电机学讲义-磁路

合集下载

第1章 磁路2(电机中的磁路)

第1章 磁路2(电机中的磁路)

N Li
因 得
Ni Rm

m
N N Ni N 2 2 L N m i i i Rm Rm

从上式可以看出电感 L 随 m ( Rm ) 变化而变化
2. 交流线圈的电抗
X L N m N
2
2
S
l
电抗 X 随着频率 f 、匝数N 2 、磁阻 m 的变化而变化。
第二节 电机学中的基本电磁定律
知识结构
变压 器、 电机
耦合

全电流定律
电流
小电流

能量转换 电磁感 应定律 感应 电势 电磁力 定律
大磁通
铁心
铁心增磁功能
制约
铁心 饱和
制约 铁心中 的气隙
电磁转矩
变压器、发电机、电动机
一、磁路的基本定律
1、电机中的典型磁路 单相变压器
i1
输入电能
N1 N2
输出电能
2.变压器电势与运动电势 若线圈和磁场相对静止,感应电势纯粹是由于和线圈 交链的磁通随时间的变化而产生,仅有变压器电势,即
d e
dt
若导线切割磁力线的速度为 v ,导 线处的磁感应强度为 b ,且 b 不随时间 变化时,假设磁力线、导线与导线运动 方向三者垂直,则导线中感应电势为运 动电势,其大小为
随着铁心磁路饱和的增加,铁心磁导率µ 减小, Fe 相应的磁导、电抗也要减小。
3. 交流铁心的损耗
当铁心中磁通交变时,要产生铁心损耗,它由磁 滞损耗与涡流损耗两部分组成。
1)磁滞损耗 铁磁材料置于交变磁场中时,材料被反复交变 磁化,其分子运动所消耗的能量 。
磁滞回线所包含的面积表示了单位体积磁性材 料在磁化一周的进程中所消耗的能量。

电机学:第一章 磁路2

电机学:第一章 磁路2

N 500
2)用安培环路定律
磁场强度 H B
1
159 A/m
Fe 5000 4 10 7
磁动势 F Hl 159 0.3 47.7A
励磁电流 i F 47.7 9.54102 A N 500
II Rmm RR FF EE
I FRm RmR F E
磁路的欧姆定律,在形式上与电路欧姆定律相似。
将铁磁材料放入磁场后,磁场会显著增强,铁磁材料在磁场中 呈现很强的磁性这一现象,称为铁磁物质的磁化。
原因:铁磁物质中有许多称为磁畴的天然磁化区,当未投入磁场时, 磁畴杂乱无章的排列,磁效应相互抵消对外不显磁性。当放入磁场 后,磁畴按外磁场方向排列起来,形成一附加磁场叠加在外磁场上。
如图1-6所示。
二.磁化曲线
用直流励磁 用交流励磁
磁路中磁通恒定 磁路中磁通交变
直流磁路 直流电机 交流磁路 变压器、感应电机
二、磁路的基本定律
磁路的基本定律有 安培环路定律,磁路的欧姆定律,磁路的基尔霍 夫第一定律,磁路的基尔霍夫第二定律。 1、安培环路定理(或称全电流定理)
在磁路中沿任一闭合路径L,磁场H的线积分等于该闭合回路所包围 的总电流,即:
若铁心上绕有通有电流i 的N匝线圈,铁心的截面积为 A,磁路的平均长度为L,材料 的导磁率为μ,不计漏磁通,
且各截面上的磁通密度为均匀
并垂直于各截面,则:
B dA BA
HB
Ni HL B L L
A
Ni F
L
Rm
A
F Rm
L
Rm A
:磁通 ,单位为Wb;F:磁动势 ,单位为A;H:磁场强度 ,单 位为A/m;B:磁通密度,单位为T;Rm:磁阻 ,单位为A/Wb。

