螺旋桨敞水性能试验 数据表格(补充数据版)

合集下载

船舶实验

船舶实验

船舶与海洋工程实验技术实验报告班级:姓名:学号:指导老师:华中科技大学船舶与海洋工程学院船模拖曳水池实验室2016年6月1日螺旋桨敞水试验一、实验目的(1)对于某一具体的螺旋桨,通过模型试验可以确定实际螺旋桨的水动力性能。

(2)通过多方案的试验研究,可以分析螺旋桨的各种几何要素对水动力性能的影响。

(3)检验理论设计的正确性,不断完善理论设计的方法。

(4)通过对螺旋桨模型的系列试验,可以绘制成专用图谱,供设计螺旋桨使用。

现时广泛使用的楚思德B 系列图谱和MAU 系列图谱等都是螺旋桨模型系列敞水试验的结果。

二、实验原理满足以下条件:几何相似; 螺旋桨模型有足够的深度; 试验时雷诺数应大于临界雷诺数。

进度系数相等。

22412252(,)(,)A A V nD T n D f nD V nD Q n D f nD ρνρν==螺旋桨雷诺数采用ITTC 推荐表达式:νπ2275.0)75.0(Re nD v c a +=临界雷诺数一般大于3×105为消除自由液面影响,桨模的沉深深度:m s D h )0.1-625.0(≥三、实验设备主要设备是螺旋桨动力仪 。

四、实验内容敞水试验通常是保持螺旋桨转速不变,改变拖车前进速度。

速度范围应从Va =0至推力小于零的进速之间,在该范围内测点取15个左右。

1、敞水箱安装敞水箱为流线型,螺旋桨的轴从敞水箱的前端伸出箱外,外伸长度必须使桨模位于箱前的距离大于螺旋桨直径的3倍,以避免箱体的影响。

敞水箱样式如下图所示。

动力仪和电机安装在敞水箱内。

2、仪器安装及操作进入数据采集界面,如图所示。

在拖车开动之前,要对采集系统进行调零。

即在水池水面平稳状态下,点击系统设定里面的“调零保存”,使该通道的工程值基本在0附近飘动。

在拖车开动之前,我们要给螺旋桨一定的转速。

具体转速的确定,要根据具体情况确定。

由进速系数公式 可知,螺旋桨直径D已定,如果螺旋桨转速n太低,我们需要提高进速V,才能是J达到足够到。

实尺度导管螺旋桨的敞水性能数值模拟

实尺度导管螺旋桨的敞水性能数值模拟

实尺度导管螺旋桨的敞水性能数值模拟作者:陈天福,王永生,庞之洋来源:《机电信息》 2015年第27期陈天福王永生庞之洋(海军工程大学动力工程学院,湖北武汉 430033)摘要:为了避免尺度效应带来的影响,借助于计算流体力学软件,采用结构化网格和非结构化网格相结合的计算方法,进行了实尺度导管螺旋桨的敞水性能数值模拟,计算结果能够满足实尺度导管螺旋桨敞水性能预报的工程精度要求,与试验结果进行对比,最大误差在7%以内。

通过对5组不同交界面的位置进行比较,得出了交界面位置对导管螺旋桨的水动力计算具有较大影响的结论。

关键词:导管螺旋桨;CFD;敞水性能;实尺度;交界面0引言至今,人们己经对螺旋桨做了很多深入的研究,致力于设计出具有更高效率、较小振动及更为安静的螺旋桨。

随着研究的深入,开发出了一些在不同方面具有优势的特种推进器,导管螺旋桨就是其中一个。

目前人们对导管螺旋桨水动力性能的研究方法主要有3种:一种是基于势流理论的理论研究,一种是试验研究,另一种是随着计算机迅速发展而新兴的计算流体力学方法[1-2]。

崔立新使用诱导速度来考虑螺旋桨与导管的相互干扰,基于势流理论对Ka4系列导管桨进行敞水性能计算,分析了进速系数对导管上的压力分布情况及其本身产生的附加推力的影响趋势[3]。

吕晓军对导管螺旋桨的敞水性能进行了数值模拟,得到了在不同网格模型和湍流模型下导管螺旋桨的正车敞水性能曲线[4]。

但他们都是对导管螺旋桨的模型进行建模分析,对实尺度进行预报时会产生尺度效应,司朝善等人通过对不同尺度模型敞水性能进行计算,研究了导管螺旋桨敞水特征随雷诺数的变化规律,结果表明尺度效应带来的误差可高达15.8%[5]。

本文直接对导管螺旋桨进行实尺度建模,避免了尺度效应的影响。

文中用商业软件UG对某导管螺旋桨进行实尺度几何建模,然后用ANSYS软件的ICEM模块进行网格划分,采用结构化网格与非结构化网格相结合的混合网格划分方法,将划分好的网格导入CFX模块进行计算。

