必修一高一数学压轴题
(压轴题)高中数学必修一第一单元《集合》测试题(有答案解析)
一、选择题1.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R =B .UA B R =C .UUAB R = D .AB R =2.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉3.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b cB .()(),,c a b dC .(][),,a c d bD .()(),,c a d b4.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫ ⎪⎝⎭C .(4,1D .(1,1+5.已知集合123,,A A A 满足: {}*123|19A A A x N x =∈≤≤,且每个集合恰有3个元素,记()1,2,3i A i =中元素的最大值与最小值之和为()1,2,3i M i =,则123M M M ++的最小值为( ) A .21B .24C .27D .306.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5117.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈8.已知全集U =R ,集合91A xx ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个9.若x A ∈,则1A x ∈,就称A 是和美集合,集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的所有非空子集中是和美集合的个数为( ) A .4B .5C .6D .710.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UBD .∅11.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭12.下列结论正确的是() A .若a b <且c d <,则ac bd <B .若a b >,则22ac bc >C .若0a ≠,则12a a +≥ D .若0a b <<,集合1|A x x a ⎧⎫==⎨⎬⎩⎭,1|B x x b ⎧⎫==⎨⎬⎩⎭,则A B ⊇ 二、填空题13.已知,a b ∈R ,若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为_____________.14.若集合(){}2220A x Z x a x a =∈-++-<中有且只有一个元素,则正实数a 的取值范围是_____.15.非空集合G 关于运算*满足:① 对任意,a b G ∈,都有a b G *∈;② 存在e G ∈使对一切a G ∈都有a e e a a *=*=,则称G 是关于运算*的融洽集,现有下列集合及运算:①G 是非负整数集,*运算:实数的加法; ②G 是偶数集,*运算:实数的乘法;③G 是所有二次三项式组成的集合,*运算:多项式的乘法; ④{|2,,}G x x a b a b Q ==+∈,*运算:实数的乘法; 其中为融洽集的是________16.已知非空集合{}|121A x m x m =+≤≤-,集合{}2|1030B x x x =+-≥,若A B =Φ,则实数m 的取值范围为__________17.已知{|14}A x x =-≤≤,{|}B x x a =<,若A B =∅,则a 的取值范围是__________18.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合1515,22⎧⎫-+--⎪⎪⎨⎬⎪⎪⎩⎭是“复活集”;②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号)19.设集合A ,B 是R 中两个子集,对于x ∈R ,定义: 0,,0,1,,1,x A x Bm n x A x B ⎧∉∉⎧==⎨⎨∈∈⎩⎩.①若A B ⊆;则对任意(),10x R m n ∈-=;②若对任意,0x R mn ∈=,则A B φ⋂=;③若对任意,1x R m n ∈+=,则A ,B 的关系为R A C B =.上述命题正确的序号是______. (请填写所有正确命题的序号)20.对于集合M ,定义函数1()1M x Mf x x M ∈⎧=⎨-∉⎩,对于两个集合M 、N ,定义集合{|()()1}M N M N x f x f x *=⋅=-,用()Card M 表示有限集合M 所含元素的个数,若{1,2,4,8}A =,{2,4,6,8,10}B =,则能使()()Card X A Card X B *+*取最小值的集合X 的个数为________.三、解答题21.已知集合{|314}A x x =-<+,{|213}B x m x m =-<+. (1)当1m =时,求AB ;(2)若A B A ⋃=,求m 的取值范围.22.已知集合{|1A x x =≤或5}x,集合{|221}B x a x a =-≤≤+(1)若1a =,求A B 和A B ;(2)若记符号{A B x A -=∈且}x B ∉,在图中把表示“集合A B -”的部分用阴影涂黑,并求当1a =时的A B -; (3)若AB B =,求实数a 的取值范围.23.已知全集为R ,集合{}503x A x Rx -=∈>+,()2{|21050}B x R x a x a =∈-++≤.(1)若RB A ⊆,求实数a 的取值范围;(2)从下面所给的三个条件中选择一个,说明它是RB A ⊆的什么条件(充分必要性).①[)7,10a ∈-;②(]7,10a ∈-;③(]6,10a ∈. 24.已知全集{}|0U x x =>,集合{}|37A x x =≤<,{}|210B x x =<<,{}|5C x a x a =-<<. (1)求()U AB A B ,;(2)若()C A B ⊆⋃,求实数a 的取值范围.25.已知全集U =R ,设集合{}213A x x =-≤,集合(){}2440B x x a x a =+-->,若A B A =,求实数a 的取值范围26.关于x 的不等式111a x +>+的解集为P ,不等式11x -≤的解集为Q ,Q P =∅∩,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出集合A ,根据11B ∈可求得实数a 的取值范围,利用集合的基本运算可判断各选项的正误. 【详解】{}{25601A x x x x x =-->=<-或}6x >,{}5B x x a =-<,且11B ∈,则6a >,{}{}555B x x a x a x a ∴=-<=-<<+,对于A 选项,取7a =,则{}212B x x =-<<,{}16UA x x =-≤≤,所以,{}16UA B x x R ⋂=-≤≤≠,A 选项错误;对于B 选项,取7a =,则{2UB x x =≤-或}12x ≥,此时UAB A R =≠,B 选项错误;对于C 选项,取7a =,则{}16UA x x =-≤≤,{2UB x x =≤-或}12x ≥,此时,{2UU A B x x ⋃=≤-或16x -≤≤或}12x R ≥≠,C 选项错误;对于D 选项,6a >,则51a -<-,511a +>,此时A B R =,D 选项正确.故选:D. 【点睛】本题考查与集合运算正误的判断,同时也考查了一元二次不等式以及绝对值不等式的求解,考查计算能力,属于基础题.2.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.3.C解析:C 【分析】先判断0a c d b <<<<,再计算(,),(,)M N a b M N c d ⋃=⋂=,得到答案. 【详解】根据a b c d +=+,0ab cd <<得到:0a c d b <<<<{}M x a x b =<<,{}N x c x d =<<故(,),(,)M N a b M N c d ⋃=⋂=(][),,M N a c d b ⊕=故选:C 【点睛】本题考查了集合的新定义问题,确定0a c d b <<<<是解题的关键.4.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=所以{(011,1A x x =<-<=+, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.5.C解析:C 【分析】 求出{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=,由题意列举出集合123,,A A A ,由此能求出123M M M ++的最小值. 【详解】 由题意可知,{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=123,,A A A 各有3个元素且不重复,当{}13,4,5A =,{}22,6,7A =,{}31,8,9A =时,123M M M ++取得最小值,此时最小值为12357927+++++=,故选C 【点睛】本题主要考查集合中的元素运算,解题的关键是理解题中满足的条件,属于中档题.6.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.7.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.8.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】 因为91(0,9)A xx ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.9.D解析:D 【分析】写出集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的非空子集,根据和美集合的定义验证即可. 【详解】先考虑含一个元素的子集,并且其倒数是其本身,有{}{}1,1,-再考虑 含有两个元素的和美集合,有{}11,1,,33⎧⎫-⎨⎬⎩⎭,含有三个元素的子集且为和美集合的是111,,3,1,,3,33⎧⎫⎧⎫-⎨⎬⎨⎬⎩⎭⎩⎭含有四个元素的子集且为和美集合的是11,1,,33⎧⎫-⎨⎬⎩⎭. 【点睛】本题主要考查了集合的子集,考查了创设新情景下解决问题的能力,属于中档题.10.D解析:D 【分析】根据题意作出“韦恩图”,得出集合A 与集合B 没有公共元素,即可求解. 【详解】由题意,集合U 为全集,()UBA B =,如图所示,可得集合A 与集合B 没有公共元素,即A B =∅,故选D.【点睛】本题主要考查了集合的运算及应用,其中解答中根据题设条件,作出韦恩图确定两集合的关系是解答的关键,着重考查了推理与论证能力,属于基础题.11.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C.【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.12.C解析:C 【分析】通过举例和证明的方式逐个分析选项. 【详解】A :取5,3,6,1a b c d =-==-=,则30,3ac bd ==,则ac bd >,故A 错误;B :取3,1,0a b c ===,则22ac bc =,故B 错误;C:21122a a a a ⎫+=+=+≥⎝成立,故C 正确;D :因为0a b <<,所以11a b>,则A B ,故D 错误;故选:C. 【点睛】本题考查不等关系和等式的判断,难度一般.判断不等关系是否成立,常用的方法有:(1)直接带值验证;(2)利用不等式的性质判断;(3)采用其他证明手段.(如借助平方差、完全平方公式等).二、填空题13.【分析】由集合相等可求出直接计算即可【详解】即故解得故答案为:【点睛】本题主要考查了集合相等的概念集合中元素的互异性属于中档题 解析:1-【分析】由集合相等可求出,a b ,直接计算20192019a b +即可. 【详解】{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭, 0,0a b ∴≠=,即{}{}2,0,1,,0a a a =,故21,1a a =≠,解得1a =-,2019201920192019(1)01a b +=-+=-故答案为:1- 【点睛】本题主要考查了集合相等的概念,集合中元素的互异性,属于中档题.14.【分析】因为集合A 中的条件是含参数的一元二次不等式首先想到的是十字相乘法但此题行不通;应该把此不等式等价转化为的形式然后数形结合来解答需要注意的是尽可能让其中一个函数不含参数【详解】解:且∴令∴∴是解析:12,23⎛⎤⎥⎝⎦【分析】因为集合A 中的条件是含参数的一元二次不等式,首先想到的是十字相乘法,但此题行不通;应该把此不等式等价转化为()()f x g x <的形式,然后数形结合来解答,需要注意的是尽可能让其中一个函数不含参数. 【详解】 解:()2220x a x a -++-<且0a >∴()2221x x a x -+<+令()()()222;1f x x x g x a x =-+=+∴()()},{|A x f x g x x Z =∈<∴()y f x =是一个二次函数,图象是确定的一条抛物线; 而()y g x =一次函数,图象是过一定点()1,0-的动直线. 又∵,0x Z a ∈>.数形结合,可得:1223a <≤ 故答案为:12,23⎛⎤⎥⎝⎦【点睛】此题主要考查集合A 的几何意义的灵活运用,利用数形结合的数学思想来解决参数取值范围问题.15.①④【分析】逐一验证几个选项是否分别满足融洽集的两个条件若两个条件都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意非负整数则仍为非负整数即;取则故①符合题意;②对于任意偶数则仍为偶数即;但是解析:①④【分析】逐一验证几个选项是否分别满足“融洽集”的两个条件,若两个条件都满足,是“融洽集”,有一个不满足,则不是“融洽集”【详解】①对于任意非负整数,a b ,则+a b 仍为非负整数,即a b G +∈;取0e =,则00a a a +=+=,故①符合题意;②对于任意偶数,a b ,则ab 仍为偶数,即ab G ∈;但是不存在e G ∈,使对一切a G ∈都有ae ea a ==,故②不符合题意;③对于G 是所有二次三项式组成的集合,若,a b G ∈,ab 不再是二次三项式,故③不符合题意;④对于{|,}G x x a a b Q ==+∈,设1x a =+2x c =+,则()(122x x ac bd ad bc ⋅=+++,即12x x G ⋅∈;取1e =,则11a a a ⨯=⨯=,故④符合题意,故答案为:①④【点睛】本题考查对新定义“融洽集”的理解,考查理解分析能力16.或【分析】化简集合对集合是否为空集分类讨论若满足题意若根据条件确定集合的端点位置即可求解【详解】由得若满足题意;若可得或解得或;综上:或故答案为:或【点睛】本题考查集合间的运算不要遗漏空集情况属于中 解析:4m >或2m <【分析】化简集合B ,对集合A 是否为空集分类讨论,若A =∅满足题意,若A =∅,根据条件确定集合A 的端点位置,即可求解.【详解】由21030x x +-≥得25,[2,5]x B -≤≤∴=-,若,121,2A m m m =∅+>-<,满足题意;若,A A B ≠∅=∅,可得12115m m m +≤-⎧⎨+>⎩或121212m m m +≤-⎧⎨-<-⎩, 解得4m >或m ∈∅;综上:4m >或2m <.故答案为:4m >或2m <【点睛】本题考查集合间的运算,不要遗漏空集情况,属于中档题.17.【分析】根据集合所以集合没有公共元素列出两个集合的端点满足的不等关系结合数轴可以得出的范围得到结果【详解】集合由借助于数轴如图所示可得故答案为:【点睛】该题主要考查集合中参数的取值范围的问题两个集合 解析:(,1]-∞-.【分析】根据集合{|14}A x x =-≤≤,{|}B x x a =<,A B φ⋂=,所以集合,A B 没有公共元素,列出两个集合的端点满足的不等关系,结合数轴可以得出a 的范围,得到结果.【详解】集合{|14}A x x =-≤≤,{|}B x x a =<,由A B φ⋂=,借助于数轴,如图所示,可得1a ≤-,故答案为:(,1]-∞-.【点睛】该题主要考查集合中参数的取值范围的问题,两个集合的关系,属于中档题目. 18.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案.【详解】对于①, 1515151512222----+-⋅=+=-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根,由>0∆,可得0t <或4t >,故②错;对于③,不妨设A 中123n a a a a <<<<, 由1212n n n a a a a a a na =+++<得121n a a a n -<, 当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确; 对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =,于是“复活集” A 只有一个,为{}1,2,3,当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾, ∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.19.①②③【分析】对于①按照和两种情况讨论可得①正确;对于②根据不可能都为1可得不可能既属于又属于可得②正确;对于③根据中的一个为0另一个为1可得时必有或时必有由此可知③正确【详解】对于①因为所以当时根解析:①②③【分析】对于①,按照x A ∈和x A ∉两种情况讨论,可得①正确;对于②,根据,m n 不可能都为1,可得x 不可能既属于A ,又属于B 可得②正确;对于③,根据,m n 中的一个为0,另一个为1,可得x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,由此可知③正确.【详解】对于①,因为A B ⊆,所以当x A ∉时,根据定义可得0m =,所以(1)0m n -=,当x A ∈,则必有x B ∈,根据定义有1n =,所以(1)0m n -=,故对于任意x ∈R ,都有(1)0m n -=,故①正确;对于②,因为对任意,0x R mn ∈=,所以,m n 中不可能都为1,即x A ∈和x B ∈不可能同时成立,所以A B φ⋂=,故②正确;对于③,因为对任意,1x R m n ∈+=,所以,m n 中的一个为0,另一个为1,即x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,所以R A C B =,故③正确.综上所述: 所有正确命题的序号为:①②③.故答案为①②③【点睛】本题考查了元素与集合,集合与集合之间的关系,对新定义的理解能力,属于中档题. 20.【分析】通过定义可以用集合中的补集来解释再根据取最小值时所满足的条件最后可以求出集合的个数【详解】因为所以有要想最小只需最大且最小要使最小则有所以集合是集合和集合子集的并集因此集合的个数为个故答案为 解析:8【分析】通过定义可以用集合中的补集来解释,再根据()()Card X A Card X B *+*取最小值时所满足的条件,最后可以求出集合X 的个数.【详解】因为{|()()1}M N M N x f x f x *=⋅=-,所以有()M N M N C M N *=⋂,要想()Card X A *最小,只需()Card X A ⋂最大,且()Card X A ⋃最小,要使()()Card X A Card X B *+*最小, 则有A B X A B ⋂⊆⊆⋃,{}{}1,2,4,6,8,10,2,4,8A B A B ⋃=⋂=,所以集合X 是集合{}2,4,8和集合{}1,6,10子集的并集,因此集合X 的个数为328=个.故答案为:8【点睛】本题考查了新定义题,考查了集合与集合之间的关系,考查了数学阅读能力.三、解答题21.(1){|13}A B x x ⋂=;(2)3(2-,0][4⋃,)+∞. 【分析】(1)当1m =时,求出集合B ,A ,由此能求出A B .(2)由A B A ⋃=,得B A ⊆,当B =∅时,213m m -+,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,由此能求出m 的取值范围.【详解】解:(1)当1m =时,{|14}B x x =<,{|314}{|43}A x x x x =-<+=-<,{|13}A B x x ∴⋂=.(2)A B A =,B A ∴⊆,当B =∅时,213m m -+,解得4m ,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,解得302m -<, 综上,m 的取值范围为3(2-,0][4⋃,)+∞. 【点睛】结论点睛:本题考查交集、实数的取值范围的求法,并集、交集的结论与集合包含之间的关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1){|01}AB x x =≤≤,{|2A B x x =≤或5}x ;(2)阴影图形见解析,{|0A B x x -=≤或5}x ;(3)0a ≤或3a >. 【分析】(1)当1a =时,求得集合B ,根据交集、并集的运算法则,即可求得答案;(2)阴影图形见解析,当1a =时,求得集合B ,根据A B -的定义,即可求得答案; (3)由题意得B A ⊆,分别讨论B =∅和B ≠∅两种情况,根据集合的包含关系,即可求得a 的范围.【详解】(1)当1a =时,02{}|B x x ≤≤=,所以{|01}A B x x =≤≤,{|2A B x x =≤或5}x ;(2)A-B 的部分如图所示:,当1a =时,{|0A B x x -=≤或5}x; (3)因为A B B =,所以B A ⊆,当B =∅时,221a a ->+,解得3a >,当B ≠∅时,则11221a a a +≤⎧⎨-≤+⎩或225221a a a -≥⎧⎨-≤+⎩, 解得0a ≤或∅,综上:0a ≤或3a >.【点睛】易错点为:根据集合包含关系求参数时,当B A ⊆,且集合B 含有参数时,需要讨论集合B 是否为空集,再进行求解,考查分析理解,计算求值的能力,属中档题.23.(1)610a -≤≤;(2)答案见解析.【分析】()1先求集合A ,B ,A R ,再由R B A ⊆得到a 的不等式,解得即可;()2结合()1利用充分必要条件的定义逐一判定.【详解】解:()1集合5|0(3)(5,)3x A x R x -⎧⎫=∈>=-∞-⋃+∞⎨⎬+⎩⎭, 所以[]35R A =-,,集合()()()2{|21050}{|250}B x R x a x a x R x a x =∈-++≤=∈--≤,若R B A ⊆, 只需352a -≤≤, 所以610a -≤≤.()2由()1可知的充要条件是[]610a ∈-,, 选择①,则结论是既不充分也不必要条件;选择②,则结论是必要不充分条件;选择③,则结论是充分不必要条件.【点睛】关键点睛,利用集合关系求参数范围,求集合A ,B ,A R ,再由R B A ⊆得到a 的不等式,进而利用a 的范围,判定充分必要条件,属于中档题.24.(1){|210}A B x x ⋃=<<,(){|23U A B x x =<<或710}x ≤<;(2)(,3]-∞.【分析】(1)根据集合的运算法则计算;(2)由子集的定义求解.【详解】(1)∵{}|37A x x =≤<,{}|210B x x =<<,{}|0U x x =>,{|210}A B x x ⋃=<<,{|03U A x x =<<或7}x ≥,则(){|23U A B x x =<<或710}x ≤<;(2)∵{}|5C x a x a =-<<,()C A B ⊆⋃,若5a a ≤-,即52a ≤,则B =∅,满足题意; 若52a >,则2510a a ≤-⎧⎨≤⎩,解得3a ≤,∴532a <≤, 综上,a 的范围是(,3]-∞.【点睛】本题考查集合的综合运算,考查由包含关系确定参数范围,解题时要注意空集是任何集合的子集,这类问题一般要分类讨论.25.1a <-【分析】 先化简集合{}{}21312A x x x x =-≤=-≤≤,集合(){}()(){}244040B x x a x a x x a x =+-->=-+>,再根据A B A =,转化为A B ⊆求解.【详解】集合{}{}21312A x x x x =-≤=-≤≤,集合(){}()(){}244040B x x a x a x x a x =+-->=-+>, 因为A B A =,所以A B ⊆ ,当4a =-时,{}4B x x =≠-,满足A B ⊆, 当4a >-时,{B x xa =或}4x <- ,要使A B ⊆成立, 则1a <- 即41a -<<-, 当4a 时,{4B x x =-或}x a <,满足A B ⊆,综上:实数a 的取值范围1a <-.【点睛】本题主要考查了集合的关系及基本运算,还考查了转化化归的思想和运算求解的能力,属于中档题.26.(],0-∞【分析】先分别求解分式不等式和绝对值不等式,再根据Q P =∅∩,夹逼出参数的范围.【详解】 对不等式111a x +>+,可解得()()10x x a +-<; ①当1a =-时,不等式的解集为空集;②当1a >-时,不等式的解集为()1,a -③当1a <-时,不等式的解集为(),1a - 对不等式11x -≤,可解得[]0,2x ∈,因为Q P =∅∩,故当1a =-时,满足题意;当1a >-时,要满足题意,只需0a ≤,则(]1,0a ∈-当1a <-时,要满足题意,显然满足题意,即(),1a ∈-∞-综上所述:(],0a ∈-∞.【点睛】本题考查含参二次不等式的求解,以及由集合之间的关系求解参数的范围,属综合中档题.。
高一数学压轴题强化训练题学生版
