第15章脂肪酸的分解代谢

合集下载

生物化学第15章代谢整合

生物化学第15章代谢整合
CoA
☆还原性合成中NADPH是主要的 电子供体
脂肪合成时加入的二碳单位的酮基还 原成亚甲基是由两分子NADPH输入 四个电子实现的。
☆生物分子是从比较小的一 套构造单元组成的
葡萄糖→淀粉或糖原 核苷酸→DNA,RNA 氨基酸→蛋白质 乙酰CoA→脂肪酸 等
☆生成途径和分解途径几乎总 是不同的
的代谢特点
☆重复出现的基本图案
变构相互作用 共价修饰 酶的水平 区域化
☆代谢途径的区域化
糖酵解,脂肪酸合成,磷酸戊糖途径在 胞液中
脂肪酸ß-氧化,TCA循环在线粒体中 尿素合成,糖异生发生在上述两个区域
)
肉碱→ 脂酰肉碱 (
反馈抑制
★特指某一代谢途径的终产物积累时, 反过来对催化该途径的前几步,特别 是第一步反应的酶引起的别构抑制作 用
PPP 途径第一阶段
五碳糖的互变异构
糖酵解途径与糖异生途径相互抑制
柠檬酸和ATP激活1,6二磷酸果糖酶 AMP抑制1,6二磷酸果糖酶
柠檬酸和ATP抑制6-磷酸果糖激酶 AMP激活6-磷酸果糖激酶
三个最关键的中间代谢产物
☆6-磷酸葡萄糖 ☆丙酮酸 ☆乙酰-CoA
☆大脑,肌肉,脂肪组织,肝
脂肪酸合成和分解 糖原合成和分解 核苷酸的合成和分解等
☆糖酵解
无氧和有氧条件下3-磷酸甘油醛脱 氢反应中消耗的NAD+的再生
磷酸果糖激酶的调节
☆ TCA循环
☆TCA循环产生GTP 3NADH FADH2
☆磷酸戊糖途径
☆目的合成磷酸戊糖和NADPH ☆高浓度的NADPH/NADP+ 和
NADH/NAD +同时存在使还原性 合成反应和糖酵解反应同时进行
第十五章 代谢整合

脂肪酸的分解代谢

脂肪酸的分解代谢
•《脂肪酸的分解代谢》
饱和脂肪酸β-氧化的实验证据:
1904年,的标记实验:
实验前提:已知动物体内不能降解苯环 实验方案:用苯基标记的饱和脂肪酸饲喂动物
马尿酸
苯乙尿酸
•《脂肪酸的分解代谢》
2. 脂肪酸的β-氧化
(1)脂肪酸的活化
脂肪酸首先在线粒体外或细胞质中被活化,形成脂酰 CoA,然后进入线粒体或在其它细胞器中进行氧化。
饱和脂肪酸的氧化分解 ❖β-氧化作用 ❖α-氧化作用 ❖ω-氧化作用
不饱和脂肪酸的氧化分解 ❖单不饱和脂肪酸的氧化分解 ❖多不饱和脂肪酸的氧化分解
▪ 奇数C原子脂肪酸的氧化分解
•《脂肪酸的分解代谢》
㈠ 饱和脂肪酸的β-氧化作用
概念
脂肪酸的β-氧化作用
能量计算 乙醛酸循环 乙醛酸循环的生物学意义 乙酰COA的可能去路
脂肪酸的活化
COA-SH+ATP AMP+PPi
Pi
RCH2CH2CH2COOH
脂酰COA合酶 (硫激酶)
RCH2CH2CH2CO~SCOA
(脂酰COA)
氧化脱H 水合 氧化脱H
FAD
FADH2
-
脂酰COA脱H酶 (3种)
RCH2C=CCO~SCOA
(△2反式烯脂酰COA)
烯脂酰COA水合酶
-
OH
HMGCOA 裂解酶
乙酰-COA
自动
丙酮
D - -羟丁酸脱氢酶
乙酰乙酸
NADH+H+ NAD+
•《脂肪酸的分解代谢》
D - -羟丁酸
一般情况:乙酰乙酸在肌肉线粒体中的分解
+
-酮酯酰COA转移酶
TCA