第4章 螺旋桨模型的敞水试验汇总

第4章  螺旋桨模型的敞水试验汇总

第四章螺旋桨模型的敞水试验螺旋桨模型单独地在均匀水流中的试验称为敞水试验,试验可以在船模试验池、循环水槽或空泡水筒中进行。

它是检验和分析螺旋桨性能较为简便的方法。

螺旋桨模型试验对于研究它的水动力性能有重要的作用,除为螺旋桨设计提供丰富的资料外,对理论的发展也提供可靠的基础。

螺旋桨模型敞水试验的目的及其作用大致是:①进行系列试验,将所得结果分析整理后绘制成专门图谱,供设计使用。

现时各类螺旋桨的设计图谱都是根据系列试验结果绘制而成的。

②根据系列试验的结果,可以系统地分析螺旋桨各种几何要素对性能的影响,以供设计时正确选择各种参数,并为改善螺旋桨性能指出方向。

③校核和验证理论方法必不可少的手段。

④为配合自航试验而进行同一螺旋桨模型的敞水试验,以分析推进效率成分,比较各种设计方案的优劣,便于选择最佳的螺旋桨。

螺旋桨模型试验的重要性如上所述,但模型和实际螺旋桨形状相似而大小不同,应该在怎样的条件下才能将模型试验的结果应用于实际螺旋桨,这是首先需要解决的问题。

为此,我们在下面将分别研究螺旋桨的相似理论以及尺度作用的影响。

§4-1 敞水试验的相似条件从“流体力学”及“船舶阻力”课程中已知,在流体中运动的模型与实物要达到力学上的全相似,必须满足几何相似、运动相似及动力相似。

研究螺旋桨相似理论的方法甚多,所得到的结果基本上是一致的。

下面将用量纲分析法进行讨论,也就是用因次分析法则求出螺旋桨作用力的大致规律,然后研究所得公式中各项的物理意义。

可以设想,一定几何形状的螺旋桨在敞水中运转时产生的水动力(推力或转矩)与直径D(代表螺旋桨的大小)、转速n、进速VA、水的密度ρ、水的运动粘性系数ν及重力加速度g有关。

换言之,我们可用下列函数来表示推力T和各因素之间的关系,即T = f1(D,n,V A,ρ,ν,g),为了便于用因次分析法确定此函数的性质,将上式写作:T = k D a n b cAVρd νe g f(4-1)式中k为比例常数,a、b、c、d、e、f均为未知指数。

使用Fluent软件的螺旋桨敞水性能计算和考察_冯学梅

使用Fluent软件的螺旋桨敞水性能计算和考察_冯学梅

[研究与设计]使用Fluent 软件的螺旋桨敞水性能计算和考察①冯学梅1 陈凤明2 蔡荣泉1(1708研究所 上海 200011 2西北工业大学 西安 710072) [关键词]螺旋桨;敞水;C FD[摘 要]船舶性能CFD 计算领域有必要尽快形成螺旋桨敞水性能C FD 计算的快速预报能力,以快速响应用户的需求,使CFD 成为螺旋桨设计的手段之一,并利用这一手段,发挥CFD 计算结果信息量大的特点,对螺旋桨进行相关的性能考察计算。

文章介绍了708研究所利用Fluent 软件在螺旋桨敞水性能计算中的计算流程,以某船所使用的侧斜反弯扭桨作为研究对象,给出了敞水性能曲线的计算结果,并与试验测量值作了比较;同时还介绍了对此桨的性能情况所进行的一些数值计算考察。

[中图分类号]U661.7 [文献标识码]A [文章编号]1001-9855(2006)01-0014-06Calculation of propeller open water performanceby CFD software FLUENTFeng X uemei Chen Feng ming Cai Rong quanKeywords :Pro peller;Open Wa ter;CFDAbstract :M odern C FD calculation o f ship perfo rmance needs to hav e the capability of quick prediction of propeller open w ater perfo rm ance in o rder to prov ide quick response to custom er enquiry ,and to makeCFD one of the mea ns of propeller desig n .Suppo rted by its fea tures o f mass info rmatio n from CFD calcu-lation results,it can be also used to calculate a nd inv estigate releva nt pro peller perfo rm ance.The paper presents the w ork done in M ARIC to run the CFD softw are FLUEN T to calculate the open w ater perfo r-ma nce o f the pro peller ,the process of calcula tion ,the results of calcula tion o n o pen wa ter perfo rmance curv e of a pro peller w ith hig h skew a nd rake tip designed fo r a newbuilding design and a co mpa rison w ith the trial m easurement.The related calculation a nd inv estiga tion on the open w ater behavio r of this pro-peller is also repo rted .1 前 言螺旋桨模型单独地在均匀水流中试验称为敞水试验。

