北航数值分析计算实习一

合集下载

北航数值分析大作业 第一题 幂法与反幂法

北航数值分析大作业 第一题 幂法与反幂法

数 值 分 析(B ) 大 作 业(一)姓名: 学号: 电话:1、算法设计:①求1λ、501λ和s λ的值:s λ:s λ表示矩阵的按模最小特征值,为求得s λ直接对待求矩阵A 应用反幂法即可。

1λ、501λ:若矩阵A 的特征值满足关系 1n λλ<<且1n λλ≠,要求1λ、及501λ时,可按如下方法求解: a . 对矩阵A 用幂法,求得按模最大的特征值1m λ。

b . 按平移量1m λ对矩阵A 进行原点平移得矩阵1m BA I λ=+,对矩阵B 用反幂法求得B 的按模最小特征值2m λ。

c . 321m m m λλλ=-则:113min(,)m m λλλ=,13max(,)n m m λλλ=即为所求。

②求和A 的与数5011140k k λλμλ-=+最接近的特征值ik λ(k=0,1,…39):求矩阵A 的特征值中与P 最接近的特征值的大小,采用原点平移的方法:先求矩阵 B=A-PI 对应的按模最小特征值k β,则k β+P 即为矩阵A 与P 最接近的特征值。

在本次计算实习中则是先求平移矩阵k B A I μ=-,对该矩阵应用反幂法求得s λ,则与k μ最接近的A 的特征值为:s P λ+重复以上过程39次即可求得ik λ(k=0,1,…39)的值。

③求A 的(谱范数)条件数2cond()A 和行列式det A :在(1)中用反幂法求矩阵A 的按模最小特征值时,要用到Doolittle 分解方法,在Doolittle 分解完成后得到的两个矩阵分别为L 和U ,则A 的行列式可由U 阵求出,即:det(A)=det(U)。

求得det(A)不为0,因此A 为非奇异的实对称矩阵,则: max 2()scond A λλ=,max λ和s λ分别为模最大特征值与模最小特征值。

2、程序源代码:#include "Stdio.h"#include "Conio.h"#include "math.h"//****************************************************************************// // 在存储带状矩阵时,下面的几个量在程序中反复用到,为方便编程故把它们定义成宏.// // M :转换后的矩阵的行数,M=R+S+1。

北航数值分析实验报告

北航数值分析实验报告

北航‎数值‎分析‎实验‎报告‎‎篇一‎:‎北航‎数值‎分析‎报告‎第一‎大题‎《‎数值‎分析‎》计‎算实‎习报‎告‎第一‎大题‎学‎号:‎D‎Y1‎30‎5‎姓名‎:‎指导‎老师‎:‎一、‎题目‎要求‎已‎知5‎01‎*5‎01‎阶的‎带状‎矩阵‎A,‎其特‎征值‎满足‎?1‎?‎2‎..‎.‎?5‎01‎。

试‎求:‎1‎、?‎1,‎?5‎01‎和?‎s的‎值;‎‎2、‎A的‎与数‎?k‎??‎1?‎k‎?5‎01‎??‎1‎40‎最‎接近‎的特‎征值‎?i‎k(‎k=‎1,‎2,‎..‎.,‎39‎);‎‎3、‎A的‎(谱‎范数‎)条‎件数‎c n‎d(‎A)‎2和‎行列‎式d‎e t‎A。

‎‎二、‎算法‎设计‎方案‎题‎目所‎给的‎矩阵‎阶数‎过大‎,必‎须经‎过去‎零压‎缩后‎进行‎存储‎和运‎算,‎本算‎法中‎压缩‎后的‎矩阵‎A1‎如下‎所示‎。

‎?0‎?0‎?A‎1?‎?a‎1‎??‎b?‎?c‎0‎b a‎2b‎c‎c b‎b c‎.‎..‎..‎..‎..‎..‎.‎c b‎b c‎c‎b a‎50‎0b‎0‎a ‎3.‎..‎a4‎99‎c‎?‎b?‎?a‎50‎1?‎?‎0?‎0?‎?‎由矩‎阵A‎的特‎征值‎满足‎的条‎件可‎知‎?1‎与?‎50‎1之‎间必‎有一‎个最‎大,‎则采‎用幂‎法求‎出的‎一‎个特‎征值‎必为‎其中‎的一‎个:‎当‎所求‎得的‎特征‎值为‎正数‎,则‎为?‎50‎1;‎否则‎为?‎1。

‎在求‎得?‎1与‎?‎50‎1其‎中的‎一个‎后,‎采用‎带位‎移的‎幂法‎则可‎求出‎它们‎中的‎另一‎个,‎且位‎移量‎即为‎先求‎出的‎特‎征值‎的值‎。

用‎反幂‎法求‎得的‎特征‎值必‎为?‎s。

‎由条‎件数‎的性‎质可‎得,‎c n‎d(‎A)‎2为‎模最‎大的‎特征‎值与‎模最‎小的‎特征‎值之‎比的‎模,‎因此‎,求‎出?‎1,‎?5‎01‎和?‎s的‎值后‎,则‎可以‎求得‎c n‎d(‎A)‎2。

北航数值分析计算实习1

北航数值分析计算实习1

《数值分析》计算实习题目110091013 劳云杰一、算法设计方案根据提示的算法,首先使用幂法求出按模最大的特征值λt1,再根据已求出的λt1用带原点平移的幂法求出另一个特征值λt2,比较两个λ的大小,根据已知条件,可以得出λ1和λ501.至于λs,由于是按模最小的特征值,使用反幂法求之,由于反幂法需要解线性方程组,故对矩阵进行Doolittle分解。

再通过带原点平移的反幂法求跟矩阵的与数最接近的特征值。

对非奇异的矩阵A,根据条件数定义,取λt1/λs的绝对值,两个特征值在之前步骤中均以求得。

由于对矩阵进行了Doolittle分解,所以矩阵的行列式det A可由分解得出的上三角阵U 的对角线上元素相乘求得。

为了使A的所有零元素都不存储,使用书本25页的压缩存储法对A进行存储,在计算时通过函数在数组C中检索A中元素即可。

由于A是501*501矩阵,C应取为5*501矩阵。

由于数据不大,为了方便起见,在程序中取502*502矩阵或者502向量,C也取为6*502矩阵。

程序编写参考《数值分析》颜庆津著和[C数值算法].(美国)W ILLIAM.H.P RESS.扫描版。

二、全部源程序#include <stdio.h>#include <math.h>#define XS 1.0e-12//精度水平void fz_a();//对矩阵A赋值double js(int,int);//在压缩矩阵中检索A的元素double mf(double);//幂法double fmf(double);//反幂法int lu(double);//Doolittle分解int jfc(double[],double[]);//解方程int max(int,int);int min(int,int);double (*u)[502]=new double[502][502];//上三角阵double (*l)[502]=new double[502][502];//单位下三角阵double a[6][502];//压缩存储矩阵int max(int x,int y)//比大小函数×2{ return (x>y?x:y);}int min(int x,int y)//精度关系,比较下标用{ return (x<y?x:y);}int main(){printf("请耐心等待,先看看中间过程吧~\n");int i,k;double ldt1,ldt2,ld1,ld501,lds,mu[40],det;double ld[40];fz_a();//对A赋值ldt1=mf(0);//幂法求模最大的特征值ldt2=mf(ldt1);//以第一次求得的特征值进行平移ld1=ldt1<ldt2?ldt1:ldt2;//大的就是λ501ld501=ldt1<ldt2?ldt2:ldt1;lu(0);lds=fmf(0);//反幂法求λsdet=1;//初始化行列式for(i=1;i<=501;i++)det=det*u[i][i];//用U的对角元素求行列式for(k=1;k<=39;k++){mu[k]=ld1+k*(ld501-ld1)/40;//与数lu(mu[k]);ld[k]=fmf(mu[k]);}printf("\n 列出结果\n");printf("λ1=%1.12e λ501=%1.12e\n",ld1,ld501);printf("λs=%1.12e \n",lds);printf("cond(A)=%1.12e \n",fabs(ldt1/lds));printf("detA=%1.12e \n",det);for(k=1;k<=39;k++)//列出跟与数最接近特征值{printf("λi%d=%1.12e\t",k,ld[k]);if(k%2==0)printf("\n");}//界面友好性delete []u;delete []l;getchar();return 0;}void fz_a()//对A赋值{int i;for(i=3;i<=501;i++)a[1][i]=a[5][502-i]=-0.064;//原A矩阵的cfor(i=2;i<=501;i++)a[2][i]=a[4][502-i]=0.16;//原A矩阵的bfor(i=1;i<=501;i++)a[3][i]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);//原对角线元素}double js(int i,int j)//对压缩矩阵检索A的元素{if(abs(i-j)<=2)return a[i-j+3][j];else return 0;}double mf(double offset)//幂法{int i,x1;double u[502],y[502];double beta=0,prebeta=-1000,yita=0;//用幂法的第一种迭代方法for(i=1;i<=501;i++) //用到了2-范数u[i]=1,y[i]=0;for(int k=1;k<=10000;k++)//对迭代次数进行限制{yita=0;for(i=1;i<=501;i++)yita=sqrt(yita*yita+u[i]*u[i]);for(i=1;i<=501;i++)y[i]=u[i]/yita;for(x1=1;x1<=501;x1++){u[x1]=0;for(int x2=1;x2<=501;x2++)u[x1]=u[x1]+((x1==x2)?(js(x1,x2)-offset):js(x1,x2))*y[x2];}prebeta=beta;beta=0;for(i=1;i<=501;i++)beta=beta+y[i]*u[i];if(fabs((prebeta-beta)/beta)<=XS){printf("offset=%f lb=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};}//满足误差条件后,迭代终止,并输出平移量,误差和迭代次数return(beta+offset);//加上平移量,方便比较}double fmf(double offset)//反幂法{ int i;double u[502],y[502];double beta=0,prebeta=0,yita=0;for(i=1;i<=501;i++)u[i]=1,y[i]=0; //相关量初始化for(int k=1;k<=10000;k++)//限制迭代次数{yita=0;for(i=1;i<=501;i++)yita=sqrt(yita*yita+u[i]*u[i]);for(i=1;i<=501;i++)y[i]=u[i]/yita;jfc(u,y);prebeta=beta;beta=0;for(i=1;i<=501;i++)beta=beta+y[i]*u[i];beta=1/beta;if(fabs((prebeta-beta)/beta)<=XS){printf("offset=%f lb=%f err=%ek=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};}//满足误差条件后,迭代终止,并输出平移量,误差和迭代次数return(beta+offset);}int lu(double offset)//Doolittle分解{int i,j,k,t;double sum;//中间量for(k=1;k<=501;k++)for(j=1;j<=501;j++){u[k][j]=l[k][j]=0;if(k==j)l[k][j]=1;}//对LU矩阵初始化for(k=1;k<=501;k++)//对式(2.12)的程序实现{for(j=k;j<=min(k+2,501);j++){sum=0;for(t=max(1,max(k-2,j-2));t<=(k-1);t++)sum=sum+l[k][t]*u[t][j];//j=k,k+1,……,nu[k][j]=((k==j)?(js(k,j)-offset):js(k,j))-sum;}if(k==501)continue;for(i=k+1;i<=min(k+2,501);i++)//i=k+1,……,n{sum=0;for(t=max(1,max(i-2,k-2));t<=(k-1);t++)sum=sum+l[i][t]*u[t][k];l[i][k]=(((i==k)?(js(i,k)-offset):js(i,k))-sum)/u[k][k];}}return 0;}int jfc(double x[],double b[])//解方程{int i,t;double y[502];double sum;y[1]=b[1];for(i=2;i<=501;i++){sum=0;for(t=max(1,i-2);t<=i-1;t++)sum=sum+l[i][t]*y[t];y[i]=b[i]-sum;}x[501]=y[501]/u[501][501];for(i=500;i>=1;i--){sum=0;for(t=i+1;t<=min(i+2,501);t++)sum=sum+u[i][t]*x[t];x[i]=(y[i]-sum)/u[i][i];}return 0;}三、结果λ1=-1.070011361502e+001λ501=9.724634098777e+000λs=-5.557910794230e-003cond(A)=1.925204273902e+003detA=2.772786141752e+118λi1=-1.018293403315e+001 λi2=-9.585707425068e+000 λi3=-9.172672423928e+000λi4=-8.652284007898e+000 λi5=-8.0934********e+000 λi6=-7.659405407692e+000λi7=-7.119684648691e+000 λi8=-6.611764339397e+000 λi9=-6.0661********e+000λi10=-5.585101052628e+000 λi11=-5.114083529812e+000 λi12=-4.578872176865e+000λi13=-4.096470926260e+000 λi14=-3.554211215751e+000 λi15=-3.0410********e+000 λi16=-2.533970311130e+000 λi17=-2.003230769563e+000 λi18=-1.503557611227e+000 λi19=-9.935586060075e -001 λi20=-4.870426738850e -001 λi21=2.231736249575e -002 λi22=5.324174742069e -001 λi23=1.052898962693e+000 λi24=1.589445881881e+000 λi25=2.060330460274e+000 λi26=2.558075597073e+000 λi27=3.080240509307e+000 λi28=3.613620867692e+000 λi29=4.0913********e+000 λi30=4.603035378279e+000 λi31=5.132924283898e+000 λi32=5.594906348083e+000 λi33=6.080933857027e+000 λi34=6.680354092112e+000 λi35=7.293877448127e+000 λi36=7.717111714236e+000 λi37=8.225220014050e+000 λi38=8.648666065193e+000 λi39=9.254200344575e+000四、讨论迭代初始向量的选取对计算结果的影响1.在反幂法中取迭代向量u[1]=1,u[i]=0,i=2,……,501,最后得出的结果中λs=2.668886923785e -002,cond(A)也随之改变成4.009204556274e+0022.在幂法中取迭代向量u[1]=1,u[i]=2,i=2,……,501,最后得出的结果不变。