电机学-第一章磁路

电机学-第一章磁路
全电流定律(安 培环路定律): 磁场强度沿任意 的闭合路径的线 积分等于闭合路 径包围的导体电 流的代数和。
H dl Ni
电流是产生磁场 的源。
16

l
' ' Η dl H dl I1 I 2 I3
l
17
3.电生磁--全电流定律
磁压降 F=Hl 磁路基尔霍夫 第一定律 磁路基尔霍夫 第二定律
F Rm
i o
I i I o
E U
NI Hl
f Bli
30
e Blv
e N
d dt
电磁力定律
2. 磁路计算方法
给定磁通Φ求磁动势F。 给定磁动势F求磁通Φ。 电机和变压器设计中的磁路计算通常属于第一种 类型的问题。对于第二种类型的问题,一般要用 迭代法确定,编程由计算机完成。
磁畴(未磁化)
磁畴(磁化)
5
3.磁化曲线
在外磁场H(激励)作用下,磁感应强度B (响应) 将发生变化,二者之间的关系曲线称为磁化曲线, 记为B=f(H)。
磁饱和现象:对铁 磁材料进行磁化时 ,当外磁场强度增 加到一定程度后, 随H的增加,B的 增加逐渐变慢的现 象。因此铁磁材料 磁导率 Fe随着H的 增加而减小。
电机中的基本电磁定律
磁路基本定律及其计算方法
2
一、铁磁材料特性
1. 铁磁物质的概念
磁导率:表征物质导磁能力的物理量,用符号表示 , = B/H 真空的磁导率 0 = 4π×10-7 H/m 为常数 相对磁导率:任何一种物质的磁导率与真空磁导率 的比称为该物质的相对磁导率,用r表示,即

电流密度 电场强度 E 电阻率 电导率

电机学-磁路

电机学-磁路

Φ1 I1 N1 Φ3
Φ2
I2
N2
1 = 2 =
3
所以
2 0.002 = Wb 2 = 0.001 Wb
0.001 B1 = = -4 T = 1.25 T A1 8×10
1
第一章 磁路
B3 =
3
A3
=
0.002 -4 T = 1 T 20×10
由磁化曲线查得: H1 = 6.5 A/m H3 = 3 A/m 最后求得 F1 = F2 = Um1+Um3 = H1l1+H3l3 = (6.5×30+3×10) A = 225 A
I
l1
I
A1 A2 l2
第一章 磁路
总结: 给定磁通,计算所需的励磁磁动势,计算步骤如下: (1)将磁路按材料性质和不同截面分成数段 (2)计算各段的有效面积和平均长度Ai,Li (3)根据各段中的Φi计算各段对应的Bi
(4)由Bi->Hi对铁磁材料查磁化曲线;
对空气磁路,按线性对待,B=µ0H (5)计算出各段的磁压降HiLi,最后求F= Hm Li=NI
对一般电工硅钢片:n=1.6-2.3
第一章 磁路
(2)涡流损耗 铁芯内的磁通交变时,铁芯本身就 感应出电势,该电势在铁芯内形成漩涡 状电流,称为涡流。涡流经过的“路” 具有一定的电阻,使铁芯发热,其消耗 电源功率,称为涡流损耗。 Φ
Pe=Ce Δ2 f2 B2m V Ce为涡流损耗系数,取决于材料电阻率;
1. 高导磁性
※ 铸钢:
0
≈1 000 0 硅钢片: ≈ ( 6 000 ~ 7 000) 0 玻莫合金: 比 0 大几万倍。
第一章 磁路
磁性物质内部存在着很多很小的“磁畴”。