吊舱推进器螺旋桨的敞水性能数值图谱

吊舱推进器螺旋桨的敞水性能数值图谱

吊舱推进器螺旋桨的敞水性能数值图谱于得会;王言英【摘要】基于MAU型螺旋桨图谱,应用升力面理论涡格法计算系列大毂径MAU型螺旋桨敞水特性,以单元函数法将敞水性能表达成为毂径比和进速系数的函数,通过二元多项式插值法将MAU型螺旋桨敞水特性拓展到包括大毂径比的POD螺旋桨的敞水性能曲线.【期刊名称】《船海工程》【年(卷),期】2007(036)004【总页数】5页(P38-42)【关键词】螺旋桨;吊舱螺旋桨;涡格法;螺旋桨图谱;螺旋桨敞水特性【作者】于得会;王言英【作者单位】大连理工大学,船舶工程学院,辽宁,大连,116024;大连理工大学,船舶工程学院,辽宁,大连,116024【正文语种】中文【中图分类】U664.3320世纪90年代出现的POD推进器已在各类船舶上有了广泛的应用。

同传统的螺旋桨推进方式相比,采用POD推进器可以省去推进轴系、舵与侧推器,可以抑制螺旋桨空泡、船尾振动与水下辐射噪声,可以提高推进效率与实现全船全寿命节能,为船舶设计、制造及维护提供了诸多改进的空间[1]。

近年来国内外对POD推进器的关注日益增加。

国外HSVA及MARINE已经进行了POD推进器水动力性能等的测试和分析方法研究;国内对POD推进器的研究也给予了极大的关注,在模型试验、工程设计以及实船应用方面开展了许多研究[2]。

文献[3]提出借助于已知的POD桨的敞水特性和应用螺旋桨图谱,保持盘面比不变改变螺距比,通过迭代计算得到等效的常规螺旋桨。

根据这一计算得到的毂径比同螺距比的关系,对应用螺旋桨图谱设计的常规螺旋桨的敞水特性予以修正,估算得到所需要的POD桨的敞水特性。

本文在常规螺旋桨图谱基础上,应用螺旋桨升力面理论计算得到不同毂径比螺旋桨的敞水特性子样,直接将该图谱拓展到POD螺旋桨应用的范围。

1 螺旋桨升力面理论应用升力面理论涡格法计算螺旋桨,首先须对螺旋桨几何形状给予数学表达。

螺旋桨由布置于桨叶拱弧面上及尾流中的奇点系来代替,其中附着涡系和自由涡系模拟升力,源汇系模拟桨叶厚度影响。

螺旋桨设计计算表格

螺旋桨设计计算表格

取转速为 231
rpm
221
rpm
76
项目
单位

V
kn
10
VA=0.5144(1-ω)V
m/s
3.302448
J=VA/nD
#NAME?
KT
#NAME?
KQ
#NAME?
N=
231
rpm
PTE=KTρ n2D4(1-
PE/hp 111h01p00000
#NAME?
t)V/145.6
Ps=KQ2пnρ n2D5/75ηSηR
KT
#NAME?
1000
KQ
1000
#NAME?
N=
76
rpm
PTE=KTρ n2D4(1-
11
10-h01p0000
#NAME?
t)V/145.6
Ps=KQ2пnρ n2D5/76ηSη
30-h03p0000
#NAME?
R

50-050000
10
527.8912
70-070000

527.8912
单位 m
mm mm
0.25R #NAME?
634 250 1410 4 #NAME?
#NAME?
82 34 41 380 #NAME?
#NAME? 1.38 #NAME? #NAME?
数值 0.60R #NAME? 207 151 635 34 #NAME?
#NAME?
23 12 65 330 #NAME?
#NAME? m
d0/d=
#NAME?
榖重量Gn=
#NAME? kgf
③螺旋桨总重=