脂肪的分解代谢

脂肪的分解代谢
通过高通量测序技术,研究脂肪分解 相关基因的表达和调控,揭示脂肪分 解的分子机制。
02
蛋白质组学和代谢组 学
利用质谱等技术,分析脂肪分解过程 中的蛋白质表达和代谢物变化,深入 了解脂肪分解的生理和病理过程。
03
细胞信号传导研究
运用荧光共振能量转移(FRET)、蛋 白质芯片等技术,研究脂肪分解过程中 的信号传导通路和关键分子,为药物设 计和治疗提供新思路。
02
脂肪分解的酶与调节
脂肪分解的关键酶
激素敏感性甘油三酯酶(HSL)
HSL是启动脂肪分解的关键酶,受多种激素的调节,如胰岛素、胰高血糖素和 儿茶酚胺等。
单酰甘油脂肪酶(MGL)
MGL负责将单酰甘油分解为甘油和脂肪酸,是脂肪分解过程中的重要酶。
脂肪分解的调节机制
激素调节
胰岛素抑制脂肪分解,而胰高血糖素和儿茶酚胺则促进脂肪分解。这些激素通过调节HSL和MGL 的活性来控制脂肪分解。
肪肝的病变。
其他疾病与脂肪分解的关系
糖尿病
糖尿病患者体内胰岛素分泌不足 或胰岛素抵抗,影响脂肪分解代 谢的正常进行,易导致脂肪堆积 和肥胖。
高血脂症
高血脂症患者体内脂肪含量过高, 脂肪分解代谢异常,易导致动脉 粥样硬化等心血管疾病的发生。
代谢综合征
代谢综合征是一组包括肥胖、高 血压、高血脂、高血糖等多种代 谢紊乱的综合征,与脂肪分解代 谢异常密切相关。
未来发展趋势及挑战
多组学整合分析
随着基因组学、转录组学、蛋白质组学和代谢组学等技术的不断发展,未来有望实现多组学数据的整合分析,更全面 地揭示脂肪分解的分子机制和调控网络。
精准医学在脂肪分解研究中的应用
基于个体差异的精准医学理念,未来有望开发出针对特定人群的个性化脂肪分解治疗方案,提高治疗效果和患者生活 质量。

脂肪酸的分解代谢过程

脂肪酸的分解代谢过程

脂肪酸的分解代谢过程脂肪酸分解代谢是维持人体能量供应的重要过程之一。

当身体需要能量时,脂肪酸会被释放出来,并通过一系列的反应被分解成乙酰辅酶A(acetyl-CoA),进而进入三羧酸循环(TCA循环)产生能量。

脂肪酸分解代谢的过程可以分为四个主要步骤:激活、β氧化、TCA循环和呼吸链。

下面将详细介绍每个步骤的过程。

第一步是激活。

在细胞质中,脂肪酸首先与辅酶A结合,形成酰辅酶A。

这个反应需要消耗两个ATP分子的能量。

酰辅酶A会被转运至线粒体内膜,准备进入下一步。

第二步是β氧化。

在线粒体内膜上,酰辅酶A会被脱酰酶(acyl-CoA去氢酶)催化,产生乙酰辅酶A和一个分子的饱和脂肪酰辅酶A。

这个过程会释放出一分子FADH2和NADH。

第三步是TCA循环。

乙酰辅酶A进入线粒体内膜中的TCA循环,与草酰乙酸结合形成柠檬酸。

在TCA循环中,柠檬酸经过一系列的反应逐步分解,最后生成三分子NADH、一分子FADH2和一个分子的GTP(相当于ATP)。

这些高能物质会在后续的呼吸链中产生更多的ATP。

第四步是呼吸链。

NADH和FADH2被带到线粒体内膜上的呼吸链中。

在呼吸链中,这些高能物质会被氧气氧化,产生大量的ATP。

同时,氧气还会与电子结合形成水。

通过这个分解代谢过程,脂肪酸能够被转化为大量的ATP,为身体提供所需的能量。

这个过程在人体中持续进行,特别是在长时间的运动或低血糖状态下,脂肪酸的分解代谢将成为主要的能量来源。

脂肪酸的分解代谢过程是一个复杂而精确的调控系统,受到多个因素的影响。

例如,激素、饮食和运动等因素都能够调节脂肪酸的分解速率。

理解这个过程的机制对于维持身体健康和控制体重都是非常重要的。

总结起来,脂肪酸的分解代谢过程包括激活、β氧化、TCA循环和呼吸链等步骤。

通过这个过程,脂肪酸能够被转化为ATP,为身体提供能量。

了解脂肪酸分解代谢的机制对于我们理解能量代谢和健康管理都具有重要意义。

第15章 脂肪酸的分解代谢(共57张PPT)

第15章 脂肪酸的分解代谢(共57张PPT)

二、酮体的氧化
肝脏中缺少分解酮体的酶。酮体是水溶 性物质,在肝脏生成后迅速透过肝线粒 体膜和细胞膜进入血液,转运至肝外组 织利用(脑、骨胳肌)。
分解:转化成乙酰CoA,进入TCA循环彻底
氧化。
肝内生酮肝外用
三、酮体生成的意义
(1)正常:
酮体是肝脏正常的中间代谢产物,是肝脏输出能源的
一种形式。长期饥饿及糖供给不足时,酮体可代替葡萄
柠檬酸、异柠檬酸、
长链脂肪酸 α-酮戊二酸
β-氧化的反应历程总结
RCH2CH2COOH
RCH2CH2CO~SCOA
(脂酰COA)
继续β-氧化
O
O
= =
R-C~SCOA+ CH3-C~SCOA
-
-
-
H
RC=CCO~SCOA
H △2反式烯脂酰COA)
OH
RCH-CH2CO~SCOA
(L-β- 羟脂酰COA)
②VLDL:肝脏合成,转运内源性脂类到肝外;
胆固醇合成过程比较复杂,有近30步反应,整个过程可根据为5个阶段。
穿越线粒体内膜。
关键酶:HMGCoA还原酶。 ②脂肪酸→ -氧化;
HMGCoA在HMG CoA还原酶催化下,消耗2(NADPH+H+)生成甲羟戊酸(MVA)。
B1 O
合成原料:乙酰CoA。 降解(线粒体)
1脂酰CoA
二脂酰甘油磷酸
甘油二脂 甘油三酯
第五节 磷脂的代谢
磷脂是生物膜的主要成份。分解代谢为
磷脂酶A1: 磷脂酶A2 磷脂酶C 磷脂酶D
产物的去路:
①甘油→磷酸二羟丙酮→EMP、TCA循环;
②脂肪酸→ -氧化; ③氨基醇→氨基酸或参加磷脂的再合成。

