第一讲 有理数
第二章有理数及其运算第一讲有理数(教案)
-突破方法:通过具体案例,强调运算顺序的重要性,并引导学生用括号明确运算顺序。
-实际应用题的解决:难点在于如何将实际问题抽象成有理数运算问题,以及如何列式和计算。
-突破方法:提供多样化的实际应用题,引导学生逐步学会提取信息、建立数学模型并解决问题。
2.培养学生运用有理数进行逻辑推理,提高逻辑思维能力,增强数学抽象素养。
3.培养学生熟练掌握有理数的运算,提高运算速度和准确性,强化数学运算素养。
4.引导学生通过解决实际问题,培养数据分析素养,提高解决问题的能力。
5.激发学生主动探究有理数性质和运算规律的意识,培养数学探究素养,增强创新精神。
6.培养学生合作交流、分享学习心得的习惯,提高数学交流素养,增进团队合作意识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数的基本概念。有理数是可以表示为两个整数比的数,如分数、整数。它是数学运算的基础,广泛应用于各个领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了有理数在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调有理数的分类和运算规则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示有理数运算的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
第一讲 有理数
第一讲 从自然数到有理数知识点一、自然数的作用:计数和测量,标号或排序 一、计数和测量,标号或排序的概念计数:一般地,用数数的方法得到的数据排序:为了表示某一种顺序的数据.如年份、月份、名次等.标号:人为的编号,像门牌号、学号、座位号、车牌号、邮政编码、城市的公共汽车路线等测量:一般地,借助工具得到的数据练习:1、2002年全国有高等院校2003所。
(2002是排序,2003是计数。
)2、小明坐1425次列车从天津到北京。
(1425是标号。
)3、中国银行大厦高373米,地上70层,至1993年为止,是世界第5高楼.(373是测量,70是计数,1993是排序,5是排序。
)知识点二、分数和小数的转化一、所有的分数都可以转化成小数=5360⋅ 5.021= 3.031∙= 61.061∙= 二、只有有限小数和无限循环小数可以转化成分数(不包括无限不循环小数)5015714.3= 91.01=∙ 14.3=π15926...... 三、总结⎪⎩⎪⎨⎧⎩⎨⎧→→→不可以化为分数)无限不循环小数(如可以化为分数无限循环小数无限小数可以化为分数有限小数小数π 知识点三、用正数、负数来表示具有相反意义的量 在日常生活和生产实践中,我们经常会遇到具有相反意义的量,如: 温度有“零上”和“零下”路程有“向东”和“向西”水位变化有“升高”和“降低”经营情况有“盈利” 和“亏损”说明:具有相反意义的量的含义:一是两个量,数字部分可以不相等;二是必须要具有相反的意义,缺一不可.为了表示具有相反意义的量,我们把一种意义的量规定为正,用过去学过的数(零除外),如123,15,3.14等来表示,这样的数叫做正数.正数前面可加正号“+”来表示(“+”常省略不写);把另一种与之意义相反的量规定为负,用过去学过的数(零除外)前面放上负号“-”来表示,如-2、-3.14这样的数叫负数,负数的符号不可省略。
我们学过的数中又来新成员了:称为正分数。
第01讲 有理数
(A)8 063.6×104元 (C)8.063 6×107元
【解析】选C.∵8 063.6万元=80 636 000元, ∴80 636 000元=8.063 6〓107元.
10.(2012·达州中考)今年我市参加中考的学生人数约为 6.01×104人.对于这个近似数,下列说法正确的是( (A)精确到百分位,有3个有效数字 (B)精确到百位,有3个有效数字 )
1 . 整数为分母的形式即可,即2 012的倒数为 2 012
3.(2012·宜昌中考)如图,数轴上表示数-2的相反数的点
是(
)
(A)点P
(B)点Q
(C)点M
(D)点N
【解析】选A.根据相反数的意义,可得-2的相反数是2,在数 轴上表示2的点为点P.
4.(2012·娄底中考)写出一个x的值,使|x-1|=x-1成立,你写
1 2 012
)
(B)2 012 (D)
1 2 012
【解析】选B.-2 012的相反数是-(-2 012)=2 012,故选B.
2.(2012·娄底中考)2 012的倒数是(
)
(A)
1 2 012
(B)
1 2 012
(C)2 012
(D)-2 012
【解析】选A.求一个整数的倒数时,只需写成分子为1,这个
做科学记数法. 不为0 (2)有效数字:一个近似数,从左边第一个______的数字起, 所有 到精确到的数位止,_____的数字都是这个数的有效数字;对 a×10n 于用科学记数法表示的数______,规定它的有效数字就是a中 的有效数字.
【即时应用】
1 8 8 1.-8的相反数是__,绝对值是__,倒数是____. 8
第一讲 有理数的相关概念
第一讲有理数的相关概念【知识要点及巩固】一、有理数基本概念1、正数:像3、1、+0.33等的数,叫做正数。
在小学学过的数,除0外都是正数。
正数都大于0。
2、负数:像-1、-3.12、-2012等在正数前加上“-”(读作负)号的数,叫做负数。
负数都小于0。
0既不是正数,也不是负数。
如果正数表示某种意义,那么负数表示它的相反的意义。
注意:正数和负数是表示相反意义的量。
如:南为正方向,向南km3表示为km-。
31表示为km1+,那么向北km3、有理数:整数与分数统称为有理数。
4、无理数:无限不循环小数,如π。
5.有理数的分类:6.几个重要概念:注意:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数。
例1:判断下列说法正确与否⑴一个有理数不是整数就是分数()⑵一个有理数不是正数就是负数()⑶一个整数不是正的,就是负的()⑷一个分数不是正的,就是负的()例2:1、(2016山东德州)把下列各数填入表示相应集合的大括号中:-7.2,43,-9, 1.4,0, 3.14,π,5412,-2.5, 121121112.0,36整数集合{ } 正数集合{ } 分数集合{ } 有理数集合{ } 非正数集合{ } 负分数集合{ } 想一想:a +一定是正数吗?a -一定是负数吗?例3:(2014七中嘉祥)将一串有理数按下列规律排列,回答下列问题: (1)在A 处的数是正数还是负数? (2)负数排在A 、B 、C 、D 中的什么位置?(3)第2014个数是正数还是负数?排在对应于A 、B 、C 、D 中的什么位置? 例4:(2014七中嘉祥)观察下面依次排列的一列数,它的排列有什么规律?请根据你探索的规律接着写出后面的3个数,并尝试写出第100个数、第301个数。
1、6151-4131-211、、、、、-,_____,_______,_________,...;第100个数是_________,第301个数是________。
第1讲 有理数的概念(数轴、相反数)