第1章磁路-专业知识讲座

第1章磁路-专业知识讲座

第1章 磁路
交变磁通旳效应: (1).磁通量随时间交变,必然会在激磁线圈内产生
感应电动势; (2).磁通量随时间交变,必然会在铁心中产生铁心
损耗。 (3).磁饱和现象会造成电流、磁通和电动势波形旳
畸变。
支旳磁路。
1
2
N1
1 2N2
L
A
L
L
第1章 磁路
[例1-3] 铁心由DR530硅钢片构成,铁心柱和 铁轭截
面积AFe=0.0004m2,磁路平均长度lFe=0.05m,气隙长 度δ1 =δ2=2.5×10-3m,励磁线圈匝数N1=N2=1000匝。 不计漏磁通,试求在气隙中产生磁通密度Bδ=1.211T时,
然后再逐渐减小H,B值将 沿曲线ab下降。
B Bm
Br
b
当H=0 时,B值并不等于零, 而是Br。这就是剩磁。
a
H
Hm
第1章 磁路
矫顽力——要使
B值为零,必须
B Bm
a
加上相应旳反向
b
B 磁场,此反向磁 r
H
场强度称为矫顽
力Hc。
c Hc
Hm
第1章 磁路
磁滞回线——
B Bm
a
铁磁材料旳磁滞回线
当H在Hm和- Hm之间反复变
真实旳物理量,反应了 该点处旳磁特征
第1章 磁路
2.磁通量Φ —— 垂直穿过某截面积旳磁力线总和。 单位:Wb
磁感应强度旳积分值, 描述了磁场旳总体特征
3.磁场强度H —— 计算磁场时引用旳物理量。 B=μH ,单位:A/m
磁感应强度与该点磁导率旳 乘积,反应了建立该点磁场
旳源
第1章 磁路
4.B、H、Φ之间旳关系

电机学第1章磁路

电机学第1章磁路
i

涡流损耗
铁芯是有阻值的,当磁通交变时,铁芯中就会感应交变的电 势,进而在铁心内引起环流。这些环流通作涡流状流动,称 为涡流涡流引起的损耗,称为涡流损耗。
pw k w f B
2
2 m
思考:如何尽量减小涡流损耗?
• 为减小涡流损耗, 电机和变压器的铁 心都用含硅量较高 的薄硅钢片叠成。
后于磁场强度变化,通常在电机内也可理解为磁通落后于 激磁电流的现象,称为磁滞现象)。
磁滞回线:磁场强度H缓慢地循环变化,B-H曲线封 闭曲线 • 磁滞现象是铁磁材料的另一个特性。
B
Bm
b
a
Br
Hc
c f e
Hc
H
Hm
Hm
d
Bm
图1-7 铁磁材料的磁滞回线
基本磁化曲线:
对同一铁磁材料,选择不同的磁场强度进行反复 磁化,可得一系列大小不同的磁滞回线,再将各 磁滞回线的顶点联接起来,所得的曲线。
2.磁化曲线和磁滞回线
磁化曲线:将一块尚未磁化的铁磁材料进行磁化,当磁 场强度H由零逐渐增大时,磁通密度B将随之增大, 得到曲线B=f(H)。 特性:①具有高的导磁性能;②磁化曲线呈非线性(饱 和特性)它的磁化曲线具有饱和性,磁导率μFe不 是常数,且随H的变化而变化。 磁滞回线在oa段:当H增大→B增大,但B增大速度较慢 在ab段:当H增大→B增大,B增大速度快; 在bc段:B随H增大的速度又较慢; 在cd段:为磁饱和区(又呈直线段)。其中拐弯点b称 为膝点;c点为饱和点。 • 过了饱和点c,铁磁材料的磁导率趋近μ0。
R
k
mk
Fm
• 磁路和电路的比拟仅是一种数学形式上的类似、 而不是物理本质的相似。