高一数学压轴题强化训练题1.已知集合P={x|x 2≤1},M={a}.若P∪M=P,则a 的取值范围是()A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)2.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,若A ∪B =A ,则m 的取值范围是()A .-3≤m ≤4B .-3<m <4C .2<m <4D .2<m ≤43.已知非空集合A,B 满足以下两个条件:(i)A∪B={1,2,3,4,5,6},A∩B=∅(ii)若x∈A,则x+1∈B.则有序集合对(A,B)的个数为()A.12B.13C.14D.154.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“好元素”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“好元素”的集合共有().A .6个B .12个C .9个D .5个5.如果具有下述性质的x 都是集合M 中的元素,其中:),,(2Q b a b a x ∈+=则下列元素中不属于集合M 的元素的个数是由()①.,0=x ②,2=x ③,223π-=x ④,2231-=x ⑤246246++-=x .A.1个 B.2个 C.3个 D.4个6.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N 的关系是()A .x 0∈NB .x 0∉NC .x 0∈N 或x 0∉ND .不能确定7.已知z y x ,,是非零实数,代数式xyz z z y y x x +++的值所组成的集合为M,则下列判断正确的是()A.M ∉0B.M ∈2C.M ∉-4D.M∈48.已知集合M ={x |x x -1≥0,x ∈R },N ={y |y =3x 2+1,x ∈R },则M ∩N 等于()A .∅B .{x |x ≥1}C .{x |x >1}D .{x |x ≥1或x <0}9.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是()A .-1<a ≤2B .a >2C .a ≥-1D .a >-110.对于集合A ,定义了一种运算“⊕”,使得集合A 中的元素间满足条件:如果存在元素e ∈A ,使得对任意a ∈A ,都有e ⊕a =a ⊕e =a ,则称元素e 是集合A 对运算“⊕”的单位元素.例如:A =R ,运算“⊕”为普通乘法:存在1∈R ,使得对任意a ∈R 都有1×a =a ×1=a ,所以元素1是集合R 对普通乘法的单位元素.下面给出三个集合及相应的运算“⊕”:①A =R ,运算“⊕”为普通减法;②A =R ,运算“⊕”为普通加法;③A ={X |X ⊆M }(其中M 是任意非空集合),运算“⊕”为求两个集合的交集.其中对运算“⊕”有单位元素的集合序号为()A .①②B .①③C .①②③D .②③11.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅ ,则实数a 的取值范围是.12.设全集{1,2,3,4,5,6}U =,用U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.①若}6,3,2{=M ,则C U M 表示的6位字符串为;②若{1,3}A =,集合A B 表示的字符串为101001,则满足条件的集合B 的个数是.13.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么称k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有个.14.设P 是一个数集,且至少含有两个数,若对任意,P b a ∈,都有P b a ab b a b a ∈-+,,,(除数),0≠b 则称P 是一个数域.例如有理数Q 是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③数域必为无限集.其中正确的命题的序号是(把你认为正确的命题的序号都填上)15.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有种;②这三天售出的商品最少有种.16.已知集合{1,2,,}U n = ,n *∈N .设集合A 同时满足下列三个条件:①A U ⊆;②若x A ∈,则2x A ∉;③若U x C A ∈,则2U x C A ∉.(1)当4n =时,一个满足条件的集合A 是;(写出一个即可)(2)当7n =时,满足条件的集合A 的个数为.17.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数。
(压轴题)高中数学必修一第一单元《集合》测试题(含答案解析)(2)
一、选择题1.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃ 2.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2 D .-1或23.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞4.定义集合运算{},,A B x x a b a A b B ⊗==⨯∈∈,设{0,1},{3,4,5}A B ==,则集合A B ⊗的真子集个数为( )A .16B .15C .14D .85.已知{}lg M y y x ==,{}xN y y a ==,则MN =( )A .0,B .RC .∅D .,06.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集7.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b c B .()(),,c a b d C .(][),,a c d b D .()(),,c a d b8.已知集合{}2|230A x x x =--≤,集合{}||1|3B x x =-≤,集合4|05x C x x -⎧⎫=≤⎨⎬+⎩⎭,则集合A ,B ,C 的关系为( )A .B A ⊆B .A B =C .C B ⊆D .A C ⊆9.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈10.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( ) A .A B = B .ABC .B AD .A B =∅11.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 () A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥12.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .1二、填空题13.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围为________.14.已知集合{2,1}A =-,{|2,B x ax ==其中,}x a ∈R ,若A B B =,则a 的取值集合为___________.15.设集合{}0,4A =-,B ={}22|2(1)10,x x a x a x R +++-=∈.若B A ⊆,求实数a 的取值范围_______________16.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠且A B ⋂≠∅,则m的取值范围是________17.已知全集{}1,2,3,4,5,6U =,①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉,则同时满足条件①②③的集合A 的个数为______18.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号)19.设集合{}[1,2),0M N x x k =-=-≤,若M N ⋂=∅,则实数k 的取值范围为_______.20.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.三、解答题21.设集合{}{}222280,430A x x x B x x ax a =+-<=-+= (1)若x A ∈是x B ∈的必要条件,求实数a 的取值范围;(2)是否存在实数a ,使A B ϕ⋂≠成立?若存在,求出实数a 的取值范围;若不存在,请说明理由.22.设集合{}227150A x x x =+-≤,{}122B x a x a =-<<. (Ⅰ)若B =∅,求实数a 的取值集合; (Ⅱ)若A B ⊆,求实数a 的取值集合. 23.已知集合4231a A a a ⎧⎫-=≤⎨⎬+⎩⎭,{}12B a a =+≤,{3}C x m x m =-<≤+(1)求AB ;(2)若()C AC ⊆,求m 的取值范围.24.若集合{}24A x x =<<,{}3B x a x a =<<. (1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围; (2)若AB =∅,求实数a 的取值范围.25.已知集合2{|320}A x ax x =-+=,其中a 为常数,且a R ∈. (1)若A 中至少有一个元素,求a 的取值范围; (2)若A 中至多有一个元素,求a 的取值范围.26.已知集合5|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2|20B x x x m =--<. (1)当3m =时,求()R A C B ;(2)若{}|14AB x x =-<<,求实数m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.2.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.3.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.4.B解析:B 【分析】根据新定义得到{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=,再计算真子集个数得到答案. 【详解】{0,1},{3,4,5}A B ==,{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=其真子集个数为:42115-= 故选:B 【点睛】本题考查了集合的新定义问题,真子集问题,意在考查学生的应用能力.5.A解析:A 【解析】 【分析】【详解】由已知易得M =R ,N ={y ∈R|y >0},∴M ∩N =(0,+∞). 故选A . 【点睛】本题主要考查了集合的交运算,化简计算即可,比较简单.6.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集. 对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.7.C解析:C 【分析】先判断0a c d b <<<<,再计算(,),(,)M N a b M N c d ⋃=⋂=,得到答案. 【详解】根据a b c d +=+,0ab cd <<得到:0a c d b <<<<{}M x a x b =<<,{}N x c x d =<<故(,),(,)M N a b M N c d ⋃=⋂=(][),,M N a c d b ⊕=故选:C 【点睛】本题考查了集合的新定义问题,确定0a c d b <<<<是解题的关键.8.D解析:D 【分析】根据一元二次不等式的解法可求出集合A ,根据绝对值不等式的解法可求出集合B ,根据分式不等式的解法可求出集合C ,从而可得出集合A ,B ,C 间的关系. 【详解】解:由于{}{{}2|23013A x x x x x =--≤=-≤≤,{}{}|1324B x x x x =-≤=-≤≤, {}4|0545x C x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭,可知,A C ⊆. 故选:D. 【点睛】本题考查一元二次不等式、绝对值不等式和分式不等式的解法,以及集合间的关系,考查计算能力.9.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.10.C解析:C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C. 【点睛】本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题.11.C解析:C【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围. 【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意; ②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意;③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤. 故选:C. 【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.12.B解析:B 【解析】 【分析】首先求解方程组3y x y x ⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.二、填空题13.【分析】由分和两种情况分别讨论进而建立不等关系可求出答案【详解】当即时此时满足;当即时此时由可得解得综上实数的取值范围为故答案为:【点睛】本题考查根据集合的包含关系求参数的范围其中的易漏点在于漏掉考 解析:(,3]-∞【分析】由B A ⊆,分B =∅和B ≠∅两种情况分别讨论,进而建立不等关系,可求出答案.当121m m +>-,即2m <时,此时B =∅,满足B A ⊆;当121m m +≤-,即2m ≥时,此时B ≠∅,由B A ⊆,可得12215m m +≥-⎧⎨-≤⎩,解得23m ≤≤.综上,实数m 的取值范围为(,3]-∞.故答案为:(,3]-∞ 【点睛】本题考查根据集合的包含关系求参数的范围,其中的易漏点在于漏掉考虑子集为空集的情况,易错点在于弄错不等关系,结合数轴依次分类讨论即可避免此类问题.14.【分析】根据得到之间的关系由此确定出可取的的值【详解】因为所以当时;当时若则所以;若则综上可知:的取值集合为故答案为:【点睛】本题考查根据集合间的包含关系求解参数难度一般分析集合间的子集关系时注意分 解析:{}1,0,2-【分析】 根据A B B =得到,A B 之间的关系,由此确定出可取的a 的值. 【详解】因为AB B =,所以B A ⊆,当B =∅时,0a =;当B ≠∅时,若{}2B =-,则22a -=,所以1a =-;若{}1B =,则2a =. 综上可知:a 的取值集合为{}1,0,2-, 故答案为:{}1,0,2-. 【点睛】本题考查根据集合间的包含关系求解参数,难度一般.分析集合间的子集关系时,注意分析空集的存在.15.或【分析】分类讨论四种情况讨论再求并集即可【详解】因为所以或或或当时方程无实根所以解得;当时方程有两个相等的实根所以解得:;当时方程有两个相等的实根所以此时无解;当时方程有两个不相等的实根所以解得:解析:1a ≤-或1a = 【分析】分类讨论B =∅,{}0B =、{}4B =、{}0,4B =四种情况讨论,再求并集即可. 【详解】因为B A ⊆,所以B =∅或{}0B =或{}4B =或{}0,4B =, 当B =∅时,方程222(1)10x a x a +++-=无实根,所以()()224141220a a a ∆=+--=+<,解得1a <-;当{}0B =时,方程222(1)10x a x a +++-=有两个相等的实根120x x ==, 所以()1221221010x x a x x a ⎧+=-+=⎨=-=⎩ ,解得:1a =-;当{}4B =-时,方程222(1)10x a x a +++-=有两个相等的实根124x x ==-,所以()12212218116x x a x x a ⎧+=-+=-⎨=-=⎩ ,此时无解;当{}0,4B =时,方程222(1)10x a x a +++-=有两个不相等的实根1204,x x ==-,所以()1221221410x x a x x a ⎧+=-+=-⎨=-=⎩,解得:1a =; 综上所述:1a ≤-或1a =, 【点睛】本题主要考查了集合之间的包含关系,分类讨论的思想,属于中档题.16.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若A B B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈- 故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.17.8【分析】由条件可得:当则即则即但元素3与集合的关系不确定3属于时6属于的补集;3属于的补集时6属于;而元素5没有限制【详解】由①;②若则;③若则当则即则即但元素3与集合的关系不确定3属于时6属于的解析:8 【分析】由条件可得:当1A ∈,则2A ∉,即2UA ∈,则4UA ∉,即4A ∈,但元素3与集合A的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ;而元素5没有限制. 【详解】由①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉.当1A ∈,则2A ∉,即2UA ∈,则4UA ∉,即4A ∈,但元素3与集合A 的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ; 而元素5没有限制.{1,4,6},{2,3,5},{2,3},{1,4,5,6},{1,3,4},{2,4,5},{2,A ∴=6},{1,3,4,5},同时满足条件①②③的集合A 的个数为8个. 故答案为:8. 【点睛】本题考查了集合的运算性质、元素与集合的关系,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.18.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④ 【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案. 【详解】对于①,1==-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根, 由>0∆,可得0t <或4t >,故②错; 对于③,不妨设A 中123n a a a a <<<<,由1212n n n a a a a a a na =+++<得121n a a a n -<,当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确;对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =, 于是“复活集” A 只有一个,为{}1,2,3, 当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾, ∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.19.【分析】首先求得集合N 然后确定实数k 的取值范围即可【详解】由题意可得:结合可知实数k 的取值范围是:故答案为:【点睛】本题主要考查交集的运算由集合的运算结果求参数取值范围的方法等知识意在考查学生的转化 解析:{}|1k k <-【分析】首先求得集合N ,然后确定实数k 的取值范围即可.【详解】由题意可得:{}|N x x k =≤,结合M N ⋂=∅可知实数k 的取值范围是:1k <-.故答案为:{}|1k k <-.【点睛】本题主要考查交集的运算,由集合的运算结果求参数取值范围的方法等知识,意在考查学生的转化能力和计算求解能力.20.【分析】先求得不等式的解集根据不等式的解集中的整数有且仅有得出不等式组即可求解得到答案【详解】由题意不等式即解得要使得不等式的解集中的整数有且仅有则满足解得即实数的取值范围是故答案为【点睛】本题主要 解析:[]16,17【分析】 先求得不等式34x b -<的解集4433b b x -++<<,根据不等式34x b -<的解集中的整数有且仅有5,6,得出不等式组44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,即可求解,得到答案. 【详解】 由题意,不等式34x b -<,即434x b -<-<,解得4433b b x -++<<,要使得不等式34x b -<的解集中的整数有且仅有5,6, 则满足44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得1617b ≤≤,即实数b 的取值范围是[]16,17.故答案为[]16,17.【点睛】本题主要考查了绝对值不等式的求解,以及集合的应用,其中解答中正确求解绝对值不等式,根据题设条件得到不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题21.(1)4233a -<<;(2)存在,42a -<<. 【分析】(1)x A ∈是x B ∈的必要条件可转化为B A ⊆,建立不等式求解即可;(2)假设A B ⋂≠∅,建立不等关系,有解则存在,无解则不存在.【详解】 {}42A x x =-<<,()(){}30B x x a x a =--=(1)由已知得:B A ⊆ 42432a a -<<⎧∴⎨-<<⎩ 4233a ⇒-<<, 即实数a 的取值范围4233a -<<, (2)假设存在a 满足条件, 则42a -<<或432a -<<,42a ∴-<<即存在42a -<<使A B ⋂≠∅.【点睛】本题主要考查了根据集合的包含关系求参数的取值范围,考查了必要条件,属于中档题. 22.(Ⅰ)14a ≤;(Ⅱ){}3a a >. 【分析】(Ⅰ)由空集的意义知,当且仅当212a a ≤-时,集合B 中无任何元素,解不等式即可得实数a 的取值范围;(Ⅱ)根据A B ⊆,得到a 的取值范围,即可得到结论.【详解】解:∵集合{}()(){}2327150235052A x x x x x x x x ⎧⎫=+-≤=-+≤=-≤≤⎨⎬⎩⎭, (Ⅰ)∵B =∅,∴{}122x a x a -<<=∅,∴212a a ≤-,解得14a ≤, (Ⅱ)∵A B ⊆,则集合B ≠∅,所以212a a >-,则14a >∴1253322a a a -<-⎧⎪⇒>⎨>⎪⎩∴实数a 的取值集合为{}3a a >.【点睛】本题考查解二次不等式,根据集合的包含关系求参数的范围,属于中档题.23.(1)(1,1]A B ⋂=-;(2)1m .【分析】(1)先利用分式不等式的解法和绝对值不等式的解法化简集合A ,B ,再利用交集运算求解.(2)根据()C AC ⊆,得到C A ⊆,然后分C =∅和C ≠∅两种情况讨论求解. 【详解】(1)因为集合423(1,5]1a A aa ⎧⎫-=≤=-⎨⎬+⎩⎭,{}12[3,1]B a a =+≤=-, 所以(1,1]A B ⋂=-.(2)因为()C A C ⊆,所以C A ⊆,①当3m m -≥+即32m ≤-时,C =∅,符合题意, ②当3m m -<+即32m >-时,则135m m -≥-⎧⎨+≤⎩, 解得132m -<≤, 综上:1m【点睛】 本题主要考查集合的基本运算和集合的基本关系的应用以及分式不等式和绝对值不等式的解法,还考查了分类讨论思想和运算求解的能力,属于中档题.24.(1)423a ≤≤;(2)23a ≤或4a ≥【分析】(1)考虑A 是B 的子集即可求解;(2)分类讨论当B 为空集和不为空集两种情况求解.【详解】(1)若x A ∈是x B ∈的充分条件,234a a ≤⎧⎨≥⎩,解得423a ≤≤; (2)A B =∅,当B =∅时,即3,0a a a ≥≤,当B ≠∅时,04a a >⎧⎨≥⎩或032a a >⎧⎨≤⎩,即203a <≤或4a ≥. 综上所述:23a ≤或4a ≥ 【点睛】此题考查根据充分条件与集合关系求解参数取值范围,易错点在于漏掉考虑空集情况. 25.(1)9,8⎛⎤-∞ ⎥⎝⎦;(2){}90,8⎡⎫⋃+∞⎪⎢⎣⎭【分析】(1)对a 分类讨论:0a =,解出即可判断出是否满足题意.0a ≠时,A 中至少有一个元素,满足0∆,解得a 范围即可得出.(2)对a 分类讨论:0a =,直接验证是否满足题意.0a ≠时,由A 中至多有一个元素,可得0∆≤,解得a 范围即可得出.【详解】解:(1)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至少有一个元素,∴980a ∆=-,解得98a ,0a ≠. 综上可得:a 的取值范围是9,8⎛⎤-∞ ⎥⎝⎦. (2)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至多有一个元素,∴980a ∆=-,解得98a. 综上可得:a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭. 【点睛】本题考查了集合的性质、一元二次方程的实数根与判别式的关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.26.(1)(){}|35R AC B x x =≤<;(2)8.【分析】(1)根据分式不等式求解集合A ,再根据二次不等式的方法求解集合B 再求()R AC B 即可. (2)根据{}|14A B x x =-<<与{}|15A x x =-<<可知4x =为二次方程220x x m --=的根,代入求解实数m 的值即可.【详解】 因为501x x -<+,所以15x -<<,所以{}|15A x x =-<<. (1)当3m =时,{}|13B x x =-<<,则{}|1,3R C B x x x =≤-≥,所以(){}|35R A C B x x =≤<.(2)因为{}|15A x x =-<<,{}|14A B x x =-<<,故4x =为二次方程220x x m --=的根所以有24240m -⨯-=,解得8m =.此时{}|24B x x =-<<,符合题意,故实数m 的值为8.【点睛】本题主要考查了集合的交并补运算以及分式与二次不等式的求解.同时也考查了根据集合间的基本关系求解参数范围的问题.属于中档题.。
必修一高一数学压轴题
(x1 x2 )(1 x1x2 ) (1 x12 )(1 x22 )
Q 1 x1 x2 1 x1 x2 0 ,1 x1x2 0 , (1 x12 ) 0 , (1 x22 ) 0
f (x1) f (x2 ) 0 即 f (x1) f (x2 )
2
3
(1 2x 4x ga)2 3(1 22x 42x ga) t4 (a2 3a) 2at3 t2 (2a 2) 2(t 1) t4 (a2 3a2 ) 2at3 t2 (2a 2) 2(t 1) (at 1)2 t2 (at2 1)2 (t 1)2 0 ∴ 2 f (x) f (2x)
a 3x 4 a 3
,若函数 f (x) 与 h(x) 的图象有且只有一个公共点,求实数 a 的取值范围.
