利用切比雪夫不等式估计
切比雪夫不等式估计概率
切比雪夫不等式估计概率引言在概率论中,切比雪夫不等式是一种用于估计随机变量偏离其均值的可能程度的工具。
它是由俄罗斯数学家切比雪夫在19世纪末提出的,被广泛应用于统计学、机器学习和数据分析等领域。
切比雪夫不等式的核心思想是通过测量随机变量与其均值之间的差异,来估计随机变量落在某个范围内的概率。
该不等式提供了一个上界,使我们能够以较小的信息量对概率进行估计。
本文将详细介绍切比雪夫不等式的原理和应用,并通过实例演示如何使用切比雪夫不等式来估计概率。
切比雪夫不等式原理假设X是一个随机变量,E(X)表示X的期望值(均值),Var(X)表示X的方差。
根据切比雪夫不等式,对于任意正数ε(ε > 0),有以下不等式成立:P(|X - E(X)| ≥ ε) ≤ Var(X)/ε^2换句话说,随机变量X偏离其期望值E(X)超过ε的概率不会超过Var(X)/ε^2。
切比雪夫不等式的推导过程相对简单,这里不再详述。
需要注意的是,切比雪夫不等式是一个上界估计,给出了随机变量落在某个范围内的概率的最大可能值。
切比雪夫不等式应用切比雪夫不等式在实际问题中具有广泛的应用。
以下是一些常见的应用场景:1. 数据分析与异常检测在数据分析中,我们经常需要评估数据点与其均值之间的偏差程度。
通过使用切比雪夫不等式,我们可以估计数据点落在某个范围内的概率,并进一步判断是否存在异常值。
例如,假设我们有一组电子商务网站用户的购物金额数据。
我们可以计算该数据集的均值和方差,并使用切比雪夫不等式来估计购物金额高于平均值两倍标准差的概率。
如果这个概率很小,我们可以将这些高额购物金额视为异常值。
2. 统计推断与抽样在统计推断中,我们经常需要对总体参数进行估计。
通过使用切比雪夫不等式,我们可以估计总体参数落在某个范围内的概率,并计算置信区间。
例如,假设我们想要估计一组学生的平均身高。
我们可以从这组学生中随机抽取一部分样本,并通过样本均值和样本方差来估计总体均值和总体方差。
习题五
习题五 大数定律与中心极限定理一、填空题1.设随机变量~[0,1]X U ,由切比雪夫不等式可得(12P X -≥≤ 0.25 ; 2.设()1,()4,E X D X ==则由契比雪夫不等式有(57)P X -<<=98; 3.设12,,...,,...n X X X 是相互独立的随机变量序列,且2(),()0i i E X D X μσ==≠(1,2,...)i =,则对10,lim ()ni n i P X n εμε→∞=∀>-≥=∑ 0 ;4.设随机变量,X Y ,已知()2,()2,()1,()4,0.5,E X E Y D X D Y ρ=-====- 则由契比雪夫不等式有(6)P X Y +≥≤ 1/12 ;5.已知正常男性成人血液中,每毫升白细胞数平均是7300,标准差是700。
利用契比雪夫不等式估计每毫升血液中的白细胞数在5200至9400之间的概率p =98; 6.设n ξ是n 重贝努里试验中事件A 出现的次数,p 为A 在每次试验中出现的概率,则对0,lim ()nn P p nξεε→∞>-≥= 0 ;7.假设某一年龄女童的平均身高为130厘米,标准差是8厘米。
现在从该年 龄段的女童中随机地选取五名儿童测其身高,估计它们的平均身高在120至140 厘米的概率为259改; 8.设12,,...,,...n X X X 是相互独立的随机变量序列,且都在[-1,1]服从均匀分布,则1lim (ni n i P X →∞=≤=∑0.5改;二、选择题1.设随机变量X 的方差()D X 存在,0a >,则()(1)X E X P a->≤( C )A .()D X B. 1 C.2()D X aD. 2()a D X . 2. 设(),()E X D X 都存在,则对于任意实数,()a b a b >,可以用契比雪夫不等式估计出概率( D ).A .()P a X b << B. (())P a X E X b <-<C. ()P a X a <<D. ()P X b a ≥-3. 设随机变量2~(,)X N μσ,随σ的增大()P X μσ-<( C )A .单调增大 B. 单调减小 C. 保持不变 D. 增减不变. 4.设随机变量X 的方差存在,并且满足不等式2(()3)9P X E X -≥≤,则一定有( D )A .()2D X = B. 7(()3)9P X E X -<<C. ()2D X ≠D. 7(()3)9P X E X -<≥5.设X 为连续型随机变量,且方差存在,则对任意常数C 和0ε>,必有( C )A .()E X CP X C εε--≥=B. ()E X CP X C εε--≥≥C. ()E X CP X C εε--≥≤D. 2()E X CP X C εε--≥≤6. 已知129,,...,X X X 是独立同分布的随机变量序列,且()1,()1,i i E X D X ==则对0,ε∀>下列式子成立的是( B 改 )A .921(1)1i i P X εε=-<≥-∑ B .9211(1)19i i P X εε-=-<≥-∑C .921(1)1i i P X εε-=-<≥-∑ D .9211(1)19i i P X εε-=-<≥-∑D 改291911)191(-=-≥<-∑εεi i X P7.