2017-2018学年安徽省合肥市庐阳区九年级(上)期末数学试卷
【精选3份合集】2017-2018年合肥市九年级上学期期末综合测试数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上【答案】C【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.2.下列多边形一定相似的是()A.两个平行四边形B.两个矩形C.两个菱形D.两个正方形【答案】D【分析】利用相似多边形的定义:对应边成比例,对应角相等的两个多边形相似,逐一分析各选项可得答案.【详解】解:两个平行四边形,既不满足对应边成比例,也不满足对应角相等,所以A错误,两个矩形,满足对应角相等,但不满足对应边成比例,所以B错误,两个菱形,满足对应边成比例,但不满足对应角相等,所以C错误,两个正方形,既满足对应边成比例,也满足对应角相等,所以D正确,故选D.【点睛】本题考查的是相似多边形的定义与判定,掌握定义法判定多边形相似是解题的关键.3.方程x2+4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根【答案】B【分析】判断上述方程的根的情况,只要看根的判别式△=b 2﹣4ac 的值的符号就可以了.【详解】解:∵△=b 2﹣4ac =16﹣16=0∴方程有两个相等的实数根.故选:B .【点睛】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.﹣12的绝对值为( ) A .﹣2 B .﹣12 C .12 D .1【答案】C 【解析】分析:根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.详解: ﹣12的绝对值为|-12|=-(﹣12)= 12. 点睛:主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.5.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【答案】A【解析】试题分析:不可能事件发生的概率为0,故A 正确;随机事件发生的概率为在0到1之间,故B 错误;概率很小的事件也可能发生,故C 错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D 错误;故选A .考点:随机事件.6.若12x x 、是一元二次方程2320x x ++=的两个实数根,则2212x x +的值为( )A .13-B .1-C .5D .13【答案】C 【分析】由一元二次方程根与系数的关系可得x 1+x 2=-3,x 1·x 2=2,利用完全平方公式即可求出答案. 【详解】∵12x x 、是一元二次方程2320x x ++=的两个实数根,∴x 1+x 2=-3,x 1·x 2=2, ∴2212x x +=( x 1+x 2)2-2x 1·x 2=9-4=5, 故选:C .【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax 2+bx+c=0(a≠0)的两个实数根为12x x 、,那么x 1+x 2=b a -,x 1·x 2=c a,熟练掌握韦达定理是解题关键. 7.下列方程中,关于x 的一元二次方程是( ) A .3(x +1)2=2(x +1)B .21x +1x -2=0C .ax 2+bx +c =0D .x 2+2x =x 2-1 【答案】A【分析】依据一元二次方程的定义判断即可.【详解】A. 3(x+1)2=2(x+1)是一元二次方程,故A 正确;B. 21x +1x-2=0是分式方程,故B 错误; C. 当a=0时,方程ax 2+bx+c=0不是一元二次方程,故C 错误;D. x 2+2x=x 2-1,整理得2x=-1是一元一次方程,故D 错误;故选A.【点睛】此题考查一元二次方程的定义,解题关键在于掌握其定义.8.如图,已知一次函数y =ax+b 与反比例函数y =k x 图象交于M 、N 两点,则不等式ax+b >k x解集为( )A .x >2或﹣1<x <0B .﹣1<x <0C .﹣1<x <0或0<x <2D .x >2【答案】A 【解析】根据函数图象写出一次函数图象在反比例函数图象上方部分的x 的取值范围即可.【详解】解:由图可知,x >2或﹣1<x <0时,ax+b >x k . 故选A .【点睛】本题考查了反比例函数与一次函数的交点,利用数形结合,准确识图是解题的关键.9.如图,已知⊙O 的直径AB ⊥弦CD 于点E ,下列结论中一定正确的是( )A .AE =OEB .CE =DEC .OE =12CED .∠AOC =60°【答案】B 【分析】根据垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧求解.【详解】解:∵直径AB ⊥弦CD∴CE =DE故选B.【点睛】本题考查垂径定理,本题属于基础应用题,只需学生熟练掌握垂径定理,即可完成.10.一元二次方程的根是( ) A .3x =B .1203x x ==-,C .1203x x ==,D .1203x x ==, 【答案】D【解析】x 2−3x=0,x(x−3)=0,∴x 1=0,x 2=3.故选:D.11.方程05)1(22=-+-mx x m 是关于x 的一元二次方程,则m 的值不能是( )A .0B .12C .±1D .12- 【答案】C【详解】解:05)1(22=-+-mx x m 是关于x 的一元二次方程,则210m -≠, 解得m ≠±1故选C.【点睛】本题考查一元二次方程的概念,注意二次项系数不能为零.12.如图,在平面直角坐标系中,直线OA过点(4,2),则tan 的值是( )A.12B.5C.5D.2【答案】A【分析】根据题意作出合适的辅助线,然后根据锐角三角函数和图象中的数据即可解答本题.【详解】如图:过点(4,2)作直线CD⊥x轴交OA于点C,交x轴于点D,∵在平面直角坐标系中,直线OA过点(4,2),∴OD=4,CD=2,∴tanα=CDOD=24=12,故选A.【点睛】本题考查解直角三角形、坐标与图形的性质,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.二、填空题(本题包括8个小题)13.正八边形的每个外角的度数和是_____.【答案】360°.【分析】根据题意利用正多边形的外角和等于360度,进行分析计算即可得出答案.【详解】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数和是360°.故答案为:360°.【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.14.某班主任将其班上学生上学方式(乘公汽、骑自行车、坐小轿车、步行共4种)的调查结果绘制成下图所示的不完整的统计图,已知乘坐公汽上学的有12人,骑自行车上学的有24人,乘家长小轿车上学的有4人,则步行上学的学生人数在扇形统计图对应的扇形所占的圆心角的度数为_____.【答案】90°【分析】先根据骑自行车上学的学生有12人占25%,求出总人数,再根据步行上学的学生人数所对应的圆心角的度数为所占的比例乘以360度,即可求出答案.【详解】解:根据题意得:总人数是:12÷25%=48人,所以乘车部分所对应的圆心角的度数为360°×48122448--=90°;故答案为:90°.【点睛】此题主要考查了扇形统计图,读懂统计图,从统计图中得到必要的信息,列出算式是解决问题的关键.15.在△ABC中,已知(sinA-22)2+│3=1.那么∠C=_________度.【答案】2【分析】直接利用非负数的性质和特殊角的三角函数值求出∠A,∠B的度数,进而根据三角形内角和定理得出答案.【详解】∵(sinA 22+|tanB3-,∴sinA22-=1,tanB3-=1,∴sinA22=,tanB3=∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案为:2.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解答本题的关键.16.如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F.现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为A 1;AD 的中点E 的对应点记为E 1.若△E 1FA 1∽△E 1BF ,则AD= .【答案】3.2.【详解】解:∵∠ACB=90°,AB=20,BC=6,∴2222AC AB BC 1068=-=-=.设AD=2x ,∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 2,点E 的对应点为E 2,∴AE=DE=DE 2=A 2E 2=x .∵DF ⊥AB ,∠ACB=90°,∠A=∠A ,∴△ABC ∽△AFD .∴AD :AC =DF :BC ,即2x :8 =DF :6 ,解得DF=2.5x .在Rt △DE 2F 中,E 2F 2= DF 2+DE 22=3.25 x 2,又∵BE 2=AB -AE 2=20-3x ,△E 2FA 2∽△E 2BF ,∴E 2F:A 2E 2=BE 2:E 2F ,即E 2F 2=A 2E 2•BE 2.∴()23.25x x 103x =-,解得x=2.6 或x=0(舍去). ∴AD 的长为2×2.6 =3.2.17.如图,以点O 为位似中心,将OAB ∆放大后得到OCD ∆,2,3OA AC ==,则AB CD=____.【答案】25. 【分析】直接利用位似图形的性质进而分析得出答案.【详解】解:∵以点O 为位似中心,将OAB ∆放大后得到OCD ∆,2,3OA AC ==,∴22235 OA ABOC CD===+.故答案为25.【点睛】此题主要考查了位似变换,正确得出对应边的比值是解题关键.18.已知,点A(-4,y1),B(12,y2)在二次函数y=-x2+2x+c的图象上,则y1与y2的大小关系为________.【答案】<【分析】由题意可先求二次函数y=-x2+2x+c的对称轴为2122bxa,根据点A关于x=1的对称点即可判断y1与y2的大小关系.【详解】解:二次函数y=-x2+2x+c的对称轴为x=1,∵a=-1<0,∴二次函数的值,在x=1左侧为增加,在x=1右侧减小,∵-4<12<1,∴点A、点B均在对称轴的左侧,∴y1<y2故答案为:<.【点睛】本题主要考查的是二次函数的增减性,注意掌握当a<0时,函数图象从左至右先增加后减小.三、解答题(本题包括8个小题)19.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.【答案】(1)证明见试题解析;(2)1;(3)50 13.【解析】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD=x,CD,BD,BO用x表示出来,所以可得BD长.(3)同(2)原理,BD=B′D=x,AB′,B′O,BO用x表示,利用等腰三角形求BD长.试题解析:(1)证明:∵DO ⊥AB ,∴∠DOB =90°,∴∠ACB =∠DOB =90°,又∵∠B =∠B .∴△DOB ∽△ACB .(2)∵AD 平分∠CAB ,DC ⊥AC,DO ⊥AB,∴DO =DC,在 Rt △ABC 中,AC =6,BC =,8,∴AB =10,∵△DOB ∽△ACB,∴DO ∶BO ∶BD =AC ∶BC ∶AB =3∶4∶1,设BD =x ,则DO =DC =35x ,BO =45x, ∵CD +BD =8,∴35x +x =8,解得x =,1,即:BD =1. (3)∵点B 与点B′关于直线DO 对称,∴∠B =∠OB′D ,BO =B′O =45x ,BD =B′D =x, ∵∠B 为锐角,∴∠OB′D 也为锐角,∴∠AB′D 为钝角,∴当△AB ′D 是等腰三角形时,AB′=DB′,∵AB′+B′O +BO =10,∴x +45x +45x =10,解得x =5013,即BD =5013, ∴当△AB′D 为等腰三角形时,BD =5013. 点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知BP 平分ABC ∠,过点P 作PA AB ⊥,PC BC ⊥,则PA PC =.②截两边:如图(2),已知BP 平分MBN ∠,点A BM 上,在BN 上截取BC BA =,则ABP ∆≌CBP ∆. ③角平分线+平行线→等腰三角形:如图(3),已知BP 平分ABC ∠,//PA AC ,则AB AP =;如图(4),已知BP 平分ABC ∠,//EF PB ,则BE BF =.(1) (2) (3) (4)④三线合一(利用角平分线+垂线→等腰三角形):如图(1),已知AD 平分BAC ∠,且AD BC ⊥,则AB AC =,BD CD =.(1)20.解一元二次方程()()()21121x x -=-()222520x x --=【答案】(1)x 1=1,x 2=3,(2)125414144x x ==【分析】(1)根据因式分解法解一元二次方程即可;(2)利用公式法求一元二次方程即可.【详解】(1)2(1)2(1)0x x ---= (12)(1)0x x ---=即(3)(1)0x x --=∴30x -=或10x -=∴123,1x x ==(2)2,5,2a b c ==-=-224(5)42(2)41b ac -=--⨯⨯-=541541224x ∴==⨯ 12541541,44x x +∴== 【点睛】本题主要考查解一元二次方程,掌握一元二次方程的解法并灵活应用是解题的关键.21.如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =+-≠与x 轴交于(1,0)A 、(3,0)B 两点,与y 轴交于点C ,其顶点为点D ,点E 的坐标为(0,-1),该抛物线与BE 交于另一点F ,连接BC .(1)求该抛物线的解析式,并用配方法把解析式化为2()y a x h k =-+的形式;(2)若点(1,)H y 在BC 上,连接FH ,求FHB ∆的面积;(3)一动点M 从点D 出发,以每秒1个单位的速度沿平行于y 轴方向向上运动,连接OM ,BM ,设运动时间为t 秒(t >0),在点M 的运动过程中,当t 为何值时,90OMB ︒∠=?【答案】(1)222(2)33y x =--+;(2)56;(3)223t =- 【解析】(1)将A ,B 两点的坐标代入抛物线解析式中,得到关于a ,b 的方程组,解之求得a ,b 的值,即得解析式,并化为顶点式即可;(2)过点A 作AH ∥y 轴交BC 于H ,BE 于G ,求出直线BC ,BE 的解析式,继而可以求得G 、H 点的坐标,进一步求出GH ,联立BE 与抛物线方程求出点F 的坐标,然后根据三角形面积公式求出△FHB 的面积; (3)设点M 坐标为(2,m ),由题意知△OMB 是直角三角形,进而利用勾股定理建立关于m 的方程,求出点M 的坐标,从而求出MD ,最后求出时间t.【详解】(1)∵抛物线22(0)y ax bx a =+-≠与x 轴交于A (1,0),B(3,0)两点, ∴209320a b a b +-=⎧⎨+-=⎩∴2383a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线解析式为2228222(2)3333y x x x =-+-=--+. (2)如图1,过点A 作AH ∥y 轴交BC 于H ,BE 于G ,由(1)有,C(0,-2),∵B(3,0),∴直线BC解析式为y=23x-2,∵H(1,y)在直线BC上,∴y=-43,∴H(1,-43),∵B(3,0),E(0,-1),∴直线BE解析式为y=-13x-1,∴G(1,-23),∴GH=23,∵直线BE:y=-13x-1与抛物线y=-23x2+83x-2相较于F,B,∴F(12,-56),∴S△FHB=12GH×|x G-x F|+12GH×|x B-x G|=12GH×|x B-x F|=12×23×(3-12)=56.(3)如图2,由(1)有y=-23x2+83x-2,∵D为抛物线的顶点,∴D(2,43),∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,∴设M(2,m),(m>23),∴OM2=m2+4,BM2=m2+1,OB2=9,∵∠OMB=90°,∴OM2+BM2=OB2,∴m2+4+m2+1=9,∴m=2或m=-2(舍),∴M(2,2),∴MD=2-23,∴t=2-2 3 .【点睛】本题考查了待定系数法求二次函数的表达式,待定系数法求一次函数表达式,角平分线上的点到两边的距离相等,勾股定理等知识点,综合性比较强,不仅要掌握性质定理,作合适的辅助线也对解题起重要作用. 22.装潢公司要给边长为6米的正方形墙面ABCD进行装潢,设计图案如图所示(四周是四个全等的矩形,用材料甲进行装潢;中心区是正方形MNPQ,用材料乙进行装潢).两种装潢材料的成本如下表:材料甲乙价格(元/米2)50 40设矩形的较短边AH的长为x米,装潢材料的总费用为y元.(1)MQ的长为米(用含x的代数式表示);(2)求y关于x的函数解析式;(3)当中心区的边长不小于2米时,预备资金1760元购买材料一定够用吗?请说明理由.【答案】(1)(6﹣1x);(1)y=﹣40x1+140x+2;(3)预备资金4元购买材料一定够用,理由见解析【分析】(1)根据大正方形的边长减去两个小长方形的宽即可求解;(1)根据总费用等于两种材料的费用之和即可求解;(3)利用二次函数的性质和最值解答即可.【详解】解:(1)∵AH=GQ=x,AD=6,∴MQ=6-1x;故答案为:6-1x;(1)根据题意,得AH =x ,AE =6﹣x , S 甲=4S 长方形AENH =4x (6﹣x )=14x ﹣4x 1,S 乙=S 正方形MNQP =(6﹣1x )1=36﹣14x+4x 1.∴ y =50(14x ﹣4x 1)+40(36﹣14x+4x 1)=﹣40x 1+140x+2.答:y 关于x 的函数解析式为y =﹣40x 1+140x+2.(3)预备资金4元购买材料一定够用.理由如下:∵y =﹣40x 1+140x+2=﹣40(x -3)1+1800,由﹣40<0,可知抛物线开口向下,在对称轴的左侧,y 随x 的增大而增大.由x -3=0可知,抛物线的对称轴为直线x=3.∴ 当x <3时,y 随x 的增大而增大.∵ 中心区的边长不小于1米,即6﹣1x≥1,解得x≤1,又x >0,∴0<x≤1.当x=1时,y =﹣40(x -3)1+1800=﹣40(1-3)1+1800=4,∴ 当0<x≤1时,y≤4.∴ 预备资金4元购买材料一定够用.答:预备资金4元购买材料一定够用.【点睛】此题主要考查了二次函数的应用以及配方法求最值和正方形的性质等知识,正确得出各部分的边长是解题关键.23.已知如图,抛物线y =ax 2+bx+3与x 轴交于点A (3,0),B (﹣1,0),与y 轴交于点C ,连接AC ,点P 是直线AC 上方的抛物线上一动点(异于点A ,C ),过点P 作PE ⊥x 轴,垂足为E ,PE 与AC 相交于点D ,连接AP .(1)求点C 的坐标;(2)求抛物线的解析式;(3)①求直线AC 的解析式;②是否存在点P ,使得△PAD 的面积等于△DAE 的面积,若存在,求出点P 的坐标,若不存在,请说明理由.【答案】(1)(0,3);(2)y =﹣x 2+2x+3;(3)①3y x =-+;②当点P 的坐标为(1,4)时,△PAD 的面积等于△DAE 的面积.