有理数的概念(数轴、相反数)要点一、正数与负数大于0的数,叫做正数; 像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数. 要点二、有理数的分类1.有理数:整数与分数统称为有理数. 2.有理数的分类:(1)有理数按性质分类: (2)有理数按符号分类⎧⎧⎫⎪⎪⎬⎨⎪⎭⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数负整数正分数分数负分数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正整数正有理数正分数有理数零(既不是正数,也不是负数)负整数负有理数负分数 【注】注意以下几个概念的区分:非负数:正数和零;非正数:负数和零;非负整数:正整数和零;非正整数:负整数和零;非负有理数:正有理数和零;非正有理数:负有理数和零.要点三、数轴:规定了原点、正方向和单位长度的直线叫做数轴.要点四、相反数:只有符号不同的两个数互为相反数;0的相反数是0.类型一、正数和负数(1)仔细思考以下各对量: ①胜二局与负三局; ②气温为3C -︒与气温升高30C ︒; ③盈利5万元与亏损5万元; ④增加10%与减少20%. 其中具有相反意义的量有( ) A .1对 B .2对 C .3对 D .4对(2)①我国现采用国际通用的公历纪年法,如果我们把公元2017年记作+2017年,那么,处于公元前500年的春秋战国时期可表示为___________.②如果80m 表示向东走80m ,那么60m -表示________________.③A ,B 两地海拔高度分别是120米,10-米,则B 地比A 地低________米.(3)某饮料公司生产的一种瓶装饮料外包装上印有“60030(ml)±”字样,请问“60030(ml)±”是什么含义?质检局对该产品抽查5瓶,容量分别为603ml ,611ml ,589ml ,573ml ,627ml ,问抽查产品的容量是否合格?知识导航典题精练例题1举一反三:【变式1】一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是( ) A .50.0千克 B .50.3千克 C .49.7千克 D .49.1千克【变式2】(1)如果节约16吨水记作+16吨,则浪费6吨水记作__________.(2)在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作___________.类型二、有理数的概念及分类(1)下列说法错误的是( ) A .0既不是正数也不是负数B .正整数和负整数统称整数C .整数和分数统称有理数D .正有理数包括正整数和正分数(2)把下列各数分别填在所属分类里:5-,0, 3.14-,32, 2.4-,227,327,π, 5.5-,2.4,311-,3.14159,34-,2003①正数:{ }; ②负数:{ }; ③非负整数:{ }; ④分数:{ }; ⑤非正有理数:{ };举一反三:【变式1】判断题:(1)0是自然数,也是偶数.( ) (2)0既可以看作是正数,也可以看成是负数.( ) (3)整数又叫自然数.( ) (4)非负数就是正数,非正数就是负数.( )例题2【变式2】下列四种说法,正确的是( ).(A)所有的正数都是整数(B)不是正数的数一定是负数(C)正有理数包括整数和分数 (D)0不是最小的有理数【变式3】下列说法正确的是()A.在有理数中,零的意义仅仅表示没有B.正有理数和负有理数组成全体有理数C.0.5既不是整数,也不是分数,因而它不是有理数D.零既不是正数,也不是负数【变式4】把下列各数填入表示它所在的大括号:.-24,3,2.008,10-3,114,0,()--2,3.14,||--4.正有理数:{ } 非负整数:{ } 负分数:{ }类型三、数轴(1)下面图形是数轴的是()A.B.C.D.(2)如图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为_______.(3)已知:点A在数轴上的位置如图所示,点B也在数轴上,且A、B两点之间的距离是2,则点B表示的数是______.(4)在数轴上标出下列各数:0, 4.2,132,2,+7,113,并用“<”连接.举一反三:【变式】(1)如图,表示数轴正确的是()A.B.C.D.(2)已知点A,点B在数轴上,点A表示数为-2,A、B两点的距离为5,则点B表示的数是________.(3)在数轴上标出下列各数,并用“<”比较它们的大小:-3,+1,122,.-15,5.例题3(4)已知,a b 为有理数,在数轴上的位置如图所示,则a 1,b1,0,1的大小关系为_______________.(1)一个点沿着数轴的正方向从原点起移动2个单位长度后,又向反方向移动6个单位长度,则这个点表示的数是__________.(2)一个小虫在数轴上先向右爬2个单位,再向左爬6个单位,所在位置正好距离数轴原点2个单位,则小虫的起始位置所表示的数是________.(3)数轴上的点A 对应的数是1-,一只蚂蚁从A 点出发沿着数轴向右以每秒3个单位长度的速度爬行至B 点后,用2秒的时间吃光了B 点处的蜜糖,又沿原路以原速度返回A 点,共用去6秒,则蚂蚁爬行的路程是几个单位长度?B 点与A 点的距离是多少个单位长度?B 点对应的数是多少?举一反三:【变式】(1)点A 在数轴上距原点为3个单位,且位于原点左侧,若将A 向右移动4个单位,再向左移动2个单位,这时A 点表示的数是________.(2)一只小虫在数轴上先向右爬3个单位,再向左爬7个单位,正好停在-2的位置,则小虫的起始位置所表示的数是( ) A .-4 B .4 C .2 D .0类型、相反数(1)2017-的相反数是________,2017与________互为相反数.(2)已知有理数a 、b 在数轴上表示如图,则a 、b 、a -、b -的大小,正确的是( ) A .a b a b -<-<< B .a b b a <-<<-C .b a a b -<<-< D .a b b a <<-<-(3)下列说法正确的是( ) A .一个数的相反数一定是负数 B .π和.-314互为相反数 C .所有的有理数都有相反数 D .13和31互为相反数例题4例题5举一反三:【变式1】我们可以用字母表示数,比如a 、b 都能代表一个数,在一个数的前面添上“-”号,就得到这个数的相反数.(1)5的相反数是_______;13的相反数是_______,0的相反数是_______,数a 的相反数是________;(2)5-的相反数是_______,12-的相反数是________,4-的相反数是________;数a -的相反数是________;(3)(2)--的相反数是________;(5)+-的相反数是________,数()a -+的相反数是________,数()a --的相反数是_______;()a b ---与________互为相反数.【变式2】下列说法中正确的有( )①-3和+3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④π的相反数是-3.14;⑤一个数和它的相反数不可能相等. A. 0个 B.1个 C.2个 D.3个或更多化简下列各数中的符号.(1)123⎛⎫-- ⎪⎝⎭ (2)-(+5) (3)-(-0.25) (4)12⎛⎫+- ⎪⎝⎭(5)-[-(+1)] (6)-(-a)举一反三:【变式1】如果a <0,化简下列各数的符号,并说出是正数还是负数 ①()a -+; ②()a --; ③[()]a -+-; ④[()]a ---; ⑤{[()]}a -+--; ⑥{{{{{[()]}}}}}a -----+--【变式2】(1)37与________互为相反数;a 1-2是________的相反数.(2)()--2的相反数是________;b +4是________的相反数.(3){[()]}--+-4=________;{[()]}----5与________互为相反数.例题6一、选择题1.