的单调区间及值域:(1)23213x x y -+⎛⎫= ⎪⎝⎭;(2)23log (43)y x x =+- .三、跟踪练习一、选择题:(本题共12小题,每小题3分,共36分)1、已知log 162x =,则x =( )A .4±;B .4;C .256;D .2. 2、若12log 16x =,则x =( )A .4-;B .3-;C .3;D .4.3、已知2log 3x =,则12x -=()A .13; BC D .4. 4、使()()1log 2x x -+有意义的x 的取值范围是( )A .1x ≥;B .1x <;C .2x <-;D .1x >且2x ≠. 5、已知32a =,那么33log 82log 6-用a 表示是( )A .2a -;B .52a -;C .23(1)a a -+;D .23a a -. 6、2log (2)log log a a a M N M N -=+,则NM 的值为( )A .41; B .4; C .1; D .4或1. 7、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++⋅= 的两根是α、β,则αβ 的值是( )A .lg5lg 7⋅;B .lg35;C .35;D .351.8、已知732log [log (log )]0x =,那么12x -等于() A .13; BC ; D9、函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( )A .x 轴对称;B .y 轴对称; C.原点对称; D .直线y x =对称.10、函数(21)log x y -=( ) A .()2,11,3⎛⎫+∞⎪⎝⎭ ;B .()1,11,2⎛⎫+∞ ⎪⎝⎭;C .2,3⎛⎫+∞ ⎪⎝⎭;D .1,2⎛⎫+∞ ⎪⎝⎭.11、函数212log (617)y x x =-+的值域是( )A .R ;B .[)8,+∞;C 、(),3-∞-;D 、[)3,+∞.12、2log 13a <,则a 的取值范围是( )A .()20,1,3⎛⎫+∞ ⎪⎝⎭ ;B .2,3⎛⎫+∞ ⎪⎝⎭;C .2,13⎛⎫ ⎪⎝⎭;D .220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭二、填空题:(本题共6小题,每小题3分,共18分)13、21log 32=,4=,9log =. 14、已知()23409a a =>,则23log a =. 15、已知()3log ln 2x =,则x =. 16、已知()62logf xx =,则()8f =.17、若log 2,log 3a a m n ==,则2m na+=.18、函数(-1)log (3-)x y x =的定义域是。
2023年新人教版高中数学必修一教案全套
2023年新人教版高中数学必修一教案全套引言本教案为2023年新人教版高中数学必修一的教学计划。
本教案旨在帮助教师有效地教授该课程,并帮助学生掌握相关的数学知识和技能。
教案的设定按照教学内容和研究目标进行组织,包括对每个教学环节的详细规划和指导。
教学目标1. 确保学生对数学概念的理解和掌握;2. 培养学生的数学推理和解决问题的能力;3. 增强学生的数学思维和创新意识;4. 培养学生的数学表达和交流能力。
教学内容第一单元:集合与函数1.1 集合- 研究集合的含义和基本概念;- 掌握集合的描述方法和运算规则;- 学会用集合解决实际问题。
1.2 函数- 了解函数的定义和性质;- 理解函数的图像和性质;- 掌握函数的运算和复合运算;- 学会用函数模型解决实际问题。
第二单元:数列与数学归纳法2.1 等差数列- 研究等差数列的定义和性质;- 理解等差数列的通项公式和求和公式;- 掌握等差数列的应用。
2.2 数学归纳法- 了解数学归纳法的基本思想和原理;- 熟练运用数学归纳法证明等差数列的性质。
第三单元:函数的导数与应用3.1 导数的概念- 掌握导数的定义和计算方法;- 了解导数的几何意义。
3.2 导数的性质与运算- 理解导数的四则运算规则;- 掌握导数的链式法则;- 学会用导数解决相关应用问题。
3.3 函数的极值与最值- 确定函数的极值和最值;- 解决函数极值与最值的应用问题。
