定积分在物理中的应用 说课稿 教案 教学设计
1.7.定积分在物理中的应用-人教A版选修2-2教案
1.7. 定积分在物理中的应用-人教A版选修2-2教案一、教学目标1.理解定积分的物理意义和计算方法。
2.掌握定积分用于求曲线下的面积、质量和质心等物理量的计算方法。
3.了解矩形法和梯形法的计算公式和误差估计方法。
二、教学重点和难点1.掌握定积分在物理中的应用。
2.熟练掌握定积分的计算方法。
3.理解矩形法和梯形法的误差估计方法。
三、教学过程3.1、导入新课1.引入物理学中的几何概念——曲线下的面积。
2.提问:如何求出曲线下的面积?3.引导学生思考定积分的概念及其物理意义。
3.2、讲解定积分的物理意义和计算方法1.定积分的物理意义:用于求曲线下的面积、质量和质心等物理量。
2.定积分的计算方法:用不定积分求解,再进行积分区间的计算。
3.3、定积分在物理中的应用3.3.1、曲线下的面积1.定义曲线下的面积。
2.推导计算公式。
3.3.2、质量1.定义质量。
2.推导计算公式。
3.3.3、质心1.定义质心。
2.推导计算公式。
3.4、矩形法和梯形法的计算公式和误差估计方法1.介绍矩形法和梯形法的计算公式。
2.推导误差估计公式。
3.5、课堂练习1.做一些简单的例题,让学生熟悉定积分的计算方法和应用。
2.分组让学生自主练习,并交流答案。
四、教学反思1.本节课通过引入几何概念引导学生认识定积分的物理意义,从而引入了定积分的计算方法和应用。
2.教师在给出定积分的物理意义时应该注意符合学生所学习过的课程,从而让学生更好地理解和接受。
3.我们还需更多的时间让学生练习和思考,以便更好的理解和掌握定积分。
最新定积分在物理学上的应用
定积分在物理学上的应用第五章第六节定积分在物理学上的应用教学目的:理解和掌握用定积分的元素法,解决物理上的实际问题功,水压力和引力教学重点:如何将物理问题抽象成数学问题教学难点:元素法的正确运用教学内容:一、变力沿直线所作的功例1 半径为«Skip Record If...»的球沉入水中,球的上部与水面相切,球的比重为 1 ,现将这球从水中取出,需作多少功?解:建立如图所示的坐标系将高为«Skip Record If...»的球缺取出水面,所需的力«Skip Record If...»为:«Skip Record If...»其中:«Skip Record If...»是球的重力,«Skip Record If...»表示将球缺取出之后,仍浸在水中的另一部分球缺所受的浮力。
由球缺公式«Skip Record If...»有«Skip Record If...»从而«Skip Record If...»十分明显,«Skip Record If...»表示取出水面的球缺的重力。
即:仅有重力作功,而浮力并未作功,且这是一个变力。
从水中将球取出所作的功等于变力«Skip Record If...»从«Skip Record If...»改变至«Skip Record If...»时所作的功。
取«Skip Record If...»为积分变量,则«Skip Record If...»,对于«Skip Record If...»上的任一小区间«Skip Record If...»,变力«Skip Record If...»从«Skip Record If...»到«Skip Record If...»这段距离内所作的功。
定积分在物理中的简单应用
2.变力做功
一物体在恒力F 单位 : N的作用下做直线运动,如
果物体沿着与力F相同的方向移动了s(单位 : m), 则力F所作的功为W Fs.
变力所做的功:
物体在变力F(x)的作用下做直线运动,并
且物体沿着与F(x)相同的方向从x=a移动到
x=b(a<b),那么变力F(x)所作的功
F
y F (x)
图1.7 3
练习1:一物体沿直线以v=3t+2(t单位:s,v单位:
m/s)的速度运动,则该物体在3 s~6 s间的运动路程为
( B )A.46 m B.46.5 m C.87 m D.47 m
例 2:一动点 P 沿 x 轴运动,在时间 t 时的速度
为 v(t)=8t-2t2(速度的正方向与 x 轴正方向一 致).求: (1)点 P 从原点出发,当 t=6 时,点 P 离开原点 的路程和位移; (2)点 P 从原点出发,经过时间 t 后又返回原点时 的 t 值.
Oa
x
b
题型2:变力做功
例3:设有一长25 cm的弹簧,若加以100 N 的力,则弹簧伸长到30 cm,又已知弹簧伸 长所需要的拉力与弹簧的伸长量成正比,求 使弹簧由25 cm 伸长到40 cm所做的功.
练习 1:一物体在变力 F(x)=3x62(N)的作用下沿坐标平面 内 x 轴的正方向由 x=8 m 处运动到 x=18 m 处,求力
v
v v(t)
tHale Waihona Puke Oab提问:当V(t)<0 时,则此物体在时间区间[a, b]内
运动的距离s为什么?