如图所示,在数轴上点A 表示的数可能是( )A .1.5 B.-1.5 C.-2.6 D.2.62.从原点开始向右移动3个单位,再向左移动1个单位后到达A 点,则A 点表示的数是( ). A.3 B.4 C.2 D.-23.关于数“0”,以下各种说法中,错误的是 ( ) A .0是整数 B .0是偶数C .0是正整数D .0既不是正数也不是负数 4.下列说法中:(1)0是最小的自然数;(2)0是最小的正数;(3)0是最大的负整数;(4)0属于整数集合;(5)0既非正数也非负数.正确的是( ) A .(1)(2)(4) B .(4)(5) C .(1)(4)(5) D .(1)(2)(5) 5.一个数的相反数是非负数,则这个数一定是( ) A.正数 B.负数 C.非正数 D.非负数 6.在①+(+1)与-(-1);②-(+1)与+(-1);③+(+1)与-(+1);④+(-1)与-(-1)中,互为相反数的是( )A. ①②B. ②③C. ③④D. ②④ 7.-(-2)=( ) A.-2B. 2C.±2D.4二、填空题1.不大于4的正整数的个数为 .2.已知数轴上有A ,B 两点,A ,B 之间的距离为1,点A 与原点O 的距离为3,那么点B 对应的数是 .3. 既不是正数,也不是负数的有理数是 .4.如图所示,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为 .5.数轴上离原点的距离小于3.5的整数点的个数为m , 距离原点等于3.5的点的个数为n , 则3____m n -=.6.已知x 与y 互为相反数,y 与z 互为相反数,又2z =,则z x y -+= .7. 已知-1<a <0<1<b ,请按从小到大的顺序排列-1,-a ,0,1,-b 为 .8.一种零件的长度在图纸上是(03.002.010+-)毫米,表示这种零件的标准尺寸是 毫米,加工要求最大不超过 毫米,最小不小于 毫米.课堂巩固三、解答题9.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米. (1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?10.把下列各数填在相应的大括号内: 1.2-,3,1,41,0,-14.3,101-,6.20,25-,1056,-7.正分数集合:{ …}; 非负数集合:{ …};正整数集合:{ …}; 负整数集合:{ …}.11.化简下列各数,再用“<”连接.(1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭ (4)245⎛⎫-- ⎪⎝⎭12.若a 与b 互为相反数,c 与d 互为倒数,m 是最大的负整数.求代数式的值.13.在数轴上有三个点A ,B ,C 如图所示,请回答:(1)将B 点向左移动3个单位长度后,三个点表示的数谁最小? (2)与A 点相距3个单位长度的点所表示的数是什么?(3)将C 点左移6个单位长度后,这时B 点表示的数比C 点表示的数大多少?。
第一讲有理数的有关概念(一)
第一讲 有理数的有关概念(一)【考点梳理】有理数的基本概念1.正数:大于0的数叫做正数;负数:小于0的数叫做负数。
备注:在正数前面加“-”的数是负数;“0”既不是正数,也不是负数。
2.有理数:整数和分数统称有理数。
3.有理数分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数 4.数轴:规定了原点、正方向和单位长度的直线。
性质:(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于0,负数都小于0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。
【典例精析】1.在7, 0, -1.5, 21-, -301, 31.25, 81-, 100.1, -3.001中,负分数为 ,整数为 ,正整数为 。
2.小于5.05的正数有 个,正整数有 个,负整数有 个。
3在数轴上距原点2个单位长度的点表示 。
4、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
A 、1个 B 、2个 C 、3个 D 、4个5. a , b 两数在数轴上的位置如图,下列结论中正确的是 。
A. a >0, b <0 B. a <0, b >0C. b >aD. 以上均不对 【训练迁移】6. 0是 。
A. 正数B. 负数C. 整数D. 分数7.(1)如果向南走5米,记作+5米,那么向北走8米应记作___________. (2)如果温度上升3℃记作+3℃,那么下降5℃记作____________. 8. 在数轴上,离开表示数2的点距离是3的点表示的数是_______。
9、(1)既是分数又是正数的是( )A 、+2B 、 -314 C 、0 D 、2.3(2)在0,1,-2,-3.5这四个数中,是负整数的是( ) A 、0 B 、1 C 、-2 D 、-3.5 10,在2005,212,0,-3,+1,41,-6.8中,正整数和负分数共有 ( )A .3个B .4个C .5个D .6个11.12. 下面说法中正确的是( ).(A)正整数和负整数统称整数(B)分数不包括整数(C)正分数,负分数,负整数统称有理数 (D)正整数和正分数统称正有理数13如图:下列说法正确的是( )A :a 比b 大B :b 比a 大C :a 、b 一样大D :a 、b 的大小无法确定14、________是最小的正整数,_______是最小的非负数,_________是最大的非正数。
第一讲 有理数的相关概念
第一讲 有理数的相关概念一、知识要点回顾(一)负数的应用,有理数的分类1、负数的意义:引入负数是我们实际的需要,我们通常用正、负来表示一对相反意义的量。
例1: 上升1m 表示为+1m ,则下降2m 表示为 。
例2:“某种机器零件规定其直径误差不得超过±0.8mm ”这是什么意思? 2、 和 统称为有理数。
按数的符号分: 按有理数定义分,有理数有理数注意:有限小数和无限循环小数都属于有理数。
例1.将下列各数序号填到相应的括号内:①-7.2,②34,③-9,④1.4,⑤0,⑥3.14,⑦π,⑧1245,⑨-2.5,⑩20%整数集合:正分数集合:非负数集合: 分数集合:例2. a 一定是正数,-a 一定是负数吗?回答并举例: (二)数轴1、数轴的三要素: 、 、 。
在数轴上,右边的数总比左边的数 。
最小的正整数是 ,最大的负整数是 。
2、相反数:只有 不同两个数,我们称一个是另一个的相反数。
例如:2和 ,a 和 。
本质:只有 不同,其它不变。
特别的:0的相反数是 。
※ x +y 的相反数是 ,a -b 的相反数是 。
牢记:正数的相反数是 ,负数的相反数是 ,相反数等于它本身的数是 。
3、相反数的代数意义:a>0时,-a 0; a<0时,-a 0; a =0时,-a 0.(a 可以代表任意有理数)相反数的几何意义: 表示互为相反数的两个点位于原点的 ,且到原点的 相等。
4、会进行符号的化简:例:-(-2)= ;+[-(+2)]= ;-(x +y )= ; 特别提醒:相反数的学习对绝对值的化简至关重要。
一定要把握住相反数的本质。
(三)绝对值△※1、概念:在数轴上,一个数所对应的点到原点的 叫做该数的绝对值。