使用Fluent软件的螺旋桨敞水性能计算分析

使用Fluent软件的螺旋桨敞水性能计算分析

" C>5,<D*7,*5+ E>(F,*;<+6;4( -+6G*576,F@ H64+ $!##$"@ %<6+4I
;</&5()& #=, 67 6JK>5,4+, 6+ ,<* 5*7*45;< >? K5>K*((*5 ,> K5*L6;, +)J*56;4((F ,<* >K*+ D4,*5 K*5?>5J4+;*/ =+ >5L*5 ,> 5*7K>+L M)6;N(F ,> ,<* M)*5F 7*5G6;* ?>5 ,<* ;)7,>J*57@4+L 4(7> J4N* %&’ >+* >? ,<* J*4+7 >? ,<* K5>K*((*5 L*768+@6, 67 +*;*7745F ,> O56+8 %&’ ?47, K5*L6;,6>+ 4O6(6,F >? ,<* >K*+ D4,*5 K*5?>5J4+;* >? K5>! K*((*5 6+,> ,<* L*768+ K5>;*77 >? K5>K*((*5/PF *JK(>F6+8 %&’ 7>?,D45* >? &()*+,@,<* ;4(;)(4,6>+ K5>;*77 >? ,<* >K*+ D4,*5 K*5?>5J4+;* >? K5>K*((*5 67 L*G*(>K*L 6+ 32:=% QR<* 3456+* ’*768+ 9 :*7*45;< =+7,6,),* >? %<6+4S@D<6;< 67 6+,5>L);*L 6+ ,<67 K4K*5/2 K5>K*((*5 D6,< <68< 7N*D 4+L 54N* ,6K 67 ,FK6;4((F 7,)L6*L/ %>JK4567>+ >? ,<* >K*+ D4,*5 K*5?>5J4+;* ;)5G* >? ,<* K5>K*((*5 67 J4L* O*,D**+ ;4(;)(4,*L 5*7)(,7 4+L J*47)5*L G4()*/R<* 5*(4,*L 6+G*7,684,6>+ ,> ,<* >K*+ D4,*5 O*<4G6>57 >? ,<* K5>K*((*5 67 4(7> 5*K>5,*L/ =3. 4,5-/> K5>K*((*5B >K*+ D4,*5B %&’B &()*+,

CFD敞水螺旋桨性能计算分析

CFD敞水螺旋桨性能计算分析

CFD敞水螺旋桨性能计算分析缪宁跃;孙江龙【摘要】根据螺旋桨的投影原理及其型值参数,建立螺旋桨的三维模型.基于计算流体动力学(CFD)理论和CFD商业软件进行研究,采用分区混合网格力案和动网格技术及旋转坐标(MRF)方法,结合RANS方程和RNG湍流模型对螺旋桨三维粘性流动进行数值模拟,得到该螺旋桨的推力及其转矩.经与试验结果比较分析,证实该方法能实现对螺旋桨的敞水粘性流场模拟,预报其敞水性能.%According to projection theory and curved-surface offsets, a 3D geometry model of propeller was built. Based on computational fluid dynamics (CFD) method, the sub-domains hybrid meshes method,the dynamic meshes method and the moving reference frame(MRF) method were adopted to simulate the hydrodynamic performance of propeller in open-water by using the Reynolds-Averaged NavierStokes (RANS) equation and RNG turbulence models. Thrust and torque of the propeller in open water were obtained and compared with experimental results. The results show the proposed method can achieve the numerical prediction of hydrodynamic performance for propeller in open water.【期刊名称】《中国舰船研究》【年(卷),期】2011(006)005【总页数】6页(P63-68)【关键词】三维模型;CFD;动网格;MRF;敞水件能【作者】缪宁跃;孙江龙【作者单位】华中科技大学船舶与海洋工程学院,湖北武汉430074;华中科技大学船舶与海洋工程学院,湖北武汉430074【正文语种】中文【中图分类】U664.331 引言由于数值模拟相对于实验研究具有独特的优点,如成本低、周期短,能获得完整的数据,能模拟出实际运行过程中各种测量数据的状态,因而目前计算流体动力学(CFD)技术被广泛应用于工程领域。

不同桨轴沉深螺旋桨敞水性能试验

不同桨轴沉深螺旋桨敞水性能试验

739 时ꎬ除了 J = 0. 866 以外ꎬ随着 H s / D 的减小ꎬK T 、10K Q 、η0 、K T / K′T 、K Q / K′Q 和 η0 / η′0 相应减小ꎬ螺旋桨的敞水
性能受沉深的影响较大ꎬ且 J 越小ꎬ影响越大ꎻ当 J≥0. 866 时ꎬ螺旋桨的敞水性能受桨轴沉深的影响较小ꎮ
同吃水条件下的自航试验数据分析时ꎬ通常采用静水中桨轴沉深足够大情况下的螺旋桨敞水特性曲线ꎬ由于
在进行浅吃水自航试验数据分析时桨轴沉深一般较浅或部分出水ꎬ这样的处理不尽合理ꎮ
关于不同桨轴沉深对螺旋桨敞水性能的影响ꎬ已有不少学者对此进行研究ꎮ 曹梅亮 [2] 研究了变沉深和
波浪中的螺旋桨的敞水性能ꎬ指出当桨轴沉深比 H s / D > 0. 75 时ꎬ螺旋桨的敞水性能不再受自由液面的影
响ꎬ桨轴沉深较浅ꎬ螺旋桨的推进性能变差的主要原因是螺旋桨吸气ꎮ 贾大山等 [3] 研究了螺旋桨吸气及其
水动力性能ꎬ将近自由液面螺旋桨吸气分为初始吸气、局部吸气和全吸气等 3 个阶段ꎬ发现局部吸气阶段螺
旋桨的推力和扭矩波动较大ꎬ并指出近自由液面螺旋桨敞水试验需满足进速系数、沉深比和弗劳德数相等ꎬ
且雷诺数大于临界值ꎮ 黄红波等 [4] 研究了不同沉深比的半浸式螺旋桨的动态力ꎬ指出半浸桨的侧向力和弯
suctionꎬ transition stage and full air suction. For the case in studyꎬ the propeller shaft is deep enough and the propeller performance is
not affected by the water surface in the design or ballast draft condition. Howeverꎬ performance decline is seen in specified shallow