脂肪酸的分解代谢

脂肪酸的分解代谢


1.3脂肪酸β氧化的生理意义
谢谢观看!
脂肪酸的活化: 消耗2mol高能键 脂酰CoA从细胞液转移至线粒体内:
在肉碱参与下脂肪酸转入线粒体的简要过程
脱氢:
Байду номын сангаас
氧化生成1.5molATP
加水:
脱氢:
氧化生成2.5molATP
硫解:
棕榈酸的β氧化:
1mol NADH+H+经呼吸链氧化后产生2.5molATP 1mol FADH2经呼吸链氧化后产生1.5molATP 1mol乙酰CoA经过一次三羧酸循环可氧化生成10molATP
脂肪酸的分解代谢
讲解人:13级动医四班王莹莹

脂肪酸β氧化的发现(Knoop实验) 脂肪酸的β氧化过程 脂肪酸β氧化的生理意义
1.脂肪酸的分解代谢
例:奇数碳原子: 氧化 偶数碳原子: Β
1.1Knoop实验
脂肪酸的活化
脂酰CoA从细胞液转移至线粒体内
脱氢
加水 脱氢
硫解
1.2脂肪酸的β氧化
2molCO2、10molATP
具体详见P136三羧酸循环具体过程


Β氧化作用能为机体提供大量的能量。
脂肪酸β-氧化也是脂肪酸的改造过程,人体所需要的 脂肪酸链的长短不同,通过β-氧化可将长链脂肪酸改 造成长度适宜的脂肪酸,供机体代谢所需。 脂肪酸β-氧化过程中生成的乙酰CoA是一种十分重要 的中间化合物,乙酰CoA除能进入三羧酸循环氧化供 能外,还是许多重要化合物合成的原料,如酮体、胆 固醇和类固醇化合物。

棕榈酸是十六碳的饱和脂肪酸,共需经过7次β氧化,每进行一次β氧化可生 成乙酰CoA、FADH2和NADH+H+各1mol 共生成2.5*7+1.5*7+10*8=108molATP,因在脂肪酸活化时要消耗2mol高能 键,故1mol棕榈酸彻底氧化净生成106魔力ATP

脂肪酸的分解代谢

脂肪酸的分解代谢

磷脂的代谢(自学)
五.脂肪酸代谢的调节控制
(一) 脂肪酸进入线粒体的调控 脂肪酸分解代谢的调控主要是由线粒体控制脂 肪酸进入线粒体内.主要的调控点是肉碱酰基 转移酶Ⅰ, 它强烈的受丙二酸-coA抑制,丙二 酸-coA处于高水平时,它指向脂肪酸的合成,抑 制水解.
(二) 心脏中脂肪酸氧化的调节
脂肪酸的氧化是心脏的主要能源,心脏用能减少,乙酰 coA与NADH积累,前者抑制硫解酶的活性。
3.许多类脂及其衍生物有重要的生理作用。如固醇类激素、 维生素D及胆汁酸等,磷酸肌醇有细胞内信使的作用,前 列腺素有各种生理效应,而糖脂与细胞的识别和免疫方 面有着密切的关系。
4.人类的某些疾病如动脉粥样硬化、脂肪肝和酮尿症等都与 脂类代谢紊乱有关。
一.脂肪酸的结构
1.脂肪酸的结构 脂肪酸有一长的烃链,其一端为羧基。绝 大多数的脂肪酸有着偶数的碳原子,而且 不具侧链。饱和脂肪酸在其碳-碳原子这 间没有双键。但单或多-不饱和则有一个 或多个双键。



脂肪酸的完全氧化可以产生大量的能量。例如软脂酸 (含16碳)经过7次-氧化,可以生成8个乙酰CoA,每一 次-氧化,还将生成1分子FADH2和1分子NADH。软脂酸完 全氧化的反应式为: C16H31CO~SCoA + 7 CoA-SH + 7 FAD + NAD+ +7 H2O 8 CH3CO~SCoA + 7 FADH2 + 7 NADH + 7 H+ 按照一个NADH产生2.5个ATP,1个FADH2产生1.5个ATP, 1 个乙酰CoA完全氧化产生10个ATP计算,1分子软脂酰CoA 在分解代谢过程中共产生108个ATP。 由于软脂酸转化成软脂酰CoA时消耗了1分子ATP中的两个 高能磷酸键的能量(ATP分解为AMP, 可视为消耗了2个 ATP),因此,1分子软脂酸完全氧化净生成 108 – 2 = 106 个ATP。