10. 若函数 f (x) x2 2x ,则对任意实数 x1, x2 ,下列不等式总成立的是( C )
A. f ( x1 x2 ) f (x1) f (x2 ) B. f ( x1 x2 ) f (x1) f (x2 )
.
15、函数 f (x) log 1 (x2 x 2) 的单调递增区间为
.
2
16、定义在 R 上的奇函数 f (x) 满足:当 x 0 时, f (x) 2009x log2009 x ,则方程 f (x) 0 的实根个数为
.
DC B C B DC B DC C D
二、填空题:( 5 4 20 分)13、4;14、4;15、 (, 1) ;16、3
(3)当 0
a
1, x
0
时, 2 f
(完整版)高一上学期数学压轴难题汇总,推荐文档
一.已知函数满足,其中且()f x 12(log )()1a af x x x a -=--0a >,对于函数,当时,,求实数1a ≠()f x (1,1)x ∈-(1)(12)0f m f m -+-<m的取值范围.二.曙光公司为了打开某种新产品的销路,决定进行广告促销,在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系式是Q=已0(113≥++x x x 知生产此产品的年固定投入为3万元,每生产1万件此产品仍需投入32万元,若每件售价是“年平均每件成本的150%”与“年平均每件所占广告费的50%”试将年利润y (万元)表示为年广告费x 万元的函数,并判断当年广告费投入100万元时,该公司是亏损还是盈利?三.已知函数,()()()()101log 1log ≠>--+=a a x x x f a a 且(1)求的反函数;()x f ()x f 1-(2)若,解关于的不等式.()3111=-fx ()()R m m x f ∈<-1四.定义在R 上的单调增函数f(x),对任意x ,y∈R 都有f(x+y)=f(x)+f(y).(1)判断函数f(x)的奇偶性;(2)若f(k·3)+f(3-9-2)<0对任意x∈R 恒成立,求实数k 的取值范围.xxx五.已知圆C :. (1)写出圆C 的标准方程;(2)是否存在斜率044222=-+-+y x y x 为1的直线m ,使m 被圆C 截得的弦为AB ,且以AB 为直径的圆过原点.若存在,求出直线m 的方程; 若不存在,说明理由.六.已知满足,求的最大值x 03log 7)(log 221221≤++x x )42(log 22x x y =与最小值及相应的的值.x七.已知圆方程:,求圆心到直线的距离的012222=+++-+a y ax y x 02=-+a y ax 取值范围八.已知函数,()2f x ax bx c=++(,,0)a b c R a ∈≠且[]()()(1),,(011(),,m n m n f m nf x n m f n m∈<<⎡⎤=⎢⎥⎣⎦当x=1时有最大值1,若x )时,函数的值域为证明:九.自点(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射线所在直线与圆相切,求光线L 所在直线方程.074422=+--+y x y x 十.已知圆O :,圆C :,由两圆外一点122=+y x 1)4()2(22=-+-y x 引两圆切线PA 、PB ,切点分别为A 、B ,如右图,满足|PA |=|PB |.),(b a P (1)求实数a 、b 间满足的等量关系;(2)求切线长|PA |的最小值;(3)是否存在以P 为圆心的圆,使它与圆O 相内切并且与圆C 相外切?若存在,求出圆P 的方程;若不存在,说明理由.B PA答案:一.解:设, log at x =tx a ∴= 所以2()()1t t a f t a a a -=-- 即2()()1x xa f x a a a -=--二 。
(完整)高一数学第一学期函数压轴[大题]练习[含答案及解析],推荐文档
10. (本题 16 分)已知函数 f (x) log9 (9x 1) kx ( k R )是偶函数.
(1)求 k 的值;
(2)若函数 y f (x) 的图象与直线 y 1 x b 没有交点,求 b 的取值范围; 2
(3)设 h(x) log9
f
1 ()
2
.
1 x2
25
(1) 求实数 a , b 的值;
(2) 用定义证明:函数 f (x) 在区间 (1,1) 上是增函数;
(3) 解关于 t 的不等式 f (t 1) f (t) 0 .
4. (14 分)定义在 R 上的函数 f(x)对任意实数 a,b R ,均有 f(ab)=f(a)+f(b)成立,且当 x>1 时,f(x)
技术资料.整理分享
WORD 格式.可编辑
13.(本小题满分 16 分)
设 a 0 , b 0 ,已知函数 f (x) ax b . x 1
(Ⅰ)当 a b 时,讨论函数 f (x) 的单调性(直接写结论);
(Ⅱ)当 x 0 时,(i)证明 f (1) f ( b ) [ f ( b )]2 ;
6. (12 分)设函数 f (x) loga (x 3a)(a 0,且a 1) ,当点 P(x, y) 是函数 y f (x) 图象上的点时,
点 Q(x 2a, y) 是函数 y g(x) 图象上的点. (1)写出函数 y g(x) 的解析式; (2)若当 x [a 2, a 3] 时,恒有 | f (x) g(x) |„ 1 ,试确定 a 的取值范围; (3)把 y g(x) 的图象向左平移 a 个单位得到 y h(x) 的图象,函数
WORD 格式.可编辑
【VIP专享】必修一高一数学压轴题全国汇编1_附答案
(log2
f
f
的最大值与最小值及相应
x 3 0 ,∴ 3 log1
2
x)2
( x)min
( x)max
R
x 2
的函数
(log2
3log2
9 4
f
1 4
1 4
(x)
x
x
2)(log2
2
3
此时 x= 22 = 2
2 ,此时
2x 2x
(1)求 a 值; (2)判断并证明该函数在定义域 R 上的单调性; (3)若对任意的 t R ,不等式 f (t 2 2t) f (2t 2 k ) 0 恒成立,求实数 k 的取值范围;
0
2(2x1 2x2 )
f
3)2 2
2,
(x)
,
值.
12x 1 2 x
1 4
2
∴
,
25
1 2
log2
x
3
,
(2) 用定义证明:函数 f (x) 在区间 (1,1) 上是增函数;
3
20、(本小题满分 10 分)
已知定义在区间 (1,1) 上的函数 f (x) ax b 为奇函数,且 f (1) 2 .
(1) 求实数 a , b 的值;
1 x2
1
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
【压轴题】高中必修一数学上期末试卷及答案
【压轴题】高中必修一数学上期末试卷及答案一、选择题1.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>2.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称3.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 4.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( ) A .a b c <<B .a b c >>C .b a c >>D .c a b >>5.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( ) A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭6.若函数()2log ,?0,? 0xx x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1e B .eC .21eD .2e7.已知函数()2log 14x f x x ⎧+=⎨+⎩0x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .68.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭9.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( )A .[]3,5B .()3,5C .[]4,6D .()4,610.若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>11.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .12.函数()f x 是周期为4的偶函数,当[]0,2x ∈时,()1f x x =-,则不等式()0xf x >在[]1,3-上的解集是 ( ) A .()1,3B .()1,1-C .()()1,01,3-UD .()()1,00,1-U二、填空题13.已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213xf f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.14.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________15.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .16.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________. 17.已知函数2()2f x x ax a =-+++,1()2x g x +=,若关于x 的不等式()()f x g x >恰有两个非负整数....解,则实数a 的取值范围是__________. 18.对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____.19.已知函数()()g x f x x =-是偶函数,若(2)2f -=,则(2)f =________20.已知函数222y x x -=+,[]1,x m ∈-.若该函数的值域为[]1,10,则m =________.三、解答题21.已知函数()()4412log 2log 2f x x x ⎛⎫=-- ⎪⎝⎭. (1)当[]2,4x ∈时,求该函数的值域;(2)求()f x 在区间[]2,t (2t >)上的最小值()g t .22.科研人员在对某物质的繁殖情况进行调查时发现,1月、2月、3月该物质的数量分别为3、5、9个单位.为了预测以后各月该物质的数量,甲选择了模型2y ax bx c =++,乙选择了模型xy pq r =+,其中y 为该物质的数量,x 为月份数,a ,b ,c ,p ,q ,r 为常数. (1)若5月份检测到该物质有32个单位,你认为哪个模型较好,请说明理由. (2)对于乙选择的模型,试分别计算4月、7月和10月该物质的当月增长量,从计算结果中你对增长速度的体会是什么?23.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-.(1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围. 24.已知函数()22xxf x k -=+⋅,()()log ()2xa g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集; (3)若()82x tf x ≥+对x ∈R 恒成立,求t 的取值范围. 25.已知函数()224x x a f x =-+,()()log 0,1a g x x a a =>≠. (1)若函数()f x 在区间[]1,m -上不具有单调性,求实数m 的取值范围; (2)若()()11f g =,设()112t f x =,()2t g x =,当()0,1x ∈时,试比较1t ,2t 的大小. 26.即将开工的南昌与周边城镇的轻轨火车路线将大大缓解交通的压力,加速城镇之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果一列火车每次拖7节车厢,每天能来回10次,每天来回次数是每次拖挂车厢个数的一次函数.(1)写出与的函数关系式;(2)每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:2log 1a e =>,()21ln 20,1log b e ==∈,12221log log 3log 3c e ==>, 据此可得:c a b >>. 本题选择D 选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.2.C解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3.C解析:C 【解析】 【分析】当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.4.A解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数, 又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.5.A解析:A 【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A. 【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.6.A解析:A 【解析】 【分析】直接利用分段函数解析式,认清自变量的范围,多重函数值的意义,从内往外求,根据自变量的范围,选择合适的式子求解即可. 【详解】因为函数2log ,0(),0x x x f x e x >⎧=⎨≤⎩,因为102>,所以211()log 122f ==-,又因为10-<,所以11(1)f ee--==, 即11(())2f f e=,故选A. 【点睛】该题考查的是有关利用分段函数解析式求函数值的问题,在解题的过程中,注意自变量的取值范围,选择合适的式子,求解即可,注意内层函数的函数值充当外层函数的自变量.7.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案.【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.8.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.9.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.10.A解析:A 【解析】因为00.31,1e <,所以0.3log 0c e =<,由于0.30.3031,130log 31a b ππ>⇒=><<⇒<=<,所以a b c >>,应选答案A .11.C解析:C 【解析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.12.C解析:C 【解析】若[20]x ∈-,,则[02]x -∈,,此时1f x x f x -=--Q (),()是偶函数,1f x x f x ∴-=--=()(), 即1[20]f x x x =--∈-(),,, 若[24]x ∈, ,则4[20]x -∈-,, ∵函数的周期是4,4413f x f x x x ∴=-=---=-()()(),即120102324x x f x x x x x ---≤≤⎧⎪=-≤≤⎨⎪-≤≤⎩,(),, ,作出函数f x ()在[13]-, 上图象如图, 若03x ≤<,则不等式0xf x ()> 等价为0f x ()> ,此时13x <<, 若10x -≤≤ ,则不等式0xf x ()>等价为0f x ()< ,此时1x -<<0 , 综上不等式0xf x ()> 在[13]-, 上的解集为1310.⋃-(,)(,)故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键.二、填空题13.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23【分析】 由已知可得()221x f x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221x f x ++]=13, ∴()221x f x ++=a 恒成立,且f (a )=13,即f (x )=﹣x 221++a ,f (a )=﹣x 221++a =13, 解得:a =1,∴f (x )=﹣x 221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.14.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m 取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式解析:13-【解析】 【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果. 【详解】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x f x m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈;当10m +>时,12m x -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-; 当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍); 综上113m -≤≤-,因此实数m 的最大值是13-.【点睛】解函数不等式:首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内. 15.7【解析】【分析】【详解】设则因为所以故答案为7解析:7【解析】【分析】【详解】设, 则, 因为11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x , 所以,,故答案为7. 16.【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值范围为故答案为:【点睛】本题考查对数型函数的值域要注意二次函数的值 解析:(]0,1【解析】【分析】分别求出(),()f x g x 的值域,对a 分类讨论,即可求解.【详解】()()222,log log a R f x x a a +∈=+≥,()f x 的值域为2[log ,)a +∞,()()22log ([()])g x f f x f x a ==+⎡⎤⎣⎦,当22201,log 0,[()]0,()log a a f x g x a <≤<≥≥,函数()g x 值域为2[log ,)a +∞,此时(),()f x g x 的值域相同;当1a >时,2222log 0,[()](log )a f x a >≥,222()log [(log )]g x a a ≥+,当12a <<时,2222log 1,log (log )a a a a <∴<+当22222,log 1,(log )log a a a a ≥≥>,222log (log )a a a <+,所以当1a >时,函数(),()f x g x 的值域不同,故a 的取值范围为(]0,1.故答案为:(]0,1.【点睛】本题考查对数型函数的值域,要注意二次函数的值域,考查分类讨论思想,属于中档题. 17.【解析】【分析】由题意可得f (x )g (x )的图象均过(﹣11)分别讨论a >0a <0时f (x )>g (x )的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题 解析:310,23⎛⎤ ⎥⎝⎦【解析】【分析】由题意可得f (x ),g (x )的图象均过(﹣1,1),分别讨论a >0,a <0时,f (x )>g (x )的整数解情况,解不等式即可得到所求范围.【详解】由函数2()2f x x ax a =-+++,1()2x g x +=可得()f x ,()g x 的图象均过(1,1)-,且()f x 的对称轴为2a x =,当0a >时,对称轴大于0.由题意可得()()f x g x >恰有0,1两个整数解,可得(1)(1)310(2)(2)23f g a f g >⎧⇒<≤⎨≤⎩;当0a <时,对称轴小于0.因为()()11f g -=-,由题意不等式恰有-3,-2两个整数解,不合题意,综上可得a 的范围是310,23⎛⎤ ⎥⎝⎦.故答案为:310,23⎛⎤⎥⎝⎦. 【点睛】 本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.18.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力解析:1【解析】【分析】直接利用对数计算公式计算得到答案.【详解】()()22522lg62lg3lg5lg2lg5lg2lg36lg9lg5lg2lg41lg -+=+-+-=-+=lg ﹣ 故答案为:1【点睛】本题考查了对数式的计算,意在考查学生的计算能力.19.6【解析】【分析】根据偶函数的关系有代入即可求解【详解】由题:函数是偶函数所以解得:故答案为:6【点睛】此题考查根据函数的奇偶性求函数值难度较小关键在于根据函数奇偶性准确辨析函数值的关系解析:6【解析】【分析】根据偶函数的关系有()(2)2g g =-,代入即可求解.【详解】由题:函数()()g x f x x =-是偶函数,(2)(2)24g f -=-+=,所以(2)(2)24g f =-=,解得:(2)6f =.故答案为:6【点睛】此题考查根据函数的奇偶性求函数值,难度较小,关键在于根据函数奇偶性准确辨析函数值的关系.20.4【解析】【分析】根据二次函数的单调性结合值域分析最值即可求解【详解】二次函数的图像的对称轴为函数在递减在递增且当时函数取得最小值1又因为当时所以当时且解得或(舍)故故答案为:4【点睛】此题考查二次 解析:4【解析】【分析】根据二次函数的单调性结合值域,分析最值即可求解.【详解】二次函数222y x x -=+的图像的对称轴为1x =,函数在(),1x ∈-∞递减,在[)1,x ∈+∞递增,且当1x =时,函数()f x 取得最小值1,又因为当1x =-时,5y =,所以当x m =时,10y =,且1m >-,解得4m =或2-(舍),故4m =.故答案为:4【点睛】此题考查二次函数值域问题,根据二次函数的值域求参数的取值. 三、解答题21.(1)1,08⎡⎤-⎢⎥⎣⎦(2)()2442log 3log 1,21,8t t t g t t ⎧-+<<⎪=⎨-≥⎪⎩ 【解析】【分析】(1)令4log m x =,则可利用换元法将题转化为二次函数值域问题求解;(2)根据二次函数的性质,分类讨论即可.【详解】(1)令4log m x =,则[]2,4x ∈时,1,12m ⎡⎤∈⎢⎥⎣⎦, 则()()22131()222312248f x h m m m m m m ⎛⎫⎛⎫==--=-+=-- ⎪ ⎪⎝⎭⎝⎭, 故当34m =时,()f x 有最小值为18-,当12m =或1时,()f x 有最大值为0, ∴该函数的值域为1,08⎡⎤-⎢⎥⎣⎦; (2)由(1)可知()2231()231248f x h m m m m ⎛⎫==-+=-- ⎪⎝⎭, []2,x t ∈Q ,41,log 2m t ⎡⎤∴∈⎢⎥⎣⎦, 当413log 24t <<,即2t <<,函数()h m 在41,log 2t ⎡⎤⎢⎥⎣⎦单调递减, ()()()4min log g t h m h t ==2442log 3log 1t t =-+, 当43log 4t ≥,即t ≥时,函数()h m 在13,24⎡⎤⎢⎥⎣⎦上单调递减,在43,log 4t ⎛⎤ ⎥⎝⎦上单调递增, ()()min 3148g t h m h ⎛⎫===- ⎪⎝⎭, 综上所述:()2442log 3log 1,21,8t t t g t t ⎧-+<<⎪=⎨-≥⎪⎩. 【点睛】本题考查对数函数综合应用,需结合二次函数相关性质答题,属于中档题.22.(1)乙模型更好,详见解析(2)4月增长量为8,7月增长量为64,10月增长量为512;越到后面当月增长量快速上升.【解析】【分析】(1)根据题意分别求两个模型的解析式,然后验证当5x =时的函数值,最接近32的模型好;(2)第n 月的增长量是()()1f n f n --,由增长量总结结论.【详解】(1)对于甲模型有3425939a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得:113a b c =⎧⎪=-⎨⎪=⎩23y x x ∴=-+当5x =时,23y =.对于乙模型有23359pq r pq r pq r +=⎧⎪+=⎨⎪+=⎩,解得:121p q r =⎧⎪=⎨⎪=⎩,21x y ∴=+当5x =时,33y =.因此,乙模型更好;(2)4x =时,当月增长量为()()4321218+-+=, 7x =时,当月增长量为()()76212164+-+=,10x =时,当月增长量为()()1092121512+-+=,从结果可以看出,越到后面当月增长量快速上升.(类似结论也给分)【点睛】本题考查函数模型,意在考查对实际问题题型的分析能力和计算能力,属于基础题型,本题的关键是读懂题意.23.(1)()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩;(2)30,2⎡⎤⎢⎥⎣⎦ 【解析】【分析】(1)由奇函数的定义可求得解析式;(2)由分段函数解析式知,函数在R 上单调,则为单调增函数,结合二次函数对称轴和最值可得参数范围.即0x >时要是增函数,且端点处函数值不小于0.【详解】解:(1)因为函数()f x 是定义在R 上的奇函数,所以()00f =,当0x <时,0x ->,则()()()232f x x a x a -=-+-+-()232x ax a f x =-+-=-, 所以()()2320x ax a f x x =-+-+<, 所以()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩. (2)若()f x 是R 上的单调函数,且()00f =,则实数a 满足02320a a ⎧-≤⎪⎨⎪-≥⎩, 解得302a ≤≤, 故实数a 的取值范围是30,2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查函数的奇偶性与单调性,分段函数在整个定义域上单调,则每一段的单调性相同,相邻端点处函数值满足相应的不等关系.24.(1) 3k =;(2) 当1a >时,()2,log 3x ∈-∞;当01a <<时,()2log 3,x ∈+∞;(3)(],13-∞-【解析】【分析】(1)由函数过点()0,4,待定系数求参数值;(2)求出()g x 的解析式,解对数不等式,对底数进行分类讨论即可.(3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可.【详解】(1)因为()22x x f x k -=+⋅且(0)4f =,故:14k +=,解得3k =.(2)因为()()log ()2x a g x f x =-,由(1),将()f x 代入得:()log (32?)x a g x -=n ,则log (32?)0x a ->n ,等价于:当1a >时,321x ->n ,解得()2,log 3x ∈-∞当01a <<时,321x -<n ,解得()2log 3,x ∈+∞.(3)()82xt f x ≥+在R 上恒成立,等价于: ()()228230x x t --+≥n 恒成立; 令2x m =,则()0,m ∈+∞,则上式等价于:2830m m t --+≥,在区间()0,+∞恒成立.即:283t m m ≤-+,在区间()0,+∞恒成立,又()2283413m m m -+=--,故: 2(83)m m -+的最小值为:-13,故:只需13t ≤-即可.综上所述,(],13t ∈-∞-.【点睛】本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题.25.(1)()1,+∞;(2)12t t >【解析】【分析】(1)根据二次函数的单调性得到答案.(2)计算得到2a =,再计算()2110x t ->=,22log 0t x =<,得到答案.【详解】(1)函数()224x x a f x =-+的对称轴为1x =, 函数()f x 在区间[]1,m -上不具有单调性,故1m >,即()1,m ∈+∞.(2)()()11f g =,即24log 10a a -+==,故2a =.当()0,1x ∈时,()()212212110x x x t f x -+=-=>=;()22log 0t g x x ==<. 故12t t >【点睛】本题考查了根据函数的单调性求参数,比较函数值大小,意在考查学生对于函数性质的综合应用.26.(1) ;(2)每次应拖挂节车厢才能使每天的营运人数最多为人.【解析】试题分析:(1)由于函数为一次函数,设出其斜截式方程,将点代入,可待定系数,求得函数关系式为;(2)结合(1)求出函数的表达式为,这是一个开口向下的二次函数,利用对称轴求得其最大值.试题解析:(1)这列火车每天来回次数为次,每次拖挂车厢节,则设. 将点代入,解得∴.(2)每次拖挂节车厢每天营运人数为,则,当时,总人数最多为人.故每次应拖挂节车厢才能使每天的营运人数最多为人.。