已知121000,,...,X X X 是独立同分布的随机变量,且~(1,)(1,...,1000)i X B p i =则下列不正确的是( C )A .1000111000i i X p =≈∑ B .10001~(1000,)i i X B p =∑ C.10001()()()i i P a X b b a φφ=<<≈-∑D.10001()i i P a X b φφ=<<≈-∑8.设 12,,...,n X X X 相互独立,12,...,n n S X X X =+++,则根据列维——林德伯格中心极限定理,当 n 充分大时,n S 近似服从正态分布,只要12,,...,n X X X ( B )A .有相同的数学期望 B. 有相同分布C. 服从同一指数分布D. 服从同一离散型分布.三、解答题1.每次射击中,命中目标的炮弹数的均值为2,方差为1.5 ,求在100次 射击中有180到达220发炮弹命中目标的概率. 解:设X 为在100次射击中炮弹命中目标的次数 由林德伯格—列维定理知)1,0(~5.11002100N X ⨯⨯-)5.110021002205.110021005.11002100180()220180(⨯⨯-<⨯⨯-<⨯⨯-=<<X P X P )63.15.1100210063.1(<⨯⨯-<-=X P 1)63.1(2)63.1()63.1(-Φ=-Φ-Φ=0.89682.由100个相互独立起作用的部件组成的一个系统在运行过程中,每个部件 能正常工作的概率为90% .为了使整个系统能正常运行,至少必须有85%的部件正常工作,求整个系统能正常运行的概率. 解:设X 为正常工作的部件数 由德莫佛-拉普拉斯中心极限定理知)85(≥X P )1.09.01009.0100851.09.01009.0100(⨯⨯⨯-≥⨯⨯⨯-=X P -=1)1.09.01009.0100851.09.01009.0100(⨯⨯⨯-≤⨯⨯⨯-X P )35(1-Φ-=)35(Φ==0.95153.设有 30 个同类型的某电子器件1230,,...,X X X ,若(1,...,30)i X i =的寿命服从参数为0.1λ=的指数分布,令T 为 30 个器件正常使用的总计时间,求(350)P T >解:由林德伯格—列维定理知(350)P T >=)10030300350100301030(⨯->⨯⨯-T P =)30/53010300(1≤--T P =)30/5(1Φ-=0.18144.在天平上重复称量一重为a 的物品,假设各次称量结果相互独立且同服从正态分布2(,0.2)N μ,若以n X 表示n 次称量结果的平均值,问n 至少取多大,使得(0.1)0.5n P X μ-≥<.解:由林德伯格—列维定理知(0.1)0.5n P X μ-≥< 5.0)/2.01.0/2.0(___<≥-nnX P n μ5.0)/2.01.0/2.0(1___<≤--nnX P n μ[])/2.01.0()/2.01.0(1nn -Φ-Φ-=)/21(22n Φ-5.0< 2≥n5.某单位设置一电话总机,共有 200 门电话分机,每门电话分机有 5%的时间要用外线通话,假设各门分机是否使用外线通话是相互独立的,问总机至少要配置多少条外线,才能以90%的概率保证每门分机要使用外线时,有外线可供使用. 解:用X 表示200个分机中同时需要使用外线的台数。
概率论与数理统计课后习题及参考答案
概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,1235)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,4001600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
线性代数与概率统计
1、每张奖券中尾奖的概率为,某人购买了20张号码杂乱的奖券,则中尾奖的张数服从( )分布。
A. 二项正确:【A】2、设随机变量的方差,利用切比雪夫不等式估计()A.B.C.D.正确:【A】3、下列矩阵中,不是二次型矩阵的是()A.B.C.D.正确:【D】4、实二次型的矩阵,若此二次型的正惯性指数为3,则()A.B.C.D.正确:【C】5、在假设检验中,设服从正态分布,未知,假设检验问题为,则在显著水平下,的拒绝域为()A.B.C.D.正确:【B】6、矩阵()合同于A.B.C.D.正确:【A】7、设总体,是总容量为2的样本,为未知参数,下列样本函数不是统计量的是()A.B.C.D.正确:【D】8、设随机变量的,用切比雪夫不等式估计()A. 1B.C.D.正确:【D】9、A. 0B.C.D.正确:【C】10、A.B.C.D.正确:【D】11、某人打靶的命中率为0.4,现独立的射击5次,那么5次中有2次命中的概率为()A.B.C.D.正确:【C】12、A.B.C.D.正确:【D】13、设服从参数为的泊松分布,则下列正确的是()A.B.C.D.正确:【D】14、已知和是线性方程组的两个解,则系数矩阵是()A.B.C.D.正确:【C】15、A.B.C.D.正确:【B】16、若都存在,则下面命题正确的是()A. 与独立时,B. 与独立时,C. 与独立时,D.正确:【C】17、下列各函数中是随机变量分布函的为()A.B.C.D.正确:【B】18、设为二维连续随机变量,则和不相关的充分必要条件是()A. 和相互独立B.C.D.正确:【C】19、设是三阶方阵的三个特征值,对应特征向量分别为,且存在可逆矩阵,使得,则()A.B.C.D.