数值计算方法实习报告

数值计算方法实习报告

实习报告实习单位:XX大学计算中心实习时间:2023年1月1日至2023年1月31日实习内容:数值计算方法一、实习背景及目的随着科技的不断发展,数值计算方法在工程、物理、化学、生物学等领域发挥着越来越重要的作用。

为了更好地将所学知识应用于实际问题,提高自己的实践能力,我选择了数值计算方法作为实习内容。

本次实习的主要目的是:1. 加深对数值计算方法的理解,掌握基本的数值计算方法及其应用。

2. 提高编程能力,熟练运用C语言进行数值计算程序的设计与实现。

3. 学会分析并解决实际问题,将所学知识运用到实际项目中。

二、实习过程及收获1. 实习前期,我首先学习了数值计算方法的基本理论,包括误差分析、插值法、数值积分、常微分方程数值解等。

通过理论的学习,我对数值计算方法有了更深入的了解。

2. 在实习过程中,我使用C语言编写了一系列数值计算程序,包括求解方程的迭代法、高斯消去法、牛顿法等。

这些程序可以帮助我更好地理解数值计算方法的理论,并提高我的编程能力。

3. 针对实际问题,我运用所学知识进行了解决。

例如,我使用数值积分方法计算了函数在一个区间上的定积分,使用常微分方程数值解方法求解了一个实际物理问题。

这些实践经历使我更加熟悉了数值计算方法在实际问题中的应用。

4. 实习期间,我还参加了计算中心组织的讲座和讨论,与其他实习生交流心得,共同解决问题。

这使我受益匪浅,不仅提高了自己的实际操作能力,还拓宽了知识面。

三、实习总结通过本次实习,我对数值计算方法有了更全面的认识,掌握了基本的数值计算方法及其编程实现。

同时,我的编程能力和解决实际问题的能力也得到了很大提高。

此外,我还学会了如何将所学知识应用于实际项目,为将来的工作打下了坚实基础。

在今后的工作中,我将继续努力学习数值计算方法及相关知识,不断提高自己的实践能力。

同时,我也将把所学知识运用到实际工作中,为公司的发展做出贡献。

最后,感谢计算中心给我提供了一次宝贵的实习机会,使我受益匪浅。

数值分析计算实习题

数值分析计算实习题

数值分析计算实习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《数值分析》计算实习题姓名:学号:班级:第二章1、程序代码Clear;clc;x1=[ ];y1=[ ];n=length(y1);c=y1(:);for j=2:n %求差商for i=n:-1:jc(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1));endendsyms x df d;df(1)=1;d(1)=y1(1);for i=2:n %求牛顿差值多项式df(i)=df(i-1)*(x-x1(i-1));d(i)=c(i-1)*df(i);endP4=vpa(sum(d),5) %P4即为4次牛顿插值多项式,并保留小数点后5位数pp=csape(x1,y1, 'variational');%调用三次样条函数q=;q1=q(1,:)*[^3;^2;;1];q1=vpa(collect(q1),5)q2=q(1,:)*[^3;^2;;1];q2=vpa(collect(q2),5)q3=q(1,:)*[^3;^2;;1];q3=vpa(collect(q3),5)q4=q(1,:)*[^3;^2;;1];q4=vpa(collect(q4),5)%求解并化简多项式2、运行结果P4 =*x - *(x - *(x - - *(x - *(x - *(x - - *(x - *(x - *(x - *(x - + q1 =- *x^3 + *x^2 - *x +q2 =- *x^3 + *x^2 - *x + q3 =- *x^3 + *x^2 - *x + q4 =- *x^3 + *x^2 - *x +3、问题结果4次牛顿差值多项式4()P x = *x - *(x - *(x - - *(x - *(x - *(x - - *(x - *(x - *(x - *(x - +三次样条差值多项式()Q x0.10.20.30.40.50.60.70.80.910.40.50.60.70.80.911.1323232321.33930.803570.40714 1.04,[0.2,0.4]1.3393 1.60710.88929 1.1643,[0.4,0.6]1.3393 2.4107 1.6929 1.4171,[0.6,0.8]1.3393 3.21432.8179 1.8629,[0.8,1.0]x x x x x x x x x x x x x x x x ⎧-+-+∈⎪-+-+∈⎪⎨-+-+∈⎪⎪-+-+∈⎩第三章1、程序代码Clear;clc; x=[0 1]; y=[1 ];p1=polyfit(x,y,3)%三次多项式拟合 p2=polyfit(x,y,4)%四次多项式拟合 y1=polyval(p1,x);y2=polyval(p2,x);%多项式求值plot(x,y,'c--',x,y1,'r:',x,y2,'y-.')p3=polyfit(x,y,2)%观察图像,类似抛物线,故用二次多项式拟合。

北航数值分析大作业一

北航数值分析大作业一

北京航空航天大学数值分析大作业一学院名称自动化专业方向控制工程学号ZY*******学生姓名许阳教师孙玉泉日期2021 年11月26 日设有501501⨯的实对称矩阵A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=5011A a b c b c c b c b a其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1.0-==⋅⋅⋅=--=c b i e i i a ii 。

矩阵A 的特征值为)501,,2,1(⋅⋅⋅=i i λ,并且有||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤1λ,501λ和s λ的值。

A 的与数4015011λλλμ-+=kk 最接近的特征值)39,,2,1(⋅⋅⋅=k k i λ。

A 的(谱范数)条件数2)A (cond 和行列式detA 。

一 方案设计1 求1λ,501λ和s λ的值。

s λ为按模最小特征值,||min ||5011i i s λλ≤≤=。

可使用反幂法求得。

1λ,501λ分别为最大特征值及最小特征值。

可使用幂法求出按模最大特征值,如结果为正,即为501λ,结果为负,那么为1λ。

使用位移的方式求得另一特征值即可。

2 求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,...,2,1(=k k i λ。

题目可看成求以k μ为偏移量后,按模最小的特征值。

即以k μ为偏移量做位移,使用反幂法求出按模最小特征值后,加上k μ,即为所求。

3 求A 的(谱范数)条件数2)(A cond 和行列式detA 。

矩阵A 为非奇异对称矩阵,可知,||)(min max2λλ=A cond(1-1)其中m ax λ为按模最大特征值,min λ为按模最小特征值。

detA 可由LU 分解得到。

因LU 均为三角阵,那么其主对角线乘积即为A 的行列式。

二 算法实现1 幂法使用如下迭代格式:⎪⎪⎩⎪⎪⎨⎧⋅===⋅⋅⋅=------||max |)|sgn(max ||max /),,(111111)0()0(10k k k k k k k k Tn u u Ay u u u y u u u β任取非零向量 (2-1)终止迭代的控制理论使用εβββ≤--||/||1k k k , 实际使用εβββ≤--||/||||||1k k k(2-2)由于不保存A 矩阵中的零元素,只保存主对角元素a[501]及b,c 值。