电机学-磁路

电机学-磁路

磁路-电路分析
交、直流电路分析
• 欧姆定律:
• 基尔ii 霍0夫定律ui 0
B
1.1 磁路基本定律
一、磁路的概念
磁通所通过的路径叫磁路(电流流经的路径叫电路)
1、两种常见的磁路: 变压器磁路 两极直流电机的磁路
概念:主磁通和主磁路 励磁线圈和励磁电流
漏磁通和漏磁路 直流磁路和交流磁路
2、描述磁场的物理量:
磁路-基本知识
电学、磁学和动力学原理的综合运用
❖ 直流和交流电路分析原理 ❖ 磁路定律 ❖ 电磁关系 ❖ 电、磁和力的关系 ❖ 力学定律 ❖ 能量转换和守恒定律 ❖ 材料的特性
磁路-基本名词
• 电流、电压、电阻; • 磁通、磁场密度 B、磁场强度 H、磁动势 F; • 磁阻、磁导; • 磁滞、涡流;
❖ 磁化曲线、磁滞现象
• 上升曲线和下降曲线不重合 • 剩磁、矫顽力
1.2常用铁磁性材料及其特性
• 饱和性
B
❖ 磁滞损耗、涡流损耗
pn f Bm ,
pFe f Bm2 ,
2
0
1.2 ~ 1.6
B=f(H) =f(H) H
1.3磁路计算
• 1.3磁路计算 • 计算类型
给定磁通量φ,计算 所需磁动势F
磁场的变化有关
1.1 磁路基本定律
二、磁路基本电磁定律
• 磁路欧姆定律:
F
l/
S
F Rm
mF
• 基尔霍夫定律
i 0 Fi N i
1.1 磁路基本定律
• 电磁感应定律
e d N d
dt
dt
e Blv
• 全电流定律l H: dl Ii
1.1 磁路基本定律

电机学第一章 磁路

电机学第一章 磁路

H
随着磁场强度H的增大,饱和程度增加,μFe减 小,Rm增大,导磁性能降低.
B
c b
B = f ( H)
d
μFe = f ( H )
a
B = μ0 H
H
设计电机和变压器时,为使主磁路内得到较大的 磁通量而又不过分增大励磁磁动势.通常把铁心 内的工作磁通密度选择在膝点附近
B
c b
膝点 饱和点
B = f ( H)
四、铁心损耗
1.磁滞损耗
定义: 铁磁材料置于交变磁场中时,磁畴相 互间不停地摩擦、消耗能量、造成损耗,这种 损耗称为磁滞损耗。 公式: n h h m
p = C fB V
应用:由于硅钢片磁滞回线的面积较 小,故电机和变压器的铁心常用硅钢片叠成。
2.涡流损耗
¾涡流:铁磁材料在交变磁场将 有围绕磁通呈蜗旋状的感应电动 势和电流产生,简称涡流。 ¾涡流损耗:涡流在其流通路径 上的等效电阻中产生的I2R损耗 称为涡流损耗。 ¾涡流损耗与磁场交变频率f, 厚度d和最大磁感应强度Bm的平 方成正比,与材料的电阻率成反 比。 ¾要减小涡流损耗,首先应减小 厚度,其次是增加涡流回路中的 电阻。电工硅钢片中加入适量的 硅,制成硅钢片,显著提高电阻 率
表1.1 磁路和电路对比表 序 号 1 2 3 4 5 6 7 8 9 电 基本物理量 或基本定律 电 流 电 压 电 阻 电 导 电流密度 电导率 基尔霍夫 第一定律 基尔霍夫 第二定律 欧姆定律 路 符号或 定义 I U R=l/(γA) G=1/R J=I/A 单位 A V Ω S A/m2 S/m 磁 路 单 位 Wb A 1/H H Wb/m2(T) H/m 基本物理量或 符号或 基本定律 定义 磁 通 φ F 磁动势 磁 阻 磁 导 磁通密度 磁导率 磁通连续性 原理 Rm=l/(μA)