正确:【B】20、设是的两个不同的特征值,又与是属于的特征向量,则与()正确:【B】21、设是从正态总体中抽取的一个样本,记则服从()分布A.B.C.D.正确:【C】22、设总体服从两点分布:为其样本,则样本均值的期望()A.B.C.D.正确:【A】23、设随机变量和的密度函数分别为若与相互独立,则()B.C.D.正确:【D】24、设总体,其中已知,为来自总体的样本,为样本均值,为样本方差,则下列统计量中服从分布的是()A.B.C.D.正确:【D】25、设二维随机变量,则()A.B. 3C. 18D. 36正确:【B】26、A. 2B.C.D.正确:【D】27、已知是阶方阵,且,则的个行向量中()A. 任意个行向量线性无关B. 必有个行向量线性无关C. 任一行向量都可由其余个行向量线性表出D. 任意个行向量都为极大无关组正确:【B】28、齐次线性方程组的自由未知量为()A.B.C.D.正确:【C】29、对于正态分布,抽取容量为10的样本,算得样本均值,样本方差,给定显著水平,检验假设 .则正确的方法和结论是()A. 用检验法,查临界值表知,拒绝B. 用检验法,查临界值表知,拒绝C. 用检验法,查临界值表知,拒绝D. 用检验法,查临界值表知,拒绝正确:【C】30、A.B.C.D.正确:【B】31、设随机事件A与B相互独立,A发生B不发生的概率与B发生A不发生的概率相等,且,则()A. 0.5B.C.D.正确:【B】32、A.B.C.D.正确:【A】33、设随机事件A与B相互独立,,则()A. 0.6正确:【D】34、为任意两事件,若之积为不可能事件,则称与()A. 相互独立B. 互不相容C. 互为独立事件D. 为样本空间的一个部分正确:【B】35、设总体服从泊松分布:,其中为未知参数,为样本,记,则下面几种说法正确的是()A. 是的无偏估计B. 是的矩估计C. 是的矩估计D. 是的矩估计正确:【D】36、已知为阶方阵,以下说法正确的是()A.B. 的全部特征向量为的全部解C. 若有个互不相同的特征值,则必有个线性无关的特征向量D. 若可逆,而矩阵的属于特征值的特征向量也是矩阵属于特征值的特征向量正确:【B】37、设总体,为样本均值,为样本方差,样本容量为,则以下各式服从标准正态分布的是()A.B.C.D.正确:【A】38、A.B.C.D.正确:【A】39、A.B.C.D.正确:【A】40、设,则()A.B.C.D.正确:【D】1、下列矩阵是正定矩阵的是()A.B.C.D.正确:【C】2、从一批产品中随机抽两次,每次抽1件。
几何图形的切比雪夫不等式
几何图形的切比雪夫不等式在数学中,我们常常遇到需要估计几何图形之间距离的问题。
而切比雪夫不等式(Chebyshev's inequality)为我们提供了一种有效的估计方法。
本文将介绍切比雪夫不等式的定义和应用,并通过实例来说明其实用性。
一、切比雪夫不等式的定义切比雪夫不等式是由俄罗斯数学家切比雪夫(Pafnuty Chebyshev)于1867年提出的。
该不等式描述了一维实数集合中数值距离的分布情况。
而在几何图形中,我们可以将其应用到二维平面上的点集之间的距离估计。
定义:对于在平面上的任意两点A(x1, y1)和B(x2, y2),它们之间的距离d满足以下不等式:d ≤ max(|x1 - x2|, |y1 - y2|)其中max为取两个数中的较大值的函数。
二、切比雪夫不等式的应用1. 距离估计切比雪夫不等式为我们提供了一种简便的方式来估计两点之间的距离。
通过计算两点在x和y方向上坐标差的绝对值,我们可以得到一个上界,在平面上任意一点与这两点之间的真实距离d一定小于等于这个上界。
这在实际应用中有很多用途,比如在地理信息系统中计算两个地点之间的地面距离等。
2. 图像处理在图像处理领域,切比雪夫不等式可以用来估计图像中不同像素之间的差异。
通过比较像素之间在RGB或灰度空间的数值差异,我们可以得到一个上界,该上界可以用来判断两个像素是否相似。
例如,当两个像素的RGB数值差异小于某个阈值时,我们可以认为它们是相似的。
通过切比雪夫不等式的应用,我们可以更加高效地进行图像相似性的判断。
三、切比雪夫不等式的实例应用为了更好地理解切比雪夫不等式的应用,我们以图形距离估计的实例来说明。
假设我们有一个平面上的正方形ABCD,其中A(0, 0)、B(0, 2)、C(2, 2)、D(2, 0)。
现在我们需要估计任意一点P(x, y)与这个正方形之间的最短距离。
根据切比雪夫不等式的定义,我们可以计算点P与正方形ABCD的四个顶点之间的距离,并取最大值作为距离的上界。
切比雪夫不等式估计概率
切比雪夫不等式估计概率摘要:1.引言2.切比雪夫不等式的定义和公式3.切比雪夫不等式在概率论中的应用4.举例说明切比雪夫不等式的实用性5.总结与展望正文:【引言】在概率论和统计学中,我们常常需要估计一个随机变量落在某个区间内的概率。
切比雪夫不等式(Chebyshev"s inequality)是一种常用的概率估计方法,它能帮助我们估算随机变量偏离均值的概率。
【切比雪夫不等式的定义和公式】切比雪夫不等式是一种基本的不等式,它的定义如下:对于任意实数k > 0,随机变量X的数学期望为μ,方差为σ^2,则有P(|X - μ| ≥ kσ) ≤ 1 / k^2其中,P(A)表示事件A发生的概率。