简述脂肪酸彻底氧化分解的主要过程

简述脂肪酸彻底氧化分解的主要过程

让我们来简述一下脂肪酸的彻底氧化分解的主要过程。

脂肪酸的氧化分解是生物体内能量代谢的重要过程之一,它通过将脂肪酸分解为较小的分子来释放能量。

脂肪酸的彻底氧化分解主要包括三个阶段:β氧化、三羧酸循环和呼吸链。

1. β氧化β氧化是脂肪酸氧化的第一步,它发生在线粒体内的乳酸或线粒体本身的胞质基质中。

在这一步骤中,脂肪酸经过一系列酶的作用逐渐被氧化,产生乙酰辅酶A和一分子乙酰基辅酶A。

这个过程重复进行,不断地将脂肪酸分解成较小的乙酰基辅酶A。

2. 三羧酸循环乙酰基辅酶A进入三羧酸循环,通过一系列酶的作用,与氧化磷酸化过程紧密地结合在一起。

在三羧酸循环中,乙酰基辅酶A经过一系列反应,产生能够向细胞内的呼吸链释放电子的载体NADH和FADH2。

3. 呼吸链NADH和FADH2通过呼吸链向线粒体内膜过渡蛋白传递电子,同时释放出氢离子。

这些电子最终与氧气结合,生成水,并释放出大量的能量。

这些能量被用来合成三磷酸腺苷(ATP),供细胞能量使用。

在这个过程中,脂肪酸经过β氧化、三羧酸循环和呼吸链,最终彻底氧化分解为水和二氧化碳,同时释放大量的能量。

这个过程对于维持生物体内能量代谢的稳定是至关重要的。

个人观点和理解:脂肪酸的彻底氧化分解是生物体内重要的代谢过程,它不仅能够为细胞提供能量,还能够调节整个生物体的能量平衡。

了解这个过程的机制,有助于我们更好地认识自身的能量代谢,从而更好地调节饮食和生活方式,保持身体健康。

总结回顾:通过本文的介绍,我们对脂肪酸彻底氧化分解的主要过程有了深入的理解。

从脂肪酸的β氧化到三羧酸循环,再到呼吸链的过程,我们了解到脂肪酸是如何被逐步分解并释放能量的。

我们也意识到这个过程对于维持生物体内能量代谢的重要性。

我们希望通过本文的介绍,读者能更深入地了解脂肪酸的氧化分解过程,并在日常生活中更加注意维持身体的健康。

写作说明:根据知识的文章格式,我们以从简到繁的方式介绍了脂肪酸的氧化分解主要过程,并在文章中多次提及了主题文字。

脂肪酸的分解代谢

脂肪酸的分解代谢

第28 章脂肪酸的分解代谢28.1 本章主要内容1)脂肪酸代谢的主要途径2)脂肪酸代谢中的能量变化3)酮体的代谢28.2 教学目的和要求通过本章学习,使学生掌握饱和脂肪酸的伕氧化途径和能量变化以及酮体的代谢,了解代谢障碍引起的疾病的发病机制与防治。

28.3 重点难点1•脂肪酸的俟氧化途径和能量变化2. 酮体的代谢28.4 教学方法与手段讲授与交流互动相结合,采用多媒体教学。

28.5 授课内容一、脂类的消化和吸收1. 脂类的消化(主要在十二指肠中)食物中的脂类主要是甘油三酯80-90%,还有少量的磷脂6-10%,胆固醇2-3%。

胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3 至小肠(碱性)。

脂肪间接刺激胆汁及胰液的分泌。

胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。

胰腺分泌的脂类水解酶如下:①三脂酰甘油脂肪酶(水解三酰甘油的C1、C3 酯键,生成2-单酰甘油和两个游离的脂肪酸。

胰脏分泌的脂肪酶原要在小肠中激活。

)②磷脂酶A2 (水解磷脂,产生溶血磷酸和脂肪酸)。

③胆固醇脂酶(水解胆固醇脂,产生胆固醇和脂肪酸)。

④辅脂酶(Colipase)(它和胆汁共同激活胰脏分泌的脂肪酶原)。

2. 脂类的吸收脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。

被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外, 再经淋巴系统进入血液。

小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。

3. 脂类转运和脂蛋白的作用甘油三脂和胆固醇脂在体内由脂蛋白转运。

脂蛋白:是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。

载脂蛋白:(已发现18 种,主要的有7种)在肝脏及小肠中合成,分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。