【精品】船舶与海洋工程实验技术螺旋桨敞水试验指导书

【精品】船舶与海洋工程实验技术螺旋桨敞水试验指导书

船舶与海洋工程实验技术螺旋桨敞水试验指导书华中科技大学船舶与海洋工程学院船模拖曳水池实验室2015年5月20日0、前言............................................. 错误!未指定书签。

1、敞水箱安装....................................... 错误!未指定书签。

2、仪器安装及操作................................... 错误!未指定书签。

2.1动力仪........................................... 错误!未指定书签。

3、敞水试验数据处理错误!未指定书签。

图1敞水箱......................................... 错误!未指定书签。

图1动力仪......................................... 错误!未指定书签。

图2电机........................................... 错误!未指定书签。

图33KW稀土直流电动机调速装置...................... 错误!未指定书签。

图4转速数字显示仪................................. 错误!未指定书签。

图5WD990微机电源.................................. 错误!未指定书签。

图6操作台整体视图................................. 错误!未指定书签。

图7放大器背面接口................................. 错误!未指定书签。

图8放大器正面..................................... 错误!未指定书签。

图98HZ采集程序图标................................ 错误!未指定书签。

螺旋桨敞水性能预报讲解

螺旋桨敞水性能预报讲解
壁面函数的选取
Rhee and Josh ,2003 :k-w 湍流模型,对一5页桨计算,10%误差 唐登海,1997 :B-L 代数湍流模型,对DTRC419桨计算,压力分布、 螺旋桨流场三维流动特性及尾流结果良好,边界层、某些地方的速度 分量偏差较大 张志荣,2004 :SST k-w湍流模型,对许多螺旋桨模型取得成功, 部分工作点工况偏差较大
二、影响计算的主要因素及其选取
• 怎样划分网格
螺旋桨流场计算域
二、影响计算的主要因素及其选取
• 样划分网格
网格分类
• 非结构网格
• 结构化网格 • 分块混合网格
二、影响计算的主要因素及其选取
• 怎样划分网格
网格分类
• 非结构网格
• 结构化网格 • 分块混合网格
二、影响计算的主要因素及其选取
• 螺旋桨敞水性能计算的一般步骤
• 数值方法(Numerical Method)的选取 离散格式 求解算法 湍流模式
• 几何建模与网格划分(Model Geometry and Grid Generation) • 计算结果考察分析(Result Analysis)
一、螺旋桨敞水性能计算概述
• 流场预报需考量的因素
二、影响计算的主要因素及其选取
• 选择怎样的数值方法
湍流模式的选取
龚吕,2007 :标准k-ε模型,对六叶斜侧反扭桨计算, 高富东,2010 :k-ε、k-w、RSM模型,对DTMB4119桨计算,敞水 性能最大误差k-ε(7.41%)、k-w(11.21%)、RSM(5.47%)
二、影响计算的主要因素及其选取
f. 离散的代数方程求解:Gauss-Seidel迭代法
二、影响计算的主要因素及其选取

螺旋桨敞水试验报告

螺旋桨敞水试验报告

螺旋桨敞水实验一、实验目的和意义螺旋桨模型的敞水实验是在循环水槽中测试螺旋桨模型单独在水流条件下进行的性能试验,是《船舶推进》课程在整个教学过程中的一个重要环节,其目的: 1、 配合自航试验分析船舶推进的各种效率成分,并预估实船推进性能 2、 分析比较各种螺旋桨设计方案的优劣,选择性能最佳的螺旋桨3、 进行螺旋桨系列试验,将其结果综合绘制成图谱,供设计螺旋桨使用。