题型1:求变速直线运动的路程、位移
例1:一辆汽车的速度——时间曲线如图
1.7-3所示,求汽车在这1min行驶的路程
高中数学新人教版A版精品教案《1.7.2 定积分在物理中的应用》
定积分在物理中的应用教学设计石嘴山市第一中学数学组马建芳一、教学内容分析本节课是人教版高中数学选修2-2第一章第七节的内容。
本节内容是应用定积分求变速直线运动物体的路程以及变力做的功等问题,解决这些问题的关键是将它们化归为定积分的问题。
通过本节的学习,使学生了解应用定积分解决实际问题的基本思想方法,知道在求变速直线运动物体的路程以及变力做功时,定积分是一种普遍适用的方法,初步了解定积分具有广泛的应用。
同时,在解决问题的过程中,通过数形结合的思想方法,加深对定积分几何意义的理解,使学生在解决问题的过程中体验定积分的价值。
二、教法分析应用型的课题是培养学生观察,分析,发现,概括,推理和探索能力的极好素材,本节课主要采取“教师启发引导与学生自主探究相结合”的教学方法,利用多媒体课件,微视频,几何画板优化课堂教学。
三、学法分析自主探究法、观察发现法、合作交流法等学习方法。
四、教学目标1知识与技能:了解定积分的几何意义及微积分基本定理;掌握利用定积分解决物理中的变速直线运动路程问题和变力做功问题。
2过程与方法:通过探究式的学习方法利用问题的物理意义,借助定积分的几何意义,用“数形结合”的思想方法解决问题。
3情感态度与价值观:体会数学在其他学科中的渗透,让学生体会数学是一门应用非常广泛的学科,激发学生的求知欲,培养其对学习的浓厚兴趣。
五、教学重难点1教学重点:利用定积分的知识解决变速运动问题及变力做功问题,进一步巩固定积分解决实际问题思路和方法。
2教学难点:理解实际问题的物理意义,建立数学模型,借助定积分解决。
六、课时安排共1课时七、教学过程(一)情境引入课程开始之前,老师有个小故事想要分享给大家。
(播放微视频)视频中的两位同学在学习中遇到了些问题,我想请大家一起帮助他们解决,同时也将他们学习中的成果与大家分享。
请同学们讨论,我们需要帮助他们解决的是什么问题?(将两位同学得到的两个函数图像课件展示,引导学生分析)图中阴影部分的面积就是物体做变速运动的路程?2变速直线运动的路程又如何计算?(二)新课讲授1首先我们解决第一个问题:为什么v-t图中阴影部分的面积就是物体做变速运动的路程?大家在物理中已经学习过匀速直线运动和匀变速直线运动的路程问题。
定积分应用 教案
定积分应用教案教案标题:定积分应用教学目标:1. 了解定积分的概念和基本性质。
2. 掌握定积分的应用方法,包括计算曲线下面积、计算物体体积等。
3. 培养学生运用定积分解决实际问题的能力。
教学准备:1. 教师准备:教师课件、教学实例、计算器等。
2. 学生准备:课本、笔记本、计算器等。
教学过程:Step 1:引入定积分的概念(10分钟)1. 教师通过课件或者黑板,简要介绍定积分的概念和基本性质,如曲线下面积的计算、物体体积的计算等。
2. 引导学生思考,定积分与不定积分的区别和联系。
Step 2:计算曲线下面积(20分钟)1. 教师通过示例,详细讲解如何利用定积分计算曲线下面积。
2. 引导学生理解定积分的几何意义,即曲线下面积的极限概念。
3. 给予学生练习的机会,让他们通过计算不同曲线下面积的例子,巩固所学知识。
Step 3:计算物体体积(20分钟)1. 教师通过实例,讲解如何利用定积分计算物体的体积。
2. 引导学生理解定积分的物理意义,即物体体积的极限概念。
3. 给予学生练习的机会,让他们通过计算不同物体体积的例子,巩固所学知识。
Step 4:应用实际问题(15分钟)1. 教师提供一些实际问题,如水池的蓄水量、材料的质量等,引导学生运用定积分解决问题。
2. 学生分组讨论,解决给定的实际问题,并展示解决过程和结果。
Step 5:总结和拓展(10分钟)1. 教师对本节课的内容进行总结,强调定积分的应用方法和意义。
2. 鼓励学生拓展思考,提出更多与定积分相关的实际问题,并探索解决方法。
教学要点:1. 定积分的概念和基本性质。
2. 计算曲线下面积的方法和几何意义。
3. 计算物体体积的方法和物理意义。
4. 运用定积分解决实际问题的能力。
教学扩展:1. 鼓励学生自主学习,深入了解定积分的更多应用领域,如概率统计、经济学等。
2. 提供更多实际问题,让学生运用定积分解决,培养他们的应用能力。
3. 引导学生进行小研究,探索定积分的相关定理和性质,拓展他们的数学思维。
定积分在物理中的应用
30
A
B
20
10
o
C t/s
10
20 30
40 50
60
图1.7 − 3
解 由速度 时间曲线可知 : 3t , 0 ≤ t ≤ 10; 10 ≤ t ≤ 40; v(t ) = 30, − 1.5t + 90, 40 ≤ t ≤ 60. 因此汽车在这1min 行驶的路 程是 :
10 40 60 0 10 40
q 点为r处的单位电荷受到的电场力由公式: 点为r处的单位电荷受到的电场力由公式:F = k 2 r
确定,在该电场中, 确定,在该电场中,一个单位正电荷在电场力作 用下,沿着r轴方向从r=a到r=b(a<b),求电场 ),求电场 用下,沿着r轴方向从r=a到r=b(a<b), 力对它所作的功。 力对它所作的功。
0 0 2 2
(s)到 (s)这段时间内阻力做 答 : 在时刻 t = 0 (s) 到 t = 2 (s) 这段时间内阻力做 的功为 102.4J
课后作业
1.课本59页练习1,2 2.课本60页习题A组4,5
设物体运动的速度v=v(t) 设物体运动的速度 v=v(t)≥0 , 则此物 体在时间区间[a, b]内运动的距离 内运动的距离s 体在时间区间[a, b]内运动的距离s为
∆Si = v(ti ) • ∆t = v(ti ) • ∆t
一、变速直线运动的路程
b
s = ∫ v(t)dt
aห้องสมุดไป่ตู้
n n
v
v = v (t )
(1)若V(t)≥0,则路程
s=
∫
b
a
v (t ) d t
位移M=
=
∫
人教版高中数学选修2-21.7.2定积分在物理中的应用教案