(压轴题)高中数学必修一第一单元《集合》测试卷(有答案解析)(1)
一、选择题1.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃2.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .33.对于非空集合P ,Q ,定义集合间的一种运算“★”:{P Q x x P Q =∈★∣且}x P Q ∉⋂.如果{111},{1}P x x Q x y x =-≤-≤==-∣∣,则P Q =★( )A .{12}xx ≤≤∣ B .{01xx ≤≤∣或2}x ≥ C .{01xx ≤<∣或2}x > D .{01xx ≤≤∣或2}x > 4.如图所示的韦恩图中,A 、B 是非空集合,定义*A B 表示阴影部分的集合,若x ,y ∈R ,2{|4}{|3,0}x A x y x x B y y x ==-==>,则A *B 为( )A .{|04}x x <≤B .{|01x x ≤≤或4}x >C .{|01x x ≤≤或2}x ≥D .{|01x x ≤≤或2}x >5.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( ) A 2B 5C 6D .36.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞7.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UB D .∅8.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .9.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .110.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈11.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-12.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤二、填空题13.已知集合:A ={x |x 2=1},B ={x |ax =1},且A ∩B =B ,则实数a 的取值集合为______. 14.已知集合{}2|60M x x x =+->,{}2|230,0N x x ax a =-+≤>,若M N ⋂中恰有一个整数,则a 的最小值为_________. 15.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.16.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 所有取值的集合为_____17.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________18.若集合2{320}A x ax x =++=中至多有一个元素,则a 的取值范围是__________. 19.记[]x 为不大于x 的最大整数,设有集合[]{}{}2|2=|2A x x x B x x =-=<,,则A B =_____.20.不等式31x x a-≥+的解集为M ,若2M -∉,则实数a 的取值范围为________. 三、解答题21.已知集合{|314}A x x =-<+,{|213}B x m x m =-<+. (1)当1m =时,求AB ;(2)若A B A ⋃=,求m 的取值范围.22.已知集合{}|123A x a x a =-<<+,2{|280}B x x x =--≤. (1)当a =2时,求AB ;(2)若___________,求实数a 的取值范围.在①AB A =,②()R AC B A =,③A B ⋂=∅这三个条件中任选一个,补充在(2)问中的横线上,并求解.(注:如果选择多个条件分别解答,按第一个解答计分)23.已知集合2A {x |x x 20}=--≥,集合()22{|1210,}B x mxmx m R =-+-<∈()1当m 2=时,求集合R A 和集合B ;()2若集合B Z ⋂为单元素集,求实数m 的取值集合;()3若集合()A B Z ⋂⋂的元素个数为()*n n N ∈个,求实数m 的取值集合24.已知集合A ={x |a -1≤x ≤2a +3},B ={x |-2≤x ≤4},全集U =R . (1)当a =2时,求A ∪B 和(∁R A )∩B ; (2)若A ∩B =A ,求实数a 的取值范围.25.已知p :x ∈A={x|x 2﹣2x ﹣3≤0,x ∈R},q :x ∈B={x|x 2﹣2mx+m 2﹣9≤0,x ∈R ,m ∈R}. (1)若A∩B=[1,3],求实数m 的值;(2)若p 是¬q 的充分条件,求实数m 的取值范围. 26.设集合{}|36A x x =≤<,集合{}|19B x x =<≤. 求:(1)AB ;(2)()R C A B ⋃.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简集合A ,B ,根据交集运算即可求值.【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.2.D解析:D 【分析】化简集合A 、B ,根据补集与交集的定义写出RA B ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x ∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.3.C解析:C 【分析】先确定,P Q ,计算P Q 和P Q ,然后由新定义得结论.【详解】由题意{|02}P x x =≤≤,{|10}{|1}Q x x x x =-≥=≥, 则{|0}PQ x x =≥,{|12}P Q x x =≤≤,∴{|01P Q x x =≤<★或2}x >. 故选:C . 【点睛】本题考查集合新定义运算,解题关键是正确理解新定义,确定新定义与集合的交并补运算之间的关系.从而把新定义运算转化为集合的交并补运算.4.B解析:B 【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案. 【详解】依据定义,*A B 就是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合;对于集合A ,求的是函数y 解得:{|04}A x x =≤≤;对于集合B ,求的是函数3(0)xy x =>的值域,解得{}1B y y =;依据定义,借助数轴得:*{|01A B x x =≤≤或4}x >. 故选:B . 【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.5.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤, ∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.6.A解析:A 【分析】首先解得集合A ,B ,再根据补集的定义求解即可. 【详解】 解:{}2|230{|13}A x x x x x =--<=-<<,{}1|21{|1}x B x x x +=>=>-,{}C |3[3,)B A x x ∴=≥=+∞,故选A .【点睛】本题考查一元二次不等式的解法,指数不等式的解法以及补集的运算,属于基础题.7.D解析:D 【分析】根据题意作出“韦恩图”,得出集合A 与集合B 没有公共元素,即可求解. 【详解】由题意,集合U 为全集,()UBA B =,如图所示,可得集合A 与集合B 没有公共元素,即A B =∅,故选D.【点睛】本题主要考查了集合的运算及应用,其中解答中根据题设条件,作出韦恩图确定两集合的关系是解答的关键,着重考查了推理与论证能力,属于基础题.8.B解析:B 【分析】根据题意,{0N =,1},而{|02}M x R x =∈,易得N 是M 的子集,分析选项可得答案. 【详解】{}{}{}200,102N x x x M x x =∈-==⊆=∈≤≤R R ,故选B.【点睛】本题考查集合间关系的判断以及用venn 图表示集合的关系,判断出M 、N 的关系,是解题的关键.9.B解析:B 【解析】 【分析】首先求解方程组3y x y x ⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.10.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.11.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解.当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意; 当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.12.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1},本题选择D 选项.二、填空题13.{-101}【分析】由已知得B ⊆A 从而B=∅或B={-1}或B={1}进而或=-1或由此能求出实数a 的取值集合【详解】∵A={x|x2=1}={-11}A∩B=B ∴B ⊆A ∴B=∅或B={-1}或B=解析:{-1,0,1} 【分析】由已知得B ⊆A ,从而B=∅或B={-1},或B={1},进而0a =,或1a =-1或11a=,由此能求出实数a 的取值集合. 【详解】∵A={x|x 2=1}={-1,1}, A∩B=B ,∴B ⊆A , ∴B=∅或B={-1},或B={1}, ∴0a =,或1a =-1或11a=, 解得a=0或a=-1或a=1. ∴实数a 的取值集合为{-1,0,1}. 故答案为:{-1,0,1}. 【点睛】本题考查集合的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用.14.2【分析】解一元二次不等式求得集合根据交集结果可知在只有一个整数解由二次函数性质可得解方程组求得结果【详解】令则对称轴为恰有一个整数即在只有一个整数解即解得:的最小值为故答案为:【点睛】本题考查根据解析:2 【分析】解一元二次不等式求得集合M ,根据交集结果可知()2230f x x ax =-+≤在()(),32,-∞-+∞只有一个整数解,由二次函数性质可得()()3040f f ⎧≤⎪⎨>⎪⎩,解方程组求得结果. 【详解】()(){}()()320,32,M x x x =+->=-∞-⋃+∞,令()()2230f x x ax a =-+>,则对称轴为x a =,M N ⋂恰有一个整数,即()0f x ≤在()(),32,-∞-+∞只有一个整数解,()()3040f f ⎧≤⎪∴⎨>⎪⎩,即963016830a a -+≤⎧⎨-+>⎩,解得:1928a ≤<, a ∴的最小值为2.故答案为:2 【点睛】本题考查根据交集结果求解参数范围的问题,关键是能够将整数解个数问题转化为二次函数图象的讨论,通过约束二次函数的图象得到不等关系.15.【分析】对整数取值并使为正整数这样即可找到所有满足条件的值从而用列举法表示出集合【详解】因为且所以可以取234所以故答案为:【点睛】考查描述法列举法表示集合的定义清楚表示整数集属于基础题 解析:{}1,2,3,4-【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A . 【详解】 因为a Z ∈且*65N a∈- 所以a 可以取1-,2,3,4. 所以{}1,2,3,4A =- 故答案为:{}1,2,3,4- 【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题.16.【分析】分类讨论:当时;当时分别讨论中元素为1和-1两种情况依次求解【详解】由题:当时符合题意;当时或所以或1所以实数所有取值的集合为故答案为:【点睛】此题考查通过集合的包含关系求参数的值其中的易漏 解析:{}1,0,1-【分析】分类讨论:当B =∅时,0a =;当B ≠∅时,分别讨论B 中元素为1和-1两种情况依次求解. 【详解】 由题:B A ⊆当0a =时,B =∅符合题意; 当0a ≠时,1B A a ⎧⎫=-⊆⎨⎬⎩⎭,11a -=或11a -=-所以,1a =-或1,所以实数a 所有取值的集合为{}1,0,1-. 故答案为:{}1,0,1- 【点睛】此题考查通过集合的包含关系求参数的值,其中的易漏点在于漏掉考虑子集为空集的情况,依次分类讨论即可避免此类问题.17.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】 根据条件()()[3,5]A B =R R 可得()(),35,AB =-∞+∞,结合[1,2]BA =R的意义,可得集合A . 【详解】因为集合A 、B 是实数集R 的子集,若AB =∅,则[2,0]AB A =-=R,[1,2]BA B ==R,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]BA =R表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]BA =R中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.18.或【分析】分情况讨论:当时和当时两种情况;当时由即可求出答案分类讨论最后把的范围合并即可【详解】若则集合符合题意;若则解得故答案为:或【点睛】本题考查集合中元素个数问题;分类讨论和两种情况是求解本题解析:98a ≥或0a = 【分析】分情况讨论:当0a =时和当0a ≠时两种情况;当0a ≠时由0∆≤即可求出答案.分类讨论最后把a 的范围合并即可. 【详解】若0a =,则集合2{|320}3A x x ⎧⎫=+==-⎨⎬⎩⎭,符合题意; 若0a ≠,则980a ∆=-≤,解得98a ≥. 故答案为:98a ≥或0a =.【点睛】本题考查集合中元素个数问题;分类讨论0a =和0a ≠两种情况是求解本题关键; 0a =时易忽略;属于中档题,易错题.19.【分析】求即需同时满足A 集合和B 集合的x 的取值范围先根据比较容易得出解集再将B 集合的解集代入A 集合中判断出可以成立的值即可得【详解】当时当时不满足;当时满足;当时不满足;当时满足;即同时满足和的值有解析:{-【分析】求A B 即需同时满足A 集合和B 集合的x 的取值范围,先根据{}{}=|2=|22B x x x x <-<<,比较容易得出解集, 再将B 集合的解集代入A 集合中,判断出可以成立的值,即可得A B【详解】 {}{}=|2=|22B x x x x <-<<当22x -<<时,[]2,1,0,1x =--,当[]2x =-时,[]2200x x x +==⇒=,不满足[]2x =-; 当[]1x =-时,[]2211x x x +==⇒=±,1x =-满足[]1x =-;当[]0x =时,[]222x x x +==⇒=,不满足[]0x =;当[]1x =时,[]223x x x +==⇒=x []1x =;即同时满足[]22x x -=和2x <的x 值有则A B ={-故答案为:{- 【点睛】本题考查了集合的计算,和取整函数的理解,针对两个集合求交集的情况,可先对较简单的或者不含参数的集合求解,再代入较复杂的或含参数的集合中去计算.本题属于中等题. 20.【分析】由题意可知实数满足或解出即可得出实数的取值范围【详解】由题意可知实数满足或解不等式即即解得或因此实数的取值范围是故答案为【点睛】本题考查利用元素与集合的关系求参数解题的关键在于将问题转化为不 解析:()[),32,-∞-⋃+∞【分析】由题意可知,实数a 满足2312a--<-+或20a -+=,解出即可得出实数a 的取值范围. 【详解】由题意可知,实数a 满足2312a --<-+或20a -+=. 解不等式2312a --<-+,即5102a +>-,即302a a +>-,解得3a <-或2a >. 因此,实数a 的取值范围是()[),32,-∞-⋃+∞.故答案为()[),32,-∞-⋃+∞.【点睛】本题考查利用元素与集合的关系求参数,解题的关键在于将问题转化为不等式进行求解,考查化归与转化思想的应用,属于中等题.三、解答题21.(1){|13}A B x x ⋂=;(2)3(2-,0][4⋃,)+∞. 【分析】(1)当1m =时,求出集合B ,A ,由此能求出A B .(2)由A B A ⋃=,得B A ⊆,当B =∅时,213m m -+,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,由此能求出m 的取值范围.【详解】解:(1)当1m =时,{|14}B x x =<,{|314}{|43}A x x x x =-<+=-<,{|13}A B x x ∴⋂=.(2)A B A =,B A ∴⊆,当B =∅时,213m m -+,解得4m ,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,解得302m -<, 综上,m 的取值范围为3(2-,0][4⋃,)+∞. 【点睛】结论点睛:本题考查交集、实数的取值范围的求法,并集、交集的结论与集合包含之间的关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆. 22.(1){}|27A B x x ⋃=-≤<;(2)若选择①(]1,41,2⎡⎤-∞--⎢⎥⎣⎦;若选择②[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;若选择③[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦.【分析】(1)当a =2时,得出集合A ,求得集合B ,根据集合的并集运算可得答案;(2)若选择①AB A =,则A B ⊆,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围;若选择②()R A C B A =,则A 是R B 的子集,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围;若选择③AB =∅,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围.【详解】(1)当a =2时,集合{}|17A x x =<<,{}|24B x x =-≤≤,所以{}|27A B x x ⋃=-≤<;(2)若选择①AB A =,则A B ⊆,当123a a -≥+,即4a ≤-时,A =∅,满足题意; 当4a >-时,应满足12234a a -≥-⎧⎨+≤⎩,解得112a -≤≤;综上知:实数a 的取值范围(]1,41,2⎡⎤-∞--⎢⎥⎣⎦; 若选择②()R A C B A =,则A 是R B 的子集,(,2)(4,)R B =-∞-⋃+∞,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩,或414a a >-⎧⎨-≥⎩,解得542a -<≤-或5a ≥, 综上知:实数a 的取值范围[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;若选择③A B =∅,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩,或414a a >-⎧⎨-≥⎩,解得542a -<≤-或5a ≥, 综上知:实数a 的取值范围[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦; 【点睛】易错点睛:本题容易忽略集合A 是空集的情况,导致出错:空集是任何集合的子集,是任何非空集合的真子集.23.(1)R A {x |1x 2}=-<<,1{|3B x x =<或1}x >;(2){}0;(3)211 1.32m m -<<-<<或【分析】(1)m =2时,化简集合A ,B ,即可得集合∁R A 和集合B ;(2)集合B ∩Z 为单元素集,所以集合B 中有且只有一个整数,而0∈B ,所以抛物线y =(1﹣m 2)x 2+2mx ﹣1的开口向上,且与x 轴的两个交点都在[﹣1,1]内,据此列式可得m =0;(3)因为A =(﹣∞,﹣1)∪(2,+∞),(A ∩B )∩Z 中由n 个元素,所以1﹣m 2>0,即﹣1<m <1;A ∩B 中至少有3或﹣2中的一个,由此列式可得.【详解】集合A ={x |x 2﹣x ﹣2≥0}={x |x ≥2或x ≤﹣1},集合{x |(1﹣m 2)x 2+2mx ﹣1<0,m ∈R}={x |[(1+m )x ﹣1][(1﹣m )x +1]<0}(1)当m =2时,集合∁R A ={x |﹣1<x <2}; 集合1{|3B x x =<或1}x > ; (2)因为集合B ∩Z 为单元素集,且0∈B ,所以,解得m =0,当m =0时,经验证,满足题意.故实数m 的取值集合为{0}(3)集合(A ∩B )∩Z 的元素个数为n (n ∈N *)个,A ∩B 中至少有3或﹣2中的一个, 所以令f (x )=(1﹣m 2)x 2+2mx ﹣1,依题意有或, 解得﹣1<m <﹣或<m <1∴【点睛】本题考查了交、并、补集的混合运算.属难题.24.(1)A ∪B ={x |-2≤x ≤7};(∁R A )∩B ={x |-2≤x <1};(2){4a a <-或11}2a -≤≤.【分析】(1)由a =2,得到A ={x |1≤x ≤7},然后利用集合的基本运算求解.(2)由A ∩B =A ,得到A ⊆B .然后分A =∅,A ≠∅两种情况讨论求解. 【详解】(1)当a =2时,A ={x |1≤x ≤7},则A ∪B ={x |-2≤x ≤7},∁R A ={x |x <1或x >7},(∁R A )∩B ={x |-2≤x <1}.(2)∵A ∩B =A ,∴A ⊆B .若A =∅,则a -1>2a +3,解得a <-4; 若A ≠∅,由A ⊆B ,得12312234a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得-1≤a ≤12 综上,a 的取值范围是{4a a <-或 11}2a -≤≤.【点睛】本题主要考查集合的基本要和基本运算,还考查了分类讨论的思想和运算求解的能力,属于中档题.25.(1)m=4;(2) m >6,或m <﹣4.【解析】试题分析:(1)化简A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3},由A∩B=[1,3],得到:m=4;(2)若p 是¬q 的充分条件,即A ⊆C R B ,易得:m >6,或m <﹣4. 试题由已知得:A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3}.(1)∵A∩B=[1,3]∴ ∴, ∴m=4; (2)∵p 是¬q 的充分条件,∴A ⊆C R B ,而C R B=x|x <m ﹣3,或x >m+3}∴m ﹣3>3,或m+3<﹣1,∴m >6,或m <﹣4.26.(1){}|36A B x x ⋂=≤<;(2)()R C A B R ⋃=【分析】(1)根据集合的交集运算即可(2)根据集合的补集、并集运算.【详解】因为集合{}|36A x x =≤<,集合{}|19B x x =<≤所以{}|36A B x x ⋂=≤<.所以{|3R C A x x =<或}6x ≥,∴R C A B R ⋃=.【点睛】本题主要考查了集合的交集,补集,并集运算,属于容易题.。
第一章 集合与逻辑(压轴题专练)(解析版)-2024-2025学年高一数学单元速记巧练
es 对于④,由题可设S={a,b,c,d}其中a<b<c<d,则ab,cd∈T且ab和cd分别为集合T中最小和最大的元素,
由性质(2)可知,
且为集合S中最大的元素d,即c=ab,则S={a,b,ab,d},
同理可知, ba'ab aes,即ad.des,
d=a, 若a=1,则
即c-b,显然不合题意;
对A(i=1,2,…,2?-1)中的任意集合A,记A={x,x?,…,x},
则“交替和”SA=x-x?+x…+(-1)*?x,其中x>X?>…>xk,
由7>x>x?>…>x,则集合AU{7}的“交替和”为
7-[x-x?+x,…+(-1)*x],
则集合A与集合AU{7}的“交替和”之和为7,
下面举例说明:
所以a?+a?=8. 故答案为:8.