磁路基础知识

磁路基础知识
Φ=0
基尔霍夫第二定律
NI= Hl ΦRm
电路旳基本物理量及公式
电动势E 电 流I 电 阻R 电 导G 欧姆定律
I E/R
基尔霍夫第一定律
i=0
基尔霍夫第二定律
e=iR
南通大学《电机学》
磁路基础知识
1.2铁磁材料及其特征
1.2.1铁磁材料旳高导磁性 1.铁磁物质旳磁化
将铁、镍、钴等铁磁物质放入磁场后,铁磁物质 呈现很强旳磁性,这种现象,称为铁磁物质旳磁化。
磁畴:在铁磁物质内部存在着许多很小旳天然磁化区。
南通大学《电机学》
磁路基础知识
2.起始磁化曲线
将一块还未磁化旳铁磁材料进行磁化,当磁场 强度H由零逐渐增大时,磁通密度B也将随之增大, 曲线B=f(H)就称为起始磁化曲线
B
c
d
B f (H)
b
a
0
南通大学《电机学》
磁路基础知识
B 0H
H
3.磁滞回线
相应旳模拟电路图
南通大学《电机学》
磁路基础知识
1.1.5磁路旳基尔霍夫定律 1、磁路旳基尔霍夫第一定律
闭合面A显然有:
-Φ1+Φ2+Φ3=0
Φ=0
穿出(或进入)任一闭合面旳总磁通量恒等于零( 或者说,进入任一闭合面旳磁通量恒等于穿出该闭 合面旳磁通量)
南通大学《电机学》
磁路基础知识
2、磁路旳基尔霍夫第二定律
Φ
RmFe
F
Rm
磁路基础知识
模拟电路图
解:铁心内磁通密度为
0.0009
BFe
AFe
T 1T 0.0009
从铸钢磁化曲线查得:与BFe相应旳HFe=9×102A/m
铁心段旳磁位降: H l Fe Fe 9 102 0.3A 270A

第一章磁路

第一章磁路

铁磁物质的磁导率
非铁磁材料的磁导率接近真空磁导率0 ,铁 磁材料的磁导率比非铁磁材料的磁导率大得多, 即 0 。 常用铁磁材料的磁导率 铸钢: ≈1000 0 硅钢片:≈(6000 ~ 7000) 0 玻莫合金: ≈(20000 ~ 200000) 0
二、磁化曲线及磁滞回线
???
F Hl 159 0 .3 A 47 .7 A
励磁电流
iF
N
9.54 10 A
2
磁路的基本定律
磁路的基尔霍夫第一定律
磁路的基尔霍夫第一定律:穿出或进入 任一闭和面的总磁通量恒等于零(或者说, 进入任一闭合面的磁通量恒等于穿出该闭 合面的磁通量),这就是磁通连续性定律。
在电路中有电流时,就有功率损耗 I R ;而在直流磁路中,维持一 定的磁通量 ,铁心中没有功率损耗。
2
在电路中可以认为电流全部在导线中流过,导线外没有电流,在 磁路中,则没有绝对的磁绝缘体,除了铁心中的磁通外,实际上总 有一部分漏磁通散布在周围的空气中。 电路中导体的电阻率 在一定的温度下是不变的,而磁路中铁心 的磁导率 Fe却不是常值,它是随铁心的饱和程度大小而变化的。
2、磁路欧姆定律
对于一个等截面无分支的铁心磁路,如图 由于:Ф =∫BdA=BA H=B/μ F=Ni=Hl=(B/μ )l= Ф l/(μ A) 所以: F= ФRm
Ф i N A
Ф i N 磁路 A
F
磁路
Ф
Rm
相当于电路的欧姆定律: U= RI 模拟电路图如图。
模拟电路图 Ф F
Rm
公式:
- Φ1 Φ2 Φ3 0
Φ 0
Rm2
又称磁路的并联定律。