教学方法1. 讲述法:通过详细的教学资料和课堂讲解,向学生介绍和解释相关的数学知识和概念;2. 视频演示:使用教学视频和动画,生动地展示和演示数学原理和应用;3. 互动讨论:鼓励学生积极参与讨论、提问和解决问题,促进思维活动和合作研究;4. 练应用:通过例题和练题的完成,巩固学生对数学知识的掌握和应用能力的提升;5. 实践应用:引导学生将数学知识应用到实际问题中,培养解决问题的能力和创新意识。
教学评估1. 定期小测验:通过定期的小测验,检测学生对知识点的掌握情况;2. 课堂参与:评估学生在课堂上的积极参与度和表达能力;3. 作业完成:评估学生对课堂内容的理解和独立思考能力;4. 期末考试:通过期末考试,评估学生对整个教学内容的总结和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标(人教版A)高中优秀学案必修一第一章集合1 、1、1集合的含义第一部分走进预习【预习】教材第3-5页1、查阅大数学家康托尔(Contor )的材料。
2、初步掌握:①集合、元素的概念;集合如何按元素个数分类?②集合、元素的记法③元素与集合的关系④集合的性质。
第二部分走进课堂【探索新知】在小学、初中我们就接触过“集合”一词。
例子:(1)自然数集合、正整数集合、实数集合等。
(2)不等式0722xx解的集合(简称解集)。
(3)方程0232x x解的集合。
(4)到角两边距离相等的点的集合。
(5)二次函数2xy图像上点的集合。
(6)锐角三角形的集合(7)二元一次方程12y x 解的集合。
(8)某班所有桌子的集合。
现在,我们要进一步明确集合的概念。
问题1、从字面上看,怎样解释“集合”一词?2、如果上面例子中的数、点、图形、数对和物体等称为“研究对象”,那么集合又是什么呢?知识点一:1、集合、元素的概念再看例子(9)质数的集合。
(10)反比例函数xy1图像上所有点。
(11)2x 、2y xy、22y(12)所有周长为20厘米的三角形。
问题3、从集合中元素个数看,上面例子(1)(2)(4)(5)(6)(7)(9)(10)(12)与例子(3)(8)(11)有什么不同?知识点一2、有限集和无限集指出:集合论是德国数学家Cantor (1845~1918)在十九世纪创立的,集合知识是现代数学的基本语言,为进一步研究数学提供了极大的便利。
知识点二集合、元素的记法问题4、(1)集合、元素各用什么样的字母表示?(2)N 、)(N N 、Z 、Q 、R 等各表示什么集合?知识点三元素与集合的关系阅读教材填空:如果a 是集合A 的元素,就记作_________,读作“____________”;如果a 不是集合A 的元素,就记作__ ____,读作“______ _____”. 再用或填空:1、6______N ,23______Q ,31_______Z ,14.3_______Q _______Q ,2、设不等式012x 的解集为A ,则5_______A ,3_______A3、012y x的解集为B ,则)4,1(_______B , )3,1(_______B , 2_______B问题5、元素a 与集合A 有几种可能的关系?知识点四集合的性质①确定性:例子1、下列整体是集合吗?①个子高的人的全体。
②某本数学资料中难题的全体。
③中国境内的海拔高的山峰的全体。
2、集合A 中的元素由x=a+b2(a ∈Z,b ∈Z)组成,判断下列元素与集合A 的关系?(1)0 (2)121(3)132(活动形式:组内合作组间交流)②互异性:例子、集合M 中的元素为1,x ,x 2-x ,求x 的范围?(活动形式:独立完成小组内讨论小组间交流展示)③无序性:反思总结:【课堂检测】1、实数x,-x,|x |,332,x x 是集合P 中的元素,则P 最多含()A 2个元素B 3个元素 C 4个元素 D 5个元素2、设a 、b 都是非零实数,y=||a a +||b b+||ab ab可能的取值为()A.3B. 3,2,1C. 3,1,-1D. 3,-1反思总结:【拓展提升】--活动与探究数集A 满足条件:若a ∈A ,则a11∈A (a ≠1).