5.(23-24高一上·上海徐汇·阶段练习)已知集合M,对于它的非空子集A,将A中每个元素k都乘以(-1)* 后再求和,称为A的“元素特征和”.比如:A={4}的“元素特征和”为(-1)*×4=4,A={1,2,5}的“元素特征
和”为(-1)'×1+(-1)2×2+(-1)3×5=-4,那么:
根据子集的个数与集合元素个数之间的关系即可得答案.
【详解】由题意可知:若x, yeM(x<y),则x+1,x+2,…, y-1均属于M,
x+1≤xy<F?y. 而事实上,若y-x≥2,中
所以x+Is{?2-1≤y-1
,
故[x,y]中有正整数[
从而M中相邻两数不可能大于等于2, 故2,3,…,2021∈M, 若p≥2024,p∈M,则有2023∈M,与2023tM矛盾,
综上,把这2?-2个非空子集两两结组后分别计算每一组中“交替和”之和,
(压轴题)高中数学必修一第一单元《集合》测试题(有答案解析)(1)
一、选择题1.已知集合{}11M x Z x =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,22.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .33.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤4.已知集合P 的元素个数为()*3n n N∈个且元素为正整数,将集合P 分成元素个数相同且两两没有公共元素的三个集合,,A B C ,即P A B C =⋃⋃,AB =∅,A C ⋂=∅,BC =∅,其中{}12,,,n A a a a =,{}12,,,n B b b b =,{}12,,,n C c c c =,若集合,,A B C 中的元素满足12n c c c <<<,k k k a b c +=,1,2,,k n =,则称集合P 为“完美集合”例如:“完美集合”{}11,2,3P =,此时{}{}{}1,2,3A B C ===.若集合{}21,,3,4,5,6P x =,为“完美集合”,则x 的所有可能取值之和为( ) A .9B .16C .18D .275.设全集{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =,则()U AC B ⋂等于( ) A .{}2B .{}2,3C .{}3D .{}1,36.集合{}2|6,y y x x ∈=-+∈N N 的真子集的个数是( ) A .9B .8C .7D .617.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<8.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UB D .∅9.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .110.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B 的子集个数是()A .6B .8C .4D .211.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤12.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .38二、填空题13.已知集合:A ={x |x 2=1},B ={x |ax =1},且A ∩B =B ,则实数a 的取值集合为______. 14.已知{|14}A x x =-≤≤,{|}B x x a =<,若A B =∅,则a 的取值范围是__________15.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________.16.已知集合(){}21210,,A x a x x a R x R =-++=∈∈,若集合A 至多有两个子集,则a 的取值范围是__________.17.若使集合{}2()(6)(4)0,A k x kx k x x Z =---≥∈中元素个数最少,则实数k 的取值范围是 ________.18.已知集合{|11},{|01}A x a x a B x x =-<<+=<<若A B φ⋂=,实数a 的取值范围是______. 19.设集合1{|0}x A x x a-=≥-,集合{}21B x x =-,且B A ⊆,则实数a 的取值范围为______.20.设集合{}1,2,3A =,若B ≠∅,且B A ⊆,记G(B)为B 中元素的最大值和最小值之和,则对所有的B ,G(B)的平均值是_______.三、解答题21.已知集合{}12,U xx x P =-≤≤∈∣,{}02,A x x x P =≤<∈,{}1,(11)B x a x x P a =-<≤∈-<<.(1)若P =R ,求U A 中最大元素m 与UB 中最小元素n 的差m n -;(2)若P =Z ,求AB 和UA 中所有元素之和及()UAB .22.已知集合A ={x |3<x <7},B ={x |4<x ≤10},C ={x ||x -a |>2}. (1)求A ∪B 与RR ()()A B ⋂(2)若A ∩B ⊆C ,求a 的取值范围. 23.在①{}23B x x =-<<,②{}35RB x x =-<<,③{}26B x x a =≥+且{}A B x x a ⋃=>这三个条件中任选一个,补充在下面的问题中,并解答该问题.问题:已知非空集合{}8A x a x a =<<-,______,若AB =∅,求a 的取值集合.24.已知全集U =R ,集合{}2450A x x x =--≤,{}2124x B x -=≤≤.(1)求()UAB ;(2)若集合{}4,0C x a x a a =≤≤>,且满足C A A =,C B B =,求实数a 的取值范围.25.已知集合{|14}A x x =<<,集合{|21}B x m x m =<<- (1)当1m =-时,求A B ,()R A B ⋂;(2)若AB =∅,求实数m 的取值范围.26.已知集合{1,2,3}A =,2{|(1)0,}B x x a x a x R =-++=∈,若A B A ⋃=,求实数a ;【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题.【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B 【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分.2.D解析:D【分析】化简集合A 、B ,根据补集与交集的定义写出RA B ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x ∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.3.A解析:A 【分析】先分别求出C ,C U U M N ,再求()()C C U U M N ⋂即可 【详解】∵C {|}23U M x x x =<>-或,C {|24}U N x x =-≤≤, ∴()()C C {|34}U U M N x x ⋂=<≤. 故选:A . 【点睛】本题考查交集与补集的混合运算,属于中档题4.D解析:D 【分析】讨论集合A 与集合B ,根据完美集合的概念知集合C ,根据k k k a b c +=建立等式求x 的值. 【详解】首先当2x =时,{}21,2,3,4,5,6P =不可能是完美集合, 证明:假设{}21,2,3,4,5,6P =是完美集合, 若C 中元素最小为3,则11123a b +=+=,222456a b c +=+==不可能成立; 若C 中元素最小为4,则11134a b +=+=,222256a b c +=+==不可能成立; 若C 中元素最小为5,则11145a b +=+=,222236a b c +=+==不可能成立;故假设{}21,2,3,4,5,6P =是完美集合不成立,则{}21,2,3,4,5,6P =不可能是完美集合.所以2x ≠;若集合{1,5},{3,6}A B ==,根据完美集合的概念知集合{}4,,5611C x x =∴=+=; 若集合{1,3},{4,6}A B ==,根据完美集合的概念知集合{}5,,369C x x =∴=+=; 若集合{1,4},{3,5}A B ==,根据完美集合的概念知集合{}6,,347C x x =∴=+=; 则x 的所有可能取值之和为791127++=, 故选:D . 【点睛】本题是新概念题,考查学生分析问题,理解问题的能力,是中档题.5.D解析:D 【解析】 【分析】由集合的补集的运算,求得{1,3,4}U C B =,再利用集合间交集的运算,即可求解. 【详解】由题意,集合{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =, 则{1,3,4}UC B =,所以(){}1,3U A C B ⋂=. 故选:D. 【点睛】本题主要考查了集合的混合运算,其中解答中熟记的集合的运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【分析】根据条件求解,x y 的范围,结合,x N y N ∈∈,得到集合为{2,5,6},利用集合真子集个数的公式即得解. 【详解】由于260y N y x ∈∴=-+≥x ≤≤,又,x N ∈0,1,2x ∴=6,5,2y ∴=,即集合{}2|6,{2,5,6}y y x x ∈=-+∈=N N故真子集的个数为:3217-= 故选:C 【点睛】本题考查了集合真子集的个数,考查了学生综合分析,数学运算的能力,属于中档题.7.C解析:C 【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可. 【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<,所以A B ={}1|0x x <<.故选:C【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8.D解析:D 【分析】根据题意作出“韦恩图”,得出集合A 与集合B 没有公共元素,即可求解. 【详解】由题意,集合U 为全集,()UBA B =,如图所示,可得集合A 与集合B 没有公共元素,即A B =∅,故选D.【点睛】本题主要考查了集合的运算及应用,其中解答中根据题设条件,作出韦恩图确定两集合的关系是解答的关键,着重考查了推理与论证能力,属于基础题.9.B解析:B 【解析】 【分析】首先求解方程组3y x y x⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.10.C解析:C 【分析】先求得B 的具体元素,然后求A B ,进而确定子集的个数.【详解】依题意{}0,3,6,9B =,所以{}0,3A B ⋂=,其子集个数为224=,故选C. 【点睛】本小题主要考查集合元素的识别,考查两个集合的交集,考查集合子集的个数计算,属于基础题.11.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1}, 本题选择D 选项.12.D解析:D 【分析】含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个,根据古典概型即可计算. 【详解】因为含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个, 所以38P =,故选D. 【点睛】本题主要考查了集合子集的概念,古典概型,属于中档题.二、填空题13.{-101}【分析】由已知得B ⊆A 从而B=∅或B={-1}或B={1}进而或=-1或由此能求出实数a 的取值集合【详解】∵A={x|x2=1}={-11}A∩B=B ∴B ⊆A ∴B=∅或B={-1}或B=解析:{-1,0,1} 【分析】由已知得B ⊆A ,从而B=∅或B={-1},或B={1},进而0a =,或1a =-1或11a=,由此能求出实数a 的取值集合.【详解】∵A={x|x 2=1}={-1,1}, A∩B=B ,∴B ⊆A , ∴B=∅或B={-1},或B={1}, ∴0a =,或1a =-1或11a=, 解得a=0或a=-1或a=1. ∴实数a 的取值集合为{-1,0,1}. 故答案为:{-1,0,1}. 【点睛】本题考查集合的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用.14.【分析】根据集合所以集合没有公共元素列出两个集合的端点满足的不等关系结合数轴可以得出的范围得到结果【详解】集合由借助于数轴如图所示可得故答案为:【点睛】该题主要考查集合中参数的取值范围的问题两个集合解析:(,1]-∞-. 【分析】根据集合{|14}A x x =-≤≤,{|}B x x a =<,A B φ⋂=,所以集合,A B 没有公共元素,列出两个集合的端点满足的不等关系,结合数轴可以得出a 的范围,得到结果. 【详解】集合{|14}A x x =-≤≤,{|}B x x a =<, 由A B φ⋂=,借助于数轴,如图所示,可得1a ≤-, 故答案为:(,1]-∞-. 【点睛】该题主要考查集合中参数的取值范围的问题,两个集合的关系,属于中档题目.15.在的三条高上且不为重心【分析】由题意知若集合的子集只有个则集合有个元素可得出三个三角形的面积有两个相等分析点的位置即可得出结论【详解】若集合的子集只有个则集合有个元素是等边内部一点三个三角形的面积值解析:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【分析】由题意知,若集合M 的子集只有4个,则集合M 有2个元素,可得出HAB ∆,HBC ∆,HCA ∆三个三角形的面积有两个相等,分析点H 的位置,即可得出结论.【详解】若集合M 的子集只有4个,则集合M 有2个元素,M 是等边ABC ∆内部一点,HAB ∆,HBC ∆,HCA ∆三个三角形的面积值构成集合M , 故HAB ∆,HBC ∆,HCA ∆三个三角形的面积有且只有两个相等.若HAB ∆,HBC ∆的面积相等,则点H 在边AC 的高上且不为ABC ∆的重心; 若HBC ∆,HCA ∆的面积相等,则点H 在边AB 的高上且不为ABC ∆的重心; 若HAB ∆,HCA ∆的面积相等,则点H 在边BC 的高上且不为ABC ∆的重心. 综上所述,点H 在等边ABC ∆的三条高上且不为ABC ∆的重心. 故答案为:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【点睛】本题考查子集的个数与元素个数之间的关系,根据已知条件得出集合元素的个数是解题的关键,考查推理能力,属于中等题.16.或【分析】分集合为或有且仅有一个元素两种情况进行求解其中当集合有且仅有一个元素时注意对方程的二次项系数分和两种情况进行分别求解即可【详解】由题意可得集合为或有且仅有一个元素当时方程无实数根所以解得当解析:2a ≥或1a = 【分析】分集合A 为φ或有且仅有一个元素两种情况进行求解,其中当集合A 有且仅有一个元素时,注意对方程()21210a x x -++=的二次项系数分10a -=和10a -≠两种情况进行分别求解即可. 【详解】由题意可得,集合A 为φ或有且仅有一个元素, 当A φ=时,方程()21210a x x -++=无实数根,所以()21024110a a -≠⎧⎨∆=-⨯-⨯<⎩, 解得2a >,当集合A 有且只有一个元素时,方程()21210a x x -++=有且只有一个实数根,当10a -=,即1a =时,方程有一根12x =-符合题意;当10a -≠,即1a ≠时,判别式()224110a ∆=-⨯-⨯=,解得2a =;综上可知a 的取值范围为:2a ≥或1a =. 故答案为:2a ≥或1a = 【点睛】本题考查利用分类讨论思想求解方程根的个数问题;其中当一个方程的二次项系数含有参数,考虑其根的个数问题时,一定要注意对方程的二次项系数分为0和不为0两种情况进行讨论;属于中档题.17.【分析】首先讨论的取值解不等式;再由集合的元素个数最少推出只有满足若集合的元素个数最少由集合只需求的最大值即可再由集合中只需即可求解【详解】由题知集合内的不等式为故当时可得;当时可转化为或因为所以不 解析:[]3,2--【分析】首先讨论k 的取值,解不等式;再由集合A 的元素个数最少,推出只有k 0<满足, 若集合A 的元素个数最少,由k 0<,集合A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭,只需求6k k +的最大值即可,再由集合A 中x ∈Z ,只需654k k-<+<-即可求解. 【详解】由题知集合A 内的不等式为2(6)(4)0,kx k x x Z ---≥∈,故 当0k =时,可得{}4A x Z x =∈<; 当0k >时, 2(6)(4)0kx k x ---≥可转化为24060x kx k -≥⎧⎨--≥⎩ 或24060x kx k -≤⎧⎨--≤⎩,因为64k k <+, 所以不等式的解集为{4x x ≤或6x k k ⎫≥+⎬⎭,所以A ={4x Z x ∈≤或6x k k ⎫≥+⎬⎭当k 0<时,由64k k +<,所以不等式的解集为64x k x k ⎧⎫+≤≤⎨⎬⎩⎭,所以A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭,此时集合A 的元素个数为有限个. 综上所述,当0k ≥时,集合A 的元素个数为无限个,当k 0<时,集合A 的元素个数为有限个,故当k 0<时,集合A 的元素个数最少,且当6k k+的值越大,集合A 的元素个数越少,令6()f k k k =+(k 0<),则26()1f k k'=-,令()0f k '= 解得k =()f k在(,-∞内单调递增,在()内单调递减,所以max ()(f k f ==-又因为x ∈Z ,54-<-<-,所以当654k k-≤+<-,即32k -≤≤-时, 集合A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭中元素的个数最少,故32k -≤≤- 故答案为:[]3,2-- 【点睛】本题主要考查集合的运算和解不等式,综合性比较强.18.【分析】由根据集合的交集的运算得到或即可求解【详解】由题意集合因为则满足或解得或即实数的取值范围是故答案为:【点睛】本题主要考查了集合的运算以及利用集合的交集求参数其中解答中熟记集合交集运算列出相应 解析:(][),12,-∞-⋃+∞【分析】由A B φ⋂=,根据集合的交集的运算,得到11a -≥或10a +≤,即可求解.【详解】由题意,集合{|11},{|01}A x a x a B x x =-<<+=<<,因为A B φ⋂=,则满足11a -≥或10a +≤,解得2a ≥或1a ≤-,即实数a 的取值范围是(][),12,-∞-⋃+∞.故答案为:(][),12,-∞-⋃+∞.【点睛】本题主要考查了集合的运算,以及利用集合的交集求参数,其中解答中熟记集合交集运算,列出相应的不等式是解答的关键,着重考查了推理与运算能力,属于基础题. 19.【分析】解可得集合B 对于A 先将转化为且分三种情况讨论求出集合A 判断是否成立综合可得a 的范围即可得答案【详解】或则或对于A 且时成立符合题意时或不会成立不符合题意时或要使成立必有则a 的范围是综合可得a 的 解析:[]1,3【分析】 解21x ->可得集合B ,对于A ,先将1|0x x a-≥-转化为()()10x x a --≥且x a ≠,分1a =,1a >,1a <三种情况讨论,求出集合A ,判断B A ⊆是否成立,综合可得a 的范围,即可得答案【详解】211x x ->⇔<或3x >,则{|1B x x =<或3}x >,对于A ,()()1010x x x a x a-≥⇔--≥-且x a ≠, 1a =①时,{|1}A x x =≠,B A ⊆成立,符合题意,1a <②时,{|A x x a =<或1}x ≥,B A ⊆不会成立,不符合题意,1a >③时,{A x x a =或1}x ≤, 要使B A ⊆成立,必有3a ≤,则a 的范围是13a ,综合①②③可得,a 的取值范围为13a ≤≤,即[]1,3;故答案是:[]1,3.【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.20.4【分析】根据题意列出所有可能的集合B 求出相应的求出平均数即可【详解】因为集合若且所以集合B 为:当时当时当时当时当时当时当时则G(B)的平均值是故答案为:【点睛】本题主要考查了集合间的包含关系考查学 解析:4【分析】根据题意列出所有可能的集合B ,求出相应的()G B ,求出平均数即可.【详解】因为集合{}1,2,3A =,若B ≠∅,且B A ⊆所以集合B 为:{}{}{}{}{}{}{}1231,21,32,31,2,3,,,,,,当{}1B =时,()112G B =+=当{}2B =时,()224G B =+=当{}3B =时,()336G B =+=当{}1,2B =时,()123G B =+=当{}1,3B =时,()134G B =+=当{}2,3B =时,()235G B =+=当{}1,2,3B =时,()134G B =+=则G(B)的平均值是246345447++++++= 故答案为:4【点睛】本题主要考查了集合间的包含关系,考查学生分析问题和解决问题的能力,属于中档题. 三、解答题21.(1)3;(2)所求元素之和为1,(){}1,1,2U A B =-或(){1,0,1,2}U A B =-. 【分析】(1)根据P =R ,然后利用补集的运算,分别求得U A ,U B 再求解.(2)根据P =Z ,得到{}{}02,0,1A x x x =≤<∈=Z ,{}1B =或{}0,1,进而得到{}0A B =或A B =∅求解.【详解】(1)因为P =R ,{}12,U x x x P =-≤≤∈∣,所以{|10U A x x =-≤<或}2x =,{}1,12U B xx a x =-≤≤-<≤∣, ∴2m =,1n =-,∴(13)2m n --=-=.(2)∵P =Z , ∴{}{}12,1,0,1,2U x x x =-≤≤∈=-Z , ∴{}{}02,0,1A x x x =≤<∈=Z ,{}1B =或{}0,1. ∴{}0A B =或A B =∅,即A B 中元素之和为0. 又{}1,2U A =-,其元素之和为121-+=.故所求元素之和为011+=. ∵{}0A B =或A B =∅, ∴(){}1,1,2U A B =-或(){1,0,1,2}U A U C B C U =∅==-.【点睛】本题主要考查集合的补集运算,还考查了分析求解问题的能力,属于中档题.22.