记作: △任何数的绝对值一定一个 数,即:|a| 0.⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧____________________________________________________________________⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧_______________________________________________整数2、代数意义: (a>0) 正数的绝对值等于△※ |a|= (a=0) 0的绝对值是 |a|=(a<0)负数的绝对值等于例:绝对值等于本身的数是 ;3△绝对值等于正数的数有两个,它们 。
第1讲 有理数的概念和性质和答案
第一讲有理数的概念和性质一、【概念和性质】1、正数和负数正数:比0大的数。
如+3、+1.5、+12、+584(正号可以省略)负数:比0小的数。
如-3、-1.5、-12、-584(负号不可以省略)零:既不是正数,也不是负数。
零是正数和负数的分界。
【实际意义】如“零上”和“零下”“高出”和“低于”“上升”和“下降”“超出”和“不足”“盈利”和“亏损”“收入”和“支出”▲如正数表示某种意义,那么负数表示它的相反的意义。
例:用正数表示向南,那么向北3km可以用负数表示为-3km,向南-5km表示向北5km填空(1)若汽车向东行驶2.5千米记作+2.5千米,则向西行驶1.5千米记作;汽车原地不动记作。
(2)某人转动转盘,如果+2圈表示沿顺时针转2圈,那么圈-3表示。
2、整数和分数统称为有理数。
▲有理数可以写成mn(m、n是整数,n≠0)。
▲有理数的两种分类:①按定义分:②按符号分(常用):几个重要概念(1)非负数:正数和零(2)非正数:负数和零(3)非负整数:正整数和零(4)非正整数:负整数和零3、规定了原点、正方向和单位长度的直线叫做数轴。
所有有理数都可以用数轴上的点表示,但不是数轴上所有点都是有理数。
左边的数〈右边的数整数分数正整数负整数正分数负分数有理数正有理数正整数正分数负整数负分数有理数负有理数0(零既不是正数,也不是负数)-2 -1 0 1 2大小有限小数无限小数分数(分子是1时,这个分数就是正数)无限循环小数无限不循环小数(无理数)小数自然数▲ 正数大于0,0大于负数,正数大于负数。
两个负数,绝对值大的反而小。
4、绝对值的意义与性质:① 数轴上表示a 的点与原点的距离叫做a 的绝对值,记作||a 。
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
②③ 非负性 2(||0,0)a a ≥≥④ 非负数的性质: i )非负数的和仍为非负数。
ii )几个非负数的和为0,则他们都为0。
第1讲 有理数
第1讲有理数【教学目标】1.了解正负有理数的概念,会对有理数按照一定的标准进行分类;2.了解分类的标准与分类结果的相关性,初步了解“集合”的含义。
【教学重难点】正确理解有理数的概念。
【教学内容】一、正数和负数的概念负数:比0小的数;正数:比0大的数;0既不是正数,也不是负数。
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(当出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
例题1.如果规定前进、收入、盈利、公元后为正,那么下列各语句中错误的是()A.前进-18米的意义是后退18米B.收入-4万元的意义是减少4万元C.盈利的相反意义是亏损D.公元-300年的意义是公元后300年变式训练. 某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为﹣1,10:45记为1等等,依此类推,上午7:45应记为。
二、具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃。
三、0表示的意义1. 0表示“ 没有”,如教室里有0个人,就是说教室里没有人;2. 0是正数和负数的分界线,0既不是正数,也不是负数。
例题:关于数“0”,以下各种说法中,错误的是( )A.0是整数B.0是偶数C.0是正整数D.0既不是正数也不是负数四、有理数1. 有理数的概念(1)正整数、0、负整数统称为整数(0和正整数统称为自然数);(2)正分数和负分数统称为分数;(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
讲义_有理数的基本概念及分类
第一讲有理数令狐采学11正数与正数B. 任意有限小数可以化为分数,但无限循环小数不克不及化为分数;C. 圆周率兀是无限不循环小数,故不是有理数;D. 0暗示没有,它是正数和正数的分界点知识点2:有理数的分类1.下列说法中正确的是()[正整数正有理数[正整数 A.-个有理数不是正数就是正数;整数〔正分数B.-个有理数不是整数就是分数;有理数<负整数有理数<C.有理数是指整数、分数、 正数、 正数和0;分数正分数 负有理数[负整数 D.有理数是指正数和正数、负分数、负分数2.在有理数中,不存在这样的数 ()A.既是整数,又是正数;正数和正有理数有什么区别呢?B.既不是正数,也不是正数注意:正数和正有理数是不合的,例如:就是正数,但不是正有理数; C.既是正数,又是正数;D.既是分数,又是正数正数和0统称为 ;0和正数统称为 0 3.小于5.5的正整数有.0和正整数统称为;0和负整数统称为 04.比正数年夜的所有有理数中, 最小的数 是知识点3: 数集把下列各数填入它所属的集合内:把一些数放在一起,就组成了一个数的集合,简称数集。
22o 3女口:所有有理数组成的集合叫有理数集。
所有整数组成的集合叫整数集。
3,21,0,—3,+8,—0.1,3 +4 ,,所有正数组成的集合叫正数集。
所有正数组成的集合叫正数集。
221.7,25%,7,—o所有正整数和零组成的集合叫自然数集。
等等。
0。
正整数集合:{…}负整数集合:{…} 【例5】把下列各数中的正数和正数辨别填在暗示正数集合和正数集 正分数集合:{…} 合里: 1 。
丄/1负分数集合:{…} 12,—,,—3.14,兀,0,-2,—2,1,10%;整数集合:{…}分数集合:{…} 正整数集合:非负整数集合:{…} 负分数集合: 有理数集合:{…}正有理数集合:非正数集合:二、当堂检测一、填空题1、把下列各数填入相应的年夜括号里:16.——,0.61&—3.14,260,-2009,—,—0.010010005,0,03 37,正分数集合{ ■•};整数集合{非正数集合{ ■ •};有理数集合{…}无理数集合{■ ■}...统称为整数; 和统称为有理数;和统称为非正数;和统称为非正数;和统称为非正整数;和统称为非负整数;有限小数和无限循环小数可看作;无限不循环小数称为。
第一讲 有理数的概念和数轴
(3)一个跳蚤在一条直线上,从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右 跳3个单位,第4次向左跳4个单位,依此规律跳下去,当它跳第2015次落下时,则落点处离O点的距 离为__________.(用单位表示).
练习3-1.(1)数轴上点A表示的数是−1,点B到点A的距离为2个单位,则B点表示的数是__________.
有个.
例2.有理数 在数轴上的位置如图所示,则 的值( )
A.大于0 B.小于0 C.小于 D.大于
(2)有理数 在数轴上的位置如图,则下面的关系式中正确的个数为( )
① ;② ;③ ;④ ;⑤ ;⑥ ;
A.2个 B.3个 C.4个 D. 5个
练习2-1.在数轴上A、B两点表示的数分别为 ,且点A在点B的左边,下列结论一定正确的是( )
A. B. C. D.
练习2-2.数a、b在数轴上位置如图,下列结论正确的有______________(填序号).