【切比雪夫不等式在概率论中的应用】切比雪夫不等式在概率论中有广泛的应用,例如:1.检验随机变量是否服从正态分布;2.估计均值和方差未知的情况下,随机变量落在某个区间内的概率;3.评估风险和可靠性。
【举例说明切比雪夫不等式的实用性】假设一家公司员工的工资呈正态分布,已知平均工资为5000元,标准差为1000元。
现在我们想要估计工资在4000元至6000元之间的员工所占比例。
根据正态分布的性质,我们知道工资偏离平均值5000元的程度与概率成反比。
因此,我们可以使用切比雪夫不等式来估计:P(4000 ≤ X ≤ 6000) ≈ P(|X - 5000| ≤ 1000)由切比雪夫不等式,我们有:P(4000 ≤ X ≤ 6000) ≥ 1 - 1 / (1000^2) ≈ 0.9545这意味着工资在4000元至6000元之间的员工所占比例至少为95.45%。
【总结与展望】切比雪夫不等式是一种实用的概率估计方法,通过数学公式可以直接估算随机变量偏离均值的概率。
在实际应用中,我们可以根据具体情况选择合适的参数k,以获得更精确的概率估计。
然而,切比雪夫不等式仅适用于具有特定分布的随机变量,对于其他类型的随机变量,我们需要采用其他概率估计方法。
概率论第四章-切比雪夫不等式
不等式的其它形式
例1 估计 解
的概率
例2一电网有1万盏路灯, 晚上每盏灯开的概率为0.7. 一电网有1万盏路灯, 晚上每盏灯开的概率为0.7. 求同时开的灯数在6800至7200之间的概率。 求同时开的灯数在6800至7200之间的概率。 6800 之间的概率 解 为同时开的灯数。 设X 为同时开的灯数。 用二项分布
P | X − µ |≥ε}≤σ /ε {
2
2
P | X −µ |<ε}≥1−σ /ε {
2
2
对未知分布X 对未知分布X,取
ε =3 , 2 , σ σ
2 2
9 2 3 2 P{| X −µ |< 2 } ≥1−σ / ( 2 ) = = 0.75 σ σ 4
P{| X −µ |< 3 } ≥1−σ / ( 3 ) = 8 = 0.89 σ σ
≤
ε
∫(x−µ)
f (x)dx
σ = 2 ε
ε
2
f (x)dx
2
是 于 P{| X −µ |<ε}≥1−σ / ε
2
2
P{| X −µ |≥ε}≤σ2 / ε2
P{| X −µ |<ε}≥1−σ / ε
2
2
切比雪夫不等式 证明切贝谢夫大数定律; 说明 (1)证明切贝谢夫大数定律; (2)表明D(X)描述了X偏离E(X)的离散程度; 表明D 描述了X偏离E 的离散程度; (3)给出X的分布未知时,事件 给出X的分布未知时, 概率的一个大致估计。 概率的一个大致估计。 大致估计 |X|X-E(X)|<ε的
定理:(切比雪夫不等式) 定理:(切比雪夫不等式) :(切比雪夫不等式
设随机变量X 设随机变量X 有数学期望 E = µ, 方 D =σ2 X 差 X 对任意 ε > 0, 不等式
切比雪夫不等式的应用
一、切比雪夫不等式的应用一
切比雪夫不等式是指在任何数据集中,与平均数超过K倍标准差的数据占的比例至多是1/K^2。
在概率论中,切比雪夫不等式显示了随机变数的「几乎所有」值都会「接近」平均。
这个不等式以数量化这方式来描述,究竟「几乎所有」是多少,「接近」又有多接近:
举例说,若一班有36个学生,而在一次考试中,平均分是80分,标准差是10分,我们便可得出结论:少於50分(与平均相差3个标准差以上)的人,数目不多於4个(=36*1/9)。
二、切比雪夫不等式的应用二
已知正常成人男性每升血液中的白细胞数平均是7.3×10^9,标准差是0.7×10^9。
试利用切比雪夫不等式估计每升血液中的白细胞数在5.2×10^9至9.4×10^9之间的概率下界
解:μ=7.3×10^9,σ=0.7×10^9.
P{5.2×10^9<x<9.4×10^9}=P{|x-7.3×10^9|<2.1×10^9}=P{|x-μ|<2.1×10^9}=
1-P{|x-μ|>=2.1×10^9}
利用切比雪夫不等式
P{|x-μ|>=2.1×10^9}<=σ^2/(2.1×10^9)^2=(0.7×10^9)^2/(2.1×10^9)^2=1/9
故
P{5.2×10^9<x<9.4×10^9}=1-P{|x-μ|>2.1×10^9}>=1-1/9=8/9。
概率论与数理统计学1至7章课后答案
第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明 1{02}P X λλλ-<<≥. 解:因为)(~λP X ,所以λμ==)(X E 。
λσ==)(2X Var 故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i i X X 。
因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var 由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i = ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。
记201k k V V ==∑,求(105)P V >的近似值。
5.1 切比雪夫不等式
DX
2
切比谢夫不等式给出了随机变量落在以期望 EX 为中心的对称区间( EX , EX )之外(以内) 的概率的上(下)界.
例1
若 DX 0 ,试证 P ( X EX ) 1 .