【分析】(1)将0x =代入二次函数解析式即可得点C 的坐标;(2)把A (3,0),B (﹣1,0)代入y =ax 2+bx+3即可得出抛物线的解析式;(3)①设直线直线AC 的解析式为y kx m =+,把A (3,0),C ()03,代入即可得直线AC 的解析式; ②存在点P ,使得△PAD 的面积等于△DAE 的面积;设点P (x ,﹣x 2+2x+3)则点D (x ,﹣x+3),可得PD=﹣x 2+2x+3﹣(﹣x+3)=﹣x 2+3x ,DE=﹣x+3,根据S△PAD =S△DAE 时,即可得PD=DE ,即可得出结论.【详解】解:(1)由y =ax 2+bx+3,令03x y =∴=,∴点C 的坐标为(0,3);(2)把A (3,0),B (﹣1,0)代入y =ax 2+bx+3得933=03=0a b a b ++⎧⎨-+⎩, 解得:=-1=2a b ⎧⎨⎩, ∴抛物线的解析式为:y =﹣x 2+2x+3;(3)①设直线直线AC 的解析式为y kx m =+,把A (3,0),C ()03,代入得 3=0 =3k m m +⎧⎨⎩, 解得=-1=3k m ⎧⎨⎩, ∴直线AC 的解析式为3y x =-+;②存在点P ,使得△PAD 的面积等于△DAE 的面积,理由如下:设点P (x ,﹣x 2+2x+3)则点D (x ,﹣x+3),∴PD=﹣x 2+2x+3﹣(﹣x+3)=﹣x 2+3x ,DE=﹣x+3,当S△PAD =S△DAE 时,有1122PD AE DE AE ⋅=⋅,得PD=DE , ∴﹣x 2+3x=﹣x+3解得x 1=1,x 2=3(舍去),∴y =﹣x 2+2x+3=﹣12+2+3=4,∴当点P 的坐标为(1,4)时,△PAD 的面积等于△DAE 的面积.【点睛】本题考查了用待定系数法求解析式,二次函数的综合,掌握知识点是解题关键.24.甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、5.现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法(画树状图或列表的方法)求取出的两个小球上的数字之和为5的概率.【答案】13 【解析】用树状图列举出所有情况,看两个小球上的数字之和为5的情况数占总情况数的多少即可.【详解】解:树状图如下:共有6种等可能的结果,2163P ==. 25. “道路千万条,安全第一条”,《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70/km h ”,一辆小汽车在一条城市街道上由西向东行驶,在据路边25m 处有“车速检测仪O ”,测得该车从北偏西60︒的A 点行驶到北偏西30的B 点,所用时间为32s .(1)试求该车从A 点到B 点的平均速度(结果保留根号);(2)试说明该车是否超速.【答案】(1)1003/9m s ;(2)没有超过限速. 【分析】(1)分别在Rt AOC 、Rt BOC △中,利用正切求得AC 、BC 的长,从而求得AB 的长,已知时间路程则可以根据公式求得其速度. (2)将限速与其速度进行比较,若大于限速则超速,否则没有超速.此时注意单位的换算.【详解】解:(1)在Rt AOC 中,tan 25tan 60253AC OC AOC m =∠=⨯︒=,在Rt BOC △中,253tan 25tan 303BC OC BOC m =∠=⨯︒=, 503)AB AC BC m ∴=-=. ∴小汽车从A 到B 50331003/)2m s ÷=.(2)70100017570///36009km h m s m s ⨯==,又173.2175999≈<, ∴小汽车没有超过限速.【点睛】本题考查了解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键.. 26.已知二次函数y=ax 2+bx+3的图象经过点 (-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?【答案】(1)y=﹣x 2﹣2x+1;(2)点P (﹣2,1)在这个二次函数的图象上,【分析】(1)根据给定点的坐标,利用待定系数法求出二次函数解析式即可;(2)代入x=-2求出y 值,将其与1比较后即可得出结论.【详解】(1)设二次函数的解析式为y=ax 2+bx+1;∵二次函数的图象经过点(﹣1,0),(2,﹣5),则有:933428a b a b -=-⎧⎨+=-⎩解得;12a b =-⎧⎨=-⎩∴y=﹣x 2﹣2x+1.(2)把x=-2代入函数得y=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1,∴点P (﹣2,1)在这个二次函数的图象上,【点睛】考查待定系数法求二次函数解析式,二次函数图象上点的坐标特征,掌握待定系数法求二次函数解析式是解题的关键.27.某企业为了解饮料自动售卖机的销售情况,对甲、乙两个城市的饮料自动售卖机进行抽样调查,从两个城市中所有的饮料自动售卖机中分别抽取16台,记录下某一天各自的销售情况(单位:元)如下: 甲:25、45、2、22、10、28、61、18、2、45、78、45、58、32、16、78乙:48、52、21、25、33、12、42、1、41、42、33、44、33、18、68、72整理、描述数据:对销售金额进行分组,各组的频数如下:乙 2 6 a b分析数据:两组样本数据的平均数、中位数如下表所示:城市中位数 平均数 众数 甲C 1.8 45 乙 40 2.9 d请根据以上信息,回答下列问题:(1)填空:a=, b=, c=, d=.(2)两个城市目前共有饮料自动售卖机4000台,估计日销售金额不低于40元的数量约为多少台? (3)根据以上数据,你认为甲、乙哪个城市的饮料自动售卖机销售情况较好?请说明理由(一条理由即可).【答案】(1)6,2,2,33 (2)1875 (3)见解析(答案不唯一)【分析】(1)根据某一天各自的销售情况求出a b 、的值,根据中位数的定义求出c 的值,根据众数的定义求出d 的值.(2)用样本估算整体的方法去计算即可.(3)根据平均数、众数、中位数的性质判断即可.【详解】(1)623833a b c d ====,,,.(2)78400018751616+⨯=+(台) 故估计日销售金额不低于40元的数量约为1875台.(3)可以推断出甲城市的饮料自动售货机销售情况较好,理由如下:①甲城市饮料自动售货机销售金额的平均数较高,表示甲城市的销售情况较好;②甲城市饮料自动售货机销售金额的众数较高,表示甲城市的销售金额较高;可以推断出乙城市的饮料自动售货机销售情况较好,理由如下:①乙城市饮料自动售货机销售金额的中位数较高,表示乙城市销售金额高的自动售货机数量较多;【点睛】本题考查了概率统计的问题,掌握平均数、众数、中位数的性质、样本估算整体的方法是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( )A .2B .3C .4D .5【答案】B【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x =4,∵将数据从小到大排列为:1,2,1,1,4,4,4,∴中位数为:1.故选B .【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.2.若12x x 、是一元二次方程2320x x ++=的两个实数根,则2212x x +的值为( ) A .13-B .1-C .5D .13【答案】C 【分析】由一元二次方程根与系数的关系可得x 1+x 2=-3,x 1·x 2=2,利用完全平方公式即可求出答案. 【详解】∵12x x 、是一元二次方程2320x x ++=的两个实数根,∴x 1+x 2=-3,x 1·x 2=2, ∴2212x x +=( x 1+x 2)2-2x 1·x 2=9-4=5, 故选:C .【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax 2+bx+c=0(a≠0)的两个实数根为12x x 、,那么x 1+x 2=b a -,x 1·x 2=c a,熟练掌握韦达定理是解题关键. 3.cos30︒的值等于( ).A .12B .2CD .1【答案】C【分析】根据特殊三角函数值来计算即可.。
2017-2018学年安徽省合肥市庐江县九年级(上)期末数学试卷及试卷解析
2017-2018学年安徽省合肥市庐江县九年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,满分40分。
请将每小题唯一正确选项前的代号填入下面的答题栏内)1.(4分)以下五个图形中,是中心对称的图形共有()A.2个B.3个C.4个D.5个2.(4分)方程x(x﹣1)=x的根是()A.x=2B.x=﹣2C.x1=﹣2,x2=0D.x1=2,x2=0 3.(4分)抛物线y=(x+2)2+3的顶点坐标是()A.(﹣2,﹣3)B.(2,3)C.(﹣2,3)D.(2,﹣3)4.(4分)已知点P(2+m,n﹣3)与点Q(m,1+n)关于原点对称,则m﹣n 的值是()A.1B.﹣1C.2D.﹣25.(4分)下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等6.(4分)用配方法解方程2x2+3=7x时,方程可变形为()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=7.(4分)某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10008.(4分)如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()A.40°B.70°C.70°或80°D.80°或140°9.(4分)已知二次函数y=﹣(x﹣1)2+k的图象上三个点为:A(,y1)、B (2,y2)、C(﹣,y3),则y1、y2、y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y3 10.(4分)如图,△ABC中,∠BAC=90°,AB=AC=2,D为AC上一动点,以AD 为直径的⊙O交BD于E,则线段CE的最小值为()A.B.+1C.2D.﹣1二、填空题(本题共4小题,每小题5分,满分20分)11.(5分)已知抛物线y=ax2﹣2ax+3与x轴的一个交点是(﹣1,0),则该抛物线与x轴的另一个交点坐标为12.(5分)一个圆锥的侧面积是底面积的4倍,则圆锥侧面展开图的扇形的圆心角是.13.(5分)如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O与x轴交于A,B两点,与y轴交于C,D两点.E为⊙O上在第一象限的某一点,直线BF交⊙O于点F,且∠ABF=∠AEC,则直线BF对应的函数表达式为.14.(5分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论;①b2﹣4ac<0②x<0时,y随x的增大而增大③a﹣b+c<0④abc>0⑤2a+b>0其中,正确结论是三、(本题共2小题,每小题8分,满分16分)15.(8分)解方程:4(3x﹣2)(x+1)=3x+3.16.(8分)已知抛物线y=x2﹣(2k﹣1)x+k2﹣k+1的顶点在坐标轴上,求k的值.四、(本题共2小题,每小题8分,满分16分)17.(8分)在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm,求弦AB与CD之间的距离.18.(8分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.五、(本题共2小题,每小题10分,满分20分)19.(10分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.20.(10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,增加利润,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么商场平均每天可多售出2件,若商场想平均每天盈利达1200元,那么买件衬衫应降价多少元?六、(本题满分12分)21.(12分)如图,菱形ABCD中,∠ABC=60°,有一度数为60°的∠MAN绕点A 旋转.(1)如图①,若∠MAN的两边AM,AN分别交BC,CD于点E,F,则线段CE,DF的大小关系如何?请证明你的结论;(2)如图②,若∠MAN的两边AM,AN分别交BC,CD的延长线于点E,F,猜想线段CE,DF的大小关系如何?为什么?七、(本题满分12分)22.(12分)如图在Rt△ABC中,∠C=90°,BD平分∠ABC,过D作DE⊥BD交AB于点E,经过B,D,E三点作⊙O.(1)求证:AC与⊙O相切于D点;(2)若AD=15,AE=9,求⊙O的半径.八、(本题满分14分))23.(14分)如图,抛物线y=x2+bx+c与直线y=x﹣3交于A,B两点,其中点B 在y轴上,点A坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,B,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由;(3)当点P运动到直线AB下方某一处时,△PAB的面积是否有最大值?如果有,请求出此时点P的坐标.2017-2018学年安徽省合肥市庐江县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,满分40分。
〖汇总3套试卷〗合肥市2018年九年级上学期数学期末联考试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC 中,EF ∥BC ,AE 1EB 2=,S 四边形BCFE =8,则S △ABC =( )A .9B .10C .12D .13【答案】A 【分析】由在△ABC 中,EF ∥BC ,即可判定△AEF ∽△ABC ,然后由相似三角形面积比等于相似比的平方,即可求得答案.【详解】∵AE 1EB 2=, ∴AE AE 11==AB AE+EB 1+23=. 又∵EF ∥BC ,∴△AEF ∽△ABC .∴2AEF ABC S 11=S 39∆∆⎛⎫= ⎪⎝⎭. ∴1S △AEF =S △ABC .又∵S 四边形BCFE =8,∴1(S △ABC ﹣8)=S △ABC ,解得:S △ABC =1.故选A .2.下列一元二次方程中,有两个不相等的实数根的是( )A .28160x x -+=B .23x x =C .24x x +=D .2(2)50x -+= 【答案】B【分析】先将各选项一元二次方程化为一般式,再计算判别式即得.【详解】A 选项28160x x -+=中,则1a =,8b =-,16c =,则2=40b ac ∆-=,有两个相等的实数根,不符合题意;B 选项23x x =可化为230x x -=,则1a =,3b =-,0c,则2=490b ac ∆-=>,有两个不相等的实数根,符合题意;C 选项24x x +=可化为24=0x x -+,则1a =,1b =-,4c =,则2=4150b ac ∆-=-<,无实数根,不符合题意;D 选项2(2)50x -+=可化为2490x x -+=,则1a =,4b =-,9c =,则2=4200b ac ∆-=-<,无实数根,不符合题意.故选:B .【点睛】本题考查了一元二次方程根的判别式,解题关键是熟知:判别式>0∆时,一元二次方程有两个不相等的实数根;判别式=0∆时,一元二次方程有两个相等的实数根;判别式∆<0时,一元二次方程无实数根. 3.若反比例函数y=k x 的图象经过点(2,﹣1),则k 的值为( ) A .﹣2B .2C .﹣12D .12 【答案】A【解析】把点(1,-1)代入解析式得-1=2k , 解得k=-1.故选A .4.一元二次方程220x x a -+=有实数解的条件( )A .1a ≥B .1a ≤C .1a >D .1a <【答案】B【分析】根据一元二次方程的根的判别式240b ac ∆=-≥即可得.【详解】一元二次方程220x x a -+=有实数解则2(2)410a ∆=--⨯⋅≥,即440a -≥解得1a ≤故选:B .【点睛】本题考查了一元二次方程的根的判别式,熟记根的判别式是解题关键.对于一般形式20(a 0)++=≠ax bx c 有:(1)当240b ac ∆=->时,方程有两个不相等的实数根;(2)当240b ac ∆=-=时,方程有两个相等的实数根;(3)当240b ac ∆=-<时,方程没有实数根. 5.在平行四边形ABCD 中,点E 是边AD 上一点,且AE=2ED ,EC 交对角线BD 于点F ,则EF FC等于( )A .13B .12C .23D .32【答案】A【解析】试题分析:如图,∵四边形ABCD 为平行四边形,∴ED ∥BC ,BC=AD ,∴△DEF ∽△BCF ,∴EF DE FC CB =,设ED=k ,则AE=2k ,BC=3k ,∴EF FC =3k k =13,故选A . 考点:1.相似三角形的判定与性质;2.平行四边形的性质. 6.如下所示的4组图形中,左边图形与右边图形成中心对称的有( )A .1组B .2组C .3组D .4组【答案】C 【解析】试题分析:根据中心对称图形与轴对称图形的概念依次分析即可. ①②③是只是中心对称图形,④只是轴对称图形,故选C.考点:本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形. 7.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B 【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111x x x -=++. 又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②. 故选B .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.8.如图,四边形ABCD 是O 的内接四边形,AD 与BC 的延长线交于点E ,BA 与CD 的延长线交于点F ,085DCE ∠=,028F ∠=,则E ∠的度数为( )A .38°B .48°C .58°D .68°【答案】A 【分析】根据三角形的外角性质求出B ,然后根据圆内接四边形的性质和三角形内角和定理计算即可.【详解】解:B =57DCE F ∠-∠=︒057EDC B ∠=∠=18038E EDC ECD ∠=︒-∠-∠=︒故选A【点睛】本题考查了圆周角定理及其推论.9.如图,将左边正方形剪成四块,恰能拼成右边的矩形,若a =2,则b 的值是( )A 5B 3C 5D 3【答案】C 【分析】从图中可以看出,正方形的边长=a+b ,所以面积=(a+b )2,矩形的长和宽分别是2b+a ,b ,面积=b (a+2b ),两图形面积相等,列出方程得=(a+b )2=b (a+2b ),其中a =2,求b 的值,即可.【详解】解:根据图形和题意可得:(a+b )2=b (a+2b ),其中a =2,则方程是(2+b )2=b (2+2b ) 解得:51b =+,故选:C .【点睛】此题主要考查了图形的剪拼,本题的关键是从两图形中,找到两图形的边长的值,然后利用面积相等列出等式求方程,解得b 的值.10.如图,二次函数2y x bx =-+的图象与x 轴交于点(4,0),若关于x 的方程20x bx t -+-= 在13x <<的范围内有实根,则t 的取值范围是( )A .34t <<B .34t <≤C .34t ≤≤D .34t ≤<【答案】B 【分析】将点 (1,0)代入函数解析式求出b=1,即要使240x x t -+-=在13x <<的范围内有实根,即要使24=x x t -+在13x <<的范围内有实根,即要使二次函数2y x bx =-+与一次函数y=t 在13x <<的范围内有交点,求出13x <<时,二次函数值的范围,写出t 的范围即可.