脂肪酸分解代谢的主要过程再述

脂肪酸分解代谢的主要过程再述

脂肪酸分解代谢的主要过程再述脂肪酸分解代谢是生物体中一种重要的能量产生过程,它通过将脂肪酸分解为较小的分子以生成能量。

这个过程在许多生物体中都非常重要,包括人类和其他动物。

本文将重点介绍脂肪酸分解代谢的主要过程,以及它在身体中的作用和调控。

一、脂肪酸的结构和分类脂肪酸是由一系列碳原子和氢原子组成的有机分子。

它们根据碳原子的数量和双键的位置可以被分类为饱和脂肪酸和不饱和脂肪酸。

饱和脂肪酸没有双键,而不饱和脂肪酸具有一个或多个双键。

二、脂肪酸的激活在脂肪酸分解代谢开始之前,脂肪酸必须先被激活。

这一步骤包括将脂肪酸与辅酶A结合形成辅酶A脂肪酰基。

这个过程发生在细胞质中,并由脂肪酸激酶催化。

三、脂肪酸的β氧化激活后的脂肪酸进入线粒体内膜,并经过一系列反应进行β氧化,也称为β-氧化。

在这一过程中,脂肪酸被逐渐分解成两碳单位的乙酰辅酶A,并产生NADH和FADH2等能量相关物质。

β氧化反应主要涉及四个酶:脂肪酸辅酶A羧化酶、羟酰辅酶A脱氢酶、羟基酰辅酶A裂解酶和乙酰辅酶A乙酰转酶。

脂肪酸的β氧化是一个循环反应,每一个反应循环将脂肪酸分解为一个乙酰辅酶A和一分子较短的脂肪酸链。

这个过程将逐渐反复进行,直到整个脂肪酸完全分解为乙酰辅酶A为止。

四、乙酰辅酶A的进一步代谢在脂肪酸分解代谢中,乙酰辅酶A进一步参与柠檬酸循环和氧化磷酸化过程。

乙酰辅酶A可以进入线粒体的柠檬酸循环,在这里通过一系列反应最终产生ATP能量。

乙酰辅酶A也可以通过某些酶的催化,进入氧化磷酸化过程中参与ATP的产生。

五、调控脂肪酸分解代谢的因素脂肪酸分解代谢的调控受到多种因素的影响。

甲状腺激素和胰岛素能够促进脂肪酸的分解和利用,而肾上腺素和葡萄糖则对脂肪酸分解产生抑制作用。

饮食中脂肪酸的摄入量和体内能量状态也会对脂肪酸分解代谢产生影响。

脂肪酸分解代谢是一种重要的能量产生过程。

它通过激活脂肪酸并进行β氧化,将脂肪酸分解为乙酰辅酶A,并通过柠檬酸循环和氧化磷酸化过程进一步产生能量。

脂肪酸的代谢PPT课件

脂肪酸的代谢PPT课件
ω-氧化 长链脂肪酸在肝脏中经过ω-氧化,生成相应的 酮体和2-酮戊二酸。
3
奇数碳脂肪酸的氧化
奇数碳脂肪酸在肝脏中经过β-氧化生成乙酰CoA, 并进一步代谢。
02 脂肪酸的消化和吸收
脂肪的消化
脂肪的消化开始于胃部
在胃酸和酶的作用下,脂肪被分解成较小的脂肪酸和甘油一酯。
脂肪酸和甘油一酯在胰脂酶的作用下进一步水解
脂肪酸合成的调节
01
激素调节
胰岛素、胰高血糖素等激素可以调节脂肪酸的合成。胰岛素可以促进脂
肪酸的合成,而胰高血糖素则抑制脂肪酸的合成。
02
营养物质调节
碳水化合物、蛋白质等营养物质也可以调节脂肪酸的合成。碳水化合物
可以促进脂肪酸的合成,而蛋白质则抑制脂肪酸的合成。
03
酶的调节
脂肪酸合成的酶类也可以受到调节。例如,乙酰CoA羧化酶是脂肪酸合
吸收的影响因素
影响脂肪吸收的因素包括饮食中脂肪的种类、摄入量、肠道菌群等。
脂肪吸收的机制
被动扩散
游离脂肪酸和甘油可以以被动扩 散的方式通过肠细胞膜进入肠细 胞。
主动转运
一些重要的脂肪酸,如亚油酸和α亚麻酸等,需要经过主动转运才能 被肠细胞吸收。
03 脂肪酸的氧化分解
脂肪酸的活化
01
02
03
脂肪酸在脂肪酶的作用 下水解成游离脂肪酸和 甘油,游离脂肪酸在细
β-氧化过程中产生的中间产物可合成胆固醇、磷脂等生物活性物质,参与细胞膜的构建和功能调节。
04 脂肪酸的合成
脂肪酸的从头合成
定义
从头合成是指从简单的原料(如乙酰CoA和丙二酸单酰 CoA)开始,逐步合成脂肪酸的过程。
合成步骤
乙酰CoA与丙二酸单酰CoA缩合生成乙酰乙酰CoA,然后 乙酰乙酰CoA再与乙酰CoA缩合生成3-羟基乙酰CoA,最 后脱羧、加水生成脂肪酸。