1.7.2 定积分在物理中的应用教课建议1.教材剖析,指引学生解决变力所做的功等一些简单的物本小节主假如经过举例复习变速直线运动的行程理问题 .要点是应用定积分解决变速直线运动的行程和变力做功等问题,使学生在解决问题的过程中体验定积分的价值 .难点是将物理问题化归为定积分的问题.2.主要问题及教课建议(1)变速直线运动的行程问题.建议教师用发问的方式让学生思虑、议论 ,使学生进一步从“数形联合”的角度理解定积分的观点并解决问题 .(2)变力做功的问题 .,自己推导出变力做功的公式,进一步体验用建议教师指引学生类比求变速直线运动行程的过程定积分解决问题的思想方法 .备选习题1.已知物体从水平川面做竖直上抛运动的速度—时间曲线如图 ,求物体 :(1)距离水平川面的最大值 ;(2)从 t= 0(s)到 t= 6(s)的位移 ;(3)从 t= 0(s)到 t= 6(s)的行程 .解:(1) 设速度—时间函数式为v(t)=v 0+at ,将点 (0 ,40),(6,-20)的坐标分别代入,得 v0= 40,a=- 10,因此 v(t)= 40-10t.令 v(t) =0? 40-10t= 0? t= 4,物体从 0 s 运动到距离水平川面的最大值为2(2)由上述可知 ,物体在 0~6 s 内的位移为s= (40-10t)dt= (40t-5t2)= 60(m) .(3)由上述可知,物体在 0~6 s 内的行程为s=|40-10t|dt=(40-10t)dt-(40-10t)dt=(40 t-5t 2)-(40t- 5t2)=80+ 20= 100(m) .2.如下图,一物体沿斜面在拉力 F 的作用下由 A 经 B,C 运动到 D,此中 AB= 5 m,BC= 4 m,CD= 3 m,变力 F= 在 AB 段运动时动方向同样 ,求物体由F 与运动方向成30°角 ,在A 运动到 D 所做的功 .BC 段运动时 F 与运动方向成45°角 ,在CD段F与运解: 在 AB 段运动时 F 在运动方向上的分力 F 1=F cos 30 .°在 BC 段运动时 F 在运动方向上的分力 F 2=F cos 45 .°由变力做功公式得W= cos 30 dx+° cos 45 dx+° 20dx= (x+ 20 )dx+ (x+20)dx+ 20dx=+ 20x=×108+ 20×3= (N ·m).。
定积分在力学上的简单应用教案
定积分在力学上的简单应用教案目的要求1.会用定积分求变速直线运动的路程及变力作的功.2.理解路程公式及变力作功公式中的条件、关键字.3.学会用数学工具解决物理问题,体现定积分的价值.内容分析1.这节课的主要内容是用定积分求变速直线运动的路程及变力作的功,学生在前面已经学了定积分的运算和性质,因此在运算方面学生是轻车熟路,不存在难点.2.学生以前所学的路程问题只涉及匀速直线运动和匀变速直线运动的路程,作功问题也只涉及常力作功,而本节研究的是加速度为变量的非匀变速直线运动的路程及变力作功问题,它是高中物理中的路程及作功问题的继续和发展,所以本节重点是路程公式及变力作功公式和它们的应用.3.在公式的应用过程中,学生往往容易忽略公式中的关键字、词或条件.如路程公式中有一隐含条件v(t)≥0,当v(t)≤0时计算出来的已不是路程,在此要让学生借助物理知识(路程是代数和)推导出当v(t)≤0 先判定v(t)的正负,然后再利用区间的可加性进行计算.4.从路程公式中引导学生去思考并得出位移的计算公式:从t=a 5.在变力作功这个公式中,要帮助学生找到关键字“沿着与F相同的方向”,当物体沿着与力相反方向时作的是负功;当力F与位移方向有夹角时将力F分解;另外F(x)是关于x的函数,而不是对t或其他变量的函数.6.由于本节知识是在高三学生有了良好的物理基础上来学习的,所以教学上采用了学生自主学习的方法,即通过学生自己阅读、自己练习,然后配了一错误解答让他们去辨析,最后教师总结.另外,教学中还要时刻回忆一些物理知识,让学生懂得数理的联系非常紧密,二者相辅相成.教学过程1.复习引入回忆1:瞬时速度概念:若物体的运动规律是s=s(t),则物体在时刻t的瞬时速度v即是s=s(t)在t处的导数.思考1:v(t)对时间t求[0,t]上的定积分是否等于路程?思考2:以上两种运动的速度对时间求定积分即为s,那么对一般的变速直线运动所经过的路程能用定积分来计算吗?2.路程问题(1)请学生阅读教科书4.5节路程公式及例1,并尝试着找出公式中的条件.(2)练习同节“练习1”.[(1)、(2)目的是让学生自主接受公式、熟悉公式并应用公式.](3)辨析正误.题:作变速直线运动的物体的速度为v(t)=1-t2,初始位置为x0=1,求它在前2秒内所走过的路程及2秒末所在位置.学生思考议论片刻,再给出3点提示:a.公式中的条件是v(t)≥0.b.路程、位移在物理学中是标量还是失量?c.A从讲台走到教室后又回到讲台,他所走过的路程和位移分别是多少?讨论、点拨之后师生共同归纳出结论.(前面内容3、4)说明:学生学新教科书都有一个体会,就是:一看就懂,一做就错.究其原因就是看例题只是单纯地套公式,没有理解实质.选此题的目的就是让学生在辨析、思考中找到挖掘隐含条件、关键字的方法,以提高自学能力.3.作功问题(1)请物理科代表讲解弹簧的平衡位置、伸长(压缩)量、弹性限度、胡克定律等知识.(目的:让学生积极主动参与进来,而不是教师机械灌输.)(2)学生阅读教科书4.5节变力作功公式及例题2,并找出关键字.(3)练习本节练习2.(4)例题:物体按规律x=4t2(米)作直线运动,设介质的阻力与速度成正比,且速度等于10(米/秒)时阻力为2(牛),求物体从x=0到x=2阻力所做的功.分析:变力作功公式中,F(x)是用x表示的,而此题中只有x对t 的关系式,故首先将F表示出来.依题意得:F=kv,但这不是x的函数,应将v用x表示.另外,此题F是与物体运动方向相反的,说明:例题2及练习2都明显给出了F与x的关系,此例题没有明显的关系,量也比较多,通过此例题帮助学生理解并能表示出F(x)的关系式.4.反馈训练(1)变速直线运动的物体的速度为v(t),初始t=0时所在位置为s0,秒末它所在的位置为则当t1[ ](2)列车以速度72km/h行驶.当制动时列车获得加速度a=-0.4m/s2,问列车应在进站前多少时候,以及离车站多远处开始制动?(3)一台打桩机将一木桩打入地下,每次打击所作的功相等,土壤对木桩的阻力与木桩进入土壤的深度成正比,第一次打击将木桩打入1米深,求第二次打入的深度.5.归纳小结再现两个公式,重申易错之处.布置作业教科书习题4.5第1、2、3题.。
【优质文档】(06)定积分在物理中的运用
4.如果 1N 能拉弹簧 1cm ,为了将弹簧拉长 6cm ,所耗费的功为(
)
A.0.18J B.0.26J C .0.12 J D.0.28 J
10(0 x 2)
5.一物体在力 F (x) =
(单位: N)的作用下沿与力 F (x)做功为(
3x 4( x 2)
A .44JB. 46JC. 48JD. 50J
(3) 情感态度与价值观
培养在熟悉的环境中认识新的事物的能力和获取事物的能力
二、教学重点
能正确运用定积分知识解决物理学中的相关问题
三、教学难点
知道位移与路程的区别;变力的确定
四、教学习过程
(一)知识回顾
定积分的几何意义;曲线所围平面图形的面积求法
.