北航数值分析大作业 第二题 QR分解

北航数值分析大作业 第二题 QR分解

《数值分析B》课计算实习第一题设计文档与源程序姓名:杨彦杰学号:SY10171341 算法的设计方案(1)运行平台操作系统:Windows XP;开发平台:VC6.0++;工程类型:文档视图类;工程名:Numanalysis;(2)开发描述首先新建类CMetrix,该类完成矩阵之间的相关运算,包括相乘、加减等,以主程序方便调用;题目的解算过程在视图类CNumanalysisView中实现,解算结果在视图界面中显示;(3)运行流程(4)运行界面2、全部源代码(1)类CMetrixMetrix.h文件:class CMetrix{public:double** MetrixMultiplyConst(double**A,int nRow,int nCol,double nConst);//矩阵乘常数double** MetrixMultiplyMetrix(double**A,double**mA,int nRow,int nCol);//矩阵相乘double** MetrixSubtractMetrix(double **A, double **subA, int nRow,int nCol);//矩阵减矩阵double VectorMultiplyVector(double*V,double*mulV,int nV);//向量点积double** VectorMultiplyVectortoMetrix(double*V,double*VT,int nV);//向量相乘为矩阵double* VectorSubtractVector(double*V,double*subV,int nV);//向量相减double* VectorMultiplyConst(double *V, int nV, double nConst);//向量乘常数double LengthofVector(double *V,int nV);//求向量的长度double* MetrixMultiplyVector(double**A,int nRow,int nCol,double*V,int nV);//矩阵与向量相乘double** AtoAT(double **A,int Row,int Col);//矩阵转置运算void FreeMem();CMetrix(int nRow,int nCol);uCMetrix();virtual ~CMetrix();double* vector; //过渡向量double** B; //过渡矩阵};Metrix.cpp文件:CMetrix::CMetrix(int nRow, int nCol){B = new double*[nRow];for (int i = 0;i < nCol;i++){B[i] = new double[nCol];}vector = new double[nRow];}CMetrix::~CMetrix(){delete vector;B = NULL;delete B;}double** CMetrix::AtoAT(double **A, int nRow, int nCol){for (int row = 0;row < nRow;row++){for (int col = 0;col < nCol;col++){B[col][row] = A[row][col];}}return B;}double* CMetrix::MetrixMultiplyVector(double **A, int nRow, int nCol, double *V, int nV) {if (nCol != nV){AfxMessageBox("矩阵列数和向量维数不等,不能相乘!");return 0;}double sum = 0.0;for (int row = 0;row < nRow;row++){for (int col = 0;col < nCol;col++){sum += A[row][col]*V[col];}vector[row] = sum;sum = 0.0;}return vector;}double CMetrix::LengthofVector(double *V, int nV){double length = 0.0;for (int col = 0;col < nV;col++){length += V[col]*V[col];}return length;}double* CMetrix::VectorMultiplyConst(double *V, int nV, double nConst){for (int col = 0;col < nV;col++){vector[col] = V[col]*nConst;}return vector;}double* CMetrix::VectorSubtractVector(double *V, double *subV, int nV){for (int col = 0;col < nV;col++){vector[col] = V[col]-subV[col];}return vector;}double** CMetrix::VectorMultiplyVectortoMetrix(double*V, double *VT, int nV){for (int row = 0;row < nV;row++){for (int col = 0;col < nV;col++){B[row][col] = V[row]*VT[col];}}return B;}double CMetrix::VectorMultiplyVector(double *V, double *mulV, int nV){double length = 0.0;for (int col = 0;col < nV;col++){length += V[col]*mulV[col];}return length;}double** CMetrix::MetrixSubtractMetrix(double **A, double **subA, int nRow, int nCol) {for (int row = 0;row < nRow;row++){for (int col = 0;col < nCol;col++){B[row][col] = A[row][col]-subA[row][col];}}return B;}double** CMetrix::MetrixMultiplyMetrix(double **A, double **mA, int nRow, int nCol) {double sum = 0.0;for (int row = 0;row < nRow;row++){for (int col = 0;col < nCol;col++){for(int n = 0;n < nCol;n++){sum += A[row][n]*mA[n][col];}B[row][col] = sum;sum = 0.0;}}return B;}double** CMetrix::MetrixMultiplyConst(double **A, int nRow, int nCol, double nConst) {for (int row = 0;row < nRow;row++){for (int col = 0;col < nCol;col++){B[row][col] = A[row][col]*nConst;}}return B;}(2)类CNumanalysisViewNumanalysisview.hclass CNumanalysisView : public CEditView{…………public:double Sign(double x);void DisplayVector(double*V,int nV); // 显示向量数据void DisplayMetrix(double **A,int Row,int Col); //显示矩阵void DisplayText(CString str); //显示文本protected://{{AFX_MSG(CNumanalysisView)afx_msg void OnQRanalyze(); //运行主函数…………};Numanalysisview.cppvoid CNumanalysisView::OnQRanalyze(){//开辟空间int nRow = 10;int nCol = 10;CString str;CMetrix Metrix(nRow,nCol);double tempa = 0.0;double *V = new double[nCol]; //分配10*10矩阵空间double *ur = new double[nCol];double *pr = new double[nCol];double *qr = new double[nCol];double *wr = new double[nCol];double *tempV = new double[nCol];double **Ar = new double*[nRow];double **C = new double*[nRow];double **Cr = new double*[nRow];double **tempA = new double*[nRow];double **A = new double*[nRow];double **R = new double*[nRow];for (int col = 0;col < nRow;col++){A[col] = new double[nCol];Ar[col] = new double[nCol];C[col] = new double[nCol];Cr[col] = new double[nCol];tempA[col] = new double[nCol];R[col] = new double[nCol];}//矩阵A求解for (int i = 0;i < nRow;i++){for (int j = 0;j < nCol;j++){if(i == j)A[i][j] = 1.5*cos((i+1.0)+1.2*(j+1.0));elseA[i][j] = sin(0.5*(i+1.0)+0.2*(j+1.0));}}//--------------------拟上三角化-------------------------// double dr = 0.0,cr = 0.0,hr = 0.0,tr = 0.0;for (int r = 0;r < nCol - 2;r++){dr = 0.0;for (i = r+1;i < nCol;i++) //dr{dr += A[i][r]*A[i][r];}dr = sqrt(dr);for (i = r+2;i < nCol;i++) //判断air是否全为零tempa += fabs(A[i][r]);if (tempa <= IPSLEN)continue;if (A[r+1][r] == 0.0) //crcr = dr;elsecr = -1*Sign(A[r+1][r])*dr;hr = cr*cr - cr*A[r+1][r]; //hrstr.Format("dr = %.6e, cr = %.6e, hr = %.6e",dr,cr,hr);for (int row = 0;row < nRow;row++) //ur{if (row < r+1)ur[row] = 0.0;else if (row == r+1)ur[row] = A[row][r]-cr;elseur[row] = A[row][r];}tempA = Metrix.AtoAT(A,nRow,nCol);for (row = 0;row < nRow;row++){for (col = 0;col < nCol;col++)Ar[row][col] = tempA[row][col];}tempV = Metrix.MetrixMultiplyVector(Ar,nRow,nCol,ur,nCol); //pr memcpy(pr,tempV,nCol*8);tempV = Metrix.VectorMultiplyConst(pr,nCol,1.0/hr);memcpy(pr,tempV,nCol*8);tempV = Metrix.MetrixMultiplyVector(A,nRow,nCol,ur,nCol); //qr memcpy(qr,tempV,nCol*8);tempV = Metrix.VectorMultiplyConst(qr,nCol,1.0/hr);memcpy(qr,tempV,nCol*8);tr = Metrix.VectorMultiplyVector(pr,ur,nCol)/hr; //trtempV = Metrix.VectorMultiplyConst(ur,nCol,tr); //wr memcpy(wr,tempV,nCol*8);tempV = Metrix.VectorSubtractVector(qr,wr,nCol);memcpy(wr,tempV,nCol*8);tempA = Metrix.VectorMultiplyVectortoMetrix(wr,ur,nCol); //Arfor (row = 0;row < nRow;row++){for (col = 0;col < nCol;col++)Ar[row][col] = tempA[row][col];}tempA = Metrix.MetrixSubtractMetrix(A,Ar,nRow,nCol);for (row = 0;row < nRow;row++){for (col = 0;col < nCol;col++)A[row][col] = tempA[row][col];}tempA = Metrix.VectorMultiplyVectortoMetrix(ur,pr,nCol);for (row = 0;row < nRow;row++){for (col = 0;col < nCol;col++)Ar[row][col] = tempA[row][col];}tempA = Metrix.MetrixSubtractMetrix(A,Ar,nRow,nCol);for (row = 0;row < nRow;row++){for (col = 0;col < nCol;col++){A[row][col] = tempA[row][col];if (fabs(A[row][col]) < IPSLEN){A[row][col] = 0.0;}}}}DisplayText("矩阵A拟上三角化后所得的矩阵为:");DisplayMetrix(A,nRow,nCol);for (int row = 0;row < nRow;row++) //用于计算特征向量{for (col = 0;col < nCol;col++)R[row][col] = A[row][col];}// -------------------------------------------------////--------------------带双步位移的QR分解-------------------------// int m = nCol;struct EigenVal //定义特征值结构,实数和虚数{double Realnum;double Imagnum;};EigenVal *eigenvalue = new EigenVal[m];EigenVal tmpEigen1,tmpEigen2;double b = 0.0,c = 0.0,delta = 0.0,s = 0.0,t = 0.0;double *vr = new double[m];for (int k = 1;k < 100; k++){//m代表矩阵阶数,判断式中直接用,运算中需要-1while (m > 1 && fabs(A[m-1][m-2]) <= IPSLEN)//第三步和第四步{eigenvalue[m-1].Realnum = A[m-1][m-1];eigenvalue[m-1].Imagnum = 0.0;m = m - 1;}if (m == 1){eigenvalue[m-1].Realnum = A[m-1][m-1];eigenvalue[m-1].Imagnum = 0.0;DisplayText("已求出A的全部特征值:");break;}b = -(A[m-2][m-2]+A[m-1][m-1]); //第五步求一元二次方程式的根s1,s2c = A[m-2][m-2]*A[m-1][m-1]-A[m-2][m-1]*A[m-1][m-2];delta =b*b - 4*c;if (delta >= 0.0){tmpEigen1.Realnum = (-b-sqrt(delta))/2;tmpEigen1.Imagnum = 0.0;tmpEigen2.Realnum = (-b+sqrt(delta))/2;tmpEigen2.Imagnum = 0.0;}else{tmpEigen1.Realnum = -b/2;tmpEigen1.Imagnum = -sqrt(fabs(delta))/2 ;tmpEigen2.Realnum = -b/2;tmpEigen2.Imagnum = sqrt(fabs(delta))/2;}if (m == 2) //第六步 m=2时结束运算{eigenvalue[m-1] = tmpEigen1;eigenvalue[m-2] = tmpEigen2;DisplayText("已求出A的全部特征值:");break;}else //第七步 m > 1{if (fabs(A[m-2][m-3]) <= IPSLEN){eigenvalue[m-1] = tmpEigen1;eigenvalue[m-2] = tmpEigen2;m = m - 2;continue;}}for (int row = 0;row < m;row++) //Mk求之前需要把A付给C{for (int col = 0;col < m;col++)C[row][col] = A[row][col];}double **I = new double*[m]; //第九步求Mk和Mk的QR分解for (int i = 0;i < m;i++) //求单位矩阵I,分配m*m矩阵空间{I[i] = new double[m];}for (i = 0;i < m;i++){for (int j = 0;j < m;j++){if(i == j)I[i][j] = 1;else I[i][j] = 0;}}s = A[m-2][m-2]+A[m-1][m-1];t = A[m-2][m-2]*A[m-1][m-1] - A[m-2][m-1]*A[m-2][m-1];tempA = Metrix.MetrixMultiplyMetrix(A,A,m,m);//A*Afor (row = 0;row < m;row++){for (col = 0;col < m;col++)Ar[row][col] = tempA[row][col];}tempA = Metrix.MetrixMultiplyConst(A,m,m,s);//s*Afor (row = 0;row < m;row++){for (col = 0;col < m;col++)A[row][col] = tempA[row][col];}tempA = Metrix.MetrixSubtractMetrix(Ar,A,m,m);//A*A-s*Afor (row = 0;row < m;row++){for (col = 0;col < m;col++)A[row][col] = tempA[row][col]; }tempA = Metrix.MetrixMultiplyConst(I,m,m,-1*t);//-t*Ifor (row = 0;row < m;row++){for (col = 0;col < m;col++)Ar[row][col] = tempA[row][col]; }tempA = Metrix.MetrixSubtractMetrix(A,Ar,m,m);//A*A - s*A + r*I for (row = 0;row < m;row++){for (col = 0;col < m;col++){A[row][col] = tempA[row][col];if (fabs(A[row][col]) < IPSLEN){A[row][col] = 0.0;}}}delete I;//Mk的QR分解for (int r = 0;r < m - 1;r++){dr = 0.0;for (i = r;i < m;i++) //dr{dr += A[i][r]*A[i][r];}dr = sqrt(dr);for (i = r+1;i < m;i++) //判断air是否全为零tempa += fabs(A[i][r]);if (tempa <= IPSLEN)continue;if (A[r][r] == 0.0) //crcr = dr;elsecr = -1*Sign(A[r][r])*dr;hr = cr*cr - cr*A[r][r]; //hrfor (int row = 0;row < m;row++) //ur{if (row < r)ur[row] = 0.0;else if (row == r)ur[row] = A[row][r]-cr;elseur[row] = A[row][r];}tempA = Metrix.AtoAT(A,m,m); //Btfor (row = 0;row < m;row++){for (col = 0;col < m;col++)Ar[row][col] = tempA[row][col];}tempV = Metrix.MetrixMultiplyVector(Ar,m,m,ur,m); //Bt*ur memcpy(vr,tempV,m*8);tempV = Metrix.VectorMultiplyConst(vr,m,1.0/hr); //vr = Bt*ur/hr memcpy(vr,tempV,m*8);tempA = Metrix.VectorMultiplyVectortoMetrix(ur,vr,m);//Ur*vrfor (row = 0;row < m;row++){for (col = 0;col < m;col++)Ar[row][col] = tempA[row][col];}tempA = Metrix.MetrixSubtractMetrix(A,Ar,m,m); //Br-ur*vrfor (row = 0;row < m;row++){for (col = 0;col < m;col++){A[row][col] = tempA[row][col];if (fabs(A[row][col]) < IPSLEN){A[row][col] = 0.0;}}}tempA = Metrix.AtoAT(C,m,m); //Ctfor (row = 0;row < m;row++){for (col = 0;col < m;col++)Cr[row][col] = tempA[row][col]; }tempV = Metrix.MetrixMultiplyVector(Cr,m,m,ur,m); //pr memcpy(pr,tempV,m*8);tempV = Metrix.VectorMultiplyConst(pr,m,1.0/hr);memcpy(pr,tempV,m*8);tempV = Metrix.MetrixMultiplyVector(C,m,m,ur,m); //qr memcpy(qr,tempV,m*8);tempV = Metrix.VectorMultiplyConst(qr,m,1.0/hr);memcpy(qr,tempV,m*8);tr = Metrix.VectorMultiplyVector(pr,ur,m)/hr; //trtempV = Metrix.VectorMultiplyConst(ur,m,tr); //wr memcpy(wr,tempV,m*8);tempV = Metrix.VectorSubtractVector(qr,wr,m);memcpy(wr,tempV,m*8);tempA = Metrix.VectorMultiplyVectortoMetrix(wr,ur,m);//Cr+1for (row = 0;row < m;row++){for (col = 0;col < m;col++)Cr[row][col] = tempA[row][col]; }tempA = Metrix.MetrixSubtractMetrix(C,Cr,m,m);for (row = 0;row < m;row++){for (col = 0;col < m;col++)C[row][col] = tempA[row][col]; }tempA = Metrix.VectorMultiplyVectortoMetrix(ur,pr,m);for (row = 0;row < m;row++){for (col = 0;col < m;col++)Cr[row][col] = tempA[row][col]; }tempA = Metrix.MetrixSubtractMetrix(C,Cr,m,m);for (row = 0;row < m;row++){for (col = 0;col < m;col++){C[row][col] = tempA[row][col];if (fabs(C[row][col]) < IPSLEN){C[row][col] = 0.0;}}}}str.Format("矩阵A%d QR分解结束后所得到的矩阵为:",m);//计算结果输出DisplayText(str);DisplayMetrix(A,m,m);for (row = 0;row < m;row++) //Mk的QR分解后需要把C付给A{for (col = 0;col < m;col++)A[row][col] = C[row][col];}str.Format("迭代完成后的矩阵A%d = ",k);DisplayText(str);DisplayMetrix(A,m,m);}DisplayText("矩阵A的全体特征值如下: ");for (i = 0;i<nCol;i++){str.Format("%.6e + j%.6e",eigenvalue[i].Realnum,eigenvalue[i].Imagnum);DisplayText(str);}// -------------------------------------------------//求实特征值的特征向量,在拟上三角矩阵基础上直接求解即可////(A-egiI)X = 0.0;m = nRow;for (row = 0;row < nRow;row++) //用于计算特征向量{for (col = 0;col < nCol;col++)A[row][col] = R[row][col];}double **I = new double*[m]; //求单位矩阵I,分配m*m矩阵空间double sum = 0.0;for (i = 0;i < m;i++){I[i] = new double[m];}for (i = 0;i < m;i++){for (int j = 0;j < m;j++){if(i == j)I[i][j] = 1;else I[i][j] = 0;}}for (i = 0;i < nRow;i++){if (eigenvalue[i].Imagnum != 0.0){str.Format("特征值%.6e+j%.6e为虚数,不需要求特征向量。