生物化学脂肪酸的分解代谢

生物化学脂肪酸的分解代谢

疾病和药物的影响
疾病
某些疾病如糖尿病、肥胖症等会影响人体的脂肪酸分解代谢。这些疾病可能导致脂肪酸分解代谢速率减慢,进而 引起脂肪堆积。
药物
一些药物如肾上腺素、甲状腺素等会影响人体的脂肪酸分解代谢。这些药物可能会加速脂肪酸的分解代谢,也可 能会抑制其分解代谢。
环境因素的影响
饮食
饮食习惯对脂肪酸分解代谢具有重要影响。高脂、高糖、高热量饮食可能导致 脂肪堆积,而低脂、低糖、高纤维饮食则有助于促进脂肪酸分解代谢。
3
脂肪酸分解代谢还参与调节体内激素的合成和分 泌,对维持内分泌系统的正常功能具有重要意义 。
THANKS 感谢观看
生物化学脂肪酸的分解代谢
汇报人:可编辑 2024-01-11
• 引言 • 脂肪酸的消化和吸收 • 脂肪酸的分解代谢途径 • 脂肪酸分解代谢的调节
• 脂肪酸分解代谢的影响因素 • 脂肪酸分解代谢的生理意义和健
康影响
01 引言
脂肪酸的定义和重要性
脂肪酸的定义
脂肪酸是脂类的一种成分,由碳 、氢和氧原子组成的长链化合物 。
05 脂肪酸分解代谢的影响因素
年龄和性别的影响
年龄
不同年龄段的人体脂肪酸分解代谢存 在差异。儿童和青少年时期,人体对 脂肪酸的吸收和利用效率较高,而老 年人的脂肪酸分解代谢能力则有所下 降。
性别
男性和女性在脂肪酸分解代谢方面也 存在差异。一般来说,男性体内的脂 肪酸分解代谢速率较快,而女性则相 对较慢。
β-氧化途径
脂肪酸在β-氧化途径中,首先 被分解为乙酰CoA,然后进入 三羧酸循环彻底氧化分解并释
放能量。
β-氧化途径主要在线粒体中 进行,需要脂肪酶、脂酰
CoA合成酶、肉碱脂酰转移 酶等酶的参与。

生物化学教案——第十五章 代谢调节

生物化学教案——第十五章 代谢调节

第十五章代谢调节细胞代谢包括物质代谢和能量代谢。

细胞代谢是一个完整统一的网络,并且存在复杂的调节机制,这些调节机制都是在基因表达产物(蛋白质或RNA)的作用下进行的。

本章重点是:物质代谢途径的相互联系,酶活性的调节。

物质代谢途径的相互联系细胞代谢的基本原则是将各类物质分别纳入各自的共同代谢途径,以少数种类的反应转化种类繁多的分子。

不同代谢途径可以通过交叉点上关键的中间物而相互转化,其中三个关键的中间物是乙酰CoA、G-6-P、丙酮酸。

一、糖代谢与脂代谢的联系1、糖转变成脂糖经过酵解,生成磷酸二羟丙酮及丙酮酸。

磷酸二羟丙酮还原为甘油,丙酮酸氧化脱羧转变成乙酰CoA,合成脂肪酸。

2、脂转变成糖甘油经磷酸化为3-磷酸甘油,转变为磷酸二羟丙酮,异生为糖。

在植物、细菌中,脂肪酸转化成乙酰CoA,后者经乙醛酸循环生成琥珀酸,进入TCA,由草酰乙酸脱羧生成丙酮酸,生糖。

动物体内,无乙醛酸循环,乙酰CoA进入TCA氧化,生成CO2和H2O。

脂肪酸在动物体内也可以转变成糖,但此时必需要有其他来源的物质补充TCA中消耗的有机酸(草酰乙酸)。

糖利用受阻,依靠脂类物质供能量,脂肪动员,在肝中产生大量酮体(丙酮、乙酰乙酸、β-羟基丁酸)。

二、糖代谢与氨基酸代谢的关系1、糖的分解代谢为氨基酸合成提供碳架糖→ 丙酮酸→ α-酮戊二酸+ 草酰乙酸这三种酮酸,经过转氨作用分别生成Ala、Glu和Asp。

2、生糖氨基酸的碳架可以转变成糖凡是能生成丙酮酸、α—酮戊二酸、琥珀酸、草酰乙酸的a.a,称为生糖a.a。

Phe、Tyr、Ilr、Lys、Trp等可生成乙酰乙酰CoA,从而生成酮体。

Phe、Tyr等生糖及生酮。

三、氨基酸代谢与脂代谢的关系氨基酸的碳架都可以最终转变成乙酰CoA,可以用于脂肪酸和胆甾醇的合成。

生糖a.a的碳架可以转变成甘油。

Ser可以转变成胆胺和胆碱,合成脑磷脂和卵磷脂。

动物体内脂肪酸的降解产物乙酰CoA,不能为a.a合成提供净碳架。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