证 由切比谢夫不等式知, 对于任意的 0 均有
P ( X EX )
5.1
切比谢夫不等式
切比谢夫不等式
一、切比谢夫不等式
定理1 设随机变量 X 的方差存在, 则对任意的 0 有 P ( X EX ) 证
DX
2
如果 X 是连续型随机变量, ~ p( x ) ,则 X
P ( X EX )
1
x EX
p( x )dx
EX np 200 0.5 100, DX npq 200 0.5 0.5 50 P (80 X 120 ) P ( X 100 20)
50 1 2 0.875. 20
x EX
( x EX )2
2
p( x )dx
DX
( x EX ) p( x )dx 2
2 2
当 X 是离散型随机变量,只需将上述证明中的概率 密度换成分布列,积分号换成求和号即可. 切比谢夫不等式可写成如下形式
P ( X EX ) 1
即 因此
DX
2
0
P ( X EX ) 0
P ( X EX ) 0 P ( X EX ) 1
即
例2 200个新生婴儿中,估计男孩多于80个且少于120
个的概率(假定生男孩和女孩的概率均为0.5). 解 设 X 表示男孩个数,则 X ~ B( 200,0.5). 用切比谢夫不等式估计:
切比雪夫不等式估计概率
切比雪夫不等式估计概率 前言:切比雪夫不等式是概率论中一条重要的不等式,它用于估计随机变量与其均值之间的偏离程度。
本文将介绍切比雪夫不等式的概念、推导过程以及应用场景,并通过实例说明其实用性。
一、切比雪夫不等式的概念 切比雪夫不等式是数学上关于随机变量分布的一种重要不等式。
它可以用来估计随机变量与其均值之间的偏离程度。
切比雪夫不等式的数学表述如下:对于任意一个随机变量X和正数ε,有:P(|X - μ|≥ε)≤σ^2 / ε^2 其中,P表示概率,X表示随机变量,μ表示X的均值,σ^2表示X的方差,ε表示给定的正数。
切比雪夫不等式的实质是通过随机变量的方差来描述随机变量与其均值之间的偏离程度。
方差越小,随机变量与均值之间的偏离越小,概率也就越高。
二、切比雪夫不等式的推导过程1. 根据随机变量X的定义,我们知道E(X) = μVar(X) = σ^22. 根据方差的定义,我们可以得到Var(X) = E((X- μ)^2)3. 根据概率的定义,我们可以得到 P(|X - μ|≥ε) = 1 - P(|X - μ| < ε) 4. 由于对于任意的ε,X - μ的绝对值小于ε的概率范围是[0, ε],所以我们可以将其改写为 P(|X - μ| < ε) = P(-ε < X - μ < ε)5. 再将上式展开,我们得到 P(-ε < X - μ < ε) = P(-ε < X - μ) - P(X - μ > ε) 6. 根据概率的性质,我们知道 P(-ε < X - μ) = 1 - P(X - μ < -ε) P(X - μ > ε) = 1 - P(X - μ≤ε)7. 将上述两个概率代入第5步的等式中,我们得到 P(-ε < X - μ < ε) = 1 - P(X - μ < -ε) - (1 - P(X - μ≤ε))8. 继续简化上式,我们可以得到 P(-ε < X - μ < ε) = P(X - μ≤ε) - P(X - μ < -ε) 9. 根据对称性,我们知道P(X - μ < -ε) = P(X - μ > ε)10. 将第9步的结果代入第8步的等式中,我们得到 P(-ε < X - μ < ε) = 2P(X - μ≤ε)三、切比雪夫不等式的应用场景 切比雪夫不等式在概率论和统计学中有广泛的应用场景。
概率论与数理统计 五大数定理
三倍标准差的概率.
解
P
X EX
3
DX
3 2
1 9
0.1111
2
例2 为了确定事件 A 的概率, 进行了10000次重复独立试验.
利用切比雪夫不等式估计:用事件A 在10000次试验中发生
的频率作为事件 A 的概率近似值时, 误差小于0.01的概率.
用来阐明大量随机现象平均结果稳定性的定理.
一、切比雪夫不等式
切比雪夫不等式:
设随机变量 X 有数学期望 EX 及方差 DX,
则对于任何正数 ,下列不等式成立:
P X EX DX 或 P X EX 1 DX
2
2
证
就 X是连续型随机变量的情况证明:
设X 的概率密度为
f x, 则 P X EX f ( x)dx
lim
n
P
i 1
n
z
1
e dt , z t 2 2
(z 为任意实数.)
2
n
考虑随机变量:
Yn X i ,
i 1
n
n
则 E(Yn ) E( X i ) n D(Yn ) D( X i ) n 2
i 1
i 1
13
例1 计算机进行加法计算时, 把每个加数取为最接近于它的整数
来计算. 设所有的取整误差是相互独立的随机变量, 并且都在
林德伯格条件
设独立随机变量 总和不起主要作用,
若每一个别随机变量对于
X1 , X 2 , , X n , ,
则当 n时,
有
lim P
n
Zn z
1
t2 z
e 2 dt.