(二)探究新知识
I 、知识要点:作变速直线运动的物体在时间区间
)
A.70m
B.72m C .75m D.80m
2.设列车从 A 点以速度 v(t) 24 1.2t (m / s) 开始拉闸减速,则拉闸后行驶 105m 所需时间为( )
A.5s B.10s C.20 s D .35s
3.质点由坐标原点出发时开始计时,沿 x 轴运动,其加速度 a(t ) 2t ,当初速度 v(0) 0 时,质点出发后 6s 所
走的路程为( )
A.12 B.54 C .72 D .96
能力提升
7、把一个带 q 电量的点电荷放在 r 轴上坐标原点处,形成一个电场,已知在该电场中,距离坐标原点为
r 处的
单位电荷受到的电场力的由公式
F
q k r2
(其中 k 为常数 )
确定 .在该电场中,一个单位正电荷在电场力的作用
下,沿着 r 轴的方向从 r a 处移动到 r b(a b) 处,求电场力对它所做的功 .
人教版高中数学教案-定积分在物理中的应用
1. 7.2定積分在物理中的應用課前預習學案【預習目標】能熟練利用定積分求變速直線運動的路程.會用定積分求變力所做的功.【預習內容】一、知識要點:作變速直線運動的物體在時間區間[]b a ,上所經過的路程S ,等於其速度函數)0)()((≥=t v t v v 在時間區間[]b a ,上的 ,即 .例1已知一輛汽車的速度——時間的函數關係為:(單位:).(),/(s t s m v )⎪⎪⎩⎪⎪⎨⎧≤≤+-≤≤≤≤=.6040,905.1;4010,30;100,103)(2t t t t t t v求(1)汽車s 10行駛的路程;(2)汽車s 50行駛的路程;(3)汽車min 1行駛的路程.變式1:變速直線運動的物體速度為,1)(2t t v -=初始位置為,10=x 求它在前s 2內所走的路程及s 2末所在的位置.二、要點:如果物體在變力)(x F 的作用下做直線運動,並且物體沿著與)(x F 相同方向從a x =移動到),(b a b x <=則變力)(x F 所作的功W = .例2 在彈性限度內,將一彈簧從平衡位置拉到離平衡位置lm 處,求克服彈力所作的功.變式2:一物體在變力25)(x x F -=作用下,沿與)(x F 成︒30方向作直線運動,則由1=x 運動到2=x 時)(x F 作的功為 .課內探究學案一、學習目標:1. 瞭解定積分的幾何意義及微積分的基本定理.2.掌握利用定積分求變速直線運動的路程、變力做功等物理問題。
二、學習重點與難點: 1. 定積分的概念及幾何意義2. 定積分的基本性質及運算的應用三、學習過程(一)變速直線運動的路程1.物本做變速度直線運動經過的路程s ,等於其速度函數v = v (t ) (v (t )≥0 )在時間區間[a ,b ]上的 定積分 ,即⎰=ba dt t v s )(.2.質點直線運動瞬時速度的變化為v (t ) = – 3sin t ,則 t 1 = 3至t 2 = 5時間內的位移是()dt t ⎰-53sin 3.(只列式子) 3.變速直線運動的物體的速度v (t ) = 5 – t 2,初始位置v (0) = 1,前2s 所走過的路程為 325 . 例1.教材P58面例3。
定积分在物理上的应用
教材分析 本次课是学生学习完定积分的概念和计算方法以及定积 分在几何上的应用后的学习,定积分的元素法在几何和 物理上的应用为学生尝试解决各种实际问题做了很好的 铺垫。将来把元素法的思想推广到多元函数后,其应用 范围将会更宽更广。所以无论从内容还是数学思想方面, 本次课在教材中都处于重要的地位。
教学方法 根据对学生的学情分析,本次课主要采用案例教学法, 问题驱动教学法,讲与练互相结合,以教师的引导和讲 解为主,同时充分调动学生学习的主动性和思考问题的
授课题目 定积分在物理上的应用
课时数 1 课时
教学目标 用定积分解决物理学上的变力做功以及液体压力问题。
重点与 教学重点:定积分方法分析变力做功和液体压力。
难点
教学难点:定积分的元素法以及物理量的计算公式。
学情分析 我所教授的学生从知识结构上来说属于好坏差别很大, 有的接受新知识很快,有的很慢,有的根本听不懂,基 于这些特点,结合教学内容,我以板书教学为主,多媒 体教学为辅,把概念较强的课本知识直观化、形象化, 引导学生探索性学习。
例 4、一水平横放的半径为 R 的圆桶,内盛半桶密度为 的液体,求
桶的一个端面所受的侧压力。
解:建立坐标系如图。
所论半圆的方程为
利用对称性,侧压力元素
端面所受的侧压力为
教学评价
预习任务与 定积分在物理上的应用---引力 课后作业
解:建立坐标系如图. 由波义耳---马略特定律知压强 p 与体积V 成 反比,即 p k k ,故作用在活塞上的力为
V xS
功元素为 dW Fdx k dx x
所求功为W
b a
k dx x
k[ln
x]ba
k
ln
b a
.