北航数值分析计算实习报告一

北航数值分析计算实习报告一

北京航空航天大学《数值分析》计算实习报告第一大题学院:自动化科学与电气工程学院专业:控制科学与工程学生姓名:学号:教师:电话:完成日期:2015年11月6日北京航空航天大学Beijing University of Aeronautics and Astronautics实习题目:第一题 设有501501⨯的实对称矩阵A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=5011A a b c b c c b c b a其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1.0-==⋅⋅⋅=--=c b i e i i a ii 。

矩阵A 的特征值为)501,,2,1(⋅⋅⋅=i i λ,并且有||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤1.求1λ,501λ和s λ的值。

2.求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,,2,1(⋅⋅⋅=k k i λ。

3.求A 的(谱范数)条件数2)A (cond 和行列式detA 。

说明:1.在所用的算法中,凡是要给出精度水平ε的,都取12-10=ε。

2.选择算法时,应使矩阵A 的所有零元素都不储存。

3.打印以下内容: (1)全部源程序;(2)特征值),,39,...,2,1(,s 5011=k k i λλλλ以及A det ,)A (cond 2的值。

4.采用e 型输出实型数,并且至少显示12位有效数字。

一、算法设计方案1、求1λ,501λ和s λ的值。

由于||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤,可知绝对值最大特征值必为1λ和501λ其中之一,故可用幂法求出绝对值最大的特征值λ,如果λ=0,则1λ=λ,否则501λ=λ。

将矩阵A 进行一下平移:I -A A'λ= (1)对'A 用幂法求出其绝对值最大的特征值'λ,则A 的另一端点特征值1λ或501λ为'λ+λ。

北航数值分析计算实习第一题编程

北航数值分析计算实习第一题编程

i − t + s +1,t t − k + s +1, k t = max(1,i − r ,k − s )
∑c
c
) / cs +1, k
[i = k + 1, k + 2,⋯ , min( k + r , n); k < n]
(2) 求解 Ly = b,Ux = y (数组 b 先是存放原方程右端向量,后来存放中间向量 y)
0 b a2
b c
c b a3 b c
⋯ ⋯ ⋯ ⋯ ⋯
c b a499 b c
c b a500 b 0
c ⎤ b ⎥ ⎥ a501 ⎥ ⎥ 0 ⎥ 0 ⎥ ⎦
在数组 C 中检索矩阵 A 的带内元素 aij 的方法是: A 的带内元素 aij =C 中的元素 ci − j + s +1, j
2
数值分析计算实习题目一
i −1
bi := bi −
பைடு நூலகம்
i − t + s +1,t t t = max(1,i − r )
∑c
b
(i = 2,3,⋯ , n)
xn := bn / cs +1, n
min( i + s )
xi := (bi −
t = i +1
∑c
i −t + s +1,t t
x ) / cs +1,i
(i = n − 1, n − 2,⋯ ,1)
3、Doolittle 分解求解 n 元带状线性方程组(doolittle()函数)
按照上述对带状矩阵 A 的存储方法和元素 aij 的检索方法,并且把三角分解的结果 ukj 和 lik 分 别存放在 akj 和 aik 原先的存储单元内,那么用 Doolittle 分解法求解 n 元带状线性方程组的算法 可重新表述如下(其中“:=”表示赋值) : (1) 作分解 A = LU 。 对于 k=1,2, ……,n 执行

北航数值分析大作业一.docx

北航数值分析大作业一.docx

数值分析—计算实习作业一学院:机械工程学院专业:材料加工工程姓名:暴一品学号:SY12071342012-10-29一、算法设计方案观察矩阵A ,结构为带状,且与主对角线相邻的两个带的值b 和c 都是常数。

从而可以用带原点平移的幂法或反幂法计算λ1和λ501。

所以算法的设计方案如下:1.求按模最大的特征值,并记为max_eigenvalue ,算法如下所示⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=======------≤≤-),2,1()sgn(),,(/max ),,()(1)()(11)1(11)1(1)1()0()0(10ΛΛΛk h h h h Ay u h u y h h h h u k r k r k Tk nk k kk r k k k j nj k rTn β任取非零向量2.平移矩阵得到A ’=A-max_eigenvalueI ,再次用幂法,这次求出的A ’的按模大的特征值pymax_eigenvalue 就是与步骤1求出的特征值相差最大的特征值。

即两者一个为最大的特征值,另一个为最小的特征值。

3.根据max_eigenvalue 和pymax_eigenvalue 的正负性,直接确定λ1,和λ501。

4.对原矩阵A 用反幂法,求出其按模最小的特征值,记为s_eigenvalue ,此即λs 。

⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=====∈--------),2,1(/111111110Λk u y y Au u y u u R u k T k k k k k k k k Tk k n βηη任取非零向量在反幂法的求解过程中,每迭代一次都要求满足解线性方程组Auk=yk-1。

本题中矩阵A 上半带宽为2,下半带宽也为2 。

故选择采用三角分解法求解方程组:先将原矩阵改写成5行501列的矩阵C (不存储A 的0元素) A 的带内元素aij=c 中的元素ci-j+3。

再对C 矩阵做LU 分解。

对于k=1,2,…,n ,执行∑---=+-+-+-+--=1)2,2,1max(,3,3,3,3:k j k t jj t t t k j j k j j k ccc c [j=k,k+1,…,min(k+2,n)]kk s k r i t k k t t t i k k i k k i c ccc c ,31),,1max(,3,3,3,3/)(:∑---=+-+-+-+--=[i=k+1,k+2,…,min(k+2,n);k<n]求解Lx=b ,Uuk=x (数组b 先是存放原方程组右端向量yk-1,后来存放中间向量x )∑--=+--=1),1max(,3:i r i t tt t i i i bcb b (i=2,3,…,n )nn kn c b u ,3/:=in i i t kt tt i i ki c u cb u ,3),2min(1,3/)(:∑++=+--= (i=n-1,n-2, (1)5.对k=1,2,……39执行:先根据题中给出的公式算出μk ,再将矩阵平移A ”=A-μk ,对矩阵A ”运用反幂法(线性方程组的解法同上),就可以求出与μk 最接近的特征值λik ,保存在数组py_eigenvalue 中。

北航数控实习报告

北航数控实习报告

一、实习背景随着科技的不断发展,数控技术在制造业中的应用越来越广泛。

为了让学生更好地了解数控技术,提高实际操作能力,我校组织了一次数控实习活动。

我有幸参加了此次实习,以下是我对实习过程及收获的总结。

二、实习目的1. 了解数控技术的基本原理和发展趋势;2. 掌握数控机床的操作方法和编程技巧;3. 培养团队合作精神,提高实际操作能力;4. 为今后从事数控相关领域的工作打下基础。

三、实习时间及地点实习时间:2021年6月1日至2021年6月15日实习地点:北京航空航天大学数控实验室四、实习内容1. 数控技术基础知识学习实习期间,我们学习了数控技术的基本原理、发展历程、应用领域等。

通过学习,我们了解到数控技术是一种利用数字信息控制机床进行自动加工的技术,具有高精度、高效率、自动化程度高等特点。

2. 数控机床操作培训在实习过程中,我们学习了数控机床的基本结构、操作规程、安全注意事项等。

通过实际操作,我们掌握了数控机床的基本操作方法,如开机、关机、加工程序的输入、调试、运行等。

3. 数控编程训练我们学习了数控编程的基本方法,包括手工编程和自动编程。

在手工编程方面,我们学习了G代码、M代码等编程指令;在自动编程方面,我们学习了CAD/CAM软件的应用。

通过编程训练,我们能够根据零件图纸编写出符合加工要求的加工程序。

4. 数控加工实践在实习的最后阶段,我们进行了数控加工实践。

我们根据所学的编程知识,对给定的零件进行编程、调试和加工。

在实践过程中,我们遇到了各种问题,如刀具选择、加工参数设置、程序优化等。

通过努力,我们成功地完成了零件的加工。

五、实习收获1. 理论知识与实践能力的提高通过实习,我对数控技术有了更深入的了解,掌握了数控机床的操作方法和编程技巧。

同时,通过实践,我将所学理论知识应用于实际操作中,提高了自己的动手能力。

2. 团队合作精神的培养在实习过程中,我们分工合作,共同完成零件的加工。

通过这次实习,我们学会了如何与他人沟通、协作,提高了自己的团队协作能力。

北航数值分析第一次大作业

北航数值分析第一次大作业

b2[i-1]=b[i-1]-sum3; } x[n-1]=b2[n-1]/C[s][n-1]; for(i=n-1;i>=1;i--) { double sum4=0; for(int t=i+1;t<=min(i+s,n);t++) { sum4+=C[i-t+s][t-1]*x[t-1]; } x[i-1]=(b2[i-1]-sum4)/C[s][i-1]; } } /*反幂法*/ double FMF(double C[m][n]) { LU(C); for(int k=1;k<=n;k++) u[k-1]=1; /*为迭代初始向量赋值*/ beta1=beta2=0; do { ent=0; for(int i=1;i<=n;i++) ent+=u[i-1]*u[i-1]; ent=sqrt(ent); for(i=1;i<=n;i++) y[i-1]=u[i-1]/ent; HD(C,y,u); beta1=beta2; beta2=0; for(i=1;i<=n;i++) { beta2+=y[i-1]*u[i-1]; } }while(fabs(1/beta2-1/beta1)/fabs(1/beta2)>1.0e-12); return 1/beta2; } /*求 detA*/ double det(double C[m][n]) { LU(C); double detA=1; for(int j=1;j<=n;j++)
数值分析第一次作业
姓名:吴少波 学号:SY1105513
一、算法的设计方案 1.将带状矩阵 A 压缩为矩阵 C 存储。先用幂法算出 A 按模最大的特征值,记为 maxLambda, 再 将 其 平 移 ,用 带 原点 平 移 的 幂 法求 A-maxLambdaI 按模 最 大的 特 征 值 , 记为 p1 , 记 p2=p1+maxLambda,比较 maxLambda 和 p2 的大小,大的为λ 501,小的为λ 1。 用反幂法求解λ s 时,其中需解方程 Auk=yk-1,先把矩阵 A LU 分解(不列主元) ,再在每次循环 迭代时回代求解。 2.将 A 平移μ k(k=1,2,…,39)个单位,用带原点平移的反幂法求与μ k(k=1,2,…,39) 最接近的 39 个特征值。 3.cond(A)2=│maxLambda / λ s│ A 的行列式等于把 A LU 分解后 A 所有对角线上元素的乘积。 二、源程序(VC6.0 环境下的 C 语言) #include<stdio.h> #include<stdlib.h> #include<math.h> #include<malloc.h> #define m 5 #define n 501 #define r 2 #define s 2 double C[m][n]; double u[n]; double y[n]; double ent,beta1,beta2; void YS(); /*将带状矩阵 A 压缩为 C*/ int max(int a,int b); /*两数求较大的一个*/ int min(int a,int b); /*两数求较小的一个*/ double MF(double C[m][n]); /*幂法*/ double FMF(double C[m][n]); /*反幂法*/ void LU(double C[m][n]); /*LU 分解*/ void HD(double C[m][n],double b[n],double x[n]); /*回代过程*/ double det(double C[m][n]); /*求 detA*/ double Move_MF(double C[m][n],double maxLambda); /*带原点平移的幂法*/ double Move_FMF(double C[m][n],double p); /*带原点平移的反幂法*/ /**主函数**/ void main() { /*定义变量*/ double maxLambda=0,minLambda=0,condA,detA,Lambda1,Lambda501,p1,p2,Mu_k,Lambdaik; /*算第一题*/