【详解】将x=1代入函数解析式可得:0=-16+1b ,解得b=1,∴二次函数解析式为:24y x x =-+,要使240x x t -+-=在13x <<的范围内有实根,即要使二次函数2y x bx =-+与一次函数y=t 在13x <<的范围内有交点,二次函数对称轴为x=2,且当x=2时,函数最大值y=1,x=1或x=3时,y=3,∴3<y≤1.∴3<t≤1.故选:B .【点睛】本题主要考查二次函数与一元二次方程之间的关系,数形结合,将方程有实根的问题转化为函数的交点问题是解题关键.11.如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是( )A .16B .14C .13D .12【答案】C【解析】试题分析:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是26=13;故选C . 考点:几何概率.12.如图, 抛物线2y ax bx c =++与x 轴交于点A (-1,0),顶点坐标(1,n )与y 轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①30a b +<;②213a -≤≤-;③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程21ax bx c n ++=-有两个不相等的实数根.其中结论正确的个数为( )A .1 个B .2 个C .3 个D .4 个【答案】D 【解析】利用抛物线开口方向得到a <0,再由抛物线的对称轴方程得到b=-2a ,则3a+b=a ,于是可对①进行判断;利用2≤c≤3和c=-3a 可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax 2+bx+c 与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a <0,而抛物线的对称轴为直线x=-b 2a=1,即b=-2a , ∴3a+b=3a-2a=a <0,所以①正确;∵2≤c≤3,而c=-3a ,∴2≤-3a≤3,∴-1≤a≤-23,所以②正确; ∵抛物线的顶点坐标(1,n ),∴x=1时,二次函数值有最大值n ,∴a+b+c≥am 2+bm+c ,即a+b≥am 2+bm ,所以③正确;∵抛物线的顶点坐标(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.二、填空题(本题包括8个小题)13.如图,角α的两边与双曲线y =k x (k <0,x <0)交于A 、B 两点,在OB 上取点C ,作CD ⊥y 轴于点D ,分别交双曲线y =k x 、射线OA 于点E 、F ,若OA =2AF ,OC =2CB ,则CE EF 的值为______.【答案】49【解析】过C ,B ,A ,F 分别作CM ⊥x 轴,BN ⊥x 轴,AG ⊥x 轴,FH ⊥x 轴,设DO 为2a ,分别求出C ,E ,F 的坐标,即可求出CE EF的值. 【详解】如图:过C ,B ,A ,F 分别作CM ⊥x 轴,BN ⊥x 轴,AG ⊥x 轴,FH ⊥x 轴, 设DO 为2a ,则E (2k a ,2a ), ∵BN ∥CM ,∴△OCM ∽△OBN ,∴CO CM BO BN =23, ∴BN =3a , ∴B (3k a ,3a ), ∴直线OB 的解析式y =29a kx , ∴C (29k a,2a ), ∵FH ∥AG ,∴△OAG∽△OFH,∴23OA AGOF FH==,∵FH=OD=2a,∴AG=43a,∴A(34ka,43a),∴直线OA的解析式y=2169akx,∴F(98ka,2a),∴CEEF=292928k ka ak ka a--=49,故答案为:49【点睛】本题考查反比例函数图象上点的特征,相似三角形的判定,关键是能灵活运用相似三角形的判定方法.14.如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为________m.(结果精确到0.1m)【答案】2.3【解析】AB是Rt△ABC的斜边,这个直角三角形中,已知一边和一锐角,满足解直角三角形的条件,可求出AB的长.【详解】在Rt△ABC中,90,30,2m,C A AC∠=∠==cos,ACAAB∠=∴2cos30,AB=∴()2 2.3m .cos30AB =≈ 即斜坡AB 的长为2.3m.故答案为2.3.【点睛】 考查解直角三角形的实际应用,熟练掌握锐角三角函数是解题的关键.15.若25x y y -=,则x y y+=____________. 【答案】125 【分析】根据合比定理即可得答案.【详解】∵25x y y -=, ∴75x y =, ∴x y y +=125, 故答案为:125 【点睛】 本题考查合比定理,如果a c b d=,那么a b c d b d ++=;熟练掌握合比定理是解题关键. 16.已知二次函数y =x 2﹣5x+m 的图象与x 轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为_____.【答案】(4,0).【分析】先把(1,0)代入y=x 2-5x+m 求出m 得到抛物线解析式为y=x 2-5x+4,然后解方程x 2-5x+4=0得到抛物线与x 轴的另一个交点的坐标.【详解】解:把(1,0)代入y=x 2-5x+m 得1-5+m=0,解得m=4,所以抛物线解析式为y=x 2-5x+4,当y=0时,x 2-5x+4=0,解得x 1=1,x 2=4,所以抛物线与x 轴的另一个交点的坐标为(4,0).故答案为(4,0).【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程问题.17.在平面直角坐标系中,点P (2,﹣3)关于原点对称点P′的坐标是_____.【答案】(﹣2,3).【解析】根据坐标轴的对称性即可写出.【详解】解:根据中心对称的性质,得点P (2,﹣3)关于原点的对称点P′的坐标是(﹣2,3). 故答案为:(﹣2,3).【点睛】此题主要考查直角坐标系内的坐标变换,解题的关键是熟知直角坐标系的特点.18.如图,点()()()111222,,,,,,n n n P x y P x y P x y 在函数()10y x x=>的图象上, 11212,,POA P A A 3231,,n n n P A A P A A -都是等腰直角三角形.斜边112231,,,,n n OA A A A A A A -都在x 轴上(n 是大于或等于2的正整数),点n P 的坐标是______.【答案】1,1()n n n n --【分析】过点P 1作P 1E ⊥x 轴于点E ,过点P 2作P 2F ⊥x 轴于点F ,过点P 3作P 3G ⊥x 轴于点G ,根据△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3都是等腰直角三角形,可求出P 1,P 2,P 3的坐标,从而总结出一般规律得出点P n 的坐标.【详解】解:过点P 1作P 1E ⊥x 轴于点E ,过点P 2作P 2F ⊥x 轴于点F ,过点P 3作P 3G ⊥x 轴于点G , ∵△P 1OA 1是等腰直角三角形,∴P 1E=OE=A 1E=12OA 1, 设点P 1的坐标为(a ,a ),(a >0),将点P 1(a ,a )代入1y x=,可得a=1, 故点P 1的坐标为(1,1),则OA 1=2,设点P 2的坐标为(b+2,b ),将点P 2(b+2,b )代入1y x =,可得21, 故点P 22121),则A 1F=A 221,OA 2=OA 1+A 1A 2=2,设点P 3的坐标为(c+22c ),将点P 3(c+2c )代入1y x =, 可得32P 33232-),综上可得:P 1的坐标为(1,1),P 22121),P 32121),总结规律可得:P n 坐标为1,1()n n n n +---;故答案为:1,1()n n n n +---.【点睛】 本题考查了反比例函数的综合,根据等腰三角形的性质结合反比例函数解析式求出P 1,P 2,P 3的坐标,从而总结出一般规律是解题的关键.三、解答题(本题包括8个小题)19.公司经销的一种产品,按要求必须在15天内完成销售任务.已知该产品的销售价为62元/件,推销员小李第x 天的销售数量为y 件,y 与x 满足如下关系:y =8(05)510(515)x x x x ⎧⎨+<⎩(1)小李第几天销售的产品数量为70件?(2)设第x 天销售的产品成本为m 元/件,m 与x 的函数图象如图,小李第x 天销售的利润为w 元,求w 与x 的函数关系式,并求出第几天时利润最大,最大利润是多少?【答案】(1)小李第1天销售的产品数量为70件;(2)第5天时利润最大,最大利润为880元.【分析】(1)根据y 和x 的关系式,分别列出方程并求解,去掉不符合情况的解后,即可得到答案;(2)根据m 与x 的函数图象,列出m 与x 的关系式并求解系数;然后结合利润等于售价减去成本后再乘以销售数量的关系,利用一元一次函数和一元二次函数的性质,计算得到答案.【详解】(1)如果8x =70得x =354>5,不符合题意; 如果5x+10=70得x =1.故小李第1天销售的产品数量为70件;(2)由函数图象可知:当0≤x≤5,m =40当5<x≤15时,设m =kx+b将(5,40)(15,60)代入,得5401560k b k b +=⎧⎨+=⎩ ∴2k =且b=30∴m =2x+30①当0≤x≤5时w =(62﹣40)•8x =176x∵w 随x 的增大而增大∴当x =5时,w 最大为880;②当5<x≤15时w =(62﹣2x ﹣30)(5x+10)=﹣10x 2+140x+320∴当x =7时,w 最大为810∵880>810∴当x =5时,w 取得最大值为880元故第5天时利润最大,最大利润为880元.【点睛】本题考察了从图像获取信息、一元一次函数、一元二次函数的知识;求解本题的关键为熟练掌握一元一次和一元二次函数的性质,并结合图像计算得到答案.20.如图,点E 在ABC 的中线BD 上,EAD ABD ∠=∠.(1)求证:ADE BDA △∽△;(2)求证:ACB DEC ∠=∠.【答案】(1)见解析;(2)见解析【分析】(1)由∠DAE=∠ABD ,∠ADE=∠BDA ,根据有两角对应相等的三角形相似,可得△ADE ∽△BDA ; (2)由点E 在中线BD 上,可得=DC DE BD DC,又由∠CDE=∠BDC ,根据两组对应边的比相等且夹角对应相等的两个三角形相似,即可得△CDE ∽△BDC ,继而证得∠DEC=∠ACB .【详解】解:证明:(1)∵∠DAE=∠ABD ,∠ADE=∠BDA ,∴△ADE ∽△BDA ;(2)∵D 是AC 边上的中点,∴AD=DC ,∵△ADE ∽△BDA ∴=AD DE BD AD, ∴=DC DE BD DC , 又∵∠CDE=∠BDC ,∴△CDE ∽△BDC ,∴∠DEC=∠ACB .【点睛】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.21.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.【答案】(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x≤56【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+把(35,350),(55,150)代入得:由题意得:3503515055k b k b=+⎧⎨=+⎩ 解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+.(2)设销售利润为W 元则W=(x ﹣30)•y=(x ﹣30)(﹣10x+700),W =﹣10x2+1000x﹣21000W =﹣10(x﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W =3640∴﹣10(x﹣50)2+4000=3640∴x1=44,x2=56如图所示,由图象得:当44≤x≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.22.已知一元二次方程x2﹣3x+m=1.(1)若方程有两个不相等的实数根,求m的取值范围.(2)若方程有两个相等的实数根,求此时方程的根.【答案】(1)9m4;(2)x1=x2=32【分析】(1)根据一元二次方程根的判别式大于零,列出不等式,即可求解;(2)根据一元二次方程根的判别式等于零,列出方程,求出m的值,进而即可求解.【详解】(1)∵一元二次方程x2﹣3x+m=1有两个不相等的实数根,∴∆=b2﹣4ac=9﹣4m>1,∴m<94;(2)∵一元二次方程x2﹣3x+m=1有两个相等的实数根,∴∆=b2﹣4ac=9﹣4m=1,∴m=94,∴x2﹣3x+94=1,∴x1=x2=32.【点睛】本题主要考查一元二次方程根的判别式,掌握根的判别式与一元二次方程根的情况关系是解题的关键.23.已知关于x的一元二次方程(a+c)x2+2bx+a-c=0,其中a、b、c分别为△ABC三边的长.(1)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)若△ABC是正三角形,试求这个一元二次方程的根.【答案】(1)直角三角形;(2).x1=-1,x2=0【解析】试题分析:(1)根据方程有两个相等的实数根得出△=0,即可得出a2=b2+c2,根据勾股定理的逆定理判断即可;(2)根据等边进行得出a=b=c,代入方程化简,即可求出方程的解.解:(1)△ABC是直角三角形,理由是:∵关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0有两个相等的实数根,∴△=0,即(﹣2b)2﹣4(a+c)(a﹣c)=0,∴a2=b2+c2,∴△ABC是直角三角形;(2)∵△ABC是等边三角形,∴a=b=c,∴方程(a+c)x2﹣2bx+(a﹣c)=0可整理为2ax2﹣2ax=0,∴x2﹣x=0,解得:x1=0,x2=1.考点:根的判别式;等边三角形的性质;勾股定理的逆定理.24.如图,已知⊙O的半径长为R=5,弦AB 与弦CD平行,它们之间距离为5,AB=6,求弦CD的长.【答案】6【分析】如图所示作出辅助线,由垂径定理可得AM=3,由勾股定理可求出OM的值,进而求出ON的值,再由勾股定理求CN的值,最后得出CD的值即可.【详解】解:如图所示,因为AB∥CD,所以过点O作MN⊥AB交AB于点M,交CD于点N,连接OA,OC,由垂径定理可得AM=13 2AB=,∴在Rt△AOM中,2222534OM OA AM=-=-=,∴ON=MN-OM=1,∴在Rt △CON 中,2222512426CN OC ON =-=-==,∴246CD CN ==,故答案为:46【点睛】本题考查勾股定理及垂径定理,作出辅助线,构造直角三角形是解题的关键.25.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.26.(1)计算:sin 230°+cos 245°(2)解方程:x (x+1)=3【答案】 (1) 34;(2) x 1x 2.【分析】(1)sin30°=12,cos45°=2,sin 230°+cos 245°=(12)2+(2)2=34(2)用公式法:化简得230x x +-=,a=1,b=1,c=-3,b-4ac=13,【详解】解:(1)原式=(12)2+(2)2=34; (2)x (x+1)=3,x 2+x ﹣3=0, ∵a =1,b =1,c =﹣3,b ﹣4ac =1﹣4×1×(﹣3)=13,∴x ,∴x 1,x 2. 【点睛】本题的考点是三角函数的计算和解一元二次方程.方法是熟记特殊三角形的三角函数及几种常用的解一元二次方程的方法.27.已知250x x --=,求代数式2(1)(21)x x x +-+的值.【答案】4-【分析】首先对所求的式子进行化简,把所求的式子化成25x x -=的形式,然后整体代入求解即可.【详解】解;2(1)(21)x x x +-+ 22212x x x x =++--21x x =-++.250x x --=,25x x ∴-=,∴原式()2211514x x x x =-++=--+=-+=-.【点睛】本题考查了整式的化简求值.正确理解完全平方公式的结构,对所求的式子进行化解变形是关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()A .B .C .D .【答案】B【分析】求出2142tan DBC∠==,12112428xDH CD CHxADADn DAta H--=∠==-=,y=EF−EM−NF =2−BFtan∠DBC−AEtan∠DAH,即可求解.【详解】解:2142tan DBC∠==,12112428xDH CD CHxADADn DAta H--=∠==-=y=EF﹣EM﹣NF=2﹣BFtan∠DBC﹣AEtan∠DAH=2﹣x×12﹣x(1128x-)=18x2﹣x+2,故选:B.【点睛】本题考查的是动点图象问题,涉及到二次函数,此类问题关键是确定函数的表达式,进而求解.2.如图在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC相似的条件是()A.∠AED=∠B B.∠ADE=∠C C.AD DEAB BC=D.AD AEAC AB=【答案】C【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误;B 、∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误;C 、AD DE AB BC=不能判定△ADE ∽△ACB ,故C 选项正确; D 、AD AE AC AB =,且夹角∠A=∠A ,能确定△ADE ∽△ACB ,故D 选项错误. 故选:C .【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.3.下列各式由左到右的变形中,属于分解因式的是( )A .()a m n am an +=+B .()()2222a b c a b a b c --=+--C .()2105521x x x x -=-D .()()168448x x x x x -+=+-+【答案】C【解析】根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【详解】A . 属于整式乘法的变形.B . 不符合因式分解概念中若干个整式相乘的形式.C . 运用提取公因式法,把多项式分解成了5x 与(2x-1)两个整式相乘的形式.D . 不符合因式分解概念中若干个整式相乘的形式.故应选C【点睛】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式. 4.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机模出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球,则口袋中红球的个数大约有( )A .8个B .7个C .3个D .2个 【答案】A【分析】根据利用频率估计概率可估计摸到红球的概率,即可求出红球的个数.【详解】解:∵共摸了100次球,发现有80次摸到红球,∴摸到红球的概率估计为0.80,∴口袋中红球的个数大约10×0.80=8(个),故选:A .【点睛】本题考查了利用频率估计概率的知识,属于常考题型,掌握计算的方法是关键.5.二次函数y =12x 2的图象向左平移1个单位,再向下平移3个单位后,所得抛物线的函数表达式是( ) A .y =()2112x -+3 B .y =()2112x ++3C .y =()2112x -﹣3D .y =()2112x +﹣3【答案】D【分析】先求出原抛物线的顶点坐标,再根据平移,得到新抛物线的顶点坐标,即可得到答案. 【详解】∵原抛物线的顶点为(0,0),∴向左平移1个单位,再向下平移1个单位后,新抛物线的顶点为(﹣1,﹣1). ∴新抛物线的解析式为: y =()2112x +﹣1. 故选:D . 【点睛】本题主要考查二次函数图象的平移规律,通过平移得到新抛物线的顶点坐标,是解题的关键. 6.抛物线2(1)2y x =-+-的顶点到x 轴的距离为( ) A .1- B .2-C .2D .3【答案】C【分析】根据二次函数的顶点式即可得到顶点纵坐标,即可判断距x 轴的距离. 【详解】由题意可知顶点纵坐标为:-2,即到x 轴的距离为2. 故选C. 【点睛】本题考查顶点式的基本性质,需要注意题目考查的是距离即为坐标绝对值. 7.方程x 2﹣9=0的解是( ) A .3 B .±3C .4.5D .±4.5【答案】B【解析】根据直接开方法即可求出答案. 【详解】解:∵x 2﹣9=0, ∴x =±3, 故选:B . 【点睛】本题考察了直接开方法解方程,注意开方时有两个根,别丢根8.已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个 B .2个C .3个D .4个【答案】A【解析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可: ①∵2>0,∴图象的开口向上,故本说法错误; ②图象的对称轴为直线x=3,故本说法错误; ③其图象顶点坐标为(3,1),故本说法错误; ④当x <3时,y 随x 的增大而减小,故本说法正确. 综上所述,说法正确的有④共1个.故选A .9.在△ABC 中,tanC =3,cosA =2,则∠B =( )A .60°B .90°C .105°D .135°【答案】C【分析】直接利用特殊角的三角函数值得出∠C=30°,∠A=45°,进而得出答案.【详解】解:∵tanC cosA ,∴∠C=30°,∠A=45°, ∴∠B=180°-∠C -∠A=105°. 故选:C . 【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.10.下列事件:①经过有交通信号灯的路口,遇到红灯;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数;③长为5cm 、5cm 、11cm 的三条线段能围成一个三角形;④买一张体育彩票中奖。