定积分在物理中的应用 说课稿 教案 教学设计
定积分在几何中的简单应用教学目标:进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;让学生深刻理解定积分的几何意义以及微积分的基本定理;初步掌握利用定积分求曲边梯形的几种常见题型及方法;体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。
教学重点: 曲边梯形面积的求法;教学难点:定积分在物理中应用.教学过程设计(一)、复习引入,激发兴趣。
【教师引入】1、求曲边梯形的思想方法是什么?2、定积分的几何意义是什么?3、微积分基本定理是什么?(二)、探究新知,揭示概念变力作功一物体在恒力F (单位:N )的作用下做直线运动,如果物体沿着与F 相同的方向移(单位:m),则力F 所作的功为W=Fs .探究(1)求变速直线运动的路程我们知道,作变速直线运动的物体所经过的路程s ,等于其速度函数v=v (t) ( v(t) ≥0) 在时间区间上的定积分,即()ba s v t dt =⎰ (2).变力作功一物体在恒力F (单位:N )的作用下做直线运动,如果物体沿着与F 相同的方向移(单位:m),则力F 所作的功为W=Fs .探究如果物体在变力 F(x )的作用下做直线运动,并且物体沿着与 F (x) 相同的方向从x =a 移动到x=b (a<b) ,那么如何计算变力F(x )所作的功W 呢?与求曲边梯形的面积和求变速直线运动的路程一样,可以用“四步曲”解决变力作功问题.可以得到 ()ba W F x dx =⎰(三)、分析归纳,抽象概括作变速直线运动的物体所经过的路程s ,等于其速度函数v=v (t) ( v(t) ≥0) 在时间区间上的定积分,即()ba s v t dt =⎰与求曲边梯形的面积和求变速直线运动的路程一样,可以用“四步曲”解决变力作功问题.可以得到 ()ba W F x dx =⎰(四)、知识应用,深化理解例 1.一辆汽车的速度一时间曲线如图1.7 一3 所示.求汽车在这1 min 行驶的路程.解:由速度一时间曲线可知: 3,010,()30,10401.590,4060.t t v t t t t ≤≤⎧⎪=≤≤⎨⎪-+≤≤⎩因此汽车在这 1 min 行驶的路程是:104060010403[30( 1.590)s tdt dt t dt =++-+⎰⎰⎰210402600104033|30|(90)|1350()24t t t t m =++-+= 答:汽车在这 1 min 行驶的路程是 1350m .例2.如图1·7一4 ,在弹性限度内,将一弹簧从平衡位置拉到离平衡位置lm 处,求克服弹力所作的功.解:在弹性限度内,拉伸(或压缩)弹簧所需的力 F ( x )与弹簧拉伸(或压缩)的长度 x 成正比,即 F ( x )= kx ,其中常数 k 是比例系数.由变力作功公式,得到220011|()22ll W kxdx x kl J ===⎰ 答:克服弹力所作的功为212kl J .。
定积分在物理中的应用 说课稿 教案 教学设计
导数及其应用一、教学目标:知识与技能:1、进一步理导数的概念,掌握导数在研究函数单调性及极值和最值中的应用,完善学生对数的认识。
2、理解导数和定积分中体现的数学思想“以直代曲”;过程与方法:通过复习归纳常见题型,帮助学生形成解题模块。
提高解决复数问题的能力。
情感、态度与价值:让学生探索、发现数学知识和掌握数学知识的内在规律的过程中不,不断获得成功积累愉快的体验,不断增进学习数学的兴趣,同时还通过探索这一活动培养学生善于和他人合作的精神.二、教学重点、难点重点:掌握导数的概念及应用,提升问题分析解决能力;难点:通过复习提高学生总结知识的能力和习惯。
三、教学模式与教法、学法教学模式:本课采用“探究——发现”教学模式.四、教学过程教学流程教师活动学生活动设计意图环节一: 1. 知识框图:问题1:你能用自己的方法,对本章学习的知识做一梳理总结吗?引进知识框图,帮助学生提高对知识的总结归纳能力。
.环节二: 2.概念辨析,完善认知1)导数1.对于导数的定义,必须明白定义中包含的基本内容和Δx→0的方式,导数是函数的增量Δy与帮助学生提高对知自变量的增量Δx 的比ΔyΔx的极限,即lim Δx →0Δy Δx =lim Δx →0 f x0+Δx -f x0Δx.函数y =f(x)在点x0处的导数的几何意义,就是曲线y =f(x)在点P(x0,f(x0))处的切线的斜率.2).几种常见函数的导数公式3).判断函数的单调性(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中,只能在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间;(2)注意在某一区间内f ′(x )>0(或f ′(x )<0)是函数f (x )在该区间上为增(或减)函数的充分条件. 4).利用导数研究函数的极值要注意(1)连续函数f (x )在其定义域上的极值点可能不止一个,也可能没有极值点,函数的极大值与极小值没有必然的大小联系,函数的一个极小值也不一定比它的一个极大值小.(2)可导函数的极值点一定是导数为零的点,但函数的导数为零的点,不一定是该函数的极值点.因此导数为零的点仅是该点为极值点的必要条件,其充要条件是加上这点两侧的导数异号. 5)求函数的最大值与最小值 求函数最值的步骤一般地,求函数y =f (x )在[a ,b ]上最大值与最小值的步骤如下:①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. 6).定积分的概念 定积分的思想就是无限分割、以直代曲、求和、 2.定积分的性质通过对形成的知识框图,进一步完善其中的知识要点。
高中数学 专题1.7.2 定积分在物理中的应用教案 新人教A版选修22