切比雪夫不等式及其应用
切比雪夫不等式及其应用作者:陆海霞来源:《教学交流》2008年第10期摘要:根据切比雪夫不等式中事件的形式,得出该不等式在估算概率、证明不等式、证明大数定律、求随机变量序列依概率收敛的常数、证明估计量的相合性等方面的应用。
关键词:切比雪夫不等式大数定律依概率收敛相合估计一、切比雪夫不等式二、切比雪夫不等式的应用1、粗略估算事件的概率例1 设随机变量X的数学期望EX=11,方差DX=9,则根据切比雪夫不等式估计P{2<X <20}≥_______.[分析]切比雪夫不等式主要用来粗略估计方差存在的随机变量在以数学期望为中心的对称区间上的概率.因此,首先必须把要估计的概率化为P{X-EX<ε}或P{X-EX≥ε}的形式,然后再由切比雪夫不等式得出估计值.例2 设随机变量X和Y分别服从正态分布N(1,1)与N(0,1),E(XY)=-0.1,则根据切比雪夫不等式,P{-4<X+2Y<6}≥_____[分析]本例要估计X+2Y的概率,要首先由已知条件计算随机变量的数学期望与方差,再按例1分析中的做法,求出估计值.解EX=DX=DY=1,EY=0E(XY)=-0.1因此,E(X+2Y)=EX+2EY=1 Cov(X,Y)=E(XY)-EXEY=-0.1,D(X+2Y)=DX+4DY+4Cov(X,Y)=1+4+4×(-0.1)=4.6无论是在证明概率不等式还是在已知不等式求常数的问题中,题目中都有一个概率不等式存在,因此,可以考虑不等式中的随机变量是否符合切比雪夫不等式条件,再将该不等式写成P{X-EX≥ε}≤ 的形式.参考文献:[1]同济大学应用数学系. 概率统计简明教程[M].北京:高等教育出版社,2003:89—91[2]曹振华 , 赵平.概率论与数理统计[M].南京:东南大学出版社,2004:145—147,184—185[3]魏宗舒等. 概率论与数理统计教程[M].北京:高等教育出版社,1983:146—148,196—200“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”。
切比雪夫不等式及大数定律
随机变量的数字特征
切比雪夫不等式及大数定律
1.1 切比雪夫不等式
在随机变量 X 分布未知的情况下,可以利用切比雪夫不等式对随机事件 {| X E(X ) | } 的概率进行估计.例如,当 3 D( X ) 时,有
P{| X E(X ) | 3 D(X )} 8 0.888 9. 9
也就是说,随机变量 X 落在以 E(X ) 为中心,以 3 D( X ) 为半径的邻域内的概率很大,而 落在该邻域之外的概率很小.当 D( X ) 较小时,随机变量 X 的取值就越集中在 E(X ) 附 近,而这正是方差这个数字特征的意义所在.
概率论与数理统计
随机变量的数字特征
切比雪夫不等式及大数定律
随机事件在某次试验中可能发生也可能不发生, 但在大量的重复试验中随机事件的发生呈现出明显 的规律性.实际上,大量随机现象的结果均具有稳 定性,大数定律以严格的数学形式阐述了这种稳定 性,揭示了随机现象的偶然性与必然性之间的内在 联系.下面,我们先来介绍证明大数定律的重要工 具—切比雪夫(Chebyshev)不等式.
1, 在第k次试验中事件A发生, X k 0 , 在第k次试验中事件A不发生,
其中, k 1,2, ,则
Xk
~
n
B(1,p) ,
k 1
Xk
nA
,1 n
n
Xk
k 1
nA n
,1 n
n
E(Xk )
k 1
p,
并且 X1 ,X2 , ,Xn , 满足切比雪夫大数定律的条件,于是由切比雪夫大数定律可证明伯努利大数 定律.
1,2 ,
)
,
由辛钦大数定律得
Yn
1 n
n k 1
切比雪夫不等式
解:设每毫升白细胞数为X 依题意,E(X)=7300,D(X)=7002 所求为 P(5200 X 9400)
P(5200 X 9400) = P(-2100 X-E(X) 2100) = P{ |X-E(X)| 2100}
在切比雪夫不等式中取
n,则
= P{ |X-E(X)| <0.01n}
依题意,取 解得
即n 取18750时,可以使得在n次独立重复试验中, 事件A出现的频率在0.74~0.76之间的概率至少为0.90 .
解:设X为n 次试验中,事件A出现的次数, 则 X~B(n, 0.75)
E(X)=0.75n, D(X)=0.75×0.25n=0.1875n
所求为满足
的最小的n .
可改写为
P(0.74n< X<0.76n )
=P(-0.01n<X-0.75n< 0.01n)= P{ 源自X-E(X)| <0.01n}
由切比雪夫不等式 P{ |X-E(X)| 2100}
即估计每毫升白细胞数在5200~9400之间的概率不 小于8/9 .
例2 在每次试验中,事件A发生的概率为 0.75, 利 用切比雪夫不等式求:n需要多么大时,才能使得在 n次独立重复试验中, 事件A出现的频率在0.74~0.76之 间的概率至少为0.90?