电机学第五版第1章 磁路ppt课件

电机学第五版第1章 磁路ppt课件
涡流 当通过铁心的磁通随时间变化 时,根据电磁感应定律,铁心中将产生感 应电动势,并引起环流,环流在铁心内部 围绕磁通作旋涡状流动 称为涡流。
涡流损耗 涡流在铁心中引起的损耗。 公式:
pe=CeD2f2Bm 2V
应用:C为e — 减小涡涡流流损 损耗耗,系 电机数和变 压器的铁心都用含硅量较高的薄硅钢片 (0.35~0.5mm)叠成。
.
41..铁2心损常耗用的铁磁材料及其特性
磁滞损耗 铁磁材料置于交变磁场中时,材料被反复交变磁化, 与此同时,磁畴相互间不停地摩擦造成损耗,这种损耗称为磁滞损耗。
公式: ph = Ch fBmnV
Ch —磁滞损耗系数
应用:由于硅钢片磁滞回线的面积较小,故电机和变压器的铁心 常用硅钢片叠成。
.
41..铁2心损常耗用的铁磁材料及其特性
图1-17 直流电机的磁化曲线
.
3.永磁磁路的计算特点
(1)气隙内的磁位降Hδδ,是由永磁体内所形成的或者说所提供的,FM=-HMlM; 永磁体内的工作磁场强度HM和长度lM愈大,永磁体提供的磁动势就愈大。 (2)永磁体·的磁场HM总是负值,也就是说,它总是工作在永磁材料磁滞回线 的第二象限这段曲线上,这段曲线通常称为退磁曲线,如图1-19中段所示。 (3)若磁路中没有气隙,δ=0,则HMlM=0,于是HM=0,从退磁曲线可见,此时 永磁体内的磁通密度为剩磁Br,如图1-19中的R点所示。 。
???
图1-14 气隙磁场的边缘效应
.
1.3 磁路的计算
解 用磁路的基尔霍夫第二定律来求解。
铁心内的磁场强度: H F e=m B F F e e=5000创 4 1 p10 -7=159A /m
气隙磁场强度:
Hd=m B0d =41´p´3.130025-27 =77?104A/m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i F / N 47.7 A 9.54102 A 500
3、磁路的基尔霍夫定律
(1)磁路的基尔霍夫电流定律(磁通
是连续的) 1 2 3 0