定积分在物理中的应用【教学目标】1.能利用定积分解决物理中的变速直线运动的路程、变力做功问题.2.通过定积分在物理中的应用,学会用数学工具解决物理问题,进一步体会定积分的价值. 【教法指导】本节学习重点:能利用定积分解决物理中的变速直线运动的路程、变力做功问题. 本节学习难点:学会用数学工具解决物理问题,进一步体会定积分的价值. 【教学过程】 ☆探索新知☆探究点一 变速直线运动的路程思考 变速直线运动的路程和位移相同吗?例1 一辆汽车的速度-时间曲线如图所示.求汽车在这1 min 行驶的路程.解 由速度-时间曲线可知:v (t )=⎩⎪⎨⎪⎧3t , 0≤t ≤10,30, 10≤t ≤40,-1.5t +90, 40≤t ≤60.因此汽车在这1 min 行驶的路程是:s =ʃ1003t d t +ʃ401030d t +ʃ6040(-1.5t +90)d t=32t 2|100+30t |4010+(-34t 2+90t )|6040 =1 350 (m).答 汽车在这1 min 行驶的路程是1 350 m.反思与感悟 (1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键. (2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算,否则会出现计算失误.跟踪训练1 一质点在直线上从时刻t =0(s)开始以速度v (t )=t 2-4t +3(m/s)运动.求: (1)在时刻t =4时,该点的位置; (2)在时刻t =4时,该点运动的路程.解 (1)由ʃ4(t 2-4t +3)d t =(t 33-2t 2+3t )|40=43知,在时刻t =4时,该质点离出发点43m.(2)由v (t )=t 2-4t +3>0, 得t ∈(0,1)∪(3,4).这说明t ∈(1,3)时质点运动方向与t ∈(0,1)∪(3,4)时运动方向相反. 故s =ʃ40|t 2-4t +3|d t=ʃ10(t 2-4t +3)d t +ʃ31(4t -t 2-3)d t +ʃ43(t 2-4t +3)d t =4. 即在时刻t =4时,该质点运动的路程为4 m. 探究点二 变力做功问题思考 恒力F 沿与F 相同的方向移动了s ,力F 做的功为W =Fs ,那么变力做功问题怎样解决呢?例2 如图所示,一物体沿斜面在拉力F 的作用下由A 经B 、C 运动到D ,其中AB =50 m ,BC =40 m ,CD =30 m ,变力F =⎩⎪⎨⎪⎧14x +5 0≤x ≤9020 90<x ≤120(单位:N),在AB 段运动时F 与运动方向成30°角,在BC 段运动时F 与运动方向成45°角,在CD 段运动时F 与运动方向相同,求物体由A 运动到D 所做的功.(3≈1.732,2≈1.414,精确到1 J)解 在AB 段运动时F 在运动方向上的分力F 1=F cos 30°,在BC 段运动时F 在运动方向上的分力F 2=F cos 45°.由变力做功公式得:W =ʃ500⎝ ⎛⎭⎪⎫14x +5cos 30°d x +ʃ9050⎝ ⎛⎭⎪⎫14x +5cos 45°d x +600=38⎝ ⎛⎭⎪⎫12x 2+20x |500+28⎝ ⎛⎭⎪⎫12x 2+20x |9050+600 =1 12543+4502+600≈1 723 (J). 所以物体由A 运动到D 变力F 所做的功为1 723 J. 反思与感悟 解决变力做功注意以下两个方面:(1)首先要将变力用其方向上的位移表示出来,这是关键的一步. (2)根据变力做功的公式将其转化为求定积分的问题.跟踪训练2 设有一长25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,求使弹簧由25 cm 伸长到40 cm 所做的功.答 使弹簧由25 cm 伸长到40 cm 所做的功为22.5 J. ☆课堂提高☆1.一物体沿直线以v =3t +2(t 单位:s ,v 单位:m/s)的速度运动,则该物体在 3~6 s 间的运动路程为( ).A .46 mB .46.5 mC .87 mD .47 m 【答案】 B 【解析】 s =⎰63(3t +2)d t =⎝ ⎛⎭⎪⎫32t 2+2t ⎪⎪⎪63=(54+12)-⎝ ⎛⎭⎪⎫272+6=46.5(m).2.从空中自由下落的物体,在第一秒时刻恰经过电视塔顶,在第二秒时刻物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( ) A.52g B.72g C.32g D .2g【答案】 C【解析】 h =ʃ21gt d t =12gt 2|21=32g .3.一物体从A 处向B 处运动,速度为1.4t m/s(t 为运动的时间),到B 处时的速度为35 m/s ,则AB 间的距离为( ) A .120 m B .437.5 m C .360 m D .480 m【答案】 B【解析】 从A 处到B 处所用时间为25 s.所以|AB |=ʃ2501.4t d t =0.7t 2|250=437.5 (m).4.如果1 N 的力使弹簧伸长1 cm ,在弹性限度内,为了将弹簧拉长10 cm ,拉力所做的功为( ) A .0.5 J B .1 J C .50 J D .100 J【答案】 A5.A 、B 两站相距7.2 k m ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段速度为1.2 t (m/s),到C 点速度达24 m/s ,从C 点到B 站前的D 点以等速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2 t )m/s ,在B 点恰好停车,试求: (1)A 、C 间的距离; (2)B 、D 间的距离;(3)电车从A 站到B 站所需的时间.【解析】 (1)设A 到C 经过t 1 s ,由1.2t 1=24得t 1=20(s), ∴AC =⎰201.2t d t =0.6 t 2⎪⎪⎪20=240(m).(2)设从D ―→B 经过t 2s , 由24-1.2 t 2=0得t 2=20(s), ∴DB =∫200(24-1.2t )d t =240(m). (3)CD =7 200-2×240=6 720(m). 从C 到D 的时间为t 3=6 72024=280(s).于是所求时间为20+280+20=320(s).6.一物体按规律x =bt 3作直线运动,其中x 为时间t 内通过的距离,媒质的阻力正比于速度的平方,试求物体由x =0运动到x =a 时,阻力所做的功.【解析】 物体的速度v =x ′(t )=(bt 3)′=3bt 2,媒质的阻力F 阻=kv 2=k ·(3bt 2)2=9kb 2t 4(其中k 为比例常数,k >0).当x =0时,t =0;当x =a 时,t =(a b )13.所以阻力所做的功为W 阻=ʃa0F 阻d x =13()0a b ⎰kv 2·v d t=13()0ab ⎰9kb 2t 4·3bt 2d t =13()0a b ⎰27kb 3t 6d t =277kb 3t 7|13()0a b =277k 23b ·73a .故物体由x =0运动到x =a 时,阻力所做的功为277k 23b ·73a .。