九年级上册合肥数学期末试卷测试卷(含答案解析)
九年级上册合肥数学期末试卷测试卷(含答案解析)一、选择题1.抛物线223y x x =++与y 轴的交点为( )A .(0,2)B .(2,0)C .(0,3)D .(3,0)2.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .193.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( ) A .1 B .2 C .0,1 D .1,2 4.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤5.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25°6.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=2且∠ACB 最大时,b 的值为( ) A .226+B .226-+C .242+D .2427.方程x 2﹣3x =0的根是( ) A .x =0B .x =3C .10x =,23x =-D .10x =,23x =8.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( ) A .1B .2C .3D .49.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A .13B .14C .15D .1610.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为()A.14B.13C.12D.2311.cos60︒的值等于()A.12B.22C.32D.3312.如图,AB,AM,BN 分别是⊙O 的切线,切点分别为 P,M,N.若 MN∥AB,∠A=60°,AB=6,则⊙O 的半径是()A.32B.3 C.323D.3二、填空题13.平面直角坐标系内的三个点A(1,-3)、B(0,-3)、C(2,-3),___ 确定一个圆.(填“能”或“不能”)14.已知tan(α+15°)=33,则锐角α的度数为______°.15.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.16.如图,已知正六边形内接于O,若正六边形的边长为2,则图中涂色部分的面积为______.17.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.18.如图,在Rt△ABC中,BC AC⊥,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.19.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .20.已知二次函数y =ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表, x 6.17 6.18 6.19 6.20 y﹣0.03﹣0.010.020.04则方程ax 2+bx+c =0的一个解的范围是_____.21.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.22.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.23.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.24.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .三、解答题25.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.26.如图1,矩形OABC 的顶点A 的坐标为(4,0),O 为坐标原点,点B 在第一象限,连接AC , tan ∠ACO=2,D 是BC 的中点, (1)求点D 的坐标;(2)如图2,M 是线段OC 上的点,OM=23OC ,点P 是线段OM 上的一个动点,经过P 、D 、B 三点的抛物线交x 轴的正半轴于点E ,连接DE 交AB 于点F.①将△DBF 沿DE 所在的直线翻折,若点B 恰好落在AC 上,求此时点P 的坐标; ②以线段DF 为边,在DF 所在直线的右上方作等边△DFG ,当动点P 从点O 运动到点M 时,点G 也随之运动,请直接写出点G 运动的路径的长.27.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC ∠的度数.(3)(问题拓展)如图3,,E F 是正方形ABCD 的边AD 上两个动点,满足AE DF =.连接交于点,连接CF 交BD 于点G ,连接BE 交于点H ,若正方形的边长为2,则线段DH 长度的最小值是_______.28.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.29.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于10cm ?(2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由. 30.已知关于x 的一元二次方程()222140x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.31.如图甲,在△ABC 中,∠ACB=90°,AC=4cm ,BC=3cm .如果点P 由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们的速度均为1cm/s .连接PQ ,设运动时间为t (s )(0<t <4),解答下列问题: (1)设△APQ 的面积为S ,当t 为何值时,S 取得最大值,S 的最大值是多少; (2)如图乙,连接PC ,将△PQC 沿QC 翻折,得到四边形PQP′C ,当四边形PQP′C 为菱形时,求t 的值;(3)当t 为何值时,△APQ 是等腰三角形.32.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.2.B解析:B【解析】试题分析:∵DE∥BC,∴AD DEAB BC=,∵13ADAB=,∴31DEBC=.故选B.考点:平行线分线段成比例.3.C解析:C【解析】【分析】分两种情况讨论,当m=0和m≠0,函数分别为一次函数和二次函数,由抛物线与x轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:b2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.4.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.解:∵直线l 与半径为5的O 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B. 【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.5.D解析:D 【解析】 【分析】根据圆周角定理计算即可. 【详解】解:由圆周角定理得,1252A BOC ∠=∠=︒,故选:D . 【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可. 【详解】解:∵AB=A(0,2)、B(a ,a +2)= 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B. 【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.7.D解析:D 【解析】 【分析】先将方程左边提公因式x ,解方程即可得答案. 【详解】 x 2﹣3x =0, x (x ﹣3)=0, x 1=0,x 2=3, 故选:D . 【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.8.B【解析】【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.9.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个,所以,取出红球的概率为2163 P==,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.10.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12;【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,11.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=12. 故选A.【点睛】本题考查了特殊角的三角函数值. 12.D解析:D【解析】【分析】根据题意可判断四边形ABNM 为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO ≌△BPO ,可得AP=BP=3,在直角△APO 中,利用三角函数可解出半径的值.【详解】解:连接OP ,OM ,OA ,OB ,ON∵AB ,AM ,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN ∥AB ,∠A =60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO 和△BPO 中,OAP OBP APO BPO OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO ≌△BPO (AAS ),∴AP=12AB=3,∴tan∠OAP=tan30°=OPAP=33,∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.二、填空题13.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.14.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.15.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.16.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.17.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.18.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.19.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,∴圆锥的底面半径为cm ,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,6=cm ,∴底面周长为2π×6=12πcm ,即这张扇形纸板的弧长是12πcm ,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.20.18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19解析:18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19时,y=0.02,∴当y=0时,相应的自变量x的取值范围为6.18<x<6.19,故答案为:6.18<x<6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.21.24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),解析:24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B (2,6)在k y x =的图象上, ∴k =6; 即12y x=, 2025÷6=337…3,故点Q 离x 轴的距离与当x =3时,函数12y x =的函数值相等,又 x =3时,1243y ==, ∴点Q 的坐标为(2025,4),即n =4,∴mn =6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P 、Q 在A ﹣B ﹣C 段上的对应点是解题的关键.22.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据 解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3.故答案为:2 3 .【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键.23.8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.24.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径. 【详解】该圆锥的底面半径= 故答案为:1. 【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1 【解析】 【分析】 (1)根据180n Rl π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2Cr π=,求圆锥底面半径. 【详解】 该圆锥的底面半径=()1203=11802cm ππ⋅⋅故答案为:1. 【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.三、解答题25.(1)y=(x-1)2-4;(2)点G 坐标为(3.6,2.76),S △FHG =6.348;(3)m=0.6,四边形CDPQ 为平行四边形,理由见解析. 【解析】 【分析】(1)利用顶点式求解即可,(2)将G 点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH ,交x 轴于点R ,由平行线的性质得证明△AQR ∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m 中,即可证明四边形CDPQ 为平行四边形. 【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y 轴交于点E (0,3-),顶点为C (1,4-),∴y=a(x-1)2-4,代入E (0,3-),解得a=1,2(1)4y x =--(223y x x =--)(2)设G[a,0.6(a+1)],代入函数关系式, 得,2(1)40.6(1)a a --=+, 解得a 1=3.6,a 2=-1(舍去), 所以点G 坐标为(3.6,2.76). S △FHG =6.348(3)y=mx+m=m(x+1),当x=-1时,y=0,所以直线y=mx+m延长QH,交x轴于点R,由平行线的性质得,QR⊥x轴.因为FH∥x轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR∽△PQH,所以QR QHAR PH= =0.6,设Q[n,0.6(n+1)],代入y=mx+m中,mn+m=0.6(n+1),m(n+1)=0.6(n+1),因为n+1≠0,所以m=0.6..因为y2=(x-1-m)2+0.6m-4,所以点D由点C向右平移m个单位,再向上平移0.6m个单位所得,过D作y轴的平行线,交x轴与K,再作CT⊥KD,交KD延长线与T,所以KD QRSK AR==0.6,所以tan∠KSD=tan∠QAR,所以∠KSD=∠QAR,所以AQ∥CS,即CD∥PQ.因为AQ∥CS,由抛物线平移的性质可得,CT=PH,DT=QH,所以PQ=CD,所以四边形CDPQ为平行四边形.【点睛】本题考查了待定系数法求解二次函数解析式,二次函数的图象和性质,一次函数与二次函数的交点问题,相似三角形的判定和性质,综合性强,难度较大,掌握待定系数法是求解(1)的关键,求出G 点坐标是求解(2)的关键,证明三角形的相似并理解题目中准黄金直角三角形的概念是求解(3)的关键.26.(1)D (2,2);(2)①P (0,0);②13【解析】 【分析】(1)根据三角函数求出OC 的长度,再根据中点的性质求出CD 的长度,即可求出D 点的坐标;(2)①证明在该种情况下DE 为△ABC 的中位线,由此可得F 为AB 的中点,结合三角形全等即可求得E 点坐标,结合二次函数的性质可设二次函数表达式(此表达式为交点式的变形,利用了二次函数的平移的特点),将E 点代入即可求得二次函数的表达式,根据表达式的特征可知P 点坐标;②可得G 点的运动轨迹为'GG ,证明△DFF'≌△FGG',可得GG'=FF',求得P 点运动到M 点时的解析式即可求出F'的坐标,结合①可求得FF'即GG'的长度. 