北航数值分析实习题目第一题

北航数值分析实习题目第一题

《数值分析B》大作业一ZY1515105 樊雪松一.算法设计方案:1.矩阵A的存储与检索将带状线性矩阵A[501][501]转存为一个矩阵MatrixC[5][501] 。

在数组MatrixC[5][501]中检索A的带内元素a ij的方法是:A的带内元素a ij=C中的元素c i-j+2,j。

2.求解λ1,λ501,λs1、首先分别使用幂法和反幂法迭代求出矩阵按摸最大和最小的特征值λmax和λmin。

λmin即为λs;如果λ max>0,则λ501=λmax;如果λmax<0,则λ1=λmax。

2、使用带原点平移的幂法(mifa()函数),令平移量p=λmax,求出对应的按摸最大的特征值λ’max,如果λ max>0,则λ1=λ’max+p;如果λmax<0,则λ501=λ’max+p。

3、求解A的与数μk=λ1+k(λ501-λ1)/40 的最接近的特征值λik (k=1,2,…,39)。

使用带原点平移的反幂法,令平移量p=μk,即可求出与μk最接近的特征值λ ik。

4、求解A的(谱范数)条件数cond(A)2和行列式detA。

cond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和最小特征值。

求解矩阵A的行列式,可先对矩阵A进行LU分解后,detA等于U所有对角线上元素的乘积。

二.源程序#include<stdio.h>#include<math.h>#include<conio.h>//定义A中元素double C[5][501];double a[501];double b;double c;//声明所有函数void YaSuoJZ(double C[5][501],double a[501],double b,double c) ;//压缩矩阵函数double mifa(double C[5][501]); //幂法函数void daizhuangLU(double A[5][501]); //带状矩阵的LU分解double fanmifa(double C[5][501]);//反幂法函数//最值函数int max2(int x,int y);int max3(int x,int y,int z);int min(int x,int y);//最值函数int max2(int x,int y) //求2个数的最大值{int z;z=x>y?x:y;return(z);}int max3(int x,int y,int z) //求3个数的最大值{int w;w = z > max2(x,y)? z:max2(x,y);return(w);}int min(int x,int y) //求2个数的最小值{int z;z=x>y?y:x;return(z);}//将矩阵A压缩存储在矩阵C中void YaSuoJZ(double C[5][501],double a[501],double b,double c) {int i;for(i=0;i<=500;i++){if(i>=2) C[0][i]=c;else C[0][i]=0;if(i>=1) C[1][i]=b;else C[1][i]=0;if(i<=499) C[3][i]=b;else C[3][i]=0;if(i<=498) C[4][i]=c;else C[4][i]=0;C[2][i]=a[i];}}//幂法函数:用幂法求矩阵模最大的特征值double mifa(double C[5][501]){double u[501];double y[501]={0},η=0;double β,βk=0;double ε=1;// ε为精度double sumu=0,sumAY=0;int i,j,k=1; //k为循环次数for (i=0;i<=500;i++) //取任一非零向量u0u[i] = 1.0;while(ε>=1e-12){for(i=0;i<=500;i++) //求u(k-1)的2范数ηsumu=sumu+u[i]*u[i];η=sqrt(sumu);sumu=0;for(i=0;i<=500;i++) //求y(k-1)y[i]=u[i]/η;for(i=0;i<=500;i++) //求u(k)的各分量u[i]{for(j=max2(0,i-2);j<=min(i+2,500);j++)sumAY=sumAY+C[i-j+2][j]*y[j];u[i]=sumAY;sumAY=0;}//求幂法中的βkβ=βk; //将β(k-1)放在β中βk=0;for(i=0;i<=500;i++) //求βkβk=βk+y[i]*u[i];if(k>=2)ε=fabs(βk-β)/fabs(βk);k++;}return(βk);}//带状矩阵的LU分解void daizhuangLU(double A[5][501]){int i,j,k,m,t;double sumukj=0,sumlik=0;for(k=0;k<=500;k++){for(j=k;j<=min(k+2,500);j++) //求ukj并存在A[k-j+2][j]中{for(t=max3(0,k-2,j-2);t<=k-1;t++)sumukj=sumukj+A[k-t+2][t]*A[t-j+2][j];A[k-j+2][j]=A[k-j+2][j]-sumukj;sumukj=0;}if(k<500)for(i=k+1;i<=min(k+2,500);i++) //求lik并存在A[i-k+2][k]中{for(m=max3(0,i-2,k-2);m<=k-1;m++)sumlik=sumlik+A[i-m+2][m]*A[m-k+2][k];A[i-k+2][k]=(A[i-k+2][k]-sumlik)/A[2][k];sumlik=0;}}}//反幂法函数:用反幂法求矩阵的模最小的特征值double fanmifa(double M[5][501]){double u[501];double y[501]={0},x[501],η=0;double fβ,fβk=0;double ε=1;double fsumu=0,sumLX=0,sumUu=0;int i,t,m,k=1;for(i=0;i<=500;i++) //任取一非零向量u0u[i]=1;daizhuangLU(M); //对A进行LU分解A=LU,Au(k)=y(k-1)等价于Uu(k)=x和Lx=y(k-1) while(ε>=1e-12){for(i=0;i<=500;i++) //求u(k-1)的2范数ηfsumu=fsumu+u[i]*u[i];η=sqrt(fsumu);fsumu=0;for(i=0;i<=500;i++) //求y(k-1)y[i]=u[i]/η;for(i=0;i<=500;i++) //求中间向量xx[i]=y[i];for(i=1;i<=500;i++){for(t=max2(0,i-2);t<=i-1;t++)sumLX=sumLX+M[i-t+2][t]*x[t];x[i]=x[i]-sumLX;sumLX=0;}u[500]=x[500]/C[2][500]; //求u(k)的各分量u[i]for(i=499;i>=0;i--){for(m=i+1;m<=min(i+2,500);m++)sumUu=sumUu+M[i-m+2][m]*u[m];u[i]=(x[i]-sumUu)/M[2][i];sumUu=0;}//求反幂法中的βkfβ=fβk; //将fβ(k-1)放在fβ中fβk=0;for(i=0;i<=500;i++) //求fβkfβk=fβk+y[i]*u[i];if(k>=2)ε=fabs(1/fβk-1/fβ)/fabs(1/fβk);k++;}return(1/fβk);}//主函数void main(){int i,j,k;double λ1,λ501,λm,λm1,λm2,λs,λ,p;double cond,detA=1;for(i=1;i<=501;i++)a[i-1]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);b=0.16;c=-0.064;YaSuoJZ(C,a,b, c); //将矩阵A中元素压缩存储在C中λm1=mifa(C); //对A用幂法求出模最大的特征值λm1λs=fanmifa(C); //对A用反幂法求出模最小的特征值λsYaSuoJZ(C,a,b, c); //还原矩阵A中元素并压缩存储在C中for(j=0;j<=500;j++) //对A进行平移,平移量为λm1,平移后矩阵元素压缩存储在C中C[2][j]=C[2][j]-λ?m1;λm=mifa(C);λm2=λm1+λm; //λm1与λm2是矩阵的最大最小特征值if(λm1>λm2) //判断A最大最小特征值{λ501=λm1;λ1=λm2;}else{λ501=λm2;λ1=λm1;}printf("数值分析计算实习第一题\n\n ZY1515105 樊雪松\n\n (1)A的最大最小以及模最小的特征值\n");printf("A的最小特征值λ1=%.13e\n",λ1);printf("A的最大特征值λ501=%.13e\n",λ501);printf("A的模最小特征值λs=%.13e\n",λs);printf("\n(2)与数μk最接近的特征值\n");printf("\t要求接近的值\t\t\t实际求得的特征值\n");YaSuoJZ(C,a,b, c); //还原矩阵A中元素并压缩存储在C中for(k=1;k<=39;k++){p=λ1+k*(λ501-λ1)/40;for(j=0;j<=501;j++)C[2][j]=C[2][j]-p;λ=fanmifa(C)+p;printf("μ%d=%.13e λ%d=%.13e\n",k,p,k,λ);YaSuoJZ(C,a,b, c); //还原矩阵A中元素并压缩存储在C中}printf("\n(3)计算A的条件数cond(A)和行列式detA\n");cond=λm1/λs;daizhuangLU(C);for(j=0;j<=500;j++)detA=detA*C[2][j];printf("A的条件数cond(A)=%.13e\n",cond);printf("A的行列式detA=%.13e\n",detA);getch();}三、运行结果数值分析计算实习第一题ZY1515105 樊雪松(1)A的最大最小以及模最小的特征值A的最小特征值λ1=-1.0700113615018e+001A的最大特征值λ501=9.7246340987773e+000A的模最小特征值λs=-5.5579107942295e-003(2)与数μk最接近的特征值要求接近的值实际求得的特征值μ1=-1.0189494922173e+001 λ1=-1.0182934033146e+001 μ2=-9.6788762293280e+000 λ2=-9.5857074250676e+000 μ3=-9.1682575364831e+000 λ3=-9.1726724239280e+000 μ4=-8.6576388436383e+000 λ4=-8.6522840078976e+000 μ5=-8.1470201507934e+000 λ5=-8.0934838086753e+000 μ6=-7.6364014579485e+000 λ6=-7.6594054076924e+000 μ7=-7.1257827651036e+000 λ7=-7.1196846486912e+000 μ8=-6.6151640722588e+000 λ8=-6.6117643393973e+000 μ9=-6.1045453794139e+000 λ9=-6.0661032265951e+000 μ10=-5.5939266865690e+000 λ10=-5.5851010526284e+000 μ11=-5.0833079937241e+000 λ11=-5.1140835298122e+000 μ12=-4.5726893008792e+000 λ12=-4.5788721768651e+000 μ13=-4.0620706080344e+000 λ13=-4.0964709262599e+000 μ14=-3.5514519151895e+000 λ14=-3.5542112157508e+000 μ15=-3.0408332223446e+000 λ15=-3.0410900181333e+000 μ16=-2.5302145294997e+000 λ16=-2.5339703111304e+000 μ17=-2.0195958366549e+000 λ17=-2.0032307695635e+000μ18=-1.5089771438100e+000 λ18=-1.5035576112274e+000μ19=-9.9835845096511e-001 λ19=-9.9355860600754e-001μ20=-4.8773975812023e-001 λ20=-4.8704267388496e-001μ21=2.2878934724645e-002 λ21=2.2317362495748e -002μ22=5.3349762756952e-001 λ22=5.3241747420686e -001μ23=1.0441163204144e+000 λ23=1.0528989626935e+000μ24=1.5547350132593e+000 λ24=1.5894458818809e+000μ25=2.0653537061042e+000 λ25=2.0603304602743e+000μ26=2.5759723989490e+000 λ26=2.5580755970728e+000μ27=3.0865910917939e+000 λ27=3.0802405093071e+000μ28=3.5972097846388e+000 λ28=3.6136208676923e+000μ29=4.1078284774837e+000 λ29=4.0913785104506e+000μ30=4.6184471703285e+000 λ30=4.6030353782791e+000μ31=5.1290658631734e+000 λ31=5.1329242838984e+000μ32=5.6396845560183e+000 λ32=5.5949063480833e+000μ33=6.1503032488632e+000 λ33=6.0809338570269e+000μ34=6.6609219417080e+000 λ34=6.6803540921116e+000μ35=7.1715406345529e+000 λ35=7.2938774481266e+000μ36=7.6821593273978e+000 λ36=7.7171117142356e+000μ37=8.1927780202427e+000 λ37=8.2252200140502e+000μ38=8.7033967130876e+000 λ38=8.6486660651935e+000μ39=9.2140154059324e+000 λ39=9.2542003445750e+000(3)计算A 的条件数cond(A)和行列式detAA 的条件数cond(A)=1.9252042739022e+003A 的行列式detA=2.7727861417521e+118四、结果分析设A 的n 个线性无关的特征向量为1x ,2x ,…,n x ,其相对应的特征值满足的关系为n λλλλ≥≥≥> 321。

北航数值分析第一次大作业

北航数值分析第一次大作业

一、算法的设计方案:(一)各所求值得计算方法1、最大特征值λ501,最小特征值λ1,按模最小特征值λs的计算方法首先使用一次幂法运算可以得到矩阵的按模最大的特征值λ,λ必为矩阵A的最大或最小特征值,先不做判断。