① ;② ;③ ;④ ;⑤ ;
例3.(1)数轴上一对应的数是3的点A,沿着数轴某一方向移动了5个单位,则此时点A所对应的数为__________.
(2)一个小虫在数轴上先向右爬2个单位,再向左爬6个单位,所在位置正好距离数轴原点2个单位,则小虫 的起始位置所表示的数是( )
A.4030 B.-4030 C.0 D.2015
(2)若 ,则 这六个字母中, 与 为相反数的一定有( )
A.1个 B.2个 C.3个 D.4个
练习4-1.(1)下面说法正确的是( )
A.正数和负数互为相反数 B.相反数等于它本身的数只有0
C. 的相反数是负数 D.若两个数互为相反数,则它们异号
第一讲有理数
【名师助学】判断正负数的方法 区分正、负数可以根据正、负数的概念,也可以根据符号区别. 如果一个数的符号为“-”,则该数为负数;如果一个数的符号 为“+”或没有符号,则该数为正数.特别注意的是:0既不是正 数也不是负数,不受符号影响.
热点考向 二
相反数、倒数、绝对值 )
1 - 1 【例2】(1)(2012·黔西南州中考) 4 的倒数是( 5 5 4 4 A. B. C. D. 4 4 5 5
为10,第四列是49,第四列与第五列差为11,第五列是60,第五 列与第六列差为12,第六列是72,第六列与第七列差为13,第七 列是85即为x. 答案:85
1.(2013·潍坊模拟)如果a与1互为相反数,则|a|等于( A.2 B.-2 C.1 D.-1
)
【解析】选C.∵a与1互为相反数,∴a=-1, ∴|a|=|-1|=1.
3.倒数:
1 a 0 没有倒数. (1)数a(a≠0)的倒数是__,__
1 (2)a与b互为倒数⇔ab=__.
本身 一个负数的绝对值是 4.绝对值:一个正数的绝对值是它_____;
相反数 的绝对值是__. 0 即当a>0时,|a|=__; a 当a<0 它的_______;0 -a 当a=0时,|a|=__. 0 时,|a|=___;
1.下列各数中,最小的是( A ) A.-2 B.-0.1 C.0 D.|-1|
2.如图,在数轴上点M表示的数可能是( C )
A.1.5
B.-1.5
C.-2.4
D.2.4
3.一个数的绝对值等于3,这个数是( C ) A.3 B.-3 C.±3
1 D. 3
4.地球半径约为6 400 000米,用科学记数法表示为( B ) A.0.64×107 C.64×105 5.计算2-(-3)的结果是( A ) A.5 B.1 C.-1 D.-5 B.6.4×106 D.640×104
第1讲 有理数的概念
第一讲 有理数的概念一:知识点精析:1、正数、负数、零、非负数;正数与负数表示一对具有相反意义的量;2、整数和分数统称为有理数;3、数轴:规定了原点、正方向、单位长度的一条直线叫做数轴。
在数轴上,正数在原点的右侧,负数在原点左侧;数轴上右边的数总比大;数形结合,。
4、相反数:只有符号不同的两个数互为相反数,互为相反数的两个数和为零,正数的相反数是负数,负数的相反数是正数,零的,相反数是零,a 的相反数是a -,互为相反数的两个数到原点的距离相等。
5、绝对值:一个数的绝对值就是这个数在数轴上的点到原点的距离,(这是绝对值的几何意义)(1)正数的绝对值等于它本身,负数的绝对值等于它的相反,数零的绝对值是零,⎪⎪⎩⎪⎪⎨⎧<-=>=0000a a a a a a(2)一个数的绝对值永远为非负数,(3)几个非负数的和为零,则这几个数同时为零,(4)()a x a a x ±=≥=则,0(5)比较两个数大小的方法:两个负数做比较,绝对值大的反而小,(6)中点公式:在数轴b a 、对应的点的中点为2b a + 二、典型例题:1、a -表示负数吗?为什么?下列数,表示正数的有___________,表示负数的有_______3-π,2-2π,a ,12+x ,12+-x ,a a 1+,a1- 2、若记向东50米记作50+,一天,出租车王师傅从A 地出发,沿笔直的公路向东走了3500米,接着又向西走了6200米,接着又向东走了4500米,最后又向西走了3500米,请问王师傅最后在A 地的__________(东、西)方向_________米。
3、若b a >,则0____b a -;若b a <,则0____b a -;若b a =,则0____b a -4、比较大小:(1)651______431--;(2)ππ-4______3-;(3)若10<<a ,比较大小:32,,,1,a a a a a -(4)若01<<-a ,比较大小:32,,,1,a a a aa -5、(1)数轴上与-3距离17个单位的数是___________(2)数轴上有B A 、两点,如果点A 对应的数是-6,且B A 、两点的距离为7,那么点B 对应的数是_______6、点B A 、分别是数-3、21-在数轴上的对应点,使线段AB 沿数轴向右移动到AB ,且线段AB 的中点对应的数是3,则点A 对应的数是_________,点A 移动的距离是_____7、有理数c b a 、、在数轴上的位置如图,化简c a b a c b a --+--+228、设c b a 、、为非负数,化简abcabc c c b b a a +++ 9、若00<>b a ,,则使得b a b x a x -=-+-成立的x 的取值范围是________10、已知()05432=++++-z y x ,则=++zy x 111_________ A 层次1、若09819=+b a ,则ab 是( )A 正数B 非正数C 负数D 非负数2、有理数a 等于它的倒数,有理数b 等于它的相反数,则20162016b a +等于_______3、2017个不全相等的有理数之和为零,则这1997个有理数中()A 至少有一个是零B 至少有1008个正数C 至少有一个负数D 至多有2015个负数4、数轴上坐标是整数的点称为整点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长为2107cm 的线段AB ,则线段AB 盖住的整点有()个A 2106或2017B 2106或2018C 2107或2018D 2107或20195、有如下结论;甲:c b a 、、中至少有两个互为相反数,则0=++c b a ;乙:c b a 、、中至少有两个互为相反数,则()()()0222=-++++a c c b b a ; 丙:c b a 、、中至少有两个互为相反数,则()()()0=-++a c c b b a其中正确的结论个数是()A 0B 1C 2D 3 6、已知有理数a 在数轴上原点的右方,有理数b 在数轴上原点的左方,那么() A b ab < B b ab > C 0>+b a D 0>-b aB 层次7、已知有理数c b a 、、在数轴上的对应位置如图:则b a c a c -+-+-1化简后的结果是__________8、已知数轴上有B A 、两点,B A 、之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离和为_______9、如果数轴上点A 与原点O 的距离为3,点B 与原点O 的距离为5,那么B A 、两点间的距离为__________10、计算机利用的是二进制,他它共有两个数码0,1,将一个十进制数转化为二进制数,只需把该数写成若干n 2的和,依次写出1或0即可,如:1001121212020211901234=⨯+⨯+⨯+⨯+⨯=为二进制的五位数,则十进制的240化为二进制,是_________位数11、问题:不,你能比较2016201721072016与的大小吗?