【详解】解:(1)∵四边形OABC 为矩形, ∴BC=OA=4,∠AOC=90°, ∵在Rt △ACO 中,tan ∠ACO=OAOC=2, ∴OC=2, 又∵D 为CB 中点, ∴CD=2, ∴D (2,2); (2)①如下图所示,若点B 恰好落在AC 上的'B 时,根据折叠的性质1'','2BDF B DF BDB BD B D ∠=∠=∠=, ∵D 为BC 的中点, ∴CD=BD, ∴'CD B D =,∴1''2BCA DB C BDB ∠=∠=∠, ∴BCA BDF ∠=∠,∴//DF AC ,DF 为△ABC 的中位线, ∴AF=BF,∵四边形ABCD 为矩形 ∴∠ABC=∠BAE=90° 在△BDF 和△AEF 中,∵ABC BAE BF AF BFD AFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BDF ≌△AEF , ∴AE=BD=2, ∴E(6,0), 设(2)(4)2y a x x ,将E (6,0)带入,8a+2=0∴a=14-,则二次函数解析式为21342y x x =-+,此时P (0,0);②如图,当动点P 从点O 运动到点M 时,点F 运动到点F',点G 也随之运动到G'.连接GG'.当点P 向点M 运动时,抛物线开口变大,F 点向上线性移动,所以G 也是线性移动.∵OM=23OC=43 ∴4(0,)3M ,当P 点运动到M 点时,设此时二次函数表达式为1(2)(4)2y a x x ,将4(0,)3M 代入得14823a ,解得1112a ,所以抛物线解析式为1(2)(4)212y x x ,整理得21141223y x x =-++. 当y=0时,211401223x x -++=,解得x=8(已舍去负值),所以此时(8,0)E ,设此时直线'DF 的解析式为y=kx+b ,将D (2,2),E (8,0)代入2208k b k b =+⎧⎨=+⎩解得1383k b ⎧=-⎪⎪⎨⎪=⎪⎩,所以1833y x =-+, 当x=4时,43y =,所以4'3AF =,由①得112AF AB ==, 所以1''3FF AF AF =-=, ∵△DFG 、△DF'G'为等边三角形,∴∠GDF =∠G'DF'=60°,DG =DF ,DG'=DF', ∴∠GDF ﹣∠GDF'=∠G'DF'﹣∠GDF', 即∠G'DG =∠F'DF , 在△DFF'与△FGG'中,''''DF DG F DF G DG DF DG =⎧⎪∠=∠⎨⎪=⎩, ∴△DFF'≌△FGG'(SAS ), ∴GG'=FF', 即G 运动路径的长为13. 【点睛】本题考查二次函数综合,解直角三角形,全等三角形的性质与判定,三角形中位线定理,一次函数的应用,折叠问题.(1)中能根据正切求得OC 的长度是解决此问的关键;(2)①熟练掌握折叠前后对应边相等,对应角相等是解题关键;②中能通过分析得出G 点的运动轨迹为线段GG',它的长度等于FF',是解题关键. 27.(1)45;(2)25°;(31 【解析】 【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解. (2)由A 、B 、C 、D 共圆,得出∠BDC =∠BAC ,(3)根据正方形的性质可得AB =AD =CD ,∠BAD =∠CDA ,∠ADG =∠CDG ,然后利用“边角边”证明△ABE 和△DCF 全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS ”证明△ADG 和△CDG 全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB =90°,取AB 的中点O ,连接OH 、OD ,根据直角三角形斜边上的中线等于斜边的一半可得OH =12AB =1,利用勾股定理列式求出OD ,然后根据三角形的三边关系可知当O 、D 、H 三点共线时,DH 的长度最小. 【详解】(1)如图1,∵AB =AC ,AD =AC ,∴以点A 为圆心,点B 、C 、D 必在⊙A 上, ∵∠BAC 是⊙A 的圆心角,而∠BDC 是圆周角,∴∠BDC =12∠BAC =45°, 故答案是:45;(2)如图2,取BD 的中点O ,连接AO 、CO .∵∠BAD =∠BCD =90°, ∴点A 、B 、C 、D 共圆, ∴∠BDC =∠BAC , ∵∠BDC =25°, ∴∠BAC =25°;(3)在正方形ABCD 中,AB =AD =CD ,∠BAD =∠CDA ,∠ADG =∠CDG , 在△ABE 和△DCF 中,AB CD BAD CDA AE DF ⎧⎪∠∠⎨⎪⎩===, ∴△ABE ≌△DCF (SAS ), ∴∠1=∠2, 在△ADG 和△CDG 中,AD CDADG CDGDG DG⎧⎪∠∠⎨⎪⎩===,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°−90°=90°,取AB的中点O,连接OH、OD,则OH=AO=12AB=1,在Rt△AOD中,OD2222125AO AD++=根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD−OH5.【点睛】本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.28.(1)抛物线的表达式为:228y x x=-++,直线AB的表达式为:21y x=-;(2)存在,理由见解析;点P(6,16)-或(4,16)--或(17,2)+或(17,2)-.【解析】【分析】(1)二次函数表达式为:y=a(x-1)2+9,即可求解;(2)S△DAC=2S△DCM,则()()()()()21112821139112 222DAC C AS DH x x x x x x =-=-++-++=--⨯,,即可求解;(3)分AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)二次函数表达式为:()219y a x =-+, 将点A 的坐标代入上式并解得:1a =-, 故抛物线的表达式为:228y x x =-++…①, 则点()3,5B ,将点,A B 的坐标代入一次函数表达式并解得: 直线AB 的表达式为:21y x =-; (2)存在,理由:二次函数对称轴为:1x =,则点()1,1C , 过点D 作y 轴的平行线交AB 于点H ,设点()2,28D x x x -++,点(),21H x x -,∵2DAC DCM S S ∆∆=, 则()()()()()21112821139112222DACC A SDH x x x x x x =-=-++-++=--⨯, 解得:1x =-或5(舍去5), 故点()1,5D -;(3)设点(),0Q m 、点(),P s t ,228t s s =-++, ①当AM 是平行四边形的一条边时,点M 向左平移4个单位向下平移16个单位得到A ,同理,点(),0Q m 向左平移4个单位向下平移16个单位为()4,16m --,即为点P , 即:4m s -=,6t -=,而228t s s =-++, 解得:6s =或﹣4, 故点()6,16P -或()4,16--; ②当AM 是平行四边形的对角线时,由中点公式得:2m s +=-,2t =,而228t s s =-++, 解得:17s =±故点()12P 或()12;综上,点()6,16P -或()4,16--或()12或()12. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.29.(1)3秒后,PQ 的长度等于(2)PQB ∆的面积不能等于27cm . 【解析】 【分析】(1)由题意根据PQ=BP 2+BQ 2=PQ 2,求出即可;(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可; 【详解】解:(1)设x 秒后,PQ =5BP x =-,2BQ x =, ∵222BP BQ PQ +=∴()()(22252x x -+=解得:13x =,21x =-(舍去) ∴3秒后,PQ 的长度等于;(2)设t 秒后,5PB t =-,2QB t =, 又∵172PQB S BP QB ∆=⨯⨯=,()15272t t ⨯-⨯=, ∴2570t t -+=,25417252830∆=-⨯⨯=-=-<,∴方程没有实数根,∴PQB ∆的面积不能等于27cm . 【点睛】本题主要考查一元二次方程的应用,找到关键描述语“△PBQ 的面积等于27cm ”,得出等量关系是解决问题的关键. 30.(1)174m >-;(2)4m =- 【解析】 【分析】(1)由根的判别式2=40b ac ∆->即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得222125x x +=,又由一元二次方程根与系数的关系1212, b c x x x x a a+=-=,所以有()2221212122x x x x x x +-=+,据此列出关于m 的方程求解. 【详解】(1)∵方程有两个不相等的实数根, ∴()()22=2144=417m m m ∆+--+>0解得:174m >- ∴当174m >-时,方程有两个不相等的实数根; (2)由题意得: 2221212212521?4x x x x m x x m ⎧+=⎪+=--⎨⎪=-⎩ ∴()()()222222121212=2212424925x x x x x x m m m m ++-=----=++=解得:2m =或4m =-∵21x 、22x 分别是边长为5的菱形的两条对角线 ∴122 1 0x x m +=-->,即12m <- ∴4m =- 【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键. 31.(1)当t 为52秒时,S 最大值为185;(2)2013; (3)52或2513或4013.【解析】 【分析】(1)过点P 作PH ⊥AC 于H ,由△APH ∽△ABC ,得出=PH APBC AB,从而求出AB ,再根据535PH t -,得出PH=3﹣35t ,则△AQP 的面积为:12AQ•PH =12t (3﹣35t ),最后进行整理即可得出答案;(2)连接PP′交QC 于E ,当四边形PQP′C 为菱形时,得出△APE ∽△ABC ,=AE APAC AB,求出AE=﹣45t+4,再根据QE=AE ﹣AQ ,QE=12QC 得出﹣95t+4=﹣12t+2,再求t 即可; (3)由(1)知,PD=﹣35t+3,与(2)同理得:QD=﹣95t+4,从而求出。
∥3套精选试卷∥2018年合肥市九年级上学期数学期末经典试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.抛物线2y x bx c =++的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为()2y x 14=--,则b 、c 的值为A .b=2,c=﹣6B .b=2,c=0C .b=﹣6,c=8D .b=﹣6,c=2 【答案】B【详解】函数()2y x 14=--的顶点坐标为(1,﹣4),∵函数()2y x 14=--的图象由2y x bx c =++的图象向右平移2个单位,再向下平移3个单位得到, ∴1﹣2=﹣1,﹣4+3=﹣1,即平移前的抛物线的顶点坐标为(﹣1,﹣1).∴平移前的抛物线为()2y x 11=+-,即y=x 2+2x .∴b=2,c=1.故选B .2.反比例函数y =(k≠0)的图象经过点(2,-4),若点(4,n)在反比例函数的图象上,则n 等于( ) A .﹣8 B .﹣4 C .﹣ D .﹣2【答案】D【解析】利用反比例函数图象上点的坐标特征得到4n=1×(-4),然后解关于n 的方程即可.【详解】∵点(1,-4)和点(4,n )在反比例函数y=的图象上,∴4n=1×(-4),∴n=-1.故选D .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .3.如图,△ABC 中,点D 是AB 的中点,点E 是AC 边上的动点,若△ADE 与△ABC 相似,则下列结论一定成立的是( )A.E为AC的中点B.DE是中位线或AD·AC=AE·ABC.∠ADE=∠C D.DE∥BC或∠BDE+∠C=180°【答案】D【分析】如图,分两种情况分析:由△ADE与△ABC相似,得,∠ADE=∠B或∠ADE=∠C,故DE∥BC或∠BDE+∠C=180°.【详解】因为,△ADE与△ABC相似,所以,∠ADE=∠B或∠ADE=∠C所以,DE∥BC或∠BDE+∠C=∠BDE+∠ADE=180°故选D【点睛】本题考核知识点:相似性质.解题关键点:理解相似三角形性质.4.已知,当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,则m的值为() A.﹣5 B.﹣1 C.﹣1.25 D.1【答案】A【分析】根据题意,分情况讨论:当二次函数开口向上时,在对称轴上取得最小值,列出关于m的一次方程求解即可;当二次函数开口向下时,在x=-1时取得最小值,求解关于m的一次方程即可,最后结合条件得出m的值.【详解】解:∵当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,∴m>0,当x=1时,该函数取得最小值,即﹣5m+1=6,得m=﹣1(舍去),m<0时,当x=﹣1时,取得最小值,即m(﹣1﹣1)2﹣5m+1=6,得m=﹣5,由上可得,m的值是﹣5,故选:A.【点睛】本题考查了二次函数的最值问题,注意根据开口方向分情况讨论,一次方程的列式求解,分情况讨论是解5.在Rt ABC 中,∠C=90°,如果sin cos A A =,那么A ∠的值是( )A .90°B .60°C .45°D .30° 【答案】C【分析】根据锐角三角函数的定义解得即可. 【详解】解:由已知,sin BC A AB =,cos AC A AB = ∵sin cos A A =∴BC AC =∵∠C=90°∴A ∠=45°故选:C【点睛】本题考查了锐角三角函数的定义,解答关键是根据定义和已知条件构造等式求解.6.反比例函数3y x =-,下列说法不正确的是( ) A .图象经过点(1,-3)B .图象位于第二、四象限C .图象关于直线y=x 对称D .y 随x 的增大而增大 【答案】D【解析】通过反比例图象上的点的坐标特征,可对A 选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点()1,3-的坐标满足反比例函数3y x=-,故A 是正确的; 由30k =-<,双曲线位于二、四象限,故B 也是正确的; 由反比例函数的对称性,可知反比例函数3y x=-关于y x =对称是正确的,故C 也是正确的, 由反比例函数的性质,0k <,在每个象限内,y 随x 的增大而增大,不在同一象限,不具有此性质,故D 是不正确的,故选:D .【点睛】考查反比例函数的性质,当0k <时,在每个象限内y 随x 的增大而增大的性质、反比例函数的图象是轴对称图象,y x =和y x =-是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.7.二次函数()2213y x =++的顶点坐标是( )A .(1,3)--B .(1,3)-C .(1,3)-D .(1,3)【分析】根据抛物线的顶点式:()2213y x =++,直接得到抛物线的顶点坐标.【详解】解:由抛物线为:()2213y x =++, ∴ 抛物线的顶点为:()1,3.-故选B .【点睛】本题考查的是抛物线的顶点坐标,掌握抛物线的顶点式是解题的关键.8.对于二次函数y =2(x ﹣1)2+2的图象,下列说法正确的是( )A .开口向下B .对称轴是 x =﹣1C .与 x 轴有两个交点D .顶点坐标是(1,2) 【答案】D【分析】根据题意从y =2(x ﹣1)2+2均可以直接确定函数的开口方向、对称轴、顶点坐标等.【详解】解:y =2(x ﹣1)2+2,(1)函数的对称轴为x =1;(2)a =2>0,故函数开口向上;(3)函数顶点坐标为(1,2),开口向上,故函数与x 轴没有交点;故选:D .【点睛】本题考查的是二次函数的开口方向与x 轴的交点,以及函数顶点坐标等基本性质,是函数的基础题注意掌握.9.在Rt △ABC 中,∠C =90°,若 1sin 2A =,则∠B 的度数是( ) A .30°B .45°C .60°D .75° 【答案】C 【分析】根据特殊角的函数值1sin 302=可得∠A 度数,进一步利用两个锐角互余求得∠B 度数. 【详解】解:∵1sin 302=, ∴∠A=30°,∵∠C =90°,∴∠B=90°-∠A=60°故选:C .【点睛】此题主要考查了特殊角的函数值,以及直角三角形两个锐角互余,熟练掌握特殊角函数值是解题的关键.10.已知点()()121,,2,A y B y -都在双曲线3m y x +=上,且12y y >,则m 的取值范围是( ) A .m 0<B .0m >C .3m >-D .m 3<- 【答案】D 【分析】分别将A ,B 两点代入双曲线解析式,表示出1y 和2y ,然后根据12y y >列出不等式,求出m 的取值范围.【详解】解:将A (-1,y 1),B (2,y 2)两点分别代入双曲线3m y x+=,得 13y m =--,232m y +=, ∵y 1>y 2,332m m +∴-->, 解得3m <-,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,解不等式.反比例函数图象上的点的坐标满足函数解析式. 11.用配方法解一元二次方程x 2﹣2x =5的过程中,配方正确的是( )A .(x+1)2=6B .(x ﹣1)2=6C .(x+2)2=9D .(x ﹣2)2=9【答案】B【分析】在方程左右两边同时加上一次项系数一半的平方即可.【详解】解:方程两边同时加上一次项系数一半的平方,得到x 2﹣2x+1=5+1,即(x ﹣1)2=6, 故选:B .【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.下列运算正确的是( )A .a •a 1=aB .(2a )3=6a 3C .a 6÷a 2=a 3D .2a 2﹣a 2=a 2 【答案】D【分析】根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及合并同类项法则逐一判断即可.【详解】A .a •a 1=a 2,故本选项不合题意;B.(2a)3=8a3,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.2a2﹣a2=a2,正确,故本选项符合题意.故选:D.【点睛】本题考查的是幂的运算,比较简单,需要牢记幂的运算公式.二、填空题(本题包括8个小题)13.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.【答案】1.【详解】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,AB=22AC BC+=22512+=13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.14.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.【答案】6【解析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得ED CDCD FD=,代入数据可得答案.