(1){|310}A B x x ⋃=<,()(){|3R R A B x x ⋂=或10}x >;(2){|9a a 或2}a【分析】(1)直接进行并集、交集和补集的运算即可;(2)先得出{|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<,根据AB C ⊆即可得出27a -或24a +,解出a 的范围即可.【详解】(1)因为集合A ={x |3<x <7},B ={x |4<x ≤10},所以{|310}A B x x ⋃=<,{|3RA x x =或7}x , {|4RB x x =或10}x >;()(){|3R R A B x x ⋂=或10}x >;(2){|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<;A B C ⋂⊆;27a ∴-,或24a +;9a ∴,或2a ;a ∴的取值范围为{|9a a 或2}a .【点睛】考查描述法表示集合的定义,绝对值不等式的解法,交集、并集和补集的运算,以及子集的概念.属于中档题.23.答案见解析.【分析】选①:本题首先可根据A 是非空集合得出4a <,然后根据A B =∅得出3a ≥或82a -≤-,最后通过计算即可得出结果. 选②:本题首先可以根据A 是非空集合得出4a <,然后根据{}R 35B x x =-<<求出集合B ,最后根据A B =∅列出不等式组,通过计算即可得出结果.选③:本题首先可以根据A 是非空集合得出4a <,然后根据题意得出268a a +=-,最后通过计算即可得出结果.【详解】选①:因为A 是非空集合,所以8a a ->,解得4a <,因为{}23B x x =-<<,A B =∅,所以3a ≥或82a -≤-,解得3a ≥或10a ≥,综上所述,a 的取值集合是{}34a a ≤<.选②:因为A 是非空集合,所以8a a ->,解得4a <,因为{}R 35B x x =-<<,所以{3B x x =≤-或}5x ≥,因为A B =∅,所以3854a a a ≥-⎧⎪-≤⎨⎪<⎩,解得34a ≤<,故a 的取值集合是{}34a a ≤<.选③:因为A 是非空集合,所以8a a ->,解得4a <,因为A B =∅,{}26B x x a =≥+,{}A B x x a ⋃=>,所以268a a +=-,解得2a =-或1,故a 的取值集合是{}2,1-.【点睛】关键点点睛:本题考查根据集合的运算结果求参数的取值范围,若两个集合的交集为空集,则这两个集合没有相同的元素,考查集合的混合运算,考查计算能力,是中档题. 24.(1)()U {|12Ax B x =-≤<或45}x <≤.(2)514a ≤≤. 【分析】(1)解不等式确定集合,A B ,然后由集合运算法则计算;(2)由CA A =,CB B =,得BC A ⊆⊆,利用包含关系可得参数满足的不等关系,从而得出结论. 【详解】(1){}2450{|15}A x x x x x =--≤=-≤≤,{}2124{|022}{|24}x B x x x x x -=≤≤=≤-≤=≤≤.∴{|2U B x x =<或4}x >,∴()U {|12A x B x =-≤<或45}x <≤.(2)∵CA A =,CB B =,∴BC A ⊆⊆, ∴12445a a -≤≤⎧⎨≤≤⎩,解得514a ≤≤. 【点睛】关键点点睛:本题考查集合的综合运算,考查集合的包含关系.集合的运算中确定集合中的元素是解题关键.本题有两个结论值得注意:C A A C A =⇔⊆,C B B =B C ⇔⊆.25.(1){|24}A B x x ⋃=-<<,()=R A B {|21}x x -<≤;(2)0m ≥.【分析】 (1)当1m =-时,求集合B ,再求集合的交并补集;(2)讨论B =∅ 和B ≠∅两种情况讨论当AB =∅时,求参数的取值范围. 【详解】(1)1m =-时,{|22}Bx x ,{|24}A B x x ⋃=-<<, {1R A x x =≤或4}x ≥,{|21}R A B x x ⋂=-<≤() (2)由A B =∅,当B =∅时,21m m ,解得:13m ≥ 当B ≠∅时,2111m m m <-⎧⎨-≤⎩,解得:103m ≤< 或2124m m m <-⎧⎨≥⎩,无解 综上可得:0m ≥【点睛】易错点睛:根据集合的运算结果求参数或是根据集合的包含关系求参数时,容易忽略空集的情况,这一点需注意.26.1a =或2或3【分析】由A B A ⋃=可得B A ⊆,分别讨论B =∅与B ≠∅的情况,进而求解即可【详解】由A B A ⋃=可得B A ⊆,若B =∅,则()2140a a ∆=+-<,解得a ∈∅;若B ≠∅,则()()10x a x --=,解得1x a =,21x =,①当1a =,则{}1B =,符合题意;②当2a =,则{}1,2B =,符合题意;③当3a =,则{}1,3B =,符合题意;a 或2或3综上,1【点睛】本题考查已知集合的包含关系求参数,考查分类讨论思想。
必修一高一数学压轴题
必修一高一数学压轴题1.已知不等式$2(\log_2x)^2+7\log_2x+3\leqslant0$,求函数$f(x)=\log_2(xx)\cdot\log_2x$的最大值和最小值,以及相应的$x$值。
2.已知定义域为$\mathbb{R}$的函数$f(x)=\dfrac{-2x+a}{x^2+1}$是奇函数。
1)求$a$的值;2)判断并证明该函数在定义域$\mathbb{R}$上是单调递减的;3)若对任意的$t\in\mathbb{R}$,不等式$f(t-2t)+f(2t-k)<0$恒成立,求实数$k$的取值范围。
3.已知定义在区间$(-1,1)$上的函数$f(x)=\dfrac{ax+b}{12}$。
1)求实数$a,b$的值;2)用定义证明:函数$f(x)$是奇函数,且$f(0)=0$,在区间$(-1,1)$上是增函数;3)解关于$t$的不等式$f(t-1)+f(t)<\dfrac{1}{25}$。
4.定义在$\mathbb{R}^+$上的函数$f(x)$满足对任意实数$a,b\in\mathbb{R}^+$,都有$f(ab)=f(a)+f(b)$成立,且当$x>1$时,$f(x)<0$。
1)求$f(1)$;2)证明:函数$f(x)$是减函数;3)当$f(4)=-2$时,解不等式$4f(x-3)+f(5)\geqslant-1$,其中$b\geqslant1$。
5.已知定义在$[1,4]$上的函数$f(x)=x^2-2bx+b$。
1)求$f(x)$的最小值$g(b)$;2)求$g(b)$的最大值$M$。
6.设函数$f(x)=\log_a(x-3)$(其中$a>0$且$a\neq1$),当点$P(x,y)$是函数$y=f(x)$的图象上的点时,点$Q(x-2a,-y)$是函数$y=g(x)$的图象上的点。
1)写出函数$y=g(x)$的解析式;2)若当$x\in[a+2,a+3]$时,恒有$|f(x)-g(x)|<1$,试确定$a$的取值范围;3)把函数$y=g(x)$的图象向左平移$a$个单位得到函数$y=h(x)$的图象,函数$F(x)=\dfrac{2a}{(x-1)(x-5)}$(其中$a>0$且$a\neq1$)在$[1,4]$的最大值为$\dfrac{5}{4}$,求$a$的值。
高一数学难题压轴题
高一数学难题压轴题一、若函数f(x) = x2 - 2ax + 3在区间[1,3]上单调递减,则a的取值范围是?A. a ≤ 1B. a ≥ 3C. 1 ≤ a ≤ 3D. a > 3(答案)B(解析)由于二次函数f(x) = x2 - 2ax + 3的对称轴为x = a,且函数在区间[1,3]上单调递减,所以对称轴x = a应在区间[1,3]的右侧,即a ≥ 3。
二、已知等差数列{an}的前n项和为Sn,且a1 = 1,S3 = -3,则a4等于?A. -3B. -5C. -7D. -9(答案)C(解析)由等差数列的前n项和公式Sn = n/2 * (2a1 + (n-1)d),代入S3 = -3和a1 = 1,解得公差d = -2。
因此,a4 = a1 + 3d = 1 - 6 = -5 + (-2) = -7。
三、设函数f(x) = |x - 1| + |x - a|,若f(x) ≤ 2的解集包含[-1,2],则a的取值范围是?A. [-1,3]B. [-2,2]C. [1,3]D. [0,4](答案)A(解析)由f(x) ≤ 2,得|x - 1| + |x - a| ≤ 2。
考虑x在[-1,2]区间内,分别讨论x < 1,1 ≤ x < a,x ≥ a三种情况,结合绝对值的性质,可得a的取值范围为[-1,3]。
四、已知向量a = (1,2),b = (2,1),c = (1,n),若(a + 2b) ⊥ c,则n = ?A. 5B. -5C. 3D. -3(答案)B(解析)由向量加法得 a + 2b = (5,4)。
因为(a + 2b) ⊥ c,所以(a + 2b) · c = 0,即51 + 4n = 0,解得n = -5/4 * 4 = -5。
五、若关于x的不等式x2 + ax + b < 0的解集为{x | -3 < x < -1},则ab等于?A. 6B. -6C. 12D. -12(答案)A(解析)由题意知-3和-1是方程x2 + ax + b = 0的两个根,根据韦达定理得-3 + (-1) = -a,-3 * (-1) = b,解得a = 4,b = 3,所以ab = 4 * 3 = 12的相反数,即-6的相反数,为6。
(压轴题)高中数学必修一第一单元《集合》测试(含答案解析)
一、选择题1.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2D .-1或22.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( ) A .0B .1-C .1D .1或1-3.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉4.对任意x M ∈,总有2x M ∉且x M ∉,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( ) A .11B .12C .15D .165.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-26.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+,B .[)2∞+,C .()3∞-+,D .[)3∞-+,7.如图所示的韦恩图中,A 、B 是非空集合,定义*A B 表示阴影部分的集合,若x ,y ∈R ,2{|4}{|3,0}x A x y x x B y y x ==-==>,则A *B 为( )A .{|04}x x <≤B .{|01x x ≤≤或4}x >C .{|01x x ≤≤或2}x ≥D .{|01x x ≤≤或2}x >8.集合2|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{|()()0}B x x a x b =--<,若“2a =-”是“A B ⋂≠∅”的充分条件,则b 的取值范围是( ) A .1b <-B .1b >-C .1b ≤-D .12b -<<-9.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈10.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则A B =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤⎥⎝⎦11.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<12.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,1二、填空题13.已知集合{|M m Z =∈关于x 的方程2420x mx +-=有整数解},集合A 满足条件:①A 是非空集合且A M ⊆;②若a A ∈,则a A -∈.则所有这样的集合A 的个数为______.14.设集合{}0,4A =-,B ={}22|2(1)10,x x a x a x R +++-=∈.若B A ⊆,求实数a 的取值范围_______________15.已知非空集合{}|121A x m x m =+≤≤-,集合{}2|1030B x x x =+-≥,若A B =Φ,则实数m 的取值范围为__________16.设全集{|35}Ux x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________.17.已知集合{}{}2430,21xA x x xB x =++≥<,则AB =____________18.设集合1{|0}x A x x a-=≥-,集合{}21B x x =-,且B A ⊆,则实数a 的取值范围为______.19.设集合{}1,2,3A =,若B ≠∅,且B A ⊆,记G(B)为B 中元素的最大值和最小值之和,则对所有的B ,G(B)的平均值是_______.20.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.三、解答题21.已知集合{}2210,A x ax x a R =++=∈. (1)若A 中只有一个元素,求a 的值; (2)若A 中至少有一个元素,求a 的取值范围; (3)若A 中至多有一个元素,求a 的取值范围. 22.已知全集为R ,集合{}503x A x R x -=∈>+,()2{|21050}B x R x a x a =∈-++≤. (1)若RB A ⊆,求实数a 的取值范围;(2)从下面所给的三个条件中选择一个,说明它是RB A ⊆的什么条件(充分必要性).①[)7,10a ∈-;②(]7,10a ∈-;③(]6,10a ∈. 23.已知集合612A xx ⎧⎫=≥⎨⎬+⎩⎭,{}2(4)70B x x m x m =-+++<.(1)若3m =时,求()RAB ;(2)若A B A ⋃=,求实数m 的取值范围.24.已知全集为R ,函数()()lg 1f x x =-的定义域为集合A ,集合(){}16B x x x =->. (1)求AB ;(2)若{}11C x m x m =-<<+,()()R C AC B ⊆,求实数m 的取值范围.25.已知集合{121}A xa x a =-<<+∣,{}03B x x =<≤,U =R . (1)若12a =,求A B ;()U A B ⋂. (2)若A B =∅,求实数a 的取值范围.26.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭.(1)求AB ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.2.B解析:B 【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101ab +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.3.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.4.A解析:A 【分析】根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案. 【详解】2111==,200=,由题意可知0M ∉且1M ∉,由于242=, 所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种; ②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=. 故选:A. 【点睛】本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.5.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.6.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.7.B解析:B 【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案. 【详解】依据定义,*A B 就是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合;对于集合A ,求的是函数y =解得:{|04}A x x =≤≤;对于集合B ,求的是函数3(0)x y x =>的值域,解得{}1B y y =; 依据定义,借助数轴得:*{|01A B x x =≤≤或4}x >. 故选:B . 【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.8.B解析:B 【分析】由题意知{}|12A x x =-<<,当2a =-时,()(){}|20B x x x b =+-<,且A B ⋂≠∅成立,通过讨论2b <-,2b =-,2b >-三种情况,可求出b 的取值范围.【详解】 解:{}2|0|121x A x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭,当2a =-时,()(){}|20B x x x b =+-< 当2b <- 时,{}|2B x b x =<<-,此时AB =∅不符合题意;当2b =-时,B =∅ ,此时AB =∅不符合题意;当2b >-时,{}|2B x x b =-<<因为A B ⋂≠∅,所以1b >-.综上所述,1b >-. 故选:B. 【点睛】本题考查了分式不等式求解,考查了一元二次不等式,考查了由两命题的关系求参数的取值范围.本题的关键是由充分条件,分析出两集合的关系.9.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.10.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<; ∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.11.C解析:C【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.12.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.二、填空题13.15【分析】先依题意化简集合M 再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合即得这样的集合的个数【详解】设为方程的两个根则当时;当时;当时;当时;由条件①知且又由条件②知A 是有一些成对的解析:15 【分析】先依题意化简集合M ,再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合,即得这样的集合的个数. 【详解】设a ,b 为方程2420x mx +-=的两个根,则a b m +=-,42ab =-, 当1=a ,42b =时,41m =±; 当2=a ,21b =时,19m =±; 当3a =,14b =时,11m =±; 当6a =,7b =时,1m =±;{}{}{}{}{}1,111,1119,1941,411,1,11,11,19,19,41,41M =-⋃-⋃-⋃-=----,由条件①知A ≠∅且A M ⊆,又由条件②知A 是有一些成对的相反数组成的集合. 所以M 的4对相反数共能组成42115-=个不同的非空集合A . 故答案为:15. 【点睛】 关键点点睛:本题解题关键在于明确题中条件要求集合A 是由互为相反数的四组数字构成的非空集合,即计算集合个数突破难点.14.或【分析】分类讨论四种情况讨论再求并集即可【详解】因为所以或或或当时方程无实根所以解得;当时方程有两个相等的实根所以解得:;当时方程有两个相等的实根所以此时无解;当时方程有两个不相等的实根所以解得:解析:1a ≤-或1a = 【分析】分类讨论B =∅,{}0B =、{}4B =、{}0,4B =四种情况讨论,再求并集即可. 【详解】因为B A ⊆,所以B =∅或{}0B =或{}4B =或{}0,4B =, 当B =∅时,方程222(1)10x a x a +++-=无实根, 所以()()224141220a a a ∆=+--=+<,解得1a <-;当{}0B =时,方程222(1)10x a x a +++-=有两个相等的实根120x x ==,所以()1221221010x x a x x a ⎧+=-+=⎨=-=⎩ ,解得:1a =-; 当{}4B =-时,方程222(1)10x a x a +++-=有两个相等的实根124x x ==-,所以()12212218116x x a x x a ⎧+=-+=-⎨=-=⎩ ,此时无解; 当{}0,4B =时,方程222(1)10x a x a +++-=有两个不相等的实根1204,x x ==-,所以()1221221410x x a x x a ⎧+=-+=-⎨=-=⎩,解得:1a =; 综上所述:1a ≤-或1a =, 【点睛】本题主要考查了集合之间的包含关系,分类讨论的思想,属于中档题.15.或【分析】化简集合对集合是否为空集分类讨论若满足题意若根据条件确定集合的端点位置即可求解【详解】由得若满足题意;若可得或解得或;综上:或故答案为:或【点睛】本题考查集合间的运算不要遗漏空集情况属于中解析:4m >或2m < 【分析】化简集合B ,对集合A 是否为空集分类讨论,若A =∅满足题意,若A =∅,根据条件确定集合A 的端点位置,即可求解. 【详解】由21030x x +-≥得25,[2,5]x B -≤≤∴=-, 若,121,2A m m m =∅+>-<,满足题意; 若,A AB ≠∅=∅,可得12115m m m +≤-⎧⎨+>⎩或121212m m m +≤-⎧⎨-<-⎩,解得4m >或m ∈∅; 综上:4m >或2m <. 故答案为:4m >或2m < 【点睛】本题考查集合间的运算,不要遗漏空集情况,属于中档题.16.【分析】解绝对值不等式求得集合然后求得其补集解分式不等式求得集合由此求得【详解】由解得所以由解得所以故填:【点睛】本小题主要考查集合交集和补集的概念和运算考查绝对值不等式和分式不等式的解法属于基础题 解析:(2,1)(1,5]--【分析】解绝对值不等式求得集合A ,然后求得其补集.解分式不等式求得集合B ,由此求得()U C A B ⋂.【详解】由1x ≤解得11x -≤≤,所以[)(]3,11,5U C A =--⋃.