对原矩阵A进行一次移项,即(A-λI),在进行一次幂法运算,可以得到另一个按模最大特征值λ0。

比较λ和λ的大小,较大的即为λ501,较小的即为λ1。

对矩阵A进行一次反幂法运算,即可得到按模最小特征值λs。

2、A与μk 值最接近的特征值λik的计算方法首先计算出k所对应的μk 值,对原矩阵A进行一次移项,即(A-μkI),得到一个新的矩阵,对新矩阵进行一次反幂法运算,即可得到一个按模最小特征值λi 。

则原矩阵A与μk值最接近的特征值λik=λi+μk。

3、A的(谱范数)条件数cond(A)2的计算方法其中错误!未找到引用源。

矩阵A的按模最大和按模最小特征值。

(二)程序编写思路。

由于算法要求A的零元素不存储,矩阵A本身为带状矩阵,所以本题的赋值,LU分解,反幂法运算过程中,均应采用Doolittle分解法求解带状线性方程组的算法思路。

幂法、反幂法和LU分解均是多次使用,应编写子程序进行反复调用。

二、源程序:#include<stdio.h>#include<iostream>#include<stdlib.h>#include<math.h>#include<float.h>#include<iomanip> /*头文件*//*定义全局变量*/#define N 502 /*取N为502,可实现从1到501的存储,省去角标变换的麻烦*/ #define epsilon 1.0e-12 /*定义精度*/#define r 2 /*r,s为带状矩阵的半带宽,本题所给矩阵二者都是2*/ #define s 2double c[6][N]; /*定义矩阵存储压缩后的带状矩阵*/double fuzhi(); /*赋值函数*/void LUfenjie(); /*LU分解程序*/int max(int a,int b); /*求两个数字中较大值*/int min(int a,int b); /*求两个数字中较小值*/double mifa(); /*幂法计算程序*/double fanmifa(); /*反幂法计算程序*/double fuzhi() /*赋值程序,按行赋值,行从1到5,列从1到501,存储空间的第一行第一列不使用,角标可以与矩阵一一对应,方便书写程序*/{int i,j;i=1;for(j=3;j<N;j++){c[i][j]=-0.064;}i=2;for(j=2;j<N;j++){c[i][j]=0.16;}i=3;for(j=1;j<N;j++){c[i][j]=(1.64-0.024*j)*sin(0.2*j)-0.64*exp(0.1/j);}i=4;for(j=1;j<N-1;j++){c[i][j]=0.16;}i=5;for(j=1;j<N-2;j++){c[i][j]=-0.064;}return(c[i][j]);}int max(int a,int b){ return((a>b)?a:b);}int min(int a,int b){ return((a<b)?a:b);}void LUfenjie() /*LU分解程序,采用的是带状矩阵压缩存储后的LU分解法*/{double temp;int i,j,k,t;for(k=1;k<N;k++){ for(j=k;j<=min(k+s,N-1);j++){temp=0;for(t=max(1,max(k-r,j-s));t<=(k-1);t++){temp=temp+c[k-t+s+1][t]*c[t-j+s+1][j];}c[k-j+s+1][j]=c[k-j+s+1][j]-temp;}for(i=k+1;i<=min(k+r,N-1);i++){temp=0;for(t=max(1,max(i-r,k-s));t<=(k-1);t++){temp=temp+c[i-t+s+1][t]*c[t-k+s+1][k];}c[i-k+s+1][k]=(c[i-k+s+1][k]-temp)/c[s+1][k];}}}double mifa() /*幂法计算程序*/ {double u0[N],u1[N];double temp,Lu,beta=0,beta0;int i,j;for(i=1;i<N;i++) /*选取迭代初始向量*/{u0[i]=1;}do{beta0=beta;temp=0;for(i=1;i<N;i++){temp=temp+u0[i]*u0[i]; }Lu=sqrt(temp);for(i=1;i<N;i++){u1[i]=u0[i]/Lu;}for(i=1;i<N;i++){temp=0;for(j=max(i-1,1);j<=min(i+2,N-1);j++){temp=temp+c[i-j+s+1][j]*u1[j]; }u0[i]=temp;} //新的u0temp=0;for(i=1;i<N;i++){temp=temp+u1[i]*u0[i]; }beta=temp;}while(fabs(beta-beta0)/fabs(beta)>=epsilon); /*迭代运行条件判断*/return(beta);}double fanmifa() /*反幂法计算程序*/{double u0[N],u1[N],u2[N];double temp,Lu,beta=0,beta0;int i,t;for(i=1;i<N;i++) /*选取迭代初始向量*/{u0[i]=1;}do{beta0=beta;temp=0;for(i=1;i<N;i++){temp=temp+u0[i]*u0[i]; }Lu=sqrt(temp);for(i=1;i<N;i++){u1[i]=u0[i]/Lu;u2[i]=u1[i];}fuzhi();LUfenjie();/*带状矩阵压缩存储并进行LU分解后,求解线性方程组得到迭代向量u k,即程序中的u0*/for(i=2;i<N;i++){ temp=0;for(t=max(1,i-r);t<=(i-1);t++){temp=temp+c[i-t+s+1][t]*u2[t];}u2[i]=u2[i]-temp;}u0[N-1]=u2[N-1]/c[s+1][N-1];for(i=N-2;i>=1;i--){ temp=0;for(t=i+1;t<=min(i+s,N-1);t++){temp=temp+c[i-t+s+1][t]*u0[t];}u0[i]=(u2[i]-temp)/c[s+1][i];}temp=0;for(i=1;i<N;i++){temp=temp+u1[i]*u0[i]; }beta=temp;beta=1/beta; /*beta即为所求特征值,可直接返回*/}while(fabs(beta-beta0)/fabs(beta)>=epsilon); /*迭代运行条件判断*/return(beta);}void main(){double u[40]; /*定义数组,存放k值运算得到的μk值*/double lambda1,lambda501,lambdak,a,b,d,cond,det;int i,j,k;fuzhi();a=mifa(); /*幂法计算按模最大值*/fuzhi();d=fanmifa(); /*反幂法计算按模最小值*/fuzhi();for(j=1;j<N;j++){c[3][j]=c[3][j]-a;}b=mifa()+a; /*移项后幂法计算按模最大值*/if(a>b) /*比较两个按模最大值大小,并相应输出最大特征值λ501和最小特征值λ1*/ {lambda1=b;lambda501=a;printf("矩阵A最小的特征值lambda1=%13.11e\n",lambda1);printf("矩阵A最大的特征值lambda501=%13.11e\n",lambda501);}else{lambda1=a;lambda501=b;printf("矩阵A最小的特征值lambda1=%13.11e\n",lambda1);printf("矩阵A最大的特征值lambda501=%13.11e\n",lambda501);}printf("矩阵A按模最小特征值lambdas=%13.11e\n",d); /*输出按模最小特征值λs*/for(k=1;k<40;k++) /*对每一个进行移项反幂法运算,求出最接近μk的特征值并输出*/ {u[k]=(lambda501-lambda1)*k/40+lambda1;fuzhi();for(j=1;j<N;j++){c[3][j]=c[3][j]-u[k];}lambdak=fanmifa()+u[k];i=k;printf("矩阵A最接近uk特征值lambdak%d=%13.11e\n",i,lambdak);}cond=fabs(a/d);printf("A的条件数=%13.11e\n",cond); /*计算A条件数并输出*/fuzhi(); /*计算A的行列式值并输出*/LUfenjie();det=1;for(i=1;i<N;i++){det=det*c[3][i];}printf("行列式的值detA=%13.11e\n",det);}三、程序的运行结果:四、初始向量的选取对计算结果的影响:(一)选取形式不变,数值变换1、取u0为[0.5,0.5………..0.5],运行结果如下:2、取u0为[50,50………..50],运行结果如下:从运行结果来看,此类初始向量的选取对结果不会产生影响,即使选成0,结果也不变化。

北航数值分析作业第一题

北航数值分析作业第一题

数值分析作业第一题一、 算法设计方案利用带状Dollittle 分解,将A[501][501]转存到数组C[5][501],以节省存储空间1、计算λ1和λ501首先使用幂法求出矩阵的按模最大的特征值λ0:如果λ0>0,则其必为按模最大值,因此λ501=λ0,然后采用原点平移法,平移量为λ501,使用幂法迭代求出矩阵A -λ501I 的按模最大的特征值,其特征值按从小到大排列应为λ1-λ501、λ2-λ501、……、0。

因此A-λ501I 的按模最大的特征值应为λ1-λ501。

又因为λ501的值已求得,由此可直接求出λ1。

2、计算λSλS 为矩阵A 按模最小的特征值,可以通过反幂法直接求出。

3、计算λikλik 是对矩阵A 进行λik 平移后,再用反幂法求出按模最小的特征值λmin ,λik =λik +λmin 。

4、计算矩阵A 的条件数计算cond (A )2和行列式det(A)矩阵A 的条件数为n12cond λλ)( A ,其中λ1和λn 分别是矩阵A 的模最大和最小特征值,直接利用上面求得的结果直接计算。