【详解】如图,在EFC ∆中,90,9ECF ED ︒∠==米,4FD =米,易得~ EDC Rt CDF ∆∆, ED CD CD FD ∴=,即94CD CD =, 6CD ∴=米.故答案为:6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用. 15.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的侧面面积为_____cm 2(结果保留π).【答案】3π【详解】212033360ππ⨯=. 故答案为:3π.16.如图,根据图示,求得x 和y 的值分别为____________.【答案】4.5,101【分析】证明ADC BDE ∆∆∽,然后根据相似三角形的性质可解.【详解】解:∵7.232.4AD BD ==, 4.831.6CD DE ==, ∴AD CD BD DE=, ∵ADC BDE ∠=,∴ADC BDE ∆∆∽,∴3AC BE=,ACD BED ∠=∠, ∴AC=4.5,y=101.故答案是:x=4.5,y=101.【点睛】本题考查了相似三角形的判定和性质,要熟悉相似三角形的各种判定方法,关键在找角相等以及边的比例关键.17.在2,3,4-这三个数中,任选两个数的积作为k 的值,使反例函数k y x =的图象在第二、四象限的概率是______.【答案】23【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,并求出 k 为负值的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:,∵共有6种等可能的结果,任选两个数的积作为k 的值,k 为负数的有4种,∴反比例函数k y x=的图象在第二、四象限的概率是:4263=. 故答案为:23. 【点睛】 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18.黄冈中学是百年名校,百年校庆上的焰火晚会令很多人记忆犹新.有一种焰火升高高度为h (m )与飞行时间t (s )的关系式是252012h t t =-++,若这种焰火在点燃升空后到最高处引爆,则从点火到引爆所需时间为__________s .【答案】1【解析】根据关系式可知焰火的运行轨迹是一个开口向下的抛物线,已知焰火在升到最高时引爆,即到达抛物线的顶点时引爆,顶点横坐标就是从点火到引爆所需时间.则t=1205-⨯-=1s , 故答案为1.三、解答题(本题包括8个小题)19.小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y (单位:千克)与上市时间x (单位:天)的函数关系如图1所示,草莓的销售价p (单位:元/千克)与上市时间x (单位:天)的函数关系如图2所示设第x 天的日销售额为w (单位:元)(1)第11天的日销售额w 为 元;(2)观察图象,求当16≤x≤20时,日销售额w 与上市时间x 之间的函数关系式及w 的最大值;(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的销售价p 元千克将批发来的草莓全部售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?【答案】(1)1980;(2)w =﹣5(x ﹣1)2+180, w 有最大值是680元;(3)112元【分析】(1)当3≤x <16时,设p 与x 的关系式为p =kx +b ,当x =11时,代入解析式求出p 的值,由销售金额=单价×数量就可以求出结论;(2)根据两个图象求得两个一次函数解析式,进而根据销售问题的等量关系列出二次函数解析式即可; (3)当x =15时代入(2)的解析式求出p 的值,再当x =15时代入(1)的解析式求出y 的值,再由利润=销售总额−进价总额−车费就可以得出结论.【详解】解:(1)当3≤x≤16时设p 与x 之间的函数关系式为p =kx+b依题意得把(3,30),(16,17)代入,3031716k b k b ⎧⎨⎩=+=+解得133k b =-⎧⎨=⎩∴p =﹣x+33当x =11时,p =22所以90×22=1980答:第11天的日销售额w 为1980元.故答案为1980;(2)当11≤x≤20时设y 与x 之间的函数关系式为y =k 1x+b 1,依题意得把(20,0),(11,90)代入得11119011020k b k b ⎧⎨⎩=+=+ 解得1110200k b =-⎧⎨=⎩ ∴y =﹣10x+200当16≤x≤20时设p 与x 之间的函数关系式为:p =k 2x+b 2依题意得,把(16,17),(20,19)代入得222217161920k b k b ⎧⎨⎩=+=+ 解得k 2=12,b 2=9: ∴p =12x+9 w =py =(12x+9)(﹣10x+200) =﹣5(x ﹣1)2+1805∴当16≤x≤20时,w 随x 的增大而减小∴当x =16时,w 有最大值是680元.(3)由(1)得当3≤x≤16时,p =﹣x+33当x =15时,p =﹣15+33=18元,y =﹣10×15+200=50千克利润为:50(1﹣2%)×18﹣50×15﹣20=112元答:当天能赚到112元.【点睛】此题主要考查一次函数与二次函数的应用,解题的关键是根据题意分别列出一次函数与二次函数求解. 20.先化简,再求值:()2111x x ⎛⎫-÷-⎪+⎝⎭,其中x 为方程2320x x ++=的根. 【答案】1【分析】先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x 值,代入求值.【详解】解:原式=()()()21111111x x x x x x x --+-÷=-⋅=--+--. 解2320x x ++=得,122,?1x x =-=-,∵1x =-时,21x +无意义, ∴取2x =-.当2x =-时,原式=()211---=.21.省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(1)根据表格中的数据,可计算出甲的平均成绩是 环(直接写出结果);(2)已知乙的平均成绩是9环,试计算其第二次测试成绩的环数;(3)分别计算甲、乙六次测试成绩的方差,根据计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.(计算方差的公式:()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎣⎦) 【答案】(1) 9 ;(2) 7 ;(3)22=3S 甲,24=3S 乙,选甲,理由见解析. 【分析】(1)根据图表中的甲每次数据和平均数的计算公式列式计算即可;(2)根据图表中的乙每次数据和平均数的计算公式列式计算即可; (3)分别从平均数和方差进行分析,即可得出答案.【详解】(1)甲的平均成绩是:()1089810969+++++÷=;(2)设第二次的成绩为a ,则乙的平均成绩是:()1010109869a +++++÷=,解得:7a = ;(3)()()()()()()2222222121098999891099963S ⎡⎤=-+-+-+-+-+-=⎣⎦甲, ()()()()()()22222221410979109109998963S ⎡⎤=-+-+-+-+-+-=⎣⎦乙, 推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【点睛】此题主要考查了平均数的求法、方差的求法以及运用方差做决策,正确的记忆方差公式是解决问题的关键,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,那么每件童装应降价多少元?【答案】应该降价20元.【解析】设每件童装应降价x 元,那么就多卖出2x 件,根据每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,要想平均每天在销售这种童装上获利1200元,可列方程求解.【详解】设每件童装应降价x 元,由题意得:()()402021200x x -+=,解得:10x =或20x =.因为减少库存,所以应该降价20元.【点睛】本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解.23.如图1是超市的手推车,如图2是其侧面示意图,已知前后车轮半径均为5 cm ,两个车轮的圆心的连线AB 与地面平行,测得支架AC =BC =60cm ,AC 、CD 所在直线与地面的夹角分别为30°、60°,CD =50cm .(1)求扶手前端D 到地面的距离;(2)手推车内装有简易宝宝椅,EF 为小坐板,打开后,椅子的支点H 到点C 的距离为10 cm ,DF =20cm ,EF ∥AB ,∠EHD =45°,求坐板EF 的宽度.(本题答案均保留根号)【答案】(1)35+253(2)坐板EF 的宽度为(320)cm .【分析】(1)如图,构造直角三角形Rt △AMC 、Rt △CGD 然后利用解直角三角形分段求解扶手前端D 到地面的距离即可;(2)由已知求出△EFH 中∠EFH =60°,∠EHD =45°,然后由HQ +FQ =FH =20cm 解三角形即可求解.【详解】解:(1)如图2,过C 作CM ⊥AB ,垂足为M ,又过D 作DN ⊥AB ,垂足为N ,过C 作CG ⊥DN ,垂足为G ,则∠DCG =60°,∵AC =BC =60cm ,AC 、CD 所在直线与地面的夹角分别为30°、60°,∴∠A =∠B =30°,则在Rt △AMC 中,CM =12AC =30cm . ∵在Rt △CGD 中,sin ∠DCG =DG CD,CD =50cm , ∴DG =CD ⋅sin ∠DCG =50⋅sin60°=350=253 又GN =CM =30cm ,前后车轮半径均为5cm ,∴扶手前端D 到地面的距离为DG +GN +5=253+30+5=35+253(cm ).(2)∵EF ∥CG ∥AB ,∴∠EFH =∠DCG =60°,∵CD =50cm ,椅子的支点H 到点C 的距离为10cm ,DF =20cm ,∴FH =20cm ,如图2,过E 作EQ ⊥FH ,垂足为Q ,设FQ =x , 在Rt △EQF 中,∠EFH =60°,∴EF =2FQ =2x ,EQ 223EF FQ x -=,在Rt △EQH 中,∠EHD =45°,∴HQ =EQ 3x∵HQ +FQ =FH =20cm 3x x =20,解得x =10310,∴EF =2(10310)=320.答:坐板EF 的宽度为(320)cm .【点睛】本题考查了解直角三角形的应用,解题的难点在于从实际问题中抽象出数学基本图形构造适当的直角三角形,难度较大.24.东坡商贸公司购进某种水果成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价P (元/kg )与时间t (天)之间的函数关系式130(124)248(2548)t t P t t ⎧+⎪=⎨⎪-+⎩,t 为整数,且其日销售量y (kg )与时间t (天)的关系如下表: 时间t (天)1 3 6 10 20 … 日销售量y (kg ) 118 114 108 100 80 … (1)已知y 与t 之间的变化符合一次函数关系,试求在第30天的日销售量;(2)哪一天的销售利润最大?最大日销售利润为多少?【答案】(1)第30天的日销售量为60kg ;(2)当20t =时,max 1600W =【分析】(1)设y=kt+b ,利用待定系数法即可解决问题.(2)日利润=日销售量×每kg 利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.【详解】(1)设y=kt+b ,把t=1,y=118;t=3,y=114代入得到:1183114k b k b ++⎧⎨⎩== 解得,2120k b -⎧⎨⎩==, ∴y=-2t+1.将t=30代入上式,得:y=-2×30+1=2.所以在第30天的日销售量是2kg .(2)设第t 天的销售利润为w 元,则(20)W P y =-⋅当124t 时,由题意得,13020(2120)2W t t ⎛⎫=+-⋅-+⎪⎝⎭=2401200t t -++=2(20)1600t --+∴t=20时,w 最大值为120元.当2548t 时,22(4820)(2120)217633602(44)512W t t t t t =-+--+=-+=-- ∵对称轴t=44,a=2>0,∴在对称轴左侧w 随t 增大而减小,∴t=25时,w 最大值为210元,综上所述第20天利润最大,最大利润为120元.【点睛】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.25.如图,某大楼的顶部树有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i=1AB=10米,AE=15米.(i=1是指坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414, 1.732)【答案】(1)点B距水平面AE的高度BH为5米.(2)宣传牌CD高约2.7米.【分析】(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH. (2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度.【详解】解:(1)过B作BG⊥DE于G,在Rt△ABF中,i=tan∠333=,∴∠BAH=30°∴BH=12AB=5(米).答:点B距水平面AE的高度BH为5米.(2)由(1)得:BH=5,3∴3在Rt△BGC中,∠CBG=45°,∴3+15.在Rt△ADE中,∠DAE=60°,AE=15,∴33∴CD=CG+GE﹣3﹣3﹣3(米). 答:宣传牌CD高约2.7米.26.如图,AB 是⊙O 的直径,C 是⊙O 上一点,且AC=2,∠CAB=30°,求图中阴影部分面积.【答案】3+29π 【分析】根据扇形的面积公式进行计算即可.【详解】解:连接OC 且过点O 作AC 的垂线,垂足为D ,如图所示.∵OA=OC∴AD=1在Rt △AOD 中∵∠DAO=30°∴2222OD AD OA 4OD +==∴323OA =∴AOC 1133S AC OD 22233∆=•=⨯⨯= 由OA=OC ;∠DAO=30可得∠COB=60°∴S 扇形BOC =2236023609⨯⎝⎭=ππ ∴S 阴影=S △AOC + S 扇形BOC =33+29π 【点睛】本题考查扇形的面积公式,熟记扇形的面积公式是解题的关键.27.解方程:x 2﹣2x ﹣2=1.【答案】x 13x 2=13【解析】试题分析:把常数项2移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.试题解析:x2﹣2x﹣2=1移项,得x2﹣2x=2,配方,得x2﹣2x+1=2+1,即(x﹣1)2=3,开方,得x﹣解得x1x2=1考点:配方法解一元二次方程九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列说法正确的是( )A .等弧所对的圆心角相等B .平分弦的直径垂直于这条弦C .经过三点可以作一个圆D .相等的圆心角所对的弧相等 【答案】A【分析】根据圆心角、弧、弦的关系、确定圆的条件、垂径定理的知识进行判断即可.【详解】等弧所对的圆心角相等,A 正确;平分弦的直径垂直于这条弦(此弦不能是直径),B 错误;经过不在同一直线上的三点可以作一个圆,C 错误;相等的圆心角所对的弧不一定相等,故选A.【点睛】此题考查圆心角、弧、弦的关系,解题关键在于掌握以及圆心角、弧、弦的关系2.点M (2,-3)关于原点对称的点N 的坐标是: ( )A .(-2,-3)B .(-2, 3)C .(2, 3)D .(-3, 2) 【答案】B【解析】试题解析:已知点M (2,-3),则点M 关于原点对称的点的坐标是(-2,3),故选B .3.如图,点A 在以BC 为直径的O 内,且AB AC =,以点A 为圆心,AC 长为半径作弧,得到扇形ABC ,且120BAC ∠=︒,2BC =.若在这个圆面上随意抛飞镖,则飞镖落在扇形ABC 内的概率是()A .13B .34C .49D .2π【答案】C【分析】如图,连接AO ,∠BAC =120︒,根据等腰三角形的性质得到AO ⊥BC ,∠BAO =60︒,解直角三角形得到AB 23ABC 的面积=223(433601209ππ⋅⨯=,根据概率公式即可得到结论.【详解】如图,连接AO,∠BAC=120︒,∵AB=AC,BO=CO,∴AO⊥BC,∠BAO=60︒,∵BC=2,∴BO=1,∴AB=BO÷cos30°=23,∴扇形ABC 的面积=223()433601209ππ⋅⨯=,∵⊙O的面积=π,∴飞镖落在扇形ABC内的概率是49ππ=49,故选:C.【点睛】本题考查了几何概率,扇形的面积的计算,等腰三角形的性质,解直角三角形的运用,正确的识别图形是解题的关键.4.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知ABC相似.()A.B.C.D.【答案】A【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【详解】解:已知给出的三角形的各边分别为125只有选项A2、210与它的各边对应成比例.故选:A.【点睛】本题考查三角形相似判定定理以及勾股定理,是基础知识要熟练掌握.5.张家口某小区要种植一个面积为3500m 2的矩形草坪,设草坪的长为ym ,宽为xm ,则y 关于x 的函数解析式为( )A .y =3500xB .x =3500yC .y =3500xD .y =1750x 【答案】C 【解析】根据矩形草坪的面积=长乘宽,得3500xy = ,得3500y x =.故选C. 6.化简2(21)÷-的结果是( )A .221-B .22-C .12-D .2+2 【答案】D【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=2×21-=2×(2+1)=2+2. 故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.7.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .3【答案】B 【详解】过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,∴四边形PQCD 与四边形APQB 都为平行四边形,∴△PDC ≌△CQP ,△ABP ≌△QPB ,∴S △PDC =S △CQP ,S △ABP =S △QPB ,∵EF 为△PCB 的中位线,∴EF ∥BC ,EF=12BC , ∴△PEF ∽△PBC ,且相似比为1:2,∴S △PEF :S △PBC =1:4,S △PEF =3,∴S △PBC =S △CQP +S △QPB =S △PDC +S △ABP =12S S +=1.故选B .8.如图,在平面直角坐标系中,正方形ABCO 的顶点O 在坐标原点,点B 的坐标为()2,6,点A 在第二象限,且反比例函数(0)k y k x=≠的图像经过点A ,则k 的值是( )A .-9B .-8C .-7D .-6【答案】B 【分析】作AD ⊥x 轴于D ,CE ⊥x 轴于E ,先通过证得△AOD ≌△OCE 得出AD=OE ,OD=CE ,设A (x ,kx),则C (k x ,-x ),根据正方形的性质求得对角线解得F 的坐标,即可得出1232k x x k x x ⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩,解方程组求得k 的值.