由102x >+解得2x >-,所以()U C A B ⋂(2,1)(1,5]=--.故填:(2,1)(1,5]--.【点睛】本小题主要考查集合交集和补集的概念和运算,考查绝对值不等式和分式不等式的解法,属于基础题.17.【解析】【分析】根据一元二次不等式的解法和指数函数的单调性求出集合和集合然后进行交集的运算即可求解【详解】根据一元二次不等式的解法可得集合由指数函数的单调性可得集合所以【点睛】本题主要考查了集合表示 解析:(][),31,0-∞-⋃-【解析】【分析】根据一元二次不等式的解法和指数函数的单调性,求出集合A 和集合B ,然后进行交集的运算,即可求解.【详解】根据一元二次不等式的解法,可得集合(][),31,A =-∞-⋃-+∞,由指数函数的单调性,可得集合(),0B =-∞,所以A B =(][),31,0-∞-⋃-.【点睛】本题主要考查了集合表示方法、一元二次不等式的解法和指数函数的单调性,以及交集的运算,着重考查了推理与运算能力,属于基础题.18.【分析】解可得集合B 对于A 先将转化为且分三种情况讨论求出集合A 判断是否成立综合可得a 的范围即可得答案【详解】或则或对于A 且时成立符合题意时或不会成立不符合题意时或要使成立必有则a 的范围是综合可得a 的 解析:[]1,3【分析】 解21x ->可得集合B ,对于A ,先将1|0x x a -≥-转化为()()10x x a --≥且x a ≠,分1a =,1a >,1a <三种情况讨论,求出集合A ,判断B A ⊆是否成立,综合可得a 的范围,即可得答案【详解】211x x ->⇔<或3x >,则{|1B x x =<或3}x >,对于A ,()()1010x x x a x a-≥⇔--≥-且x a ≠, 1a =①时,{|1}A x x =≠,B A ⊆成立,符合题意,1a <②时,{|A x x a =<或1}x ≥,B A ⊆不会成立,不符合题意,1a >③时,{A x x a =或1}x ≤,要使B A ⊆成立,必有3a ≤,则a 的范围是13a ,综合①②③可得,a 的取值范围为13a ≤≤,即[]1,3;故答案是:[]1,3.【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.19.4【分析】根据题意列出所有可能的集合B 求出相应的求出平均数即可【详解】因为集合若且所以集合B 为:当时当时当时当时当时当时当时则G(B)的平均值是故答案为:【点睛】本题主要考查了集合间的包含关系考查学解析:4【分析】根据题意列出所有可能的集合B ,求出相应的()G B ,求出平均数即可.【详解】因为集合{}1,2,3A =,若B ≠∅,且B A ⊆所以集合B 为:{}{}{}{}{}{}{}1231,21,32,31,2,3,,,,,,当{}1B =时,()112G B =+=当{}2B =时,()224G B =+=当{}3B =时,()336G B =+=当{}1,2B =时,()123G B =+=当{}1,3B =时,()134G B =+=当{}2,3B =时,()235G B =+=当{}1,2,3B =时,()134G B =+=则G(B)的平均值是246345447++++++= 故答案为:4【点睛】本题主要考查了集合间的包含关系,考查学生分析问题和解决问题的能力,属于中档题. 20.【分析】先求得不等式的解集根据不等式的解集中的整数有且仅有得出不等式组即可求解得到答案【详解】由题意不等式即解得要使得不等式的解集中的整数有且仅有则满足解得即实数的取值范围是故答案为【点睛】本题主要 解析:[]16,17【分析】 先求得不等式34x b -<的解集4433b b x -++<<,根据不等式34x b -<的解集中的整数有且仅有5,6,得出不等式组44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,即可求解,得到答案. 【详解】 由题意,不等式34x b -<,即434x b -<-<,解得4433b b x -++<<, 要使得不等式34x b -<的解集中的整数有且仅有5,6, 则满足44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得1617b ≤≤,即实数b 的取值范围是[]16,17.故答案为[]16,17.【点睛】本题主要考查了绝对值不等式的求解,以及集合的应用,其中解答中正确求解绝对值不等式,根据题设条件得到不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题21.(1)0a =或1a =;(2)1a ≤;(3)0a =或1a ≥.【分析】根据集合中元素的个数以及方程的解即可确定a 的取值范围.【详解】解:(1)若A 中只有一个元素,则当0a =时,原方程变为210x +=,此时12x =-符合题意, 当0a ≠时,方程2210ax x ++=为二元一次方程,440a ∆=-=,即1a =, 故当0a =或1a =时,原方程只有一个解;(2)A 中至少有一个元素,即A 中有一个或两个元素,由0∆>得1a <综合(1)当1a ≤时A 中至少有一个元素;(3)A 中至多有一个元素,即A 中有一个或没有元素当44a 0∆=-<,即1a >时原方程无实数解,结合(1)知当0a =或1a ≥时A 中至多有一个元素.【点睛】关键点点睛:本题解题的关键是理解集合中的元素与方程的根之间的关系.22.(1)610a -≤≤;(2)答案见解析.【分析】()1先求集合A ,B ,A R ,再由R B A ⊆得到a 的不等式,解得即可;()2结合()1利用充分必要条件的定义逐一判定.【详解】解:()1集合5|0(3)(5,)3x A x R x -⎧⎫=∈>=-∞-⋃+∞⎨⎬+⎩⎭, 所以[]35R A =-,,集合()()()2{|21050}{|250}B x R x a x a x R x a x =∈-++≤=∈--≤,若R B A ⊆, 只需352a -≤≤, 所以610a -≤≤.()2由()1可知的充要条件是[]610a ∈-,, 选择①,则结论是既不充分也不必要条件;选择②,则结论是必要不充分条件;选择③,则结论是充分不必要条件.【点睛】关键点睛,利用集合关系求参数范围,求集合A ,B ,A R ,再由R B A ⊆得到a 的不等式,进而利用a 的范围,判定充分必要条件,属于中档题.23.(1){}22x x -<≤;(2)197,33⎡⎤-⎢⎥⎣⎦. 【分析】(1)依题意先求出集合A 和集合B ,再求出B R ,然后按照交集的定义求出结果即可; (2)由A B A ⋃=可得出B A ⊆,然后分B φ=和B φ≠两种情况进行分类讨论,进而求出结果即可.【详解】(1){}24A x x =-<≤,当3m =时,{}25B x x =<<, ∴{2C B x x =≤R 或}5x ≥,(){}22R A B x x ⋂=-<≤;(2)∵A B A ⋃=,∴B A ⊆,令()2(4)7=-+++f x x m x m , ①当B φ=时,即()0f x ≥恒成立,所以()2=44(7)0∆+-+≤m m ,解得:62m -≤≤;②当B φ≠时,即()0f x <有解,所以6m <-或2m >,令()0f x =,解得:x =,所以24≥-≤ , 解得1963-≤<-m 或723<≤m , 综合①②得m 的范围是197,33⎡⎤-⎢⎥⎣⎦. 【点睛】 易错点点睛:由A B A ⋃=可得出B A ⊆,然后进行分类讨论,切记别漏掉B φ=的情形,否则容易漏解.24.(1){|1x x <或3}x >;(2)[]1,0-.【分析】(1)化简集合A ,B ,根据并集运算即可. (2)计算()R AC B ,根据()()R C A C B ⊆,建立不等式求解即可. 【详解】(1)由10x ->得,函数()()lg 1f x x =-的定义域{}1A x x =< 260x x -->,即()()320x x -+>,解得{}32B x x x =><-或 A B ∴={|1x x <或3}x >,(2){}23R C B x x =-≤≤, (){}21R A C B x x ∴⋂=-≤<{}21C x x ⊆-≤<,则121011m m m -≥-⎧⇒-≤≤⎨+≤⎩, 故实数m 的取值范围为[]1,0-.【点睛】本题主要考查了集合的并集运算,补集、交集的运算,子集的概念,属于中档题.25.(1)1|32x x ⎧⎫-<≤⎨⎬⎩⎭,1|02x x ⎧⎫-<≤⎨⎬⎩⎭;(2){1|2a a ≤-或}4a ≥. 【分析】 (1)化简集合,利用集合的交并补运算求解即可;(2)讨论A =∅,A ≠∅两种情况,列出相应的不等式,求解即可得出答案.【详解】(1)若12a =时,12,{03}2A x x B x x ⎧⎫=-<<=<≤⎨⎬⎩⎭∣∣ ∴1|32A B x x ⎧⎫⋃=-<≤⎨⎬⎩⎭,由{|0U B x x =≤或3}x > 所以()1|02U A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭(2)由AB =∅知 当A =∅时,121,2a a a -≥+∴≤-当A ≠∅时,21113a a a +>-⎧⎨-≥⎩或211210a a a +>-⎧⎨+≤⎩ 4a ∴≥或122a -<≤- 综上:a 的取值范围是{1|2a a ≤-或}4a ≥. 【点睛】本题主要考查了集合的交并补混合运算以及根据交集的结果求参数的范围,属于中档题. 26.(1)()3,0-;(2)312a -<<-或1a >. 【分析】(1)由已知条件分别计算出集合A 和集合B ,然后再计算出A B 的结果.(2)由已知条件()A B C ⋂⊇,则分类讨论C =∅和C ≠∅两种情况,求出实数a 的取值范围.【详解】(1)已知集合A x y ⎧⎫⎪==⎨⎪⎩,则230x x -->,解得30x -<<,即()3,0A =-,集合1228x B x ⎧⎫=<<⎨⎬⎩⎭,解得31x -<<,即()3,1B =-,所以()3,0A B ⋂=- (2)因为集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,由(1)得()3,0A B ⋂=-,则当C =∅时,21a a >+,即1a >,当C≠∅时,212310a aaa≤+⎧⎪>-⎨⎪+<⎩,得312a-<<-,综上,312a-<<-或1a>.【点睛】本题考查了集合的交集运算和子集运算,在含有参量的子集题目中需要注意分类讨论,尤其不要漏掉空集情况,然后求解不等式组得到结果.本题较为基础.。
(压轴题)高中数学必修一第一单元《集合》测试卷(有答案解析)
一、选择题1.已知集合A 、B 均为非空集合,定义{*|()A B x x A B =∈⋃且}()x A B ∉⋂,若{}1,0,1,2,3A =-,{}2|1,B x x t t A ==+∈,则集合*A B 的子集共( )A .64个B .63个C .32个D .31个2.已知{}lg M y y x ==,{}xN y y a ==,则MN =( )A .0,B .RC .∅D .,03.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .04.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤5.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥6.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,1+7.已知集合A ={x |-3≤x -1<1},B ={-3,-2,-1,0,1,2},若C ⊆A ∩B ,则满足条件的集合C 的个数是( ). A .7B .8C .15D .168.定义一个集合A 的所有子集组成的集合叫做A 的幂集,记为()P a ,用()n A 表示有限集A 的元素个数,给出下列命题:(1)对于任意集合A ,都有()A P A ∈;(2)存在集合A ,使得()3nP A =;(3)若AB =Φ,则()()P A P B ⋂=Φ;(4)若A B ⊆,则()()P A P B ⊆;(5)若()()1n A n B -=,则[][]()2()n P A n P B =.其中正确命题的序号为( )A .(1)(2)(5)B .(1)(3)(5)C .(1)(4)(5)D .(2)(3)(4)9.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UB D .∅10.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,y A ,则下列结论中正确的是( )A .x y A +∈B .x y A -∈C .xy A ∈D .xA y∈11.已知全集为R ,集合A ={﹣2,﹣1,0,1,2},102x B xx -⎧⎫=<⎨⎬+⎩⎭∣,则A ∩(∁R B )的子集个数为( ) A .2B .3C .4D .812.设集合{}21xA y y ==-,{}1B x x =≥,则()R A C B =( )A .(],1-∞-B .(),1-∞C .()1,1-D .[)1,+∞二、填空题13.全集{U x x =是不大于20的素数},若{}3,5A B ⋂=,{}7,19A B ⋂=,{}2,17A B ⋃=,则集合A =___________.14.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 15.非空集合G 关于运算⊕满足:①对任意,a b G ∈,都有a b G +∈;②存在e G ∈使得对于一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合与运算:①G 是非负整数集,⊕:实数的加法;②G 是偶数集,⊕:实数的乘法;③G 是所有二次三项式构成的集合,⊕:多项式的乘法;④{},G x x a a b Q ==+∈,⊕:实数的乘法;其中属于融洽集的是________(请填写编号)16.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠且A B ⋂≠∅,则m的取值范围是________17.若规定集合{}()*12,,,n M a a a n N=⋅⋅⋅∈的子集{}()12*,,,mi i i a aa m N ⋅⋅⋅∈为M 的第k个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是______.18.已知集合{}10,A x ax x R =+=∈,集合{}2280B x x x =--=,若A B ⊆,则a 所有可能取值构成的集合为______________ 19.已知全集U =R 集合1|1A x x ⎧⎫=≤⎨⎬⎩⎭,则UA_______.20.若集合{}2|20N x x x a =-+=,{}1M =,且N M ⊆,则实数a 的取值范围是_________三、解答题21.设集合{}{}222280,430A x x x B x x ax a =+-<=-+= (1)若x A ∈是x B ∈的必要条件,求实数a 的取值范围;(2)是否存在实数a ,使A B ϕ⋂≠成立?若存在,求出实数a 的取值范围;若不存在,请说明理由.22.已知集合A ={x |3<x <7},B ={x |4<x ≤10},C ={x ||x -a |>2}. (1)求A ∪B 与RR ()()A B ⋂(2)若A ∩B ⊆C ,求a 的取值范围. 23.已知集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}222(1)50C x x m x m =+++-=.(1)若A B A ⋃=,求实数a 的值;(2)若AC C =,求实数m 的取值范围.24.已知集合{|1A x x =≤或5}x,集合{|221}B x a x a =-≤≤+(1)若1a =,求A B 和A B ;(2)若记符号{A B x A -=∈且}x B ∉,在图中把表示“集合A B -”的部分用阴影涂黑,并求当1a =时的A B -; (3)若AB B =,求实数a 的取值范围.25.设集合{|12A x a x a =-<<,}a R ∈,不等式2760x x -+<的解集为B . (1)当a 为0时,求集合A 、B ; (2)若A B ⊆,求实数a 的取值范围.26.已知集合{1,2,3}A =,2{|(1)0,}B x x a x a x R =-++=∈,若A B A ⋃=,求实数a ;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先求集合B ,再求并集、交集、补集,最后根据元素确定子集个数. 【详解】因为{}2|1,{1,2,5,10}B x x t t A ==+∈=, 所以{}{}1,0,1,2,3510,1,2,AB A B =-=,,*{1,0,3,5,10}A B ∴=-因此集合*A B 的子集有5232=个, 故选:C 【点睛】本题考查并集、交集、补集定义以及子集个数,考查综合本分析求解能力,属基础题.2.A解析:A 【解析】 【分析】先化简集合M ,N ,再计算M ∩N 即可. 【详解】由已知易得M =R ,N ={y ∈R|y >0},∴M ∩N =(0,+∞). 故选A . 【点睛】本题主要考查了集合的交运算,化简计算即可,比较简单.3.A解析:A 【分析】由集合的包含关系得,a b 的方程组,求解即可 【详解】A B ⊆,由集合元素互异性得0,0,a b a b ≠≠≠ 则22a a b b ⎧=⎨=-⎩ 或22b a a b ⎧=⎨=-⎩解得11a b =⎧⎨=-⎩或11b a =⎧⎨=-⎩故选: A 【点睛】本题考查集合的包含关系,考查元素的互异性,是基础题4.A解析:A 【分析】先分别求出C ,C U U M N ,再求()()C C U U M N ⋂即可 【详解】∵C {|}23U M x x x =<>-或,C {|24}U N x x =-≤≤, ∴()()C C {|34}U U M N x x ⋂=<≤. 故选:A . 【点睛】本题考查交集与补集的混合运算,属于中档题5.C解析:C 【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案. 【详解】当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.6.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】 由于()1lg 12x -<=所以{(011,1A x x =<-<=+, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.7.D解析:D 【分析】推导出C ⊆A ∩B ={-2,-1,0,1},由此能求出满足条件的集合C 的个数. 【详解】∵集合A ={x |-3≤x -1<1}={x |-2≤x <2},B ={-3,-2,-1,0,1,2},C ⊆A ∩B ={-2,-1,0,1}, ∴满足条件的集合C 的个数是:24=16. 故选:D . 【点睛】本题考查满足条件的集合C 的个数的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.8.C解析:C 【分析】直接利用新定义判断五个命题的真假即可. 【详解】由P (A )的定义可知①正确,④正确, 设n (A )=n ,则n (P (A ))=2n ,∴②错误, 若A ∩B =∅,则P (A )∩P (B )={∅},③不正确; n (A )﹣n (B )=1,即A 中元素比B 中元素多1个, 则n [P (A )]=2×n [P (B )].⑤正确, 故选:C . 【点睛】本题考查集合的子集关系,集合的基本运算,新定义的理解与应用.9.D解析:D 【分析】根据题意作出“韦恩图”,得出集合A 与集合B 没有公共元素,即可求解. 【详解】由题意,集合U 为全集,()UBA B =,如图所示,可得集合A 与集合B 没有公共元素,即A B =∅,故选D.【点睛】本题主要考查了集合的运算及应用,其中解答中根据题设条件,作出韦恩图确定两集合的关系是解答的关键,着重考查了推理与论证能力,属于基础题.10.C解析:C 【分析】设22x m n =+,22N,N N,,,N n b b ya ma ,再利用22()()xy ma nb mb na =++-,可得解.【详解】 由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈, 所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.11.D解析:D 【分析】解不等式得集合B ,由集合的运算求出()R A B ,根据集合中的元素可得子集个数.【详解】10{|21}2x B x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭∣,{|2R B x x =≤-或1}x ≥,所以()R A B {2,1,2}=-,其子集个数为328=.故选:D . 【点睛】本题考查集合的综合运算,考查子集的个数问题,属于基础题.12.C解析:C 【解析】 【分析】化简集合A ,B 根据补集和交集的定义即可求出. 【详解】集合A ={y |y =2x ﹣1}=(﹣1,+∞),B ={x |x ≥1}=[1,+∞), 则∁R B =(﹣∞,1) 则A ∩(∁R B )=(﹣1,1), 故选:C . 【点睛】本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.二、填空题13.【分析】本题首先可根据素数的定义得出然后根据题意绘出韦恩图最后根据韦恩图即可得出结果【详解】因为全集是不大于的素数所以因为所以因为所以可绘出韦恩图如图所示:由韦恩图可知故答案为:【点睛】本题考查根据 解析:{}3,5,11,13【分析】本题首先可根据素数的定义得出{}2,3,5,7,11,13,17,19U =,然后根据题意绘出韦恩图,最后根据韦恩图即可得出结果. 【详解】因为全集{U x x =是不大于20的素数},所以{}2,3,5,7,11,13,17,19U =, 因为{}2,17A B ⋃=,所以{}3,5,7,11,13,19AB =,因为{}3,5A B ⋂=,{}7,19A B ⋂=, 所以可绘出韦恩图,如图所示:由韦恩图可知,{}3,5,11,13A =, 故答案为:{}3,5,11,13. 【点睛】本题考查根据集合运算结果求集合,考查素数的定义,素数是指在大于1的自然数中,只能被1和该数本身整除的数,考查韦恩图的应用,能否根据题意绘出韦恩图是解决本题的关键,考查数形结合思想,是中档题.14.