矩阵A 的行列式可先对矩阵A 进行LU 分解后,det(A)等于U 所有对角线上元素的乘积。

二、源程序:#include<math.h>#include<stdio.h>#include<stdlib.h>#include<iostream.h>#define s 2#define r 2int Max(int v1,int v2);int Min(int v1,int v2);int maxt(int v1,int v2,int v3);void storage(double C[5][501],double b,double c);double mifa(double C[5][501]);void LU(double C[5][501]);double fmifa(double C[5][501]);int Max(int v1,int v2) //求两个数的最大值{ return((v1>v2)?v1:v2);}int Min(int v1,int v2) //求两个数最小值{ return ((v1<v2)?v1:v2);}int maxt(int v1,int v2,int v3) //求三个数最大值{ int t;if(v1>v2) t=v1;else t=v2;if(t<v3) t=v3;return(t);}/***将矩阵值转存在一个数组里,以节省存储空间***/void storage(double C[5][501],double b,double c){ int i=0,j=0;C[i][j]=0,C[i][j+1]=0;for(j=2;j<=500;j++)C[i][j]=c;i++;j=0;C[i][j]=0;for(j=1;j<=500;j++)C[i][j]=b;i++;for(j=0;j<=500;j++)C[i][j]=(1.64-0.024*(j+1))*sin(0.2*(j+1))-0.64*exp(0.1/(j+1));i++;for(j=0;j<=499;j++)C[i][j]=b;C[i][j]=0;i++;for(j=0;j<=498;j++)C[i][j]=c;C[i][j]=0,C[i][j+1]=0;}//用于求解最大的特征值,幂法double mifa(double C[5][501]){ int m=0,i,j;double b2,b1=0,sum;double u[501],y[501];for (i=0;i<501;i++){ u[i] = 1.0;}do{ sum=0;if(m!=0)b1=b2;m++;for(i=0;i<=500;i++)sum+=u[i]*u[i];for(i=0;i<=500;i++)y[i]=u[i]/sqrt(sum);for(i=0;i<=500;i++){ u[i]=0;for(j=Max(i-r,0);j<=Min(i+s,500);j++)u[i]=u[i]+C[i-j+s][j]*y[j];}b2=0;for(i=0;i<=500;i++)b2=b2+y[i]*u[i];}while(fabs(b2-b1)/fabs(b2)>=1.0e-12);return b2;}/*****行列式LU分解*****/void LU(double C[5][501]){ double sum;int k,i,j;for(k=1;k<=501;k++){ for(j=k;j<=Min(k+s,501);j++){ sum=0;for(i=maxt(1,k-r,j-s);i<=k-1;i++)sum+=C[k-i+s][i-1]*C[i-j+s][j-1];C[k-j+s][j-1]-=sum;}for(j=k+1;j<=Min(k+r,501);j++){ sum=0;for(i=maxt(1,j-r,k-s);i<=k-1;i++)sum+=C[j-i+s][i-1]*C[i-k+s][k-1];C[j-k+s][k-1]=(C[j-k+s][k-1]-sum)/C[s][k-1];}}}/***带状DOOLITE分解,并且求解出方程组的解***/void solve(double C[5][501],double x[501],double b[501]){ int i,j,k,t;double B[5][501],c[501];for(i=0;i<=4;i++){ for(j=0;j<=500;j++)B[i][j]=C[i][j];}for(i=0;i<=500;i++)c[i]=b[i];for(k=0;k<=500;k++){ for(j=k;j<=Min(k+s,500);j++){ for(t=Max(0,Max(k-r,j-s));t<=k-1;t++)B[k-j+s][j]=B[k-j+s][j]-B[k-t+s][t]*B[t-j+s][j];}for(i=k+1;i<=Min(k+r,500);i++){ for(t=Max(0,Max(i-r,k-s));t<=k-1;t++)B[i-k+s][k]=B[i-k+s][k]-B[i-t+s][t]*B[t-k+s][k];B[i-k+s][k]=B[i-k+s][k]/B[s][k];}}for(i=1;i<=500;i++)for(t=Max(0,i-r);t<=i-1;t++)c[i]=c[i]-B[i-t+s][t]*c[t];x[500]=c[500]/B[s][500];for(i=499;i>=0;i--){ x[i]=c[i];for(t=i+1;t<=Min(i+s,500);t++)x[i]=x[i]-B[i-t+s][t]*x[t];x[i]=x[i]/B[s][i];}}//用于求解模最大的特征值,反幂法double fmifa(double C[5][501]){ int m=0,i;double b2,b1=0,sum=0,u[501],y[501];for (i=0;i<=500;i++){ [i] = 1.0;}do{ if(m!=0)b1=b2;m++;sum=0;for(i=0;i<=500;i++)sum+=u[i]*u[i];for(i=0;i<=500;i++)y[i]=u[i]/sqrt(sum);solve(C,u,y);b2=0;for(i=0;i<=500;i++)b2+=y[i]*u[i];}while(fabs(b2-b1)/fabs(b2)>=1.0e-12);return 1/b2;}/***主程序***/void main(){ double b=0.16,c=-0.064,det=1.0;int i;double C[5][501],cond;storage(C,b,c); //进行C的赋值cout.precision(12); //定义输出精度double k1=mifa(C); //利用幂法计算矩阵的最大特征值和最小特征值if(k1<0)printf("λ1=%.12e\n",k1);else if(k1>=0)printf("λ501=%.12e\n",k1);for(i=0;i<501;i++)C[2][i]=C[2][i]-k1;double k2=mifa(C)+k1;if(k2<0)printf("λ1=%.12e\n",k2);else if(k2>=0)printf("λ501=%.12e\n",k2);storage(C,b,c);double k3=fmifa(C); //利用反幂法计算矩阵A的按模最小特征值printf("λs=%.12e\n",k3);storage(C,b,c); //计算最接近特征值double u[39]={0};for(i=0;i<39;i++){ u[i]=k1+(i+1)*(k2-k1)/40;C[2][i]=C[2][i]-u[i];u[i]=fmifa(C)+u[i];printf("与数u%d 最接近的特征值λ%d: %.12e\n",i+1,i+1,u[i]);}if(k1>0) //计算矩阵A的条件数,取2范数cond=fabs(k1/k3);else if(k1<0)cond=fabs(k2/k3);storage(C,b,c);LU(C); //利用LU分解计算矩阵A的行列式for(i=0;i<501;i++)det*=C[2][i];printf("\ncond(A)=%.12e\n",cond);printf("\ndet(A)=%.12e\n",det);}三、计算结果:四、结果分析迭代初始向量的选择对果有一定的影响,选择不同的初始向量可能会得到不同阶的特征值。

北航硕士研究生数值分析大作业一

北航硕士研究生数值分析大作业一

数值分析—计算实习作业一学院:17系专业:精密仪器及机械姓名:张大军学号:DY14171142014-11-11数值分析计算实现第一题报告一、算法方案算法方案如图1所示。

(此算法设计实现完全由本人独立完成)图1算法方案流程图二、全部源程序全部源程序如下所示#include <iostream.h>#include <iomanip.h>#include <math.h>int main(){double a[501];double vv[5][501];double d=0;double r[3];double uu;int i,k;double mifayunsuan(double *a,double weiyi);double fanmifayunsuan(double *a,double weiyi);void yasuo(double *A,double (*C)[501]);void LUfenjie(double (*C)[501]);//赋值语句for(i=1;i<=501;i++){a[i-1]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);}//程序一:使用幂方法求绝对值最大的特征值r[0]=mifayunsuan(a,d);//程序二:使用幂方法求求平移λ[0]后绝对值最大的λ,得到原矩阵中与最大特征值相距最远的特征值d=r[0];r[1]=mifayunsuan(a,d);//比较λ与λ-λ[0]的大小,由已知得if(r[0]>r[1]){d=r[0];r[0]=r[1];r[1]=d;}//程序三:使用反幂法求λr[2]=fanmifayunsuan(a,0);cout<<setiosflags(ios::right);cout<<"λ["<<1<<"]="<<setiosflags(ios::scientific)<<setprecision(12)<<r[0]<<endl;cout<<"λ["<<501<<"]="<<setiosflags(ios::scientific)<<setprecision(12)<<r[1]<<endl;cout<<"λ[s]="<<setiosflags(ios::scientific)<<setprecision(12)<<r[2]<<endl;//程序四:求A的与数u最接近的特征值for(k=1;k<40;k++){uu=r[0]+k*(r[1]-r[0])/40;cout<<"最接近u["<<k<<"]"<<"的特征值为"<<setiosflags(ios::scientific)<<setprecision(12)<<fanmifayunsuan(a,uu)<<endl;}//程序五:谱范数的条件数是绝对值最大的特征值除以绝对值最小的特征值的绝对值cout<<"cond(A)2="<<fabs(r[0]/r[2])<<endl;//程序六:A的行列式的值就是A分解成LU之U的对角线的乘积yasuo(a,vv);LUfenjie(vv);uu=1;for(i=0;i<501;i++){uu=uu*vv[2][i];}cout<<"Det(A)="<<uu<<endl;return 1;}double mifayunsuan(double *a,double weiyi){int i,k;double b=0.16;double c=-0.064;double ee,w,v1,v2,mm,sum;double u[501];double y[505]={0};for(i=0;i<501;i++)u[i]=1;//给u赋初值if (weiyi!=0){for (i=0;i<501;i++)a[i]-=weiyi;}ee=1;k=0;//使得初始计算时进入循环语句while(ee>1e-12){mm=0;for(i=0;i<501;i++){mm=mm+u[i]*u[i];}w=sqrt(mm);for(i=0;i<501;i++){y[i+2]=u[i]/w;//注意此处编程与书上不同,之后会解释它的巧妙之处1 }for(i=0;i<501;i++){u[i]=c*y[i]+b*y[i+1]+a[i]*y[i+2]+b*y[i+3]+c*y[i+4];//1显然巧妙之处凸显出来}sum=0;for(i=0;i<501;i++){sum+=y[i+2]*u[i];}v1=v2;v2=sum;//去除特殊情况,减少漏洞if(k==0){k++;}else{ee=fabs(v2-v1)/fabs(v2);}}if (weiyi!=0){for (i=0;i<501;i++)a[i]+=weiyi;}//还原A矩阵return (v2+weiyi);}double fanmifayunsuan(double *a,double weiyi){int i,k;double b=0.16;double c=-0.064;double ee,w,v1,v2,mm,sum;double u[501];double y[501];double C[5][501];void yasuo(double *A,double (*C)[501]);void LUfenjie(double (*C)[501]);void qiuU(double (*C)[501],double *y,double *u);//把A阵压缩到C阵中for(i=0;i<501;i++)u[i]=1;//给u赋初值if (weiyi!=0){for (i=0;i<501;i++)a[i]-=weiyi;}yasuo(a,C);LUfenjie(C);ee=1;k=0; //使得初始计算时进入循环语句while(ee>1e-12){mm=0;for(i=0;i<501;i++){mm=mm+u[i]*u[i];}w=sqrt(mm);for(i=0;i<501;i++){y[i]=u[i]/w;}qiuU(C,y,u);sum=0;for(i=0;i<501;i++){sum+=y[i]*u[i];}v1=v2;v2=sum;//去除特殊情况,减少漏洞if(k==0){k++;}else{ee=fabs(1/v2-1/v1)/fabs(1/v2);}}if (weiyi!=0){for (i=0;i<501;i++)a[i]+=weiyi;}//还原A矩阵return (1/v2+weiyi);}void yasuo(double *A,double (*C)[501]){double b=0.16;double c=-0.064;int i;for(i=0;i<501;i++){C[0][i]=c;C[1][i]=b;C[2][i]=A[i];C[3][i]=b;C[4][i]=c;}}void LUfenjie(double (*C)[501]){int k,t,j;int r=2,s=2;double sum;int minn(int ,int );int maxx(int ,int );for(k=0;k<501;k++){for(j=k;j<=minn(k+s,501-1);j++){if(k==0)sum=0;else{sum=0;for(t=maxx(k-r,j-s);t<k;t++){sum=sum+C[k-t+s][t]*C[t-j+s][j];}}C[k-j+s][j]=C[k-j+s][j]-sum;}for(j=k+1;j<=minn(k+r,501-1);j++){if(k<501-1){if(k==0)sum=0;else{sum=0;for(t=maxx(j-r,k-s);t<k;t++){sum=sum+C[j-t+s][t]*C[t-k+s][k];}}C[j-k+s][k]=(C[j-k+s][k]-sum)/C[s][k];}}}}void qiuU(double (*C)[501],double *y,double *u){int i,t;double b[501];double sum;int r=2,s=2;int minn(int ,int );int maxx(int ,int );for(i=0;i<501;i++){b[i]=y[i];}for(i=1;i<501;i++){sum=0;for(t=maxx(0,i-r);t<i;t++){sum=sum+C[i-t+s][t]*b[t];}b[i]=b[i]-sum;}u[500]=b[500]/C[s][500];for(i=501-2;i>=0;i--){sum=0;for(t=i+1;t<=minn(i+s,500);t++){sum=sum+C[i-t+s][t]*u[t];}u[i]=(b[i]-sum)/C[s][i];}}int minn(int x,int y){int min;if(x>y)min=y;elsemin=x;return min;}int maxx(int b,int c){int max;if(b>c){if(b>0)max=b;elsemax=0;}else{if(c>0)max=c;elsemax=0;}return max;}三、特征值以及的值λ[1]=-1.070011361502e+001 λ[501]=9.724634098777e+000λ[s]=-5.557910794230e-003最接近u[1]的特征值为-1.018293403315e+001最接近u[2]的特征值为-9.585707425068e+000最接近u[3]的特征值为-9.172672423928e+000最接近u[4]的特征值为-8.652284007898e+000最接近u[5]的特征值为-8.0934********e+000最接近u[6]的特征值为-7.659405407692e+000最接近u[7]的特征值为-7.119684648691e+000最接近u[8]的特征值为-6.611764339397e+000最接近u[9]的特征值为-6.0661********e+000最接近u[10]的特征值为-5.585101052628e+000最接近u[11]的特征值为-5.114083529812e+000最接近u[12]的特征值为-4.578872176865e+000最接近u[13]的特征值为-4.096470926260e+000最接近u[14]的特征值为-3.554211215751e+000最接近u[15]的特征值为-3.0410********e+000最接近u[16]的特征值为-2.533970311130e+000最接近u[17]的特征值为-2.003230769563e+000最接近u[18]的特征值为-1.503557611227e+000最接近u[19]的特征值为-9.935586060075e-001最接近u[20]的特征值为-4.870426738850e-001最接近u[21]的特征值为2.231736249575e-002最接近u[22]的特征值为5.324174742069e-001最接近u[23]的特征值为1.052898962693e+000最接近u[24]的特征值为1.589445881881e+000最接近u[25]的特征值为2.060330460274e+000最接近u[26]的特征值为2.558075597073e+000最接近u[27]的特征值为3.080240509307e+000最接近u[28]的特征值为3.613620867692e+000最接近u[29]的特征值为4.0913********e+000最接近u[30]的特征值为4.603035378279e+000最接近u[31]的特征值为5.132924283898e+000最接近u[32]的特征值为5.594906348083e+000最接近u[33]的特征值为6.080933857027e+000最接近u[34]的特征值为6.680354092112e+000最接近u[35]的特征值为7.293877448127e+000最接近u[36]的特征值为7.717111714236e+000最接近u[37]的特征值为8.225220014050e+000最接近u[38]的特征值为8.648666065193e+000最接近u[39]的特征值为9.254200344575e+000cond(A)2=1.925204273902e+003 Det(A)=2.772786141752e+118四、现象讨论在大作业的程序设计过程当中,初始向量的赋值我顺其自然的设为第一个分量为1,其它分量为0的向量,计算结果与参考答案存在很大差别,计算结果对比如下图2所示(左侧为正确结果,右侧为错误结果),导致了我花了很多的时间去检查程序算法。