0
(2)磁路的基尔霍夫电压定律(实质 是安培环路定律)
3
Ni H klk H1l1 H 2l2 H 1Rm1 2Rm2 Rm k 1
磁滞回线——当H在Hm和- Hm之间反复变化时,呈现磁
滞现象的B-H闭合曲线,称
为磁滞回线。磁滞回线是逆 时针旋转的,要消耗能量。
3、基本磁化曲线
对同一铁磁材料,选择不同的Hm反复磁化,得到不同的 磁滞回线。将各条回线的顶点连接起来,所得曲线称为基 本磁化曲线。
总结:熟悉三 种磁化曲线的 图形。剩磁Br, 矫顽力Hc。
[补]电机的铁心为什么常常用硅钢板叠成?
【补】两个电感的尺寸、形状和线圈匝数均相同,一 个是铝心,一个是铁心,当它们并联接在同一个交流 电源上时,电流是否相同?
第三节 直流磁路的计算
磁路计算正问题——给定磁通量,计算所需的励磁磁动势 磁路计算逆问题——给定励磁磁势,计算磁路内的磁通量
磁路计算正问题的步骤: 1)将磁路按材料性质和不同截面尺寸分段; 2)计算各段磁路的有效截面积Ak和平均长度lk; 3)计算各段磁路的平均磁通密度Bk ,Bk=Φk/Ak; 4)根据Bk求出对应的Hk; 5)计算各段磁位降Hklk,最后求出 F=∑ Hklk。
有关交流磁路和铁心线圈的计算,将在变压器一章讨论。
第五节 电机的绝缘材料
绝缘纸、塑料薄膜、无纺布、云母、绝缘漆等。
电机的绝缘等级按照所用绝缘材料的耐热性能来划分:
AE B
F
H
C
105 120 130 155 180 大于200
由于绝缘材料不耐高温,电机的散热是一个重要问题。
总结:电机的绝缘等级:A,B,F,H,C。
总结:熟悉这几个物理量以及相互间的关系。
二. 磁路的概念
总结:熟悉变压器 和直流电机的磁路
磁通所通过的路径称为磁路
三、磁路的基本定律
1、安培环路定律
沿任何一条闭合回线L,磁场强度H的线积分等于该闭合回线所 包围的电流的代数和
L Hdl i
如果在均匀磁场中,沿着回线 L 磁场强度H 处处相等,则
磁路的平均长度 l =0.3m,铁心的导磁率μFe=5000μ0,套
装在铁心上的励磁绕组为500匝。试求在铁心中产生1T的
磁通密度时,需要多少励磁磁动势和励磁电流?
解:用安培环路定律求解如下(也可以用磁路的 欧姆定律)。
H
B / Fe
1
5000 4
107
A / m 159A / m
F Hl 1590.3A 47.7A
总结:硅钢板 四、铁心损耗 1、磁滞损耗——材料被交流磁场反复磁化,磁畴相互摩
擦而消耗的能量。
2、涡流损耗——铁心内部由于涡流在铁心电阻上产生的 热能损耗。
3、铁心损耗——磁滞损耗和涡流损耗之和。
磁滞损耗ph: ph与交变磁密的频率成正比,与磁滞回 线的面积成正比。
涡流损耗pe: pe与交变磁密的频率的平方成正比,与交 变磁密的幅值的平方成正比。如何减少涡流损耗?
A
1.211 (2 0.25)2 4 10 4
T
1.533T
查磁化曲线: H3 19.510 2 A / m
H3l3 19.510 2 4.510 2 A 87.75 A
两边铁心磁通密度和磁位降:
B1
B2
/ A
2
0.613 103 4 10 4
/2T
0.766T
查磁化曲线: H1 H2 215 A / m H1l1 H2l2 215 15 10 2 A 32.25 A
磁通量Φ —— 垂直穿过某截面积的磁力线总和。 单位:Wb Φ=B∙A,画图说明。
磁场强度H —— 计算磁场时引用的物理量。 B=μH ,单位:A/m。μ称为导磁率。
真空导磁率
0 4 10 7
铁磁材料如铁、镍、钴及其合金的导磁率很高,一 般为真空的数千倍,其他材料一般与真空接近。 磁势F F=NI或F=HL,单位为安匝 磁势F产生磁场强度H,磁场强度H产生磁感应强度 B。
解:
1 2 21 22
Hklk H1l1 H2l2 2H N1i1 N2i2
中间磁路长度: l3 l 2 4.510 2 m
两边磁路长度: l1 l2 3l 15 102 m
气隙磁位降:
2H
2
B
0
2
1.211
4 10 7
2.510 3 A
4818
A
中间铁心磁位降:B3
作业:1-9
第一章 结束
铁心损耗pFe:pFe=ph+pe, pFe 与交变磁密的频率的1.3 次方成正比,与交变磁密的平方成正比。
总结:磁滞损耗,涡流损耗,铁心损耗以及铁心损耗 与交变磁通的频率和幅值的关系.