定积分在物理学上的应用
第五章 第六节 定积分在物理学上的应用教学目的:理解和掌握用定积分的元素法,解决物理上的实际问题 功,水压力和引力教学重点:如何将物理问题抽象成数学问题教学难点:元素法的正确运用教学内容:一、变力沿直线所作的功例1 半径为r 的球沉入水中,球的上部与水面相切,球的比重为 1 ,现将这球从水中取出,需作多少功? 解:建立如图所示的坐标系将高为r 的球缺取出水面,所需的力F x ()为:F x G F ()=-浮 其中:G rg =⋅⋅4313π是球的重力,F 浮表示将球缺取出之后,仍浸在水中的另一部分球缺所受的浮力。
由球缺公式 )3(2x r x V -⋅=π 有g x r x r F ⋅⋅⎥⎦⎤⎢⎣⎡-⋅-⋅=1)3(3423ππ浮 从而 )]2,0[()3()(2r x g x r x x F ∈-⋅=π十分明显,F x ()表示取出水面的球缺的重力。
即:仅有重力作功,而浮力并未作功,且这是一个变力。
从水中将球取出所作的功等于变力F x ()从0改变至2r 时所作的功。
取x 为积分变量,则x r ∈[,]02,对于[,]02r 上的任一小区间[,]x x dx +,变力F x ()从0到x dx +这段距离内所作的功。
g x r x dx x F dW )3()(2-⋅==π这就是功元素,并且功为g r x x rg dx xr gx W rr4204320234123)3(⋅=⎥⎦⎤⎢⎣⎡-=-⎰=ππππ另解 建立如图所示的坐标系取x 为积分变量, 则 x r ∈[,]02,在 [,]02r 上任取一个小区间[,]x x dx +,则此小区间对应于球体上的一块小薄片,此薄片的体积为π(())rr x dx 222--由于球的比重为 1 , 故此薄片质量约为dm r r x dx =--⋅π[()]221将此薄片取出水面所作的功应等于克服薄片重力所作的功,而将此薄片取出水面需移动距离为 x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分的简单应用一:教学目标 知识与技能目标1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;2、 让学生深刻理解定积分的几何意义以及微积分的基本定理;3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法;4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。
过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法难点 定积分求体积以及在物理中应用三:教学过程:1、复习1、求曲边梯形的思想方法是什么?2、定积分的几何意义是什么?3、微积分基本定理是什么? 2、定积分的应用(一)利用定积分求平面图形的面积例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积.【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。
解:201y xx x y x⎧=⎪⇒==⎨=⎪⎩及,所以两曲线的交点为(0,0)、(1,1),面积S=1120xdx x dx =-⎰⎰,所以⎰120S =(x -x )dx 32130233x x ⎡⎤=-⎢⎥⎣⎦=13【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。
巩固练习 计算由曲线36y x x =-和2y x =所围成的图形的面积.例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S.分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯2x y =y xA BC D O形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x =的交点的横坐标,直线4y x =-与 x 轴的交点.解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的面积.解方程组2,4y x y x ⎧=⎪⎨=-⎪⎩得直线4y x =-与曲线2y x =的交点的坐标为(8,4) .直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2488442[2(4)]xdx xdx x dx =+--⎰⎰⎰334828220442222140||(4)|3323x x x =+-=. 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观确定出被积函数以及积分的上、下限.例3.求曲线],[sin 320π∈=x x y 与直线,,320π==x x x 轴所围成的图形面积。
答案: 2332320=-=⎰ππo xxdx S |cos sin = 练习1、求直线32+=x y 与抛物线2x y =所围成的图形面积。
答案:33233323132231=-+=--⎰|))x x x dx x x S (-+(=2、求由抛物线342-+-=x x y 及其在点M (0,-3) 和N (3,0)处的两条切线所围成的图形的面积。
略解:42+-=x y / ,切线方程分别为34-=x y 、62+-=x y ,则所求图形的面积为4346234342233232==dx x x x dx x x x S )]()[()]()[(-+--+-+-+---⎰⎰3、求曲线x y 2log =与曲线)(log x y -=42以及x 轴所围成的图形面积。