北航数值分析大作业计算程序(一)

北航数值分析大作业计算程序(一)
{
if(x>y)
return x;
return y;
}
int min(int x,int y)
{
if(x<y)
return x;
return y;
}
//向量内积函数
double innvector(double x[],double y[],int t)
{
//主函数
void main()
{ double C[m][n]={{0},{0},{0},{0},{0}};
int i,j,k;
double t1,t2,p,q,z1,z2,z3,cond,det;
double u[n];
double w[n];
double v[n]={0,0};
{
//迭代向量赋值
for(j=0;j<=n-1;j++)
{u[j]=1;}
for(i=0;i<=m-1;i++)
{for(j=0;j<=n-1;j++)
{C[i][j]=0;}
}
for(j=2;j<=n-1;j++)
{C[0][j]=-0.064;}
if(d<0)
d=-d;
if(d>r)
b=t;
else
goto P1;
}
P1:if(k<L)
return t;
else return NU NhomakorabeaL; }
//线性方程求解函数
void linequation(double C[][n],double x[],double b[])

北航数值分析第一次大作业(幂法反幂法)

北航数值分析第一次大作业(幂法反幂法)

一、问题分析及算法描述1. 问题的提出:(1)用幂法、反幂法求矩阵A =[a ij ]20×20的按摸最大和最小特征值,并求出相应的特征向量。

其中 a ij ={sin (0.5i +0.2j ) i ≠j 1.5cos (i +1.2j ) i =j要求:迭代精度达到10−12。

(2)用带双步位移的QR 法求上述的全部特征值,并求出每一个实特征值相应的特征向量。

2. 算法的描述:(1) 幂法幂法主要用于计算矩阵的按摸为最大的特征值和相应的特征向量。

其迭代格式为:{ 任取非零向量u 0=(h 1(0),⋯,h n (0))T|h r (k−1)|=max 1≤j≤n |h r (k−1)| y ⃑ k−1=u ⃑ k−1|h r (k−1)| u ⃑ k =Ay ⃑ k−1=(h 1(k ),⋯,h n (k ))T βk =sgn (h r (k−1))h r (k ) (k =1,2,⋯) 终止迭代的控制选用≤ε。

幂法的使用条件为n ×n 实矩阵A 具有n 个线性无关的特征向量x 1,x 2,⋯,x n ,其相应的特征值λ1,λ2,⋯,λn 满足不等式|λ1|>|λ2|≥|λ3|≥⋯≥|λn |或λ1=λ2=⋯=λm|λ1|>|λm+1|≥|λm+2|≥⋯≥|λn |幂法收敛速度与比值|λ2λ1|或|λm+1λ1|有关,比值越小,收敛速度越快。

(2) 反幂法反幂法用于计算n ×n 实矩阵A 按摸最小的特征值,其迭代格式为:{任取非零向量u 0∈R nηk−1=√u ⃑ k−1T u ⃑ k−1 y ⃑ k−1=u ⃑ k−1ηk−1⁄ Au ⃑ k =y ⃑ k−1 βk =y ⃑ k−1u ⃑ k (k =1,2,⋯) 每迭代一次都要求解一次线性方程组Au ⃑ k =y ⃑ k−1。

当k 足够大时,λn ≈1βk ,y ⃑ k−1可近似的作为矩阵A 的属于λn 的特征向量。

北航数值分析-实习作业1(C语言详细注释)

北航数值分析-实习作业1(C语言详细注释)

《数值分析》计算实习作业《一》北航第一题 设有501501⨯的矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=501500499321a bc b a b cc b a b ccb a bc c b a b c b a A其中.064.0,16.0);501,2,1(64.0)2.0sin()024.064.1(1.0-===--=c b i e i i a i i 矩阵的特征值)501,,2,1( =i i λ满足||min ||,501150121i i s λλλλλ≤≤=<<<试求1. 5011,λλ和s λ的值2. 的与数4015011λλκλμ-+=k 最接近的特征值)39,,2,1( =K κλi3. 的(谱范数)条件数2)A (cond 和行列式A det要求1. 算法的设计方案(A 的所有零元素都不能存储)2. 全部源程序(详细注释)。

变量为double ,精度-1210=ε,输出为e 型12位有效数字3. 特征值s 5011,,λλλ和)39,,2,1( =K κλi 以及A cond det ,)A (2的值 4. 讨论迭代初始向量的选取对计算结果的影响,并说明原因解答:1. 算法设计对于s λ满足||min ||5011i i s λλ≤≤=,所以s λ是按模最小的特征值,直接运用反幂法可求得。

对于5011,λλ,一个是最大的特征值,一个是最小的特征值,不能确定两者的绝对值是否相等,因此必须首先假设||||5011λλ≠,然后运用幂法,看能否求得一个特征值,如果可以求得一个,证明A 是收敛的,求得的结果是正确的,然后对A 进行带原点平移的幂法,偏移量是前面求得的特征值,可以求得另一个特征值,最后比较这两个特征值,较大的特征值是501λ,较小的特征值就是1λ。

如果在假设的前提下,无法运用幂法求得按模最大的特征值,即此时A 不收敛,则需要将A 进行带原点平移的幂法,平移量可以选取1,再重复上述步骤即可求得两个特征值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开始
初始化 读取A的压缩矩阵、 相对误差精度e0 选取非零初始向量u0, 并存入uk 迭代次数k=0
k++
uk单位化—>yk
迭代产生下一uk A*yk—>uk 求特征值 b1=ykTuk
计算误差 e=(b1-b0)/b0
判断是否 满足精度要求 e<e0? Y N
取当前b1作为特征值λm的近似值 yk作为λm对应的特征向量
//计算向量的模
//向量单位化
void mtx_vtr2(double aa[r+s+1][dim],double x[dim]) { double mv[dim]={0}; long i=0,j=0;
//幂法迭代过程中 A*y->u
mv[0]=aa[s][0]*x[0]+b*x[1]+c*x[2]; mv[1]=aa[s][1]*x[1]+b*(x[0]+x[2])+c*x[3]; for(i=2;i<dim-2;i++) //计算 3-499 { mv[i]=aa[s][i]*x[i]+b*(x[i-1]+x[i+1])+c*(x[i-2]+x[i+2]); } mv[dim-2]=aa[s][dim-2]*x[1]+b*(x[dim-3]+x[dim-1])+c*x[dim-4]; mv[dim-1]=aa[s][dim-1]*x[dim-1]+b*x[dim-2]+c*x[dim-3]; for(i=0;i<dim;i++) { uk[i]=mv[i]; } } double vtr_vtr(double x1[dim],double x2[dim]) { double vv=0; long i=0; for(i=0;i<dim;i++) { vv=vv+x1[i]*x2[i]; } return vv; } //1*n 向量与 n*1 向量相乘
double acc[s+r+1][dim]={{0},{0}}; double u0[dim]={0}; double b=0.16,c=-0.064; double yk[dim]={0}; double uk[dim]={0}; double b0=0,b1=0; double e=1; void display(double x[dim]) { long i=0;
long j=0; for(i=0;i<dim;i++) { printf("%12.12e\t",x[i]); } printf("\n"); } void display_pq(double aa[r+s+1][dim]) { long i=0; long j=0; for(i=0;i<r+s+1;i++) { for(j=0;j<dim;j++) { printf("%f\t",aa[i][j]); } printf("\n"); } printf("\n"); } double length(double x[dim]) { double leng=0; long i=0; for(i=0;i<dim;i++) { leng=leng+x[i]*x[i]; } leng=sqrt(leng); return leng; } void unit(double x[dim]) { long i=0; double ll=length(x); for(i=0;i<dim;i++) { yk[i]=x[i]/ll; } } //矩阵输出函数
进行反幂法迭代 求A-pI的近似特征值λ’s
求A的近似特征值 λs=λ’s+p
结束
图 4 带原点平移的反幂法迭代流程图
二、源代码 #include<stdio.h> #include<math.h> #define dim 501 #define s 2 #define r 2 #define er0 1E-12 //维数 //上半带宽 //下半带宽 //允许误差 //压缩的系数矩阵 //迭代初始向量 //迭代过程中特征向量序列 //迭代过程中特征向量序列(单位化) //迭代过程中特征值 //相对误差 //向量输出函数
输出b1
结束
图 2 幂法迭代流程图
开始
初始化 读取A的压缩矩阵、 相对误差精度e0 选取非零初始向量u0, 并存入uk 迭代次数k=0
k++
uk单位化—>yk
用Doolittle分解法求解A*uk=yk 迭代产生下一uk
求特征值 b1=1/(ykTuk)
计算误差 e=(b1-b0)/b0
判断是否 满足精度要求 e<e0? Y 取当前b1作为特征值λs的近似值 yk作为λs对应的特征向量 N
输出b1
结束
图 3 反幂法迭代流程图
(3) 原点平移 若 λ 为矩阵 A 的特征值,则 λ-p 是矩阵 A-pI 的特征值;反之,若 λ-p 是矩阵 A-pI 的 特征值,则 λ 为矩阵 A 的特征值,特征向量相同。 实际中常用带原点平移的反幂法求 A 的某个特征向量。 设 μ 为 A 的某个特征值的近
数值分析计算实习(一)
姓名:张时毓 学号:SY1403531
一、设计方案 1. A 为大型带状矩阵,维数 dim=501,上半带宽 s=2,下半带宽 r=2。 将 A 压缩储存,设置二维数组 acc[r+s+1][dim]储存 A 的带内元素,acc 的第 j 列存放 A 的 第 j 列带内元素,并使 A 的主对角线元素存放在 acc 的第 s+1 行中,多出的单元取零。 2. 求最小特征值 λ1 和最大特征值 λ501 先用幂法迭代求出按模最大特征值 λm1,则 λm1 为最小特征值 λ1 或最大特征值 λ501。 (1) 若λ������������1 = λ1 ,则λ������������1 < 0,因为|λ501 | < |λ������������1 |,所以 λ1 + λ������������1 ≤ λ2 + λ������������1 ≤ ⋯ ≤ λ501 + λ������������1 < 0 所以 |λ1 + λ������������1 | ≥ |λ2 + λ������������1 | ≥ ⋯ ≥ |λ501 + λ������������1 | 用原点平移的反幂法求 A+λm1I 按模最小的特征值λ’������������2 = λ501 + λ������������1 则λ������������2 = λ501 = λ’������������2 −λ������������1 则λ1 = λ������������1 ,λ501= λ������������2 (2) 若λ������������1 = λ501 ,则λ������������1 > 0,因为|λ1 | < |λ������������1 |,所以 0 < λ1 + λ������������1 ≤ λ2 + λ������������1 ≤ ⋯ ≤ λ501 + λ������������1 所以 |λ1 + λ������������1 | ≤ |λ2 + λ������������1 | ≤ ⋯ ≤ |λ501 + λ������������1 | 用原点平移的反幂法求 A+λm1I 按模最小的特征值λ’������������2 = λ1 + λ������������1 则λ������������2 = λ1 = λ’������������2 −λ������������1 则λ1 = λ������������2 ,λ501= λ������������1 综上所述,先用幂法迭代求出按模最大特征值 λm1,再通过原点平移 A+λm1I 用反幂法求 特征值 λm2,比较 λm1 和 λm2 的大小,大的为最大特征值 λ501,小的为最小特征值 λ1。 流程图如图 1 所示。 同理可用 A-λm1I 作原点平移,再用幂法求取 λm2。 3. 求按模最小特征值 用反幂法,求取 A 的按模最小特征值 λs。 4. 求 A 的行列式 detA 将 A 做 Doolittle 分解, det A = detL ∗ detU 即 U 对角线元素的乘积 det A = � ������������������������������������
最接近的特征值λ������������������������ (k=1,2,…,39)
cond(������������)2 =
�����������1 �����������
开始
幂法求A 按模最大特征值λm1
原点平移A+λm1I
反幂法求A 特征值λm2
λm1>λm2?
Y N
λ1=λm2 λ501=λm1
������������=1 501
5. 求 A 的(谱பைடு நூலகம்数)条件数cond(������������)2 6. 求 A 的与数������������������������ = λ1 + ������������
λ501 −λ1 40
作原点平移 A-μkI,求出 A-μkI 按模最小特征值λ = λ������������������������ − ������������������������ , λ������������������������ = λ + ������������������������
相关文档
最新文档