4、 根据螺旋桨试验结果,进行螺旋桨理论的验证,分析几何参数对螺旋桨性能的影响规律。

二、模型试验要求和准备工作图2.1 螺旋桨敞水试验布置图1、桨模敞水试验的相似定理:桨模和实桨满足几何相似、运动相似、动力相似才能将模型试验数据应用在实桨上。

为避免缩尺影响过大,桨模试验的雷诺数Re 必须超过临界值,螺旋桨的雷诺数根据1957年ITTC 会议推荐采用的下列定义式Re =其中0.75C -- 0.75R (半径)处叶剖面的弦长(m ) D-- 螺旋桨的直径(m ) A V-- 螺旋桨的进速(m s ) n-- 螺旋桨的转速(round s )υ--水的运动粘性系数(2m s )根据1978年ITTC 会议建议,临界雷诺数为5Re 3.010=⨯临。

2、为避免自由面兴波和吸入空气对桨性能产生不利影响,在桨模进行敞水试验时,其浸没与水中的深度应满足 1.0h D ≥,其中h 为桨轴中心线距水面的距离(m )。

3、敞水动力仪的流线罩与桨模安装位置应有足够大的距离,以避免因流线罩干扰的水流影响试验结果。

一般要求桨轴伸出在罩外的长度大于三倍桨模直径。

4、螺旋桨轴端身在前面,其轴端平面对水流的干扰将影响进入桨面的水流,因此在试验时应加装导流罩帽。

桨模后方也应装有光顺的过渡导流罩,以使将毂到桨轴的阶梯处不致产生涡流。

5、螺旋桨动力仪在试验前应作静校验,并应测量轴承摩擦损耗和桨轴在水中旋转时的摩擦损耗s Q ∆和s T ∆,以便对试验结果进行修正。

校验时,将动力仪按照试验要求装载拖车上,在装桨模的位置处安装个假毂,其外形与桨毂相同,重量与桨模相近,可用铜或铅制成,桨轴埋水深度按试验要求放置。

螺旋桨设计计算说明书

螺旋桨设计计算说明书

螺旋桨设计计算说明书某沿海单桨散货船螺旋桨设计计算说明书1.已知船体的主要参数船长 L = 118.00 米型宽 B = 9.70 米设计吃水 T = 7.20 米排水量△ = 5558.2 吨方型系数 CB = 0.658 桨轴中心距基线高度 Zp = 3.00 米由模型试验提供的船体有效马力曲线数据如下:航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 40452.主机参数型号 6ESDZ58/100 柴油机额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向右旋传递效率ηs=0.983.相关推进因子伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率ηR = 1.0船身效率 0777.111=--=wtH η4.可以达到最大航速的计算采用MAU 四叶桨图谱进行计算。

取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力:PD = R s S P ηη9.0=0.9×5400×0.98×1.0=4762.8hp根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算:项目单位数值假定航速V kn 13 14 15 16 V A =(1-w)V kn 9.373 10.094 10.815 11.536 Bp=NP D 0.5/V A 2.542.337 35.177 29.604 25.193 Bp6.507 5.9315.441 5.019 MAU 4-40δ76 70 64 61 P/D 0.62 0.65 0.69 0.71 ηO 0.56 0.583 0.605 0.625 P TE =P D ·ηH ·ηOhp 2874.412992.463105.393208.04MAU 4-55δ74 68 63 60 P/D 0.7 0.72 0.74 0.76 ηO 0.541 0.568 0.59 0.61 P TE =P D ·ηH ·ηOhp 2776.882915.473028.393131.05MAU 4-70δ74 67 62 59 P/D 0.71 0.73 0.76 0.78 ηO0.521 0.546 0.57 0.588 P TE =P D ·ηH ·ηOhp2674.232802.552925.743018.13据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如图1所示。

螺旋桨敞水试验

螺旋桨敞水试验

nm D

m
2 m

ns D
s
2 s
m s
nm D n s D
2 m 2 s 2 m 2 s
nm D 2 ns D
16
2 相似条件及要求
要保持桨模和实桨进速系数和雷诺数 同时相等,必须满足
nm 2 ns VAm nm 1 VAs ns
桨模的推力系数等于实桨的推力系数
KT J V A nD 2 n 2 D 2 0 f3 ( , , ) K Q 2 nD gD
13
2 相似条件及要求
VA nD
nD 2
为进速系数J,运动相似基本条件 为雷诺数Re ,粘性相似条件 相当傅汝德数,重力相似条件,当桨 轴的沉没深度hs>0.625D,兴波影响 忽略,傅汝德数可不考虑
39
3.3 DH5922动态信号测试分析系统
输出部分:
通道数:2路 输出信号范围:0-5V(最大电流5mA) 输入阻抗:0.02Ω D/A转换分辨率:12位 D/A转换速度:2μ S
数字输入输出:
DI:8路,TTL标准电平 DO:8路,TTL标准电平
40
3.3 DH5922动态信号测试分析系统
计数器/计时器(8254)
仅修正扭矩系数 k Q。利用平板摩擦阻力 公式直接对扭矩系数进行修正。若采用柏 兰特---许立汀公式 2.58
K Qm K Qs R em R es
1978 年 ITTC 推荐的修正方法,当模型桨 与实桨在同一进速系数时,按下式对推力 系数及扭矩系数进行修正。
KTs KTm KQs KQm KT KQ
3.1 敞水动力仪(H29-1)
直流电机