略解:所求图形的面积为dy dy y f y g S y ⎰⎰⨯-=-11224)()()(【=e e y y 210224224log |)log -=⨯-=(4、在曲线)0(2≥=x x y 上的某点A 处作一切线使之与曲线以及x 轴所围成的面积为121.试求:切点A 的坐标以及切线方程.略解:如图由题可设切点坐标为),200x x (,则切线方程 为2002x x x y -=,切线与x 轴的交点坐标为),(020x,则由题可知有121122302202202000==+-+=⎰⎰x dx x x x x dx x S x x x )( 10=∴x ,所以切点坐标与切线方程分别为12),1,1(A -=x y总结:1、定积分的几何意义是:a x x f y b a ==与直线上的曲线在区间)(],[、x b x 以及=轴所围成的图形的面积的代数和,即轴下方轴上方-x x baS Sdx x f =⎰)(.因此求一些曲边图形的面积要可以利用定积分的几何意义以及微积分基本定理,但要特别注意图形面积与定积分不一定相等,如函数][0 π2,sin ∈=x x y 的图像与x 轴围成的图形的面积为4,而其定积分为0.2、求曲边梯形面积的方法与步骤:(1) 画图,并将图形分割为若干个曲边梯形;(2) 对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3) 确定被积函数;(4) 求出各曲边梯形的面积和,即各积分的绝对值的和。
3、几种常见的曲边梯形面积的计算方法:xxO y=x 2 AB C xyoy=-x 2+4x-3(1)x 型区域:①由一条曲线)其中0≥=)()((x f x f y 与直线)(,b a b x a x <==以及x 轴所围成的曲边梯形的面积:⎰badx x f S )(=(如图(1));②由一条曲线)其中0≤=)()((x f x f y 与直线)(,b a b x a x <==以及x 轴所围成的曲边梯形的面积:⎰⎰babadx x f dx x f S )()(=-=(如图(2));③由两条曲线)其中,)()()(()(x g x f x g y x f y ≥==与直线)(,b a b x a x <==所围成的曲边梯形的面积:⎰badx x g x f S |)()(|-=(如图(3));(2)y 型区域:①由一条曲线)其中0≥=x x f y )((与直线)(,b a b y a y <==以及y 轴所围成的曲边梯形的面积,可由)(x f y =得)(y h x =,然后利用⎰bady y h S )(=求出(如图(4));②由一条曲线)其中0≤=x x f y )((与直线)(,b a b y a y <==以及y 轴所围成的曲边梯形的面积,可由)(x f y =先求出)(y h x =,然后利用⎰⎰babadyy h dy y h S )()(=-=求出(如图(5));③由两条曲线)()(x g y x f y ==,与直线)(,b a b y a y <==所围成的曲边梯形的面积,可由)()(x g y x f y ==,先分别求出)(y h x 1=,)(y h x 2=,然后利用bdy y h y h S |)()(|-=求出(如图(6));图(6)2.求平面曲线的弧长设曲线AB方程为()()y f x a x b=≤≤,函数()f x在区间[,]a b上可导,且'()f x连续,则曲线AB的弧长为'21[()]bal f x dx=+⎰.3.求旋转体的体积和侧面积由曲线()y f x=,直线,x a x b==及x轴所围成的曲边梯形绕x轴旋转而成的旋转体体积为2[()]baV f x dxπ=⎰.其侧面积为'22()1[()]baS f x f x dxπ=+⎰侧.(二)、定积分在物理中应用(1)求变速直线运动的路程我们知道,作变速直线运动的物体所经过的路程s,等于其速度函数v=v (t) ( v(t) ≥0) 在时间区间[a,b]上的定积分,即()bas v t dt=⎰例 4。
一辆汽车的速度一时间曲线如图1.7 一3 所示.求汽车在这1 min 行驶的路程.解:由速度一时间曲线可知:3,010,()30,10401.590,4060.t tv t tt t≤≤⎧⎪=≤≤⎨⎪-+≤≤⎩因此汽车在这 1 min 行驶的路程是:104060010403[30( 1.590)s tdt dt t dt=++-+⎰⎰⎰210402600104033|30|(90)|1350()24t t t t m=++-+=答:汽车在这 1 min 行驶的路程是 1350m .2.变力作功一物体在恒力F(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向移(单位:m),则力F所作的功为W=Fs .探究如果物体在变力 F(x)的作用下做直线运动,并且物体沿着与 F (x) 相同的方向从x =a 移动到x=b (a<b) ,那么如何计算变力F(x )所作的功W 呢?与求曲边梯形的面积和求变速直线运动的路程一样,可以用“四步曲”解决变力作功问题.可以得到()baW F x dx =⎰例5.如图1·7一4 ,在弹性限度内,将一弹簧从平衡位置拉到离平衡位置lm 处,求克服弹力所作的功.解:在弹性限度内,拉伸(或压缩)弹簧所需的力 F ( x )与弹簧拉伸(或压缩)的长度 x 成正比,即 F ( x )= kx ,其中常数 k 是比例系数. 由变力作功公式,得到220011|()22ll W kxdx x kl J ===⎰答:克服弹力所作的功为212kl J .例6.A 、B 两站相距7.2km ,一辆电车从A 站B 开往站,电车开出ts 后到达途中C 点,这一段的速度为1.2t(m/s),到C 点的速度为24m/s ,从C 点到B 点前的D 点以等速行驶,从D 点开始刹车,经ts 后,速度为(24-1.2t )m/s ,在B 点恰好停车,试求(1)A 、C 间的距离;(2)B 、D 间的距离;(3)电车从A 站到B 站所需的时间。
分析:作变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a,b]上的定积分,即⎰badt t v S )(=略解:(1)设A 到C 的时间为t 1则 1.2t=24, t 1=20(s),则AC =⎰==2020022406021)(|..m t tdt(2)设D 到B 的时间为t 21则24-1.2t 2=0, t 21=20(s), 则DB =⎰==2020022********)(|..m tdt t )-((3)CD=7200-2⨯240=6720(m),则从C 到D 的时间为280(s),则所求时间为20+280+20=320(s )例3:如果1N 能拉长弹簧1cm ,为了将弹簧拉长6cm ,需做功( A ) A 0.18J B 0.26J C 0.12J D 0.28J略解:设kx F =,则由题可得010.=k ,所以做功就是求定积分1800106..=⎰xdx 。