【详解】解:如图,作AD x ⊥轴于D ,CE x ⊥轴于E 连接AC ,BO ,∵90AOC ∠=︒,∴90AOD COE ∠+∠=︒∵90AOD OAD ∠+∠=︒,∴OAD COE ∠=∠.在AOD △和OCE △中,90OAD COE ADO OEC OA OC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOD OCE AAS △≌△∴,AD OE OD CE ==.设,k A x x ⎛⎫ ⎪⎝⎭,则,()k C x x-. ∵AC 和OB 互相垂直平分,点B 的坐标为()2,6,∴交点F 的坐标为()1,3, ∴1232k x x k x x ⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩, 解得24x k x=-⎧⎪⎨=⎪⎩, ∴8k =-,故选B .【点睛】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,全等三角形的判定和性质,熟练掌握正方形的性质是解题的关键.9.下列式子中表示y 是x 的反比例函数的是( )A .24y x =-B .25y x =C .21y x =D .13y x= 【答案】D【解析】根据反比例函数的定义逐项分析即可.【详解】A. 24y x =-是一次函数,故不符合题意;B. 25y x =二次函数,故不符合题意;C. 21y x =不是反比例函数,故不符合题意; D. 13y x =是反比例函数,符合题意; 故选D.【点睛】本题考查了反比例函数的定义,一般地,形如k y x=(k 为常数,k≠0)的函数叫做反比例函数. 10.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为A .60°B .120°C .60°或120°D .30°或120°【答案】C【分析】根据题意画出相应的图形,由OD ⊥AB ,利用垂径定理得到D 为AB 的中点,由AB 的长求出AD 与BD 的长,且得出OD 为角平分线,在Rt △AOD 中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD 的度数,进而确定出∠AOB 的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB 所对圆周角的度数.【详解】如图所示,∵OD ⊥AB ,∴D 为AB 的中点,即532 在Rt △AOD 中,OA=5,532∴sin ∠AOD=53325, 又∵∠AOD 为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°, 又∵圆内接四边形AEBC 对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C .【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.11.如图所示,二次函数22y x x k =-++的图像与x 轴的一个交点坐标为(3,0),则关于x 的一元二次方程220x x k -++=的解为( )A .123,2x x ==-B .123,1x x ==-C .121,1x x ==-D .123,3x x ==-【答案】B 【分析】先确定抛物线的对称轴,然后根据抛物线的对称性确定图象与x 轴的另一个交点,再根据二次函数与一元二次方程的关系解答即可.【详解】解:∵二次函数22y x x k =-++的对称轴是直线1x =,图象与x 轴的一个交点坐标为(3,0), ∴图象与x 轴的另一个交点坐标为(﹣1,0),∴一元二次方程220x x k -++=的解为123,1x x ==-.故选:B .【点睛】本题考查了二次函数的图象与性质以及二次函数与一元二次方程的关系,属于常考题型,熟练掌握基本知识是解题的关键.12.已知二次函数y =ax 2+bx+c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b+2a >0【答案】D 【解析】分析:根据抛物线的开口、对称轴及与y 轴的交点的位置,可得出a <1、c >1、b >﹣2a ,进而即可得出结论.详解:∵抛物线开口向下,对称轴大于1,与y 轴交于正半轴,∴a <1,﹣2b a>1,c >1,∴b >﹣2a ,∴b +2a >1.故选D .点睛:本题考查了二次函数图象与系数的关系,根据抛物线的对称轴大于1找出b >﹣2a 是解题的关键.二、填空题(本题包括8个小题)13.已知3-是关于x 的一元二次方程2230ax x -+=的一个解,则此方程的另一个解为____.【答案】1x =【分析】将x =-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入2230ax x -+=得,a=-1,∴原方程为2230x x --+=,解得:x=1或-3,【点睛】本题考查了含参的一元二次方程的求解问题,属于简单题,熟悉概念是解题关键.14.如图,矩形ABCD 中,1AB =,3BC =,以B 为圆心,BD 为半径画弧,交BC 延长线于M 点,以D 为圆心,CD 为半径画弧,交AD 于点N ,则图中阴影部分的面积是_________.【答案】73122π-【分析】阴影部分的面积为扇形BDM 的面积加上扇形CDN 的面积再减去直角三角形BCD 的面积即可.【详解】解:∵1AB =,3BC =∴根据矩形的性质可得出,90,1,ADC AB CD ︒∠=== ∵3tan 3CBD ∠== ∴30CBD ︒∠=∴利用勾股定理可得出,2BD =因此,可得出2230290(3)133373=3603602342122RTBCD BDM S S S S πππππ⨯⨯⨯⨯+-=+-=+-=-阴扇扇CDN 故答案为:73122π-. 【点睛】。
合肥市庐阳区2017-2018学年九年级(上)期末考试(董小菲产生的冲突文件)
合肥市庐阳区2017-2018学年九年级(上)期末考试(满分:150分;时间:120分钟)一、选择题(本大题共10小题,每小题4分,共40分)1.抛物线22(3)1y x =-+的顶点坐标是()A.(3,1)B.(3,1)- C.(3,1)- D.(3,1)--2.若3sin(A 15)2∠+︒=,则tan A ∠的值为()A..12B .33C .1D .223.反比例函数1ky k-=图像的每条曲线上y 都随x 增大而增大,则k 的取值范围是()A .1k > B.0k >C .1k <D .0k <4.将抛物线2(21)y x =-向左平移12个单位,再向上平移1个单位后得到的抛物线解析式为()A .21(2)12y x =--B .21(2)12y x =-+ C.241y x =-D .241y x =+第5题图第6题图第7题图5.如图,已知点C 是线段AB 的黄金分割点(其中AC BC >),4AB =,则线段BC 的大小是()A.51- B.252 C.35D.625-6.O 是ABC ∆的外接圆,20ABO ∠=︒40OAC ∠=︒,则OBC ∠的度数为()A.30︒B .40︒C.60︒D.120︒7.如图,直线1l //2l //3l ,直线AC 分别交1l ,2l ,3l 于A B C 、、,直线DF 交1l ,2l ,3l 于点F D、E、,AC 与DF 相交于点G ,且2AG =,1GB =,5BC =则ADFC的值为()A.12B.13C.25D .358.如图在三角形纸片ABC 中,=684AB BC AC ==,,,沿虚线剪下的涂色部分的三角形与ABC ∆相似的是()A .B .C . D.D .第8题图第9题图第10题图9.如图Rt ABC ∆内接于O ,BC 为直径,8,6,AB AC D ==是弧AB 的中点,CD 与AB 的交点为E ,则:CE DE 等于()A .7:2B .5:2C .4:1D .3:110.如图,ABC ∆和DEF ∆都是等边三角形,BC EF ==,点A 在DEF ∆的高DG 上,点D 在ABC ∆的高AH 上,设AD x =,ABC ∆和DEF ∆的重合部分(阴影部分)面积记为y ,则y 关于x 的大致图象为()A. B. C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.坡脚为45o 的破面的坡度为.12.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m --=的解为.13.如图,以原点O 为端点的两条射线与反比例函数6y x=交于,A B 两点,且123∠=∠=∠,则ABO ∆的面积是.14.ABC ∆中,7,8,9AB AC BC ===,现在把边,,AB AC BC 分别截去长为a b c 、、的一段,截得的长为a b c 、、的三条线段组成的三角形和ABC ∆三边剩下的线段组成的三角形相似且面积比为1:9,则a b c 、、的长分别为.第12题图第13题图三、(本大题共2小题,每小题8分,满分16分)15.计算:01sin30+tan30(3)2π-︒︒--+16.如图,在长为2个单位长度,宽为1个单位长度的矩形网格中,给出了格点ABC ∆(顶点是网格线的交点),按要求画图.(1)将ABC ∆向右平移3个单位长度得到'''ABC ∆;(2)以A 为位似中心,在网格内将ABC ∆作位似变换,且放大到原来的两倍,得到ADE ∆.四、(本大题共2小题,每小题8分,满分16分)17.如图,ABC ∆中,D 为AC 上的一点,若AB AD BC a ===,1BD CD ==,求a 的值.18.如图,一次函数1y x m =+的图像与反比例函数2(0)ky x x=<的图像交于(6,1)A -和B .(1)求点B 的坐标;(2)直接写出当12y y ≥时x 的取值范围.五、(本大题共2小题,每小题10分,满分20分)19.如图所示,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,=30B ∠︒,斜坡BC 的长是40米,在山坡的坡顶C 处测得铁架顶端A 的仰角为60︒,30AC =米,求铁架顶端A 到地平面的高度AD1.732≈,精确到0.1米)20.如图,二次函数与一次函数交于顶点(4,1)A --和点(2,3)B -两点,一次函数与y 轴交于点C .(1)求二次函数1y 和一次函数2y 的解析式;(2)y 轴上存在点P 使PAB ∆的面积为9,求点P 的坐标.六、(本题满分12分)21.如图I ,直线l 是足球场的底线,AB 是球门,P 点是射门点,连接PA PB 、,APB ∠叫做射门角.(1)如图II ,点P 是射门点,另一射门点Q 在过A P 、B、三点的圆外(未超过底线l ).证明:APB AQB ∠>∠(2)如图III ,O 经过球门端点A B 、,直线m l ⊥,垂足为C 且与O 相切与点Q ,OE AB ⊥于点E ,连接OQ OB 、,若2,AB a BC a ==,求此时一球员带球沿直线m 向底线方向运球时最大射门角的度数.七、(本题满分12分)22.某公司2017年初刚成立时投资1000万元购买新生产线生产新产品,此外,生产每件该产品还需要成本40元.按规定,该产品售价不得低于60元/件且不超过160元/件,且每年售价确定以后不再变化,该产品的年销售量y (万件)与产品售价x (元)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式,并写出x 的取值范围;(2)求2017年该公司的最大利润?(3)在2017年取得最大利润的前提下,2018年公司将重新确定产品售价,能否使两年共盈利达980万元.若能,求出2018年产品的售价;若不能,请说明理由.八、(本题满分14分)23.如图I ,AD 为等腰三角形ABC 中线,延长DA 至F ,使AF AD =,点E 为AC 边上的点且AE AD =,延长EA 至G 使AG AE =,连接DE EF FG GD 、、、,GD 交AB 于点H .(1)证明:GDB ADE ∠=∠;(2)连接GB ,①当90BGC ∠=︒时(如图II ),ADGC=,AHHB=;②当B G F 、、三点共线时(如图III ),ADGC=,AHHB=;(3)如图I ,若3,4AD DC ==,求AH 的值.图I 图II 图III合肥市庐阳区2017-2018学年九年级(上)期末考试卷参考答案一、选择题二、填空题11.112.3x =13. 4.514.79,2,44a b c ===,71915,,488a b c ===,17139,,884a b c ===,131712,,777a b c ===,53,2,22a b c ===,161115,,777a b c ===14.【解析】由相似比17893a b c a b c ===---,得出来79,2,44a b c ===;同理由17983a b c a c b ===---得出来71915,,488a b c ===;由18793a b c b a c ===---,得17139,,884a b c ===;由18973a b c b c a ===---,得131712,,777a b c ===;由19873a b c c b a ===---,得53,2,22a b c ===由19783a b c c a b ===---,得161115,,777a b c ===经检验,都是符合条件的.三、解答题16.【解析】略17.【解析】a ;18.【解析】(1)(1,6)B -;(2)61x -≤≤-.19.【解析】20AD =.20.【解析】(1)21227,(4)1y x y x =+=+-;(2)(0,1)P 21.【解析】(1)证明略;(2)3022.【解析】(1)118(60x 160)20y x =-+≤≤;(2)2120172020W x x =-+-,max 160,200x W ==(万元);(3)能,售价为100元/件令(40)980200x y -=-,即2120720=78020x x -+-,解得12100,300x x ==(舍去)23.【解析】(1)∵,ADG AGD ADE AED ∠=∠∠=∠,易证四边形DEFG 是矩形,∴90GDE ADB ∠=∠=︒,∴ADE GDB ∠=∠;(2)①1,3AD AH GC HB ==;②11,,44AD AH GC HB ==(3)可设为HM 为3x易得34412655x x-=,解得811x =,则81555551111AH x =-=-⨯=。
九年级上册合肥数学期末试卷测试卷(含答案解析)
九年级上册合肥数学期末试卷测试卷(含答案解析)一、选择题1.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .452.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( ) A .1 B .2 C .0,1 D .1,2 3.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .44.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .3B .5C .4D .65.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 12y5 03- 4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .46.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A.2 B.54C.53D.757.方程2x x=的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-1 8.已知二次函数y=x2+mx+n的图像经过点(―1,―3),则代数式mn+1有()A.最小值―3 B.最小值3 C.最大值―3 D.最大值39.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.73B.234+C.1433D.223310.如图,BC是O的直径,A,D是O上的两点,连接AB,AD,BD,若70ADB︒∠=,则ABC∠的度数是()A.20︒B.70︒C.30︒D.90︒11.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个12.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2B .2C .-3D .3二、填空题13.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.14.已知tan (α+15°)=33,则锐角α的度数为______°. 15.如图,AB 、CD 、EF 所在的圆的半径分别为r 1、r 2、r 3,则r 1、r 2、r 3的大小关系是____.(用“<”连接)16.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 17.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.18.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 19.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.20.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.21.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 22.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin 13BAC B ∠=∠=,则线段OC 的最大值为_____.23.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒24.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD =5,∠BPD =90°,则点A 到BP 的距离等于_____.三、解答题25.对于代数式ax 2+bx +c ,若存在实数n ,当x =n 时,代数式的值也等于n ,则称n 为这个代数式的不变值.例如:对于代数式x 2,当x =0时,代数式等于0;当x =1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A =0. (1)代数式x 2﹣2的不变值是 ,A = . (2)说明代数式3x 2+1没有不变值;(3)已知代数式x 2﹣bx +1,若A =0,求b 的值.26.如图,抛物线y=-x 2+bx+3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0).过点A 作直线y=x+c 与抛物线交于点D ,动点P 在直线y=x+c 上,从点A 出发,以每秒2个单位长度的速度向点D 运动,过点P 作直线PQ ∥y 轴,与抛物线交于点Q ,设运动时间为t (s ).(1)直接写出b ,c 的值及点D 的坐标;(2)点 E 是抛物线上一动点,且位于第四象限,当△CBE 的面积为6时,求出点E 的坐标;(3)在线段PQ 最长的条件下,点M 在直线PQ 上运动,点N 在x 轴上运动,当以点D 、M 、N 为顶点的三角形为等腰直角三角形时,请求出此时点N 的坐标.27.如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,点C 在OP 上,满足∠CBP =∠ADB . (1)求证:BC 是⊙O 的切线;(2)若OA =2,AB =1,求线段BP 的长.28.