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】 由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,可得65a ∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈,当1a =-时,615(1)=∈--N ,满足题意;当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意; 当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-.故答案为:{1,2,3,4}-. 【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.15.①④【分析】逐一验证每个选项是否满足融洽集的两个条件若两个都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意的两非负整数仍为非负整数所以取及任意的非负整数则因此是非负整数集:实数的加法是融洽集解析:①④ 【分析】逐一验证每个选项是否满足“融洽集”的两个条件,若两个都满足,是“融洽集”,有一个不满足,则不是“融洽集”. 【详解】①对于任意的两非负整数,,a b a b +仍为非负整数, 所以a b G +∈,取0e =及任意的非负整数a , 则00a a a +=+=,因此G 是非负整数集,⊕:实数的加法是“融洽集”;②对于任意的偶数a ,不存在e G ∈, 使得a e e a a ⊕=⊕=成立, 所以②的G 不是“融洽集”; ③对于{G二次三项式},若任意,a b G ∈时,则,a b 其积就不是二次三项式,故G 不是“融洽集”;④{},G x x a a b Q ==+∈,设1,x a a b Q =+∈,212,,(,x c c d Q x x a c b d a c b d Q =+∈+=+++++∈,所以12x x G +∈;取1e =,任意,11a G a a a ∈⨯=⨯=, 所以④中的G 是“融洽集”. 故答案为:①④. 【点睛】本题考查对新定义的理解,以及对有关知识的掌握情况,关键是看所给的数集是否满足“融洽集”的两个条件,属于中档题.16.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若AB B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈- 故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.17.【分析】根据子集的定义将表示为求出即可求解【详解】的第25个子集是故答案为:【点睛】本题考查新定义的理解认真审题领会题意是关键属于中档题 解析:{}145,,a a a【分析】根据子集的定义将25表示为1211125222m i i i ---=++⋅⋅⋅+,求出12,m i i i ,即可求解【详解】03411415125222222---=++=++,1231,4,5i i i ===,M 的第25个子集是{}145,,a a a ,故答案为:{}145,,a a a . 【点睛】本题考查新定义的理解,认真审题,领会题意是关键,属于中档题.18.【分析】先化简集合利用分类讨论和即可求出构成的集合【详解】由可得:即:解得或故:由可得:当时方程无实数解此时满足当时方程的实数解为故:由可得:或解得或的所有取值构成的集合为:故答案为:【点睛】本题主解析:11{0,,}24- 【分析】先化简集合B ,利用A B ⊆,分类讨论=0a 和0a ≠,即可求出构成a 的集合.【详解】 由{}2280B x x x =--=可得:2280x x --= 即:()()240x x +-=解得2x =-或4x = 故:{}2,4B =- {}10,A x ax x R =+=∈由10ax += 可得:1ax =-当0a =时,方程1ax =-无实数解,此时A =∅,满足A B ⊆当0a ≠时,方程1ax =-的实数解为1x a =-,故:1{}A a=- 由A B ⊆可得:12a -=-或14a-= 解得12a =或14a =- a 的所有取值构成的集合为:11{0,,}24-.故答案为:11{0,,}24-.【点睛】本题主要考查了集合间的基本关系以及一元二次方程的解法,要注意集合A 是集合B 的子集时,集合A 有可能是空集. 19.【分析】先解分式不等式确定集合A 再求补集即可【详解】则故答案为:【点睛】本题考查补集运算准确求得集合A 是关键是基础题解析:[0,1)【分析】先解分式不等式确定集合A,再求补集即可【详解】()1|1=,0[1,)A x x ⎧⎫=≤-∞⋃+∞⎨⎬⎩⎭,则[0,1)U A故答案为:[0,1)【点睛】 本题考查补集运算,准确求得集合A 是关键,是基础题20.【分析】根据条件得到或分别计算得到答案【详解】则或当时解得;当时满足综上所述:故答案为:【点睛】本题考查了根据集合的包含关系求参数忽略掉空集的情况是容易发生的错误解析:[1,)+∝【分析】根据条件得到{}1N =或N =∅,分别计算得到答案.【详解】N M ⊆,则{}1N =或N =∅当{}1N =时,{}{}2|201N x x x a =-+==,解得1a =; 当N =∅时,{}2|20N x xx a =-+=,满足4401a a ∆=-<∴>.综上所述:1a ≥故答案为:[1,)+∝【点睛】 本题考查了根据集合的包含关系求参数,忽略掉空集的情况是容易发生的错误.三、解答题21.(1)4233a -<<;(2)存在,42a -<<. 【分析】(1)x A ∈是x B ∈的必要条件可转化为B A ⊆,建立不等式求解即可;(2)假设A B ⋂≠∅,建立不等关系,有解则存在,无解则不存在.【详解】 {}42A x x =-<<,()(){}30B x x a x a =--=(1)由已知得:B A ⊆ 42432a a -<<⎧∴⎨-<<⎩ 4233a ⇒-<<, 即实数a 的取值范围4233a -<<, (2)假设存在a 满足条件, 则42a -<<或432a -<<,42a ∴-<<即存在42a -<<使A B ⋂≠∅.【点睛】本题主要考查了根据集合的包含关系求参数的取值范围,考查了必要条件,属于中档题.22.(1){|310}A B x x ⋃=<,()(){|3R R A B x x ⋂=或10}x >;(2){|9a a 或2}a【分析】(1)直接进行并集、交集和补集的运算即可;(2)先得出{|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<,根据AB C ⊆即可得出27a -或24a +,解出a 的范围即可.【详解】(1)因为集合A ={x |3<x <7},B ={x |4<x ≤10},所以{|310}A B x x ⋃=<,{|3RA x x =或7}x , {|4RB x x =或10}x >;()(){|3R R A B x x ⋂=或10}x >;(2){|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<;A B C ⋂⊆;27a ∴-,或24a +;9a ∴,或2a ;a ∴的取值范围为{|9a a 或2}a .【点睛】考查描述法表示集合的定义,绝对值不等式的解法,交集、并集和补集的运算,以及子集的概念.属于中档题.23.(1)2a =或3;(2)(,3]-∞-.【分析】(1)先求解出方程2320x x -+=的根,则集合A 可知,再求解出210x ax a -+-=的根,则可确定出集合B ,根据A B A ⋃=得到B A ⊆,从而可求解出1a -的可取值,则a 的值可求;(2)根据AC C =得到C A ⊆,分别考虑当C 为空集、单元素集、双元素集的情况,由此确定出a 的取值. 【详解】(1)由2320x x -+=得1x =或2,所以{1,2}A =,由210x ax a -+-=得1x =或1a -,所以1,1B a B ∈-∈,因为A B A ⋃=,所以B A ⊆,所以11a -=或2,所以2a =或3;(2)因为A C C =,所以C A ⊆,当C =∅的时,()224(1)450m m ∆=+--<,解得3m <-,当{}1C =时,()2224(1)45012(1)50m m m m ⎧∆=+--=⎪⎨+++-=⎪⎩,无解,当{}2C =时,()()()2224145044150m m m m ⎧∆=+--=⎪⎨+++-=⎪⎩,解得3m =-, 当{}1,2C =时,2122(1)125m m +=-+⎧⎨⋅=-⎩,无解, 综上,实数m 的取值范围是(,3]-∞-.【点睛】结论点睛:根据集合的交、并集运算结果判断集合间的关系:(1)若A B A ⋃=,则有B A ⊆;(2)若AB A =,则有A B ⊆. 24.(1){|01}AB x x =≤≤,{|2A B x x =≤或5}x ;(2)阴影图形见解析,{|0A B x x -=≤或5}x ;(3)0a ≤或3a >. 【分析】(1)当1a =时,求得集合B ,根据交集、并集的运算法则,即可求得答案;(2)阴影图形见解析,当1a =时,求得集合B ,根据A B -的定义,即可求得答案;(3)由题意得B A ⊆,分别讨论B =∅和B ≠∅两种情况,根据集合的包含关系,即可求得a 的范围.【详解】(1)当1a =时,02{}|B x x ≤≤=,所以{|01}A B x x =≤≤,{|2A B x x =≤或5}x ;(2)A-B 的部分如图所示:,当1a =时,{|0A B x x -=≤或5}x; (3)因为A B B =,所以B A ⊆,当B =∅时,221a a ->+,解得3a >,当B ≠∅时,则11221a a a +≤⎧⎨-≤+⎩或225221a a a -≥⎧⎨-≤+⎩, 解得0a ≤或∅,综上:0a ≤或3a >.【点睛】易错点为:根据集合包含关系求参数时,当B A ⊆,且集合B 含有参数时,需要讨论集合B 是否为空集,再进行求解,考查分析理解,计算求值的能力,属中档题.25.(1){|10}A x x =-<<,{|16}B x x =<<;(2)1a -或23a .【分析】(1)根据题意,由0a =可得结合A ,解不等式2760x x -+<可得集合B ,(2)根据题意,分A 是否为空集2种情况讨论,求出a 的取值范围,综合即可得答案.【详解】解:(1)根据题意,集合{|12A x a x a =-<<,}a R ∈,当0a =时,{|10}A x x =-<<,276016x x x -+<⇒<<,则{|16}B x x =<<,(2)根据题意,若A B ⊆,分2种情况讨论:①,当12a a -时,即1a -时,A =∅,A B ⊆成立;②,当12a a -<时,即1a >-时,A ≠∅,若A B ⊆,必有1126a a -⎧⎨⎩, 解可得23a ,综合可得a 的取值范围为1a -或23a .【点睛】本题考查集合的包含关系的应用,(2)中注意讨论A 为空集,属于基础题. 26.1a =或2或3【分析】由A B A ⋃=可得B A ⊆,分别讨论B =∅与B ≠∅的情况,进而求解即可【详解】由A B A ⋃=可得B A ⊆,若B =∅,则()2140a a ∆=+-<,解得a ∈∅;若B ≠∅,则()()10x a x --=,解得1x a =,21x =,①当1a =,则{}1B =,符合题意;②当2a =,则{}1,2B =,符合题意;③当3a =,则{}1,3B =,符合题意;综上,1a =或2或3【点睛】本题考查已知集合的包含关系求参数,考查分类讨论思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(本小题满分12分)已知x 满足不等式211222(log )7log 30x x ++≤,求22()log log 42x xf x =⋅的最大值与最小值及相应x 值.2.(14分)已知定义域为R 的函数2()12x xaf x -+=+是奇函数(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围;3.(本小题满分10分) 已知定义在区间(1,1)-上的函数2()1ax b f x x +=+为奇函数,且12()25f =.(1) 求实数a ,b 的值; (2) 用定义证明:函数()f x 在区间(1,1)-上是增函数; (3) 解关于t 的不等式(1)()0f t f t -+<.4.(14分)定义在R +上的函数f(x)对任意实数a,b +∈R ,均有f(ab)=f(a)+f(b)成立,且当x>1时,f(x)<0, (1)求f(1)(2)求证:f(x)为减函数。
(3)当f(4)= -2时,解不等式1)5()3(-≥+-f x f5.(本小题满分12分)已知定义在[1,4]上的函数f(x)=x 2-2bx+4b(b ≥1), (I)求f(x)的最小值g(b); (II)求g(b)的最大值M 。
6.(12分)设函数()log (3)(0,1)a f x x a a a =->≠且,当点(,)P x y 是函数()y f x =图象上的点时,点(2,)Q x a y -- 是函数()y g x =图象上的点. (1)写出函数()y g x =的解析式;(2)若当[2,3]x a a ∈++时,恒有|()()|1f x g x -,试确定a 的取值范围;(3)把()y g x =的图象向左平移a 个单位得到()y h x =的图象,函数1()22()()()2h x h x h x F x aa a ---=-+,(0,1a a >≠且)在1[,4]4的最大值为54,求a 的值.10、已知定义在R 上的偶函数()f x 在[0,)+∞上单调递增,且(2)0f =,则不等式2(log )0f x >的解集为( )A .1(,4)4B .1(,)(4,)4-∞+∞C .1(0,)(4,)4+∞D .1(,)(0,4)4-∞11、设1(0,)2a ∈,则1212,log ,aa a a 之间的大小关系是( )A .1212log a a a a >>B .1212log a a a a >>C .1212log a a a a >>D .1212log a a a a >>12、函数2()(0)f x ax bx c a =++≠,对任意的非常实数,,,,,a b c m n p ,关于x 的方程2[()]()0m f x nf x p ++=的解集不可能是( )A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}二、填空题:本大题共4个小题,每小题5分,共20分 13、已知全集{1,2,3,4,5,6}U =,集合{1,3,4,6}A =,则集合UA 的所有子集共有 个.14、已知2()345,()(2)f x x x g x f x =-+=-,则(3)g = . 15、函数122()log (2)f x x x =--的单调递增区间为 .16、定义在R 上的奇函数()f x 满足:当0x >时,2009()2009log xf x x =+,则方程()0f x =的实根个数为 .二、填空题:(5420⨯=分)13、4;14、4;15、(,1)-∞-;16、321、(12分)设函数124()lg ()3xxa f x a R ++=∈.(1)当2a =-时,求()f x 的定义域;(2)如果(,1)x ∈-∞-时,()f x 有意义,试确定a 的取值范围; (3)如果01a <<,求证:当0x ≠时,有2()(2)f x f x <. 21、解:(1)当2a =-时,函数()f x 有意义,则12240122403x xx x +-⨯>⇒+-⨯>,令2x t =,不等式化为:2121012t t t --<⇒-<<,转化为12102x x -<<⇒<,∴此时函数()f x 的定义域为(,0)-∞(2)当1x <-时,()f x 有意义,则124121101240()3442xxxx xx x x a a a +++>⇒++>⇒>-=-+,令11()42x x y =-+在(,1)x ∈-∞-上单调递增,∴6y <-,则有6a-;(3)当01,0a x <<≠时,22222(124)1241242()(2)2log lg lg333(124)x x x x x x x x a a a f x f x a ++++++-=-=++, 设2xt =,∵0x ≠,∴1t ≠且01a <<,则2224232(124)3(124)(3)2(22)2(1)x x x x a a t a a at t a t ++-++=-++-+- 4223222222(3)2(22)2(1)(1)(1)(1)0t a a at t a t at t at t <-++-+-=------<∴2()(2)f x f x < 22.(本题满分14分) 已知幂函数(2)(1)()()k k f x x k z -+=∈满足(2)(3)f f <。
(1)求整数k 的值,并写出相应的函数()f x 的解析式;(2)对于(1)中的函数()f x ,试判断是否存在正数m ,使函数()1()(21)g x mf x m x =-+-,在区间[]0,1上的最大值为5。
若存在,求出m 的值;若不存在,请说明理由。
22.(本题满分14分)已知函数1()(0x f x a a -=>且1)a ≠(Ⅰ)若函数()y f x =的图象经过()4,3P 点,求a 的值;(Ⅱ)当a 变化时,比较1(lg)( 2.1)100f f -与大小,并写出比较过程; (Ⅲ)若(lg )100f a =,求a 的值.20.(本题16分)已知函数9()log (91)xf x kx =++(k ∈R )是偶函数. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x b =+没有交点,求b 的取值范围; (3)设()94()log 33xh x a a =⋅-,若函数()f x 与()h x 的图象有且只有一个公共点,求实数a 的取值范围.10. 若函数2()2f x x x =-+,则对任意实数12,x x ,下列不等式总成立的是( C )A .12()2x x f +≤12()()2f x f x +B .12()2x x f +<12()()2f x f x + C .12()2x x f +≥12()()2f x f x + D .12()2x x f +>12()()2f x f x + 18. (本小题满分12分)二次函数()y f x =的图象经过三点(3,7),(5,7),(2,8)A B C --.(1)求函数()y f x =的解析式(2)求函数()y f x =在区间[],1t t +上的最大值和最小值22.解:由211222(log )7log 30x x ++≤,∴1213log 2x -≤≤-, ∴21log 32x ≤≤, 而2222()log log (log 2)(log 1)42x xf x x x =⋅=--=222(log )3log 2x x -+=2231(log )24x --,当23log 2x =时min 1()4f x =- 此时x =322=当2log 3x =时max 91()244f x =-=,此时8x =. 21..解:(1)由题设,需12(0)0,1a f a -+==∴=,1212()xxf x -+∴=经验证,()f x 为奇函数,1a ∴=---------(2分)(2)减函数--------------(3分)证明:任取121221,,,0R x x x x x x x ∈∆=-,由(1)122121122(22)1212211212(12)(12)()()x x x x x x x x y f f x x ---++++∆=-=-=12121212,022,220,(12)(12)0x x x x x x x x ∴∴-++0y ∴∆∴该函数在定义域R 上是减函数--------------(7分)(3)由22(2)(2)0f t t f t k -+-<得22(2)(2)f t t f t k -<--,()f x 是奇函数22(2)(2)f t t f k t ∴-<-,由(2),()f x 是减函数∴原问题转化为2222t t k t --,即2320t t k --对任意t R ∈恒成立------(10分)4120,k ∴∆=+ 得13k <-即为所求--- ---(14分)20、解:(1)由2()1ax b f x x +=+为奇函数,且 2122()1251()2a bf +==+ 则21122()()12251()2a bf f -+-==-=-+-,解得:1,0a b ==。
∴2()1x f x x =+(2)证明:在区间(1,1)-上任取12,x x ,令1211x x -<<<,221212211222221212(1)(1)()()11(1)(1)x x x x x x f x f x x x x x +-+-=-=++++12122212()(1)(1)(1)x x x x x x --=++1211x x -<<< ∴ 120x x -< ,1210x x -> , 21(1)0x +>, 22(1)0x +>∴12()()0f x f x -< 即12()()f x f x <故函数()f x 在区间(1,1)-上是增函数.(3)(1)()0f t f t -+< ∴ ()(1)(1)f t f t f t <--=-函数()f x 在区间(1,1)-上是增函数 ∴ 111111t tt t <-⎧⎪-<<⎨⎪-<-<⎩∴102t <<故关于t 的不等式的解集为1(0,)2. 21,(1) 由条件得f(1)=f(1)+f(1),所以f(1)=0 (2) 法一:设k 为一个大于1的常数,x ∈R+,则 f(kx)=f(x)+f(k)因为k>1,所以f(k)<0,且kx>x所以kx>x,f(kx)<f(x)对x ∈R+恒成立,所以 f(x)为R+上的单调减函数 法二:设()2121,0,x x x x <+∞∈且令1,12>=k kx x 则)()()()()()()()(212121k f x f k f x f kx f x f x f x f -=--=-=-有题知,f(k)<0)()(0)()(2121x f x f x f x f >>-∴即所以f(x)在(0,+∞)上为减函数 法三 设()2121,0,x x x x <+∞∈且)()()()()(12121121x xf x x x f x f x f x f -=⋅-=- 0)(11212<∴>x xf x x)()(0)()(2121x f x f x f x f >>-∴即所以f(x)在(0,+∞)上为减函数22. 解:f(x)=(x-b)2-b 2+4b的对称轴为直线x =b ( b ≥1), (I) ①当1≤b ≤4时,g(b)=f(b)=-b 2+4b;②当b >4时,g(b)=f(4)=16-314b , 综上所述,f(x)的最小值g(b)=2 (14)43116 (4)4bb b b b ⎧-+⎪⎪⎨⎪-⎪⎩≤≤。