船舶推进_螺旋桨模型的敞水试验

船舶推进_螺旋桨模型的敞水试验

Ds Dm
VAm VAs Jm Js nm Dm ns Ds
KT f1 ( J ) KQ f 2 ( J )
雷诺数大于临界数值: 桨轴的足够沉深:
Re Re c
0 f 3 ( J )
hs> 0.625D
注意:桨模和实桨因雷诺数不同而引起两者水动力性能之 差异称为尺度作用(或尺度效应,scale effect)。
② 只修正KQ。
K Qm K Qs
Re m Re s
2.58
柏兰特-许立汀公式
③ 1978年ITTC推荐的修正方法。
KTS KTm KT K QS K Qm K Q
25
4.2 临界雷诺数及尺度效应
26
4.2 临界雷诺数及尺度效应
27
第4章 螺旋桨模型的敞水试验
本章主要内容
4.1 螺旋桨的相似定律 4.2 临界雷诺数及尺度效应 4.3 螺旋桨敞水试验及数据分析表达 4.4 螺旋桨模型系列试验及性征曲线组
28
4.3 螺旋桨敞水试验及数据分析表达
VA T KT 2 4 f1 ( ) ρn D nD VA Q KQ 2 5 f 2 ( ) ρn D nD KT J VA η0 f3 ( ) KQ 2 π nD
12
4.1 螺旋桨模型的敞水试验
n D gD
2 2
V Fn gL
nD
VA Fn (也可表示为 ) gD gD
为傅汝德数。表示模型和实桨的重力相似条件。与螺旋 桨运转时水面的兴波情况有关,也可以说与螺旋桨在水 面下的沉没深度有关。 实践证明:当桨轴的沉没深度 hs>0.625D (D为螺旋桨直 径),兴波的影响可以忽略不计。

螺旋桨敞水性能预报

螺旋桨敞水性能预报

一些铺垫
• 左图为SSPA Da-Qing Li 对某桨的敞水性能计算结 果
螺旋桨敞水特性(Open Water Character)曲线
目录
一、螺旋桨敞水性能计算概述
二、影响计算的主要因素及其选取
三、丌同螺旋桨方法选择不研究情况
四、总结
一、螺旋桨敞水性能计算概述
• 螺旋桨敞水性能计算
不螺旋桨敞水试验相对应传播的船舶计算流体力学CFD计算工作
• 螺旋桨敞水性能计算的一般步骤
• 数值方法(Numerical Method)的选取 离散格式 求解算法 湍流模式
• 几何建模不网格划分(Model Geometry and Grid Generation) • 计算结果考察分析(Result Analysis)
一、螺旋桨敞水性能计算概述
• 流场预报需考量的因素
• 网格划分
• 流场预报需分析的结果
• 网格敏感性 • 雷诺数影响 • 敞水特征曲线 • 倒车性能 • 尾流考察
• 离散格式
• 求解算法
• 湍流模式
一、螺旋桨敞水性能计算概述
• 螺旋桨敞水性能计算的特点
桨叶前、后缘相对于其弦中部位,压力分布的计算值不测量值偏差很大
不升力相比,阻力计算值不测量值偏差较大
四、总结
• 关于螺旋桨的敞水性能预报,经过十几年的发展,已经比 较成熟; • 在湍流模型的选取中,k-ε 模型是最为广泛使用的,然而, 近年来 SST k-w模型逐渐兴起幵被众多研究验证为具有丌 错求解速度和精度的方法 • 网格划分上多采用混合网格,有利于减少计算量的同时保 证足够的计算精度
谢谢,欢迎批评指正
张志荣,2004比较了船舶粘性流体计算的六种主要湍流模式