为了解决这个问题,写出它的一般形式,即比较()nn n n 11++与的大小(n 是自然数),然后我们从分析Λ,,,321===n n n ,这些较简单的情形入手,从中发现规律,经过归纳猜想得出结论:,(1)通过计算:比较下列各组数的大小,在横线上填写><=56453423126____5;5____4;4____3;3____2;2____1(2)从第(1)题的结果归纳,可以猜想出()nn n n 11++与的大小关系是__________ (3)根据上面归纳,猜想到的结论,比较下列两个数的大小:201620172107_____201612、一张纸片第一次将它撕成6片,第二次又将其中一小块撕成6片,如此继续下去,第二次撕后共得小纸片______片,第三次共得小纸片______片,第十次后共得小纸片______片,第n 次后共得小纸片______片。
初一数学暑假第01讲-有理数的定义
第一讲 有理数的基本概念及运算一、正数、负数1.正数【概念】像220.123π+,,,…这样大于0的数都是正数。
2.负数【概念】像47-,-3.14,-2015…这样在正数前加上“-”(读作负)号的数,叫做负数。
【注意】:(1)正数大于0,负数小于0;(2)0既不是正数,也不是负数;(3)正数前面的“+”可以省略,注意3与3+表示是同一个正数,负号不能省略。
3.相反意义的量【概念】如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然。
【举例】用正数表示向东,那么向西3km 可以用负数表示为-3km 。
【注意】“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量。
(1)如果收入500元,记作+500元,那么支出237元记作________。
(2)甲,乙两地海拔高度分别是+500米,-250米,那么甲地比乙地高出 。
(3)汽车向东行驶5千米记作+5千米,那么向西行驶3千米记作 。
(4)牛牛最喜欢吃方便面,有一次他连续吃了5包的方便面。
已知方便面外包装上印有 “1005±(g )”字样,细心的牛牛老师对每包方便面都进行称重,质量分别为103g ,101g , 99g ,105g ,95g ,请问,牛牛老师吃的方便面合格吗?知识点1例1(5)下面说法正确的是()A.带正号的数就是正数,带负号的数就是负数B.任何一个正数前面加上“—”,就是一个负数C.0是最小的正数D.a既是正数,又是负数练一练1(1)向南走-23米表示。
(2)成都地区6月平均温度为25℃,记录表上有6月份5天的记录分别为+2.7,0, +1.4, -3,-4.7,那么这5项记录表示的实际温度分别是(3)七名同学的体重以48kg为标准,超过记为正,不足记为负,记录如下编号1234567与标准体重的差(kg) -3.0+1.5+0.80+0.3+1.2+0.5最接近标准体重的学生体重是多少?按体重的轻重排列时,恰好居中的是哪位同学?二、有理数1.有理数【概念】整数与分数统称有理数。
第1讲-有理数的概念分类与表示-精英班讲义及作业
第1讲:对数的认识的发展【引言】一般地说,人们对“数”的认识是随着对“量”的认识发展而发展的。
人们对数的认识的发展体现了实践与认识的辩证关系。
“数表示量”是数的发展的线索。
我们即将所学的数与前面所学的数相比,它可以表示相反意义的量。
【回顾】小学所学的各类数。
【实例】足球比赛中的净胜球问题;某天的气温表示问题;金属零件的误差范围问题;某企业的收入支出问题等。
一、有理数的概念的引入1.正数:像+1.8,+420、+30、+10%等带“+”号的数叫做正数。
为了强调正数,前面加上“+”号,也可以省略不写。
思考与注意:(1)正数还有没有其他的定义方式?(2)正数前面的正号是否可以省略不写,即一个数前面有或没有正号是否影响该数的大小?(3)思考正号与加号之间的区别与联系。
2.负数:像-3、-4754、-50、-0.6、-15%等带有“-”号的数叫做负数。
而负数前面的“-”号不能省略。
思考与注意:(1)负数还有没有其他的定义方式?(2)负数前面的负号能不能省略不写?即一个不等于零的数前面的负号是否影响了这个数的大小?(3)思考负数与减号之间的区别与联系。
3.零既不是正数也不是负数,它是正数与负数的分界点。
注意:零的归属:零与正数统称为非负数,零与负数统称为非正数。
思考:(1)零还有哪些角色?(3)零前面的符号是否影响它的大小?4、思考与拓展(1)判断一个数是正数还是负数,是否只看前面有没有正号或负号?答:(2)正数与负数表示相反意义的量,它们因生活生产中的需要产生的,你能举出生活中用正数和负数表示的相反意义的量吗?答:5、有理数的概念:整数与分数统称为有理数。
注意:(1)此时的整数包括:正整数,0,负整数;分数包括:正分数与负分数。
(2)“统称”的含义为:任何整数与分数都是有理数,任何有理数要么是整数,要么是分数。
(3)正数中不仅含有正有理数,还含有其他的正数,负数类似。
例题1:(1)―10表示支出10元,那么+50表示 ;(2)如果零上5度记作5°C ,那么零下2度记作 ;(3)如果上升10m 记作10m ,那么―3m 表示 ;(4)太平洋中的马里亚纳海沟深达11034米,可记作海拔 米(即低于海平面11034米)。
第一讲 有理数的概念
练习:火眼真金,找到下列图在正确的数轴.
注意:是直线、有原点、通常向右为正,单位长度均匀分布.
练习:画出数轴并表示以下有理数:2, ,3,-3.5,0
注意:每一个有理数都对应数轴上的一个点.
思考:所有的有理数都在数轴上吗?(是的)
A.收入20元与支出30元 B.上升了6米和后退了7米
C.卖出10斤米和盈利10元 D.向东行走30米和向北行走30米
(2)如果盈利20元记作+20,那么亏本50元记作.
(3)如果“盈利5%”记作+5%”,那么-3%表示( )
A.亏损3% B.亏损8% C.盈利2% D.少赚3%
练1-2.(1)下列各组数中,不是互为相反意义的量的是( )
A.3B.1C.-2D.-4
练5-2.(1)数轴上的点A、B,如果点A对应的是-2,A、B两点的距离为3,那么点B对应
的数是.
(2)小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据
请确定墨迹遮盖住的整数共有个
附加题:
地点
纽约
纽约
纽约
纽约
时差/时
-13
-13
-13
-13
【1】下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数),现在的北京时间是上午8:00,
笔记:所有的有理数都在数轴上.