(1)若2∈A ,试求出A 中其他所有元素. (2)设a ∈A ,写出A 中所有元素.第三部分走向课外【课后作业】1、设一边长为1且有一内角为40°的等腰三角形组成集合P ,试问P 中有多少个元素?3.已知集合A 有三个元素2a ,2)1(a ,332a a(1)若1A ,则集合A 中还有哪些元素?(2)若1A ,则a 应满足什么条件?【质疑与收获】1、1、2集合的表示法第一部分走进预习【预习】教材第5-7页回答下列问题:1、什么是列举法?举例说明如何用列举法表示集合?2、什么是描述法?举例说明如何用描述法表示集合?第二部分走进课堂【复习检测】一、集合、元素的概念;集合如何按元素个数分类?二、集合、元素的记法三、元素与集合的关系四、集合的性质。
问题:1、在初中我们曾用表示N, 但是象抛物线2xy 上的点的集合、实数集等又怎样表示呢?2、在初中人们常说不等式013x 的解集为31x,但在高中这样的说法就是不恰当的,究竟应该这样表示这些集合呢?【探索新知】集合的表示法知识点一列举法1、从字面上看“列举法”的含义。
2、从教材中获取列举法的定义。
例1、用列举法表示下列集合(1)方程0232x x解的集合。
(2)24与18的公约数的集合。
1,2,3,4…(3)大于5且小于30的质数的集合。
(4)二元一次方程102y x 的正整数解的集合。
又如:下列集合也可以用列举法表示(1)自然数集(2)正整数的倒数集合(3)小于50的且被3除余1的正整数的集合。
问题1、下列集合可以用列举法表示吗?(1)直角三角形的集合。
(2)不等式2321x x 的解集。
(3)某农场的拖拉机的集合。
知识点二描述法1、从字面上看“描述法”的含义。
2、从教材中获取描述法的定义。
3、用描述法表示集合的具体操作方法。
例2、用描述法表示下列集合(1)直角三角形的集合。
(2)不等式2321x x 的解集。
(3)不等式21324x x x 的解集。
(4)方程0232x x解的集合。
方程012x解的集合。
问题2、设方程012x解的集合为,中有元素吗?你能再举一些这方面的例子吗?(5)二元一次方程12y x 的解的集合。
(6)二元一次方程组422yxyx 的解集。
(7)抛物线12xy上点的集合。
二次函数12xy的函数值y 的集合。
二次函数12xy的自变量x 的取值范围。
(8)被3除余1的整数的集合。
指出:有些集合还可以用Venn 图表示。
例如、下列集合可以用Venn 图表示①9,7,4,1②9,7,4,1反思总结:【课堂检测】1、下列集合中哪些具有相同的元素?1|2xy x A 1|),(2xy y x B 1|2x y y C 12xy D 1|xx ER ttyy F,1|2,R yyxx G,1|2;2.关于方程组31yxy x 的解集,下面表达正确的是________.①{(x,y)|x=2y=-1} ;②{(2,-1)} ;③{(x,y)| (2,-1)};④{2,1}【拓展提升】:试用列举法表示下列集合(1)A={x N |126N x}(2)已知B={126N x|x N }第三部分走向课外【课后作业】1.用列举法表示下列集合(1)A={x|x=2n n∈Z};B={x|x=2n-4 n∈Z};C={x|x=4n n∈N Z};D={x|x=4n+2 n∈N Z};(2) A={x|x=2n-1 n∈Z};B={x|x=2n+1 n∈Z};C={x|x=4n±1 n∈Z};D={x|x=2n+1 n∈N};2.用列举法表示下列集合(1)由||||(,)a ba b Ra b所确定的实数集合.(2) {(x,y)|3x+2y=16,x∈N,y∈N }.3.设A={x∈R|a x2+2x+1=0,a∈R}①若A=,求a的值;②若A中只有一个元素,求a的值;③若A中至多有一个元素,求a的取值集合. 【质疑与收获】1、2集合之间的关系1、2、1 子集与真子集第一部分走进预习【预习】阅读教材第10-14页,试回答下列问题1、子集的概念及记法2、集合相等的定义3、真子集的概念及记法4、子集、真子集的图形表示5.子集、真子集的性质①空集与集合A的关系②子集、真子集的传递性【质疑】本节内容我有哪些疑问?第二部分走进课堂1、2、1 子集与真子集【复习检测】1、集合的性质元素与集合的关系集合、元素的记法集合、元素的概念集合的含义2、图法描述法列举法集合的表示法enn V 问题:1、实数之间存在着相等或不等关系,那么集合间又有怎样的相等或不等关系呢?2、元素与集合间是“属于”或“不属于”的关系,那么集合间还是这样的关系吗?【探索新知】知识点一子集的定义阅读下列一段话:已知3,2,1A ,5,4,3,2,1B A 中任意一个元素都在B 中,就说A 包含于B ,记作B A (或B 包含A );也说A 是B 的子集。