概率论与数理统计第5章作业题解
第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明1{02}P X λλλ-<<≥.解:因为)(~λP X ,所以λμ==)(X E 。
λσ==)(2X Var故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i i X X 。
因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i = ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。
记201kk V V==∑,求(105)P V >的近似值。
利用切比雪夫不等式估计概率
利用切比雪夫不等式估计概率1. 什么是切比雪夫不等式?嘿,朋友们,今天我们来聊聊切比雪夫不等式,听起来是不是有点高深?但别担心,我会把它讲得简单易懂。
想象一下,生活中我们总是想知道一些事情发生的概率,比如明天会不会下雨,或者今天的晚餐是不是会让我们满意。
切比雪夫不等式就像一把钥匙,能帮我们打开概率的宝箱。
1.1 切比雪夫的基本概念切比雪夫不等式告诉我们,如果你有一堆数据,这些数据的平均值和标准差都在你手中,那么你就能估计出数据偏离平均值的概率有多大。
简单说,就是如果你把数据分成若干个小块儿,切比雪夫不等式能让你大致知道,数据分布得离平均值远不远。
就像是看天气预报一样,预报说今天可能下雨,那你就知道要不要带伞。
1.2 生活中的例子比如,假设你有一班学生,他们的考试成绩分布很广,有的人特别优秀,有的人就...嗯,比较“努力”。
切比雪夫不等式可以告诉你,大概有多少学生的成绩会在某个范围内。
就像是你知道自己的朋友里,某些人总是能在麻将桌上赢,但有些人就是“输得一塌糊涂”。
通过切比雪夫不等式,你可以估计这些“麻将高手”的比例。
2. 为什么要用切比雪夫不等式?好的,现在我们知道了切比雪夫不等式是个什么玩意儿,但为什么我们要用它呢?让我告诉你,这可不是一时兴起的选择,背后可是有真材实料的。
2.1 它的普遍适用性首先,切比雪夫不等式几乎适用于所有的分布,无论你的数据是正态分布、偏态分布,还是其他什么神秘的分布,切比雪夫不等式都能帮你忙。
就像是万能钥匙,无论你家门锁是什么型号,它都能打开。
是不是很酷?2.2 不需要太多假设其次,使用切比雪夫不等式时,你不用太多担心数据的具体分布情况。
很多时候,我们的数据分布并不完美,有可能数据会很偏,有可能还有异常值。
但切比雪夫不等式就像是一位好老师,它不要求你做太多的假设,就能让你得到合理的结论。
你只需知道数据的平均值和标准差,就可以放心大胆地使用。
3. 如何运用切比雪夫不等式?好啦,到了关键时刻,我们该来看看如何实际运用切比雪夫不等式了。
概率论与数理统计 五大数定理
,
i
1,2, , n, .
设Yn
Xi,
i 1
n
n
则: E Yn
i , D Yn
2 i
sn2 .
i 1
i 1
Zn
Yn
Yn
EYn DYn
1 sn
n i1
Xi
n i 1
i
1 n
sn i1
Xi i ,
则有:E(Zn ) 0, D( Zn ) 1.
11
林德伯格定理:
显然, 当n 时,P(Bn ) 1.
[注] 小概率事件尽管在个别试验中不可能发生,但在大量试验
中几乎必然发生。 10
第二节 中心极限定理
概率论中有关论证随机变量的和的极限分布是正态分布的定
理叫做中心极限定理。
设
X1
,
X
, , X , 是独立随机变量,并各有
2
n
n
EX i
i ,
DX i
2 i
的频率作为事件 A 的概率近似值时, 误差小于0.01的概率.
解
设事件A 在每次试验中发生的概率为 p,
在这10000次试验
中发生了X 次, 因此,所求事件的概率为
则 EX np 10000 p, DX 10000 p1 p,
P
X 10000
p
0.01 P
X 10000 p
100
P X EX 100 1 DX 1002
DX n
1 n2
nK
K n
由此,
当 n 充分大时,
随机变量
也就是说,
X 的值较紧密地聚集在它的数学期望 n
分散程度是很小的,
Xn
概率论与数理统计第五章习题详解 (2)
习题五1 .已知()1E X =,()4D X =,利用切比雪夫不等式估计概率{}1 2.5P X -<.解: 据切比雪夫不等式{}221P X σμεε-<≥-{}241 2.51 2.5P X -<≥-925=.2.设随机变量X 的数学期望()E X μ=,方程2()D X σ=,利用切比雪夫不等式估计{}||3P X μσ-≥.解:令3εσ=,则由切比雪夫不等式{}2()||3D X P X μσε-≥≤, 有{}221||3(3)9P X σμσσ-≥≤=.3. 随机地掷6颗骰子,利用切比雪夫不等式估计6颗骰子出现点数之和在1527 之间的概率.解: 设X 为6颗骰子所出现的点数之和;i X 为第i 颗骰子出现的点数,1,2,,6i = ,则61ii X X==∑,且126,,...,X X X 独立同分布,分布律为:126111666⎛⎫ ⎪⎪ ⎪⎝⎭,于是6117()62i k E X k ==⋅=∑6221191()66i k E X k ==⋅=∑所以22()()()i i i D X E X E X =-914964=-3512=,1,2,,6i =因此 617()()6212ii E X E X===⨯=∑6135()()612i i D X D X ===⨯∑352=故由切比雪夫不等式得:{}{}|5271428P X P X ≤≤=<<{}7217P X =-<-< {}|()|7P X E X =-<2()17D X ≥-13559114921414=-⨯=-=.即6颗骰子出现点数之和在1527 之间的概率大于等于914.4. 对敌阵地进行1000次炮击,每次炮击中。