思考:数轴上的点都表示有理数吗?
笔记:数轴上的点不都表示有理数,也可以表示像 这样的无限不循环小数.
练习:直接说出数轴上点A、B表示的数a、b的大小.
笔记:数轴上右边点表示的数比左边点表示的数大, 简称:右大左小
例4.将有理数3,-2,1.2, ,0, ,-4在数轴上表示出来,并按从小到大的顺序排列,用“<”号连接起来.
第一讲有理数
第一讲 有 理 数一、有理数的概念及分类。
二、有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。
三、例 题 示 范1、数轴与大小例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个?例2、 将9998,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。
提示1:四个数都加上1不改变大小顺序;提示2:先考虑其相反数的大小顺序;提示3:考虑其倒数的大小顺序。
例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。
试确定三个数ca b ab 1,1,1-的大小关系。
分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。
例4、 在有理数a 与b(b >a)之间找出无数个有理数。
提示:P=na b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。
2、符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。
例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0注:造零的基本技巧:两个相反数的代数和为零。
3、算对与算巧例6、 计算 -1-2-3-…-2000-2001-2002提示:1、逆序相加法。
2、求和公式:S=(首项+末项)⨯项数÷2。
例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002提示:仿例5,造零。
结论:2003。
例8、 计算9999991999999个个个n n n +⨯ 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。
第一讲------------有理数
第一讲 有理数Ⅰ、主要知识回顾㈠ 有关概念1、 、 和 统称整数, 和 统称分数, 和 统称有理数 . 负分数, 如722-,-0.3(即103-),.0.3,53-.... 2、规定了 、 和 的直线叫做数轴在数轴上表示的两个数, 边的数总比 边的数大.3、只有符号不同的两个数称互为相反数.如211 和 互为相反数. 在数轴上表示互为相反数的两数的点分别位于原点的 ,且与原点的距离 。
我们还规定:0的相反数是 . 通常把在一个数前面添上“-”号,表示这个数的 . 例如 -(-4)=4, -(+5.5)=-5.5同样,在一个数前面添上“+”号,表示这个数本身. 例如 +(-4)=-4,+(+12)=12.4、我们把在数轴上表示数a 的点与 的距离叫做数a 的绝对值。
记作|a|例如,在数轴上表示数-6与表示数6的点与原点的距离都是6,所以-6和6的绝对值都是6,记作|-6|=|6|=6.同样可知|-4|= ,|+1.7|= .一个正数的绝对值是它 ; 0的绝对值是 ;一个负数的绝对值是它的 . 不论有理数a 取何值,它的绝对值总是 或 (通常也称 ).即对任意有理数a ,总有|a| 0.5、有理数大小比较的一般法则:(1) 负数小于0,0小于正数,负数小于正数;(2) 两个正数,应用已有的方法比较;(3) 两个负数,绝对值大的反而 .如:-1 -0.01; --;-0.3 31-;⎪⎭⎫ ⎝⎛--91 101-- ㈡运算1、有理数的加法法则:(1) 同号两数相加,取 的符号,并把 相加;(2) 绝对值不等的异号两数相加,取 加数的符号,并用较大的绝对值 较小的绝对值;(3) 互为相反数的两个数相加得 ;(4) 一个数同0相加,仍得 .注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.如:(+2)+(-11)= ;(+20)+(+12)= ;12123⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ ;(-3.4)+4.3= 2、有理数减法法则:减去一个数,等于加上这个数的 .如;(1)(+2)-(-3)=(-2)+( ); (2)0 - (-4)= 0 +( );(3)(-6)- 3 =(-6)+( ); (4)1 - (+39) = 1 +( ).3、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同0相乘,都得0.如:(-5)×(-6)= ;1124⎛⎫-⨯= ⎪⎝⎭ 不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为 ; 当负因数有偶数个时,积为几个不等于0的数相乘,首先确定积的 ,然后把 相乘.几个数相乘,有一个因数为0,积就为 .如: ()()153222⎛⎫-⨯-⨯⨯-⨯= ⎪⎝⎭ ; ()()58.1 3.140-⨯-⨯⨯= 4、有理数除法则:除以一个数等于乘上这个数的 .注意:0不能作除数.因为除法可化为乘法,所以有理数的除法有与乘法类似的法则:两数相除,同号得 ,异号得 ,并把 相除.0除以任何一个 的数,都得0.如;()618÷-= ; ⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-5251= ;⎪⎭⎫ ⎝⎛-÷54256= 5、n 个相同的因数a 相乘,即a ·a ·…·a ,记作n an 个这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在n a 中, 叫作底数, 叫做指数,n a 读作a 的n 次方,也可读作a 的n 次幂. 正数的任何次幂都是 ;负数的奇次幂是 ,负数的偶次幂是 .计算:()31-= ; ()101-= ;()31.0= ;423⎪⎭⎫ ⎝⎛= 6、加法交换律:两个数相加,交换加数的位置, 不变.即 a + b =加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.即 ( a + b )+ c = + ( + )计算:(1) (+26)+(-18)+5+(-16)(2) ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-218312417211321乘法交换律: 两个数相乘,交换因数的位置, 不变。
第1讲有理数有关概念及大小比较
第一讲有理数的有关概念及大小比较一、知识要点1、像等大于0的数叫做正数;像等在正数前面加上“-”(读作负)号的数,叫做负数,即在以前学过的0以外的数前面加上“-”(读作负)号的数就叫做负数;数0既不是,也不是 .2、和统称为有理数.3、有理数的两种分类方法如下:正整数整数零负整数有理数(按整数和分数来分类)正分数分数负分数有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(按正负性来分类)4、数轴的定义:规定了、和的直线叫数轴;5、任意一个有理数,都可以用数轴上的一个点来表示.6、只有符号不同的两个数叫做.7、两个互为相反数的数,在数轴上的对应点(0除外),是在两旁,•并且是距离相等的两个点,规定0的相反数就是.即:我们把a的相反数记为-a,这里的a表示任意一个数,它可以是正数也可以是或 .8、绝对值的几何定义:在数轴上表示数a的点与原点的叫做a的绝对值,记作│a│.绝对值的代数定义:(1)一个正数的绝对值是它本身;(2)一个负数的绝对值是它的相反数;(3)0的绝对值是0 .9、数轴上不同的两个点表示的数,右边点表示的数总比大.负数小于零, 零小于正数,负数小于正数.(1)两个负数比较大小,绝对值大的反而小.(2)两个有理数的大小比较,一般地有:①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值. ③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.二、知识运用典型例题例1:1.与上次测验相比,王宇的数学分数上升了18分,语文分数下降了4分,英语分数上升了9分,请写出王宇同学这三科分数的增减情况.2.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 ,这时甲乙两人相距 m.3.所有正数组成正数集合,所有负数组成负数集合,把下列各数分别填入相应的集合框里:127,3.1,0,2004,-85,-0.2,10%,10.l ,0.67,-89正数集合 负数集合整数集合 分数集合 4.下列说法中,错误的有( )①742 是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数; ⑤0是最小的有理数;⑥-1是最小的负整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 有理数
正负数
1、在一次数学测试中,小明所在班级平均分为83分,把高出平均分的记为正数,小明98分,应记为____分,小华记为-4分,他实际得分为_____分。
2、一条东西向的跑道上,小虎先向东走了8米,记为“+8”米,又向西走了10米,此时他的位置可记作________
3、小康水平的一个指标是年人均收入1000美元.2008年对某地进行随机抽样调查,得出10户年人均收入,若以人均1000美元以上为达到小康指标,超过1000美元的美元数用正数表
(2)10户年平均收入为多少美元?