在下列个题中指出哪个集合是哪个集合的子集:1、N ,N (或N ),Z ,Q ,R 2、①1|x x A ,2|x x B ②3|x x A ,21|xx B ③53|xx A ,21|xx B ④3x1|或xx A,21|xxx B 或3、是三角形x |x U,是锐角三角形x |x A,是钝角三角形x |x B 是直角三角形x |x C ,是斜三角形x |x D 问题:集合A 是集合A 的子集吗?指出:对任意的N n ,n 0,类比可以规定:是任何集合A 的子集,即A 。
集合相等的定义例子、01|2xx A,1,1B问题:集合A 是集合B 的子集吗? 集合B 又是集合A 的子集吗? 结论:集合A 是集合B 的子集,同时集合B 又是集合A 的子集,即集合A 和集合B 有相同的元素,就说集合A 与集合B 相等。
BA ABB A 下列两个集合相等吗?1、023|2xxx A ,30|x Z x B2、30|x x A ,30|xZ xB 3、51-3|x x A,2|xx B知识点三真子集的定义阅读下列一段话:已知3,2,1A ,5,4,3,2,1B B A且B A (或者说B A且B 中至少有一个元素不在A 中),则说A 是B 的真子集,记作B A 。
在下列个题中指出哪个集合是哪个集合的真子集:1、N ,N (或N ),Z ,Q ,R 2、①1|x x A ,2|xx B ②3|x x A ,21|xx B ③53|xx A ,21|xx B ④3x1|或xx A,21|xxx B 或3、是三角形x |x U,是锐角三角形x |x A,是钝角三角形x |x B 是直角三角形x |x C ,是斜三角形x |x D1、子集、集合相等和真子集可以用Venn 图表示。
2、显然:CA CB B A 若CBBA ,或CBB A ,那么A 是C 的真子集吗?问题:集合b a,有哪些子集,其中又有哪些真子集?有哪些非空真子集?对于c b a ,,,d c b a ,,,呢?从中你能得出什么结论呢?【例题剖析】例1、已知集合xyx y y x A 3|),(,那么A 中的非空子集有多少个?例2、求满足4,3,2,1,01,0A 的集合A 的个数。
反思总结:1、指出下列各组中集合A与B之间的关系:(1) A={-1,1},B=Z;(2) A={1,3,5,15},B={x|x是15的正约数};(3)NA,B=N;(4) A ={x|x=1+a2,a∈N} ,B={x|x=a2-4a+5,a∈N};2、已知{1,2 }M{1,2,3,4,5},则这样的集合M有多少个?分别写出来.【拓展提升】——活动与探究设集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2-1=0,x∈R},若B A,求实数a 的取值范围.第三部分走向课外www. 12999.c o m【课后作业】1.已知M={1,2,3,4,5,6,7,8,9},集合P满足:P M,且若P,则10-∈P则这样的集合P有多少个?2.已知集合S = {1,3x3+3x2,-3x},集合A={1,|2x-1|},如果{x|x∈S,x A}={0},则这样的实数x是否存在?若存在,求出x,若不存在,请说明理由.【质疑与收获】1、2、2集合间关系的逆向思维问题第一部分走进预习【复习】判断下列两集合间的关系1、3|xx A ,1|xx B2、3|x A≤x ≤2,1|x B≤x≤233、23|xxx A 或,24|xxx B或4、023|2xxx A,1|x x B 第二部分走进课堂1、2、2集合间关系的逆向思维问题【探索新知】集合间关系的逆向思维问题指出:将上面四个例子中的结论变为条件,而将条件中的某些常数变为参数a ,这就得到了集合间关系的逆向思维问题。