炮弹的命中颗数的期望为0.4,方差为3.6,求在1000次炮击中,有380颗到420颗炮弹击中目标的概率.{}1|()|7P X E X =--≥解: 以i X 表示第i 次炮击击中的颗数(1,2,,1000)i =有()0.4i E X = ,() 3.6i D X =据 定理:则10001380420i i P X =⎧⎫<≤⎨⎬⎩⎭∑420400380400--≈Φ-Φ11()()33=Φ-Φ-12()13=Φ- 20.62931=⨯- 0.2586= .5. 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100g ,标准差是10g . 求一盒螺丝钉的重量超过10.2kg 的概率.解: 设i X 为第i 个螺丝钉的重量,1,2,,100i = ,且它们之间独立同分布,于是一盒螺丝钉的重量1001ii X X==∑,且由()100i E X =10=知()100()10000i E X E X =⨯=,100=,由中心极限定理有:100001020010000(10200)10100X P X P --⎧⎫>=>⎨⎬⎩⎭100002100X P -⎧⎫=>⎨⎬⎩⎭1000012100X P -⎧⎫=-≤⎨⎬⎩⎭1(2)≈-Φ10.977250.02275=-= .6. 用电子计算机做加法时,对每个加数依四舍五入原则取整,设所有取整的舍入误差是相互独立的,且均服从[]0.5,0.5-上的均匀分布.(1)若有1200个数相加,则其误差总和的绝对值超过15的概率是多少? (2)最多可有多少个数相加,使得误差总和的绝对值小于10的概率达到90%以上.解: 设i X 为第i 个加数的取整舍入误差, 则{}i X 为相互独立的随机变量序列, 且均服从[]0.5,0.5-上的均匀分布,则0.50.5()0i E X xdx μ-===⎰0.5220.51()12i D X x dx σ-===⎰(1) 因1200n =很大,由独立同分布中心极限定理对该误差总和12001ii X=∑,1200115i i P X =⎧⎫>⎨⎬⎩⎭∑15P ⎫⎪=>12 1.5i i P X =⎫⎪=>⎬⎪⎭2(1(1.5))=-Φ 0.1336= .即误差总和的绝对值超过15的概率达到13.36% .(2) 依题意,设最多可有n 个数相加,则应求出最大的n ,使得1100.9n k k P X =⎧⎫<≥⎨⎬⎩⎭∑由中心极限定理:1110n ni ii i P X P X ==⎧⎧⎫⎪<=<⎨⎬⎨⎪⎩⎭⎩∑∑210.9≈Φ-≥ .即0.95Φ≥查正态分布得 1.64≥即21012()446.161.64n ≤≈取446n =,最多可有446个数相加 .7. 在人寿保险公司是有3000个同一年龄的人参加人寿保险,在1年中,每人的的死亡率为0.1%,参加保险的人在1年第1天交付保险费10元,死亡时家属可以从保险公司领取2000元,求保险公司在一年的这项保险中亏本的概率.解 以X 表示1年死亡的人数 依题意,(3000,0.001)X B注意到{}{}200030000P P X =>保险公司亏本其概率为{}1530000.001151P X -⨯>≈-Φ1(6.932)=-Φ 0≈ .即保险公司亏本的概率几乎为0 .8. 假设12,,...,n X X X 是独立同分布的随机变量,已知()ki k E X α= (1,2,3,4;1,2,,)k i n == .证明:当n 充分大时,随机变量211nn i i Z X n==∑近似服从正态分布.证明:由于12,,...,n X X X 独立同分布,则22212,,...,n X X X 也独立同分布由()ki k E X α= (1,2,3,4;1,2,,)k i n ==有22()iE X α=,2242()((i iiD XE X E X ⎡⎤=-⎣⎦242αα=-2211()()nn i i E Z E X nα==⋅=∑2242211()()()nn i i D Z D X n nαα==⋅=-∑{}15P X =>因此,根据中心极限定理:(0,1)nZU Nα-=即当n充分大时,n Z近似服从2242(,())N nααα- .9. 某保险公司多年的统计资料表明:在索赔户中被盗索赔户占20%,以X表示在随机抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X的概率分布;(2)利用德莫弗-位普拉斯中心极限定理.求:被盗索赔户不少于14户,且不多于30户的概率.解(1)(100,0.2)X B,所以{}1001000.20.80,1,2,,100k k kP X k C k-===()20E X np==,()(1)16D X np p=⋅-=(2){}|430P X≤≤1420203020XP---⎧⎫=≤≤(2.5)( 1.5)=Φ-Φ-(2.5)( 1.5)1=Φ+Φ--0.9940.93310.927=+-= .10 .某厂生产的产品次品率为0.1p=,为了确保销售,该厂向顾客承诺每盒中有100只以上正品的概率达到95%,问:该厂需要在一盒中装多少只产品?解:设每盒中装n只产品,合格品数~(,0.9)X B n,()0.9E X n=,()0.09D X n=则{}{}1001100P X P X>=-≤1000.910.95n -=-Φ=1000.9 1.65n-=-解得117n =,即每盒至少装117只才能以95%的概率保证一盒内有100只正品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3 设在每次试验中事件 A 发生的概率
p=0.75, 试用下面两种方法估计n取多大时才能
以90%的把握保证n次重复独立试验中A发生的
频率在0.74~0.76之间: (1) 利用切比雪夫不等式估计; (2) 利用中心极限定理估计.
解答
返回
6.4 已知一本 300 页的书中每页印刷错误的
第六章 大数定律与中心极限定理
6 .1
6 .2
6 .3
6 .4
6 .5
6.1 为了确定事件A的概率p, 进行了10000
次的重复独立试验. 试用切比雪夫不等式估计: 用A在10000次试验中发生的频率作为概率的近似
值时, 误差小于0.01的概率.
解答
6.2 利用切比雪夫不等式估计随P(0.2), 求这本书的印刷错误不 多于70个的概率.
解答
6.5 某单位设计一台电话总机, 共200个分机.
设每个分机有5%的时间要使用外线通话, 并且每个
分机使用外线与否是相互独立的. 问该单位至少需
要多少根外线才能保证每个分机要用外线时可供使 用的概率达到90%? 解答 返回