酮症酸中毒
2020/9/23
酮血症
酮尿症
No Image
2020/9/23
酮体记忆口诀
• 酮体一家兄弟三,丙酮和乙酰乙酸, 再加β-羟丁酸,生成部位是在肝, 肝脏生酮肝不用,体小易溶往外送, 容易摄入组织中,氧化分解把能功。
2020/9/23
第四节 脂肪酸的合成
• 原料:乙酰CoA
1mol乙酰CoA :直接参与脂肪酸的合成 其余乙酰CoA: 羧化成丙二酸单酰CoA
• 酶:脂肪酸合酶系 • 特点:细胞液中进行,消耗ATP和NADPH,
重复4步进行碳链延长反应,首先生成软脂酸 16:0,经过加工生成各种脂肪酸。 • 部位:肝脏和脂肪组织
2020/9/23
乙酰CoA的来源和去路
酸肪酸 来源:糖代谢
去路:酮体 TCA,生成 脂肪酸
2020/9/23
柠檬酸循环
一、软脂酸的合成
RCH2 CHCHCSCoA
RCH2 C CHC SCoA
NAD+ NADH+H+
2020/9/23
硫解
• 由β-酮硫解酶催化,β-酮酯酰CoA在α和β碳 原子之间断链,加上一分子辅酶A生成乙酰CoA 和一个少两个碳原子的脂酰CoA。
O O 硫解酶 O
O
RC H 2CC HCSC oA RC H 2CSC oA +C H 3CSC oA
2020/9/23
脂肪酸合成和分解的比较
• 脂肪酸合成过程不是β-氧化的逆过程, 它们的细胞定位,转移载体,酰基载体 ,加入或减去的二碳单位、限速酶,激 活剂,抑制剂,供氢体和受氢体以及反 应底物与产物均不相同。
2020/9/23
饱和脂肪酸的合成与β-氧化的比较
区别要点
从头合成
β-氧化
细胞内进行部位 酰基载体 转运机制 二碳单位参与或断裂形式 电子供体或受体 -羟酰基中间物的立体构型不同 对HCO3-和柠檬酸的需求
脂类代谢
脂肪(fat)--- 甘油三酯
脂类
(triglycerides,TG)
lipid
类脂-- 磷脂( phospholipid)
甘油
脂肪酸
糖脂 胆固醇(cholesterol,ch)
胆固醇酯(cholesterol ester,CE)
20人20/9体/23 所需能量约40%来自脂肪。
第一节 脂的消化、吸收和转运
• 肝和肌肉是脂肪酸氧化最活跃的组织,其最 主要的氧化形式是β-氧化。动物实验证实 。
• 脂肪酸的分解发生在原核生物的细胞质及真 核生物的线粒体基质中。
2020/9/23
2020/9/23
一) 脂肪酸的活化-细胞液中进行
• 脂肪酸的活化形式是脂酰CoA,由脂酰CoA合 成酶(acyl-CoA synthetase)催化。
+
-
柠檬酸、异柠檬酸、 α-酮戊二酸
长链脂肪酸
2020/9/23
3.脂肪酸合酶系
• 原料乙酰CoA和丙二酰CoA准备好后,即在脂 肪酸合酶系的催化下开始合成脂肪酸。
• 是一个由6种不同功能的酶与酰基载体蛋白 ACP聚合成的复合体。即以ACP为核心,在它 周围有次序的排列着合成脂肪酸的各种酶,随 着ACP的转动,依次发生脂肪酸合成的各步反 应。每一步反应的产物正好是上一步反应的底 物,因此,效率极高。
o 8乙酰COA→彻底氧化→ 12ATP 12×8=96ATP
o 7FADH2 → 2×7=14ATP o 7NADH+7H+ → 3×7=21ATP
o
共96+14+21=131ATP
o 活化消耗了2个高能键,所以应为131-2=129ATP 。
2020/9/23
2020/9/23
五 不饱和脂肪酸的氧化
ACP
C4
C3
C6
C6
• ⑦软脂酰ACP经硫酯酶催化成游离软脂酸。
2020/9/23
No Image
2020/9/23
合成软脂酸的反应式
• 每加一个二碳单位,需2(NADPH+H+), 1ATP。
14(NADPH+H+) 14NADP+
• 8乙酰CoA
软脂酸+8CoA
7ATP 7(ADP+Pi)
• 1.乙酰CoA的转移:线粒体内 细胞 液。 穿越线粒体内膜。 经由三羧酸运送体系柠檬酸-丙酮酸 循环。制备部分NADPH。
2020/9/23
线粒体基质
脂肪酸氧化
丙酮酸羧化酶2020/9/23源自柠檬酸穿梭(三羧酸转运体系)
还原力的准备
反应中所需的NADPH+H+约有40%来自戊糖磷酸 途径,其余的60%可由EMP中生成的NADH+H+ 间接转化提供
• 按密度分为乳糜 微粒、极低、低 、和高密度脂蛋 白四种。
2020/9/23