涡流损耗也有用:利用涡流加热金属材料、食物。
【补】一台变压器,额定频率50Hz,把它接在60Hz 的电网上运行,设铁心的磁密幅值不变,问变压器的 铁损有什么变化?
HL Ni
2、磁路的欧姆定律
作用在磁路上的磁动势 F 等于磁路内的磁通量 Φ乘以 磁阻 Rm
磁通量Φ等于磁通密度乘以面积
BdA BA
磁场强度等于磁通密度除以磁导率 H B /
于是
Ni lB / l /(A)
F Rm
[例1-1] 有一闭合铁心磁路,铁心的截面积A=9×10-4m2,
有一部分漏磁通。 3)电路中导体的电阻率在一定的温度下是恒定的;而磁
路中铁心的导磁率随着饱和程度而有所变化。 4)等于线性电路,计算时可以ห้องสมุดไป่ตู้叠加原理;而在磁路
中,B和H之间的关系为非线性,因此计算时不可以 用叠加原理。
第二节 常用铁磁材料及其特性
一、铁磁物质的磁化
铁、钴、镍及其合金为铁磁物质,导磁率μ很大。在外 磁场的作用下,磁畴顺着外磁场方向转向,排列整齐, 显示出磁性。 总结:磁畴。
DR510 D:电工钢板; R:热轧; 510:表示铁耗大小的数据,
5.1W/kG. DW310 D:电工钢板; W:无取向冷轧; 310:表示铁耗大小
的数据,3.1W/kG . DQ280 D:电工钢板; Q:有取向冷轧; 280:表示铁耗大小的
数据,2.8W/kW.
三、铁磁材料
1、软磁材料
2、硬磁材料
磁路计算逆问题——因为磁路为非线性的,用试探法。
总结:磁路计算正问题的步骤。
一、简单串联磁路
[例1-2] 铁心由铸钢和空气隙构成,截面积AFe=0.0009m2,
磁路平均长度lFe=0.3m,气隙长度δ=5×10-4m,求该磁路获 得磁通量Φ=0.0009Wb时所需的励磁磁动势。
解:铁心内磁通密度为
4.电磁感应定律 两种形式。利用。
5.电磁力定律 两种形式。利用。
总结:熟悉这几个电磁学定律。
e N d dt
f Bil
e Blv
B2 f
0
磁路和电路有相似之处,却要注意有以下几点差别: 1)电路中有电流I 时,就有功率损耗;而在直流磁路
中,维持一定磁通量,铁心中没有功率损耗。 2)电路中的电流全部在导线中流动;而在磁路中,总
H l 77 10 4 510 A 385 A
所以,励磁磁势为 F=HFelFe+Hδlδ=655A
二、简单并联磁路
[例1-3] 铁心由DR530硅钢片构成,铁心柱和铁轭截面积 AFe=0.0004m2,磁路平均长度lFe=0.05m,气隙长度
δ1 =δ2=2.5×10-3m,励磁线圈匝数N1=N2=1000匝。不计漏 磁通,试求在气隙中产生磁通密度Bδ=1.211T时,所需的 励磁电流。
BFe
AFe
0.0009 0.0009
T
1T
从铸钢磁化曲线查得:与BFe对应的HFe=9×102A/m
铁心段的磁位降: H FelFe 9 10 2 0.3A 270 A
空气隙中: B
A
0.0009 3.052 10 4
T
0.967T
H
B
0
0.967
4 10 7
A / m 77 10 4 A / m
总磁动势和励磁电流为:
Ni 2H H3l3 H1l1
(4818 87.75 32.25)A 4938A
第四节 交流磁路的特点
交流磁路除了会在铁心中产生铁心损耗外,还有以 下两个效应: 1)磁通量随时间变化,在励磁线圈中产生感应电 动势。 2)磁饱和现象会导致电流、磁通和电动势波形畸 变。
第一章 磁路
第一节 磁路的基本定律
现有的电机都是利用磁场做媒介实现机电能量转 换的。
人们曾经考虑过用电场作为机电能量转换的媒介, 但现有介电材料的能量密度远不如磁场材料。
在工程上,把磁场问题化为磁路问题来研究、解 决,方法简单、实用,易于理解。
一. 磁场的几个常用量
磁感应强度(又称磁通密度)B —— 表征磁场强弱 及方向的物理量。单位:Wb/m2 ,T,Gs
二、磁化曲线和磁滞回线
1、起始磁化曲线
将一块未磁化的铁磁 材料进行磁化,当磁场强 度H由零逐渐增加时,磁 通密度B将随之增加。用 B=f (H)描述的曲线就称为 起始磁化曲线。曲线可分 为4段,有饱和现象。
2、磁滞回线
剩磁——当H从零增加到Hm 时,B相应地从零增加到Bm; 然后再逐渐减小H,B值将沿 曲线ab下降。当H=0 时,B 值并不等于零,而是Br。这 就是剩磁。
相关文档
最新文档