4、某自行车厂一周计划生产1400辆自行车,平均每天生产200辆.由于各种原因,实际上每天的生产量与计划量相比有出入.下表是某周的生产情况(增产为正,减产为负):
(1)根据记录可知,前三天共生产了 辆自行车;
(2)产量最多的一天比产量最少的一天多生产了 辆自行车;
(3)该厂实行计件工资制,每生产一辆得60元,超额完成则每辆奖15元,少生产一辆则扣15元,那么该厂工人这一周的工资总额是多少?
有理数
有理数的分类:
1、把下列各数分别填在相应的横线上:1,-0.20,35
1,325,-789,0,-23.13,0.618,-2018. 正数:___________________________________ 分数:__________________________________ 负数:___________________________________ 正整数:_______________________________
非正数:_________________________________ 负整数:_______________________________ 非负数:_________________________________ 负分数:_______________________________
2、若a 是正数,则-a 一定是__________
数轴:
1、数轴上与+2的点距离3个单位长度的点表示的数是__________
2、点A 为数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B ,点B 表示的数是_____
3、在数轴上,-2和5之间的整数有______________
4、在数轴上与原点的距离是2的点的坐标为 。
在数轴上与-2的距离是4的点为 。
5、【数轴上的整点覆盖问题】数轴上表示整数的点称为整点,某数轴的单位长度为1cm ,若在这条数轴上任意画一条长为2015cm 的线段CD ,则线段CD 盖住的整点的个数是( ) A :2015 B :2016 C :2015或2016 D :2014或2015 变式:在数轴上任取一条长度为21500的线段,则此线段在这条数轴上覆盖的整数点可是 。
6、小红在做作业时,不小心将两滴墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断墨水盖住的整数有哪几个?
7、如图,已知有理数-3在数轴上所表示的点是A ,6在数轴上所表示的点是B ,而B 、 C 两点到点A 的距离相等,且点B 在C 的右边.现将B 向左移动5个单位到点B ',同时将C 点向右移动到点C ',且B '仍在C '的右侧,此时B '点离A 点的距离相当于点C '离A 点的距离的一半,问点B '、C 、C '所表示的有理数各是多少?(在数轴上对应点下方标注即可)
8、如图,A 、B 、C 三点在数轴上,A 点表示的数为-10,B 表示的数为14,点C 在点A 与点B 之间,且AC=BC .
(1)求A 、B 两点间的距离; (2)求C 点对应的数;
(3)甲、乙分别从A 、B 两点同时相向运动,甲的速度是1个单位长度/s ,乙的速度是2个单位长度/s ,求相遇点D 对应的数.
x
-3A B B'C C'
(4)甲、乙分别从A 、B 两点同时相向运动,甲的速度是每秒行进1个单位长度,乙的速度是每秒行进2个单位长度,求运动几秒后A 、B 两点相距为3个单位长度?
相反数
1、a 的相反数为________,若a 的相反数为a ,则a=______;-(-3)的相反数是______
2、在数轴上点A 、B 表示的数互为相反数,且两点间的距离是8,点A 在点B 的右边,则点A 表示的数为________,B 表示的数为_________
3、化简
-(-68)=______ -(+0.75)=______ -(-5
3)=________ -(+3.8)=_____ +(-3.8)=______ +(-3)=______ -[+(-32
1)]=_______ -[-(+2)]=_____ 4、数a 的相反数是最大的负整数,则a=_______;数b 的相反数是最小的正整数,则b=____,数c 的相反数是它本身,则c=______
5、已知a 和b 互为相反数,b 与c 互为相反数,且c=-6,则a=______
6、数轴上A 点表示-3,B 、C 两点表示的数互为相反数,且点B 到点A 的距离是2,则点C 表示的数应该是________
7、已知3x-3的相反数为-15,求x 。
8、在数轴上点A 表示的数为7,点B 和点C 表示的数互为相反数,且A 与C 之间的距离为2,请在数轴上画出A 、B 、C 的位置并求出B 、C 所表示的数。
9、已知表示数a 的点在数轴上的位置如图所示。
(1)在数轴上表示出a 的相反数的位置.
(2)若数a 与其相反数相距20个单位长度,则a 表示的数是多少?
(3)在(2)的条件下,若数b 表示的数与数a 的相反数表示的点相距5个单位长度,求b 表示的数是多少?
作业:1、将下列各数填入相应的横线上:-6,1,9.3,-16
,42,0,2π,-3.1415926,25%,2
4-,0.20200200020000…… 有理数:_________________________;正有理数:______________________________; 整数:______________________________;非正整数:________________________________; 负分数:____________________________;非负数:__________________________________; 自然数:_____________________________________________。
2、观察下列规律并接着填写后面的数
(1)1,-1,1,-1,1,-1, , ,……
(2)2,-4,6,-8,10,-12,14,-16, , ,……
(3)1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0, , ,……
(4)-1,2,3,-4,5,6,-7,8,9, , , ,……
3、若2m 与n 互为相反数,x 是最小的非负数,y 是最小的正整数,求(4m+2n )y+y-x 的值。
4、下列语句:①所有整数都是正数;②分数是有理数;③所有的正数都是整数;④在有理数中,除了负数就是正数,其中正确的结论个数为( )
A.1个
B.2个
C.3个
D.4个
5、下列说法中:①0是整数;②-2.3是负分数;③3.6不是正数;④自然数一定是正数;⑤负分数一定是负有理数,期中正确的有( )
A.1个
B.2个
C.3个
D.4个
6、求下列各数或者式子的相反数:
(1)-(-3) (2)-{ +[-(-2)]} (3)-[-(- 8 )]
(4)-a (5)a-b (6)a+b
7、数轴上A 点表示的数为+4,B 、C 两点所表示的数互为相反数,且C 到A 的距离为2,点B 和点C 各表示什么数?
8、数轴上A 点表示-3,B,C 两点表示的数互为相反数,点B 在点A 的左边,且点B 到点A 的距离是2,则点C 的数应该是 。