螺旋桨设计计算表格

螺旋桨设计计算表格

P/D=
0.400 0.135 0.152
J KT 10KQ
0.000 0.292 0.302
0.100 0.269 0.289
0.400 0.177 0.215
J KT 10KQ
0.000 0.262 0.246
0.100 0.231 0.231
0.400 0.124 0.146
J KT 10KQ
79.918554 59.308768 38.698982 18.089196 xR= 22.240867 27.801084 33.361301 44.481735 55.602169 66.722602 73.394863 77.843036 88.96347 100.0839 105.64412 111.20434
设计水线长 垂涎间长 型宽 设计吃水 排水体积 排水量 方形系数 浆轴中心线距基线
1.船体主要参数 Lwl= 66.360 m Lpp= 60.500 m B= 10.800 m T= 4.000 m DispV= 1757.2 m3 Disp= 1812 t CB= 0.618 Zp= 1.400 m
η 0 0.640404339 0.621590321 0.589013418
D/m 2.250063 2.210204 2.177138
5.空泡校核 按柏利尔空泡限界线中商船上限线,计算不发生空泡的最小展开面积比 浆轴沉深 hs= T-Zp 2.600 m p0-pv= pa+γ hs-pv 12821 kgf/m2 计算温度 t= pD= 15 ℃ 972 hp pv= ρ = 174 104.63
0.621748883 m 0.448405294 m 0.616215318 m 表5.5 强度校核计算表 单 位 m 值 0.25R 0.60R 0.44841 0.61622 634 207 250 151 1410 635 4 34 2258.192 814.2453485 6675.9495 1751.643413 82 23 34 12 41 65 380 330 1175.2063 1007.055241 0.2079824 0.129689242 1.38 1.38 75.472624 37.42948625 85.071318 48.48509107 不满足要求 满足要求 85.071 48.485 mm mm mm mm mm mm mm 数

螺旋桨模型敞水试验报告

螺旋桨模型敞水试验报告

螺旋桨模型敞水试验实验报告
螺旋桨模型敞水试验的目的:
螺旋桨模型单独地在均匀水流中的试验称为敞水试验,该试验可以在船模试验水池、循环水池中进行。

它是鉴定和分析螺旋桨性能的较为简便可靠的方法。

该试验的目的是为了配合自航试验分析船舶推进的各种效率成分,或对若干方案进行比较分析。

试验步骤:
(1)在准备工作完成后,使螺旋桨叶背向拖车前进方向安装。

(2)按选定的螺旋桨转速保持转速不变,改变拖车的前进速度,在适当的速度范围内测量(10~15)个点,速度范围的选取应从0=Am V 到使推力0<m T 。

(3)在某一速度下同时记录以下数据: a 、螺旋桨转速m n 。

b 、螺旋桨前进速度Am V 。

c 、推力t T 。

d 、扭矩m Q 。

在试验操作时应注意下列事项: a 、 每次开车前水面要平静
b 、 待螺旋桨转速和车速达到预定值且稳定一段时间后,方可记录数据。

c 、 每次测试要先开车后启动电机,数据记录完毕后要先电机后停车,以防系泊情况发生,保证动力仪的安全。

试验数据处理:
由试验得到数据; 1、螺旋桨试验相关参数 浆模直径: m D 1175.0= 桨叶数:
4=Z 螺距比: 8.0=D P
模型缩尺: 40=λ
试验水温:
C t 20淡水=
由以上数据求J 、T K 、Q K 、0η 进速系数nD
V J A
=
推力系数4
2D n T
K T ρ=
扭矩系数5
2D
n Q
K Q ρ=
效率Q
T
K K J ⋅
=
πη20 1、 求进速系数J 由以上数据得。

基于OpenFOAM的螺旋桨敞水性能预报方法-郑巢生张志荣(30)

基于OpenFOAM的螺旋桨敞水性能预报方法-郑巢生张志荣(30)
050403020101020302040608openfoamexp0403020101020302040608openfoamexp01008006004002002004006010305070911131517openfoamexp图11桨盘面前03r处轴向速度的周向平均值fig11circumferentiallyaveragedvalueaxialvelocity008006004002002004006008020406081214openfoamexp图12桨盘面前03r处径向速度的周向平均值fig12circumferentiallyaveragedvalueradialvelocity025020150100500501015020406081214openfoamexp图13桨盘面后x03281r处轴向速度的周向平均值fig13circumferentiallyaveragedvalueaxialvelocityx03281r010050050101502openfoamexp02040608图14桨盘面后x03281r处径向速度的周向平均值fig14circumferentiallyaveragedvalueradialvelocityx03281rrr07处叶剖面压力系数分布fig9pressurecoefficientdistributionsbladesectionrr07图10rr09处叶剖面压力系数分布fig10pressurecoefficientdistributionsbladesectionrr0934由图11图15可看出openfoam计算得到的桨盘面前方03r处及桨盘面后方03281r处轴向速度和径向速度的分布与试验结果基本吻合
第3期
郑巢生等: 基于 OpenFOAM 的螺旋桨敞水性能预报方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档