四种血浆脂蛋白及其功能
• ①CM:小肠合成,转 运外源性脂类到肝内;
• ②VLDL:肝脏合成, 转运内源性脂类到肝外 ;
• ③LDL:血管中合成, 转运内源性胆固醇和磷 脂至肝外;
• ④HDL:肝/肠/血浆中 合成,和LDL作用反, 收集肝外胆固醇和磷脂 到肝内。
2020/9/23
七、脂肪酸的-氧化
• 在植物种子萌发时,脂肪酸的-碳被氧 化成羟基,生成-羟基酸。-羟基酸可 进一步脱羧、氧化转变成少一个碳原子 的脂肪酸。
• 对降解支链脂肪酸,奇数脂肪酸有重要 作用。
2020/9/23
八、-氧化:
• 12C以下脂肪酸的氧化形式。甲基碳原 子(-碳原子)可以先被氧化,形成二 羧酸。二羧酸进入线粒体内后,可以从 分子的任何一端进行-氧化,最后生成 的琥珀酰CoA可直接进入三羧酸循环。
a. 顺式双键需异构为反式双键进行催化 b. 同等链长的脂肪酸,产生ATP数较少。
(少产生1FADH2) c.多不饱和脂肪酸还需另外的酶参与。其
余同-氧化。
2020/9/23
六、奇数碳脂肪酸的氧化
• 先按-氧化降解,最后剩下丙酰CoA。 丙酰CoA羧化成琥珀酰CoA或脱羧形成 乙酰CoA,进入TCA循环。
• ⑴消化:主要小肠中进行。胆汁盐乳 化,形成微团。胰脂肪酶和辅脂肪酶 降解脂。胰磷脂酶催化磷脂的水解。
• ⑵ 吸收:小肠粘膜细胞吸收,吸收形 式有三种:完全水解、部分水解和完 全不水解。经淋巴系统进入血液循环 。
2020/9/23
⑶ 运送-血浆脂蛋白
• 血浆脂蛋白由血 脂与载脂蛋白结 合而形成,溶于 水,运行于血。
• 分解:转化成乙酰CoA,进入TCA循环彻底
氧化。
2020/9/23
肝内生酮肝外用
2020/9/23
三、酮体生成的意义
(1)正常:
酮体是肝脏正常的中间代谢产物,是肝脏输出能 源的一种形式。长期饥饿及糖供给不足时,酮体 可代替葡萄糖成为主要能源。为肝外组织特别是 脑组织,提供有用的能源。
(2)异常:饥饿、高脂低糖饮食、糖尿病会使酮 体代谢加强,造成
{NADH+H ++草酰乙酸 苹果酸脱氢酶 苹果酸+NAD+ 苹果酸+NADP+ 苹果酸酶 丙酮酸+CO2+NADPH+H +
总反应:
NADH+H++NADP+ +草 酰乙酸
2020/9/23
丙酮酸 +CO2+NADPH+H++NA D+
2.丙二酰CoA的生成
2020/9/23
关键酶:乙酰CoA羧化酶(生物素)
2020/9/23
磷脂的生物合成
• CTP是必需的活化因子。
1脂酰CoA 1脂酰CoA 甘油3-磷酸 单酰甘油磷酸 二酰甘油磷酸
2020/9/23
No Image
2020/9/23
(2)装载
(1)启动
2020/9/23
(3)碳链延长:重复4步反应
2020/9/23
• 丁酰ACP再与丙二酰ACP缩合,重复③脱羧 缩合④加氢⑤脱水⑥再加氢四步,每一次使 碳链延长两个碳,共7次重复,最终生成生 成软脂酰ACP。合成停止。
• 丁酰ACP+丙二酰ACP 丁酰乙酰ACP 己酰
2020/9/23
第三节 酮体的代谢
• 当脂肪酸降解过量时,细胞内缺少足够的草酰 乙酸将所有的乙酰CoA带入TCA循环,乙酰 CoA还有另一条代谢途径-进入肝脏,合成酮 体。
• 乙酰CoA可形成 乙酰乙酸(30%) β-羟丁酸(70%) 丙酮(acetone,微量)。
这三种物质统称酮体。主要在肝脏线粒体中进行 。
三)-氧化
• 脂酰CoA在线粒体的基质中进行氧化分解 。每进行一次-氧化,需要经过脱氢、水 化、再脱氢和硫解四步反应,同时释放出1 分子乙酰CoA。
• 反应产物是比原来的脂酰CoA减少了2个 碳的新的脂酰CoA。如此反复进行,直至 脂酰CoA全部变成乙酰CoA。
2020/9/23
脱氢
• 脂酰CoA在脂酰CoA脱氢酶的催化下,
C oS A H
2020/9/23
β-氧化的反应历程总结
RCH2CH2COOH
RCH2CH2CO~SCOA
(脂酰COA)
继续β-氧化
O
O
= =
R-C~SCOA+ CH3-C~SCOA
-
-
-
H RC=CCO~SCOA
H (△2反式烯脂酰COA)
OH
RCH-CH2CO~SCOA
(L-β- 羟脂酰COA)
2020/9/23
(4)脂肪的动员
• 食物中的脂肪(外源性脂肪)经消化吸收(为 碳链长短与饱和度的改造过程)后,贮存于脂 肪组织(内源性脂肪)。
相关文档
最新文档