解方程: (1)x 2﹣2x ﹣1=0;(2)(2x ﹣1)2=4(2x ﹣1).29.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.30.某景区检票口有A 、B 、C 、D 共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票. (1)甲选择A 检票通道的概率是 ;(2)求甲乙两人选择的检票通道恰好相同的概率.31.如图,某农户计划用长12m 的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m .(1)若生物园的面积为9m 2,则这个生物园垂直于墙的一边长为多少? (2)若要使生物园的面积最大,该怎样围?32.某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单价的增长率的2倍,设B产品生产数量的增长率为x(0x ),若10月份该工厂的总收入增加了4.4x,求x的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.2.C解析:C【解析】【分析】分两种情况讨论,当m=0和m≠0,函数分别为一次函数和二次函数,由抛物线与x轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:b2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.3.B解析:B分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故2216425BC CD+=+=故选:B.【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.5.B解析:B【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案. 【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误; ④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x 时,y<0;故此选项正确;综上:①④两项正确, 故选:B . 【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.6.D解析:D 【解析】 【分析】如图连接BE 交AD 于O ,作AH ⊥BC 于H .首先证明AD 垂直平分线段BE ,△BCE 是直角三角形,求出BC 、BE ,在Rt △BCE 中,利用勾股定理即可解决问题. 【详解】如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3, ∴2234+, ∵CD=DB , ∴AD=DC=DB=52, ∵12•BC•AH=12•AB•AC ,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.7.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x=,方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.8.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn +1有最小值-3. 故选A. 【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.9.C解析:C 【解析】 【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题. 【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点, ∴易证AE ⊥BC , ∵A 、C 关于BD 对称, ∴PA =PC , ∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长. 观察图象可知,当点P 与B 重合时,PE +PC =6, ∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a = ∵BC ∥AD , ∴AD PDBE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C . 【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.A解析:A【解析】【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.11.C解析:C【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.二、填空题13.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD5,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.14.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.15.r3 <r2 <r1【解析】【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3 <r2 <r1故答案为:r解析:r3<r2<r1【解析】【分析】利用尺规作图分别做出AB、CD、EF所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出AB、CD、EF所在的圆心及半径∴r3<r2<r1故答案为:r3<r2<r1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.16.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠解析:2m【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.17.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED ∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF ∴323x x DE x x DF∴45DE DF , ∴45CE CF .故答案为:45. 【点睛】 本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口. 18..【解析】试题分析:∵在△ABC 中,∠C =90°,cosA =,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理. 解析:43. 【解析】 试题分析:∵在△ABC 中,∠C =90°,cosA =35,∴35AC AB =. ∴可设35AC k AB k ==,.∴根据勾股定理可得4BC k =.∴44tanA 33BC k AC k ===. 考点:1.锐角三角函数定义;2.勾股定理.19.1【解析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB 2=32+12=10,BC 2=22+12=5,AC 2=22+12=5∴AC 2+BC 2=AB 2,AC =BC ,即∠ACB =90°,∴∠ABC =45°∴tan ∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.20.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 21.2019【解析】【分析】根据m 是方程5x2﹣3x ﹣1=0的一个根代入得到5m2﹣3m ﹣1=0,进一步得到5m2﹣1=3m ,两边同时除以m 得:5m ﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m 是方程5x 2﹣3x ﹣1=0的一个根代入得到5m 2﹣3m ﹣1=0,进一步得到5m 2﹣1=3m ,两边同时除以m 得:5m ﹣1m =3,然后整体代入即可求得答案. 【详解】解:∵m 是方程5x 2﹣3x ﹣1=0的一个根,∴5m 2﹣3m ﹣1=0,∴5m 2﹣1=3m ,两边同时除以m 得:5m ﹣1m =3, ∴15m ﹣3m +2010=3(5m ﹣1m)+2010=9+2010=2019, 故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.22.【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE的最大值,则答案即可求出.解析:41383+【解析】【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明ABC AEO∆∆,由三角函数可得出23AOAE=,进而求得6AE=,再通过证明AEB AOC∆∆,可得出23OC BE=,根据三角形三边关系可得:BE OE OB≤+,由勾股定理可得213OE=,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵OAE BACAEO ABC∠=∠⎧⎨∠=∠⎩,∴ABC AEO∆∆,∴tanAC AOBAB AE∠==,∵213sin B∠=,∴2213313cos11313B⎛⎫∠=-=⎪⎪⎝⎭,∴213sin213tancos3313BBn B∠∠===∠,∴23AOAE=,又∵4AO=,∴6AE=,∵90,90EAB BAO OAC BAO∠+∠=︒∠+∠=︒,∴=EAB OAC∠∠,又∵AC AO AB AE=, ∴AEB AOC ∆∆, ∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,∵OE ===,∴4OE OB +=,∴BE 的最大值为:4,∴OC 的最大值为:()28433=. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 23.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.24.或【解析】【分析】由题意可得点P在以D为圆心,为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】-335+335【解析】【分析】由题意可得点P在以D5P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD5∴点P在以D5∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD=90°,∴BP22BD PD-3,∵∠BPD=90°=∠BAD,∴点A,点B,点D,点P四点共圆,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP=∠APH=45°,∴AH=HP,在Rt△AHB中,AB2=AH2+BH2,∴16=AH2+(3AH)2,∴AH 335+AH335-,若点P在CD的右侧,同理可得AH=3352,综上所述:AH=3352或3352.【点睛】本题是正方形与圆的综合题,正确确定点P是以D5BD为直径的圆的交点是解决问题的关键.三、解答题25.(1)﹣1和2;3;(2)见解析;(3)﹣3或1【解析】【分析】(1)根据不变值的定义可得出关于x的一元二次方程,解之即可求出x的值,再做差后可求出A的值;(2)由方程的系数结合根的判别式可得出方程3x2﹣x+1=0没有实数根,进而可得出代数式3x 2+1没有不变值;(3)由A =0可得出方程x 2﹣(b +1)x +1=0有两个相等的实数根,进而可得出△=0,解之即可得出结论.【详解】解:(1)依题意,得:x 2﹣2=x ,即x 2﹣x ﹣2=0,解得:x 1=﹣1,x 2=2,∴A =2﹣(﹣1)=3.故答案为﹣1和2;3.(2)依题意,得:3x 2 +1=x ,∴3x 2﹣x +1=0,∵△=(﹣1)2﹣4×3×1=﹣11<0,∴该方程无解,即代数式3x 2+1没有不变值.(3)依题意,得:方程x 2﹣bx +1= x 即x 2﹣(b +1)x +1=0有两个相等的实数根, ∴△=[﹣(b +1)]2﹣4×1×1=0,∴b 1=﹣3,b 2=1.答:b 的值为﹣3或1.【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.26.(1)b=2,c=1,D (2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【解析】【分析】(1)将点A 分别代入y=-x 2+bx+3,y=x+c 中求出b 、c 的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D 的坐标;(2))过点E 作EF ⊥y 轴,设E (x ,-x 2+2x+3),先求出点B 、C 的坐标,再利用面积加减关系表示出△CBE 的面积,即可求出点E 的坐标.(3)分别以点D 、M 、N 为直角顶点讨论△MND 是等腰直角三角形时点N 的坐标.【详解】(1)将A (-1,0)代入y=-x 2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x 2+2x+3,将点A 代入y=x+c 中,得-1+c=0,解得c=1,∴y=x+1,解2123y x y x x =+⎧⎨=-++⎩,解得1123x y =⎧⎨=⎩,2210x y =-⎧⎨=⎩(舍去), ∴D (2,3).∴b= 2 ,c= 1 ,D (2,3).(2)过点E 作EF⊥y 轴,设E (x ,-x 2+2x+3),当y=-x 2+2x+3中y=0时,得-x 2+2x+3=0,解得x 1=3,x 2=-1(舍去),∴B(3,0).∵C(0,3),∴CBE CBO CFE S S S梯形OFEB -S , ∴22111633(3)(23)(2)222x x x x x x , 解得x 1=4,x 2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直线AD 的解析式为y=x+1,设P (m ,m+1),则Q (m ,-m 2+2m+3),∴线段PQ 的长度h=-m 2+2m+3-(m+1)=219()24m, ∴当12m ==0.5,线段PQ 有最大值. 当∠D 是直角时,不存在△MND 是等腰直角三角形的情形;当∠M 是直角时,如图1,点M 在线段DN 的垂直平分线上,此时N 1(2,0);当∠M 是直角时,如图2,作DE ⊥x 轴,M 2E ⊥HE ,N 2H ⊥HE,∴∠H=∠E=90︒,∵△M 2N 2D 是等腰直角三角形,∴N 2M 2=M 2D,∠N 2M 2D=90︒,∵∠N 2M 2H=∠M 2DE,∴△N2M2H≌△M2DE,∴N2H=M2E=2-0.5=1.5,M2H=DE,∴E(2,-1.5),∴M2H=DE=3+1.5=4.5,∴ON2=4.5-0.5=4,∴N2(-4,0);当∠N是直角时,如图3,作DE⊥x轴,∴∠N3HM3=∠DEN3=90︒,∵△M3N3D是等腰直角三角形,∴N3M3=N3D,∠DN3M3=90︒,∵∠DN3E=∠N3M3H,∴△DN3E≌△N3M3H,∴N3H=DE=3,∴N3O=3-0.5=2.5,∴N3(-2.5,0);当∠N是直角时,如图4,作DE⊥x轴,∴∠N4HM4=∠DEN4=90︒,∵△M4N4D是等腰直角三角形,∴N4M4=N4D,∠DN4M4=90︒,∵∠DN4E=∠N4M4H,∴△DN4E≌△N4M4H,∴N4H=DE=3,∴N4O=3+0.5=3.5,∴N4(3.5,0);综上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式;根据函数性质得到点坐标,由此求出图象中图形的面积;还考查了图象中构成的等腰直角三角形的情况,此时依据等腰直角三角形的性质,求出点N的坐标.27.(1)见解析;(2)BP=7.【解析】【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据等腰三角形的性质和已知条件证出∠OBC=90°,即可得出结论;(2)证明△AOP∽△ABD,然后利用相似三角形的对应边成比例求BP的长.【详解】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切线;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴APAD =AOAB,即14BP=21,解得:BP=7.【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握圆周角定理和切线的判定是解题的关键.28.(1)x=22;(2)x=52或x=12.【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x+1=2,∴(x ﹣2)2=2, ∴x =2±2.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0,∴x =52或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.29.8+83【解析】【分析】过点A 作AD ⊥BC ,垂足为点D ,构造直角三角形,利用三角函数值分别求出AD 、BD 、CD 的值即可求三角形面积.【详解】解:过点A 作AD ⊥BC ,垂足为点D ,在Rt △ADB 中,∵sin AD ABC AB ∠=, ∴sin AD AB ABC =⋅∠= 1842⨯= ∵cos BD ABC AB∠=, ∴3cos 843BD AB ABC =⋅∠=⨯= 在Rt △ADC 中,∵45ACB ︒∠=,∴45CAD ︒∠=,∴AD =DC =4∴ 111()(443)4883222ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.30.(1)14;(2)14. 【解析】【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=14,故答案为:14;(2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.31.(1)3m;(2)生物园垂直于墙的一边长为2m.平行于墙的一边长为6m时,围成生物园的面积最大,且为12m2【解析】【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(12-3x)米,根据长方形的面积公式结合生物园的面积为9平方米,列出方程,解方程即可;(2)设围成生物园的面积为y,由题意可得:y=x(12﹣3x)且53≤x<4,从而求出y的最大值即可.【详解】设这个生物园垂直于墙的一边长为xm,(1)由题意,得x(12﹣3x)=9,解得,x1=1(不符合题意,舍去),x2=3,答:这个生物园垂直于墙的一边长为3m;(2)设围成生物园的面积为ym2.由题意,得()()21233212y x x x -+==--,∵12371230x x -≤⎧⎨-⎩> ∴53≤x <4 ∴当x =2时,y 最大值=12,12﹣3x =6,答:生物园垂直于墙的一边长为2m .平行于墙的一边长为6m 时,围成生物园的面积最大,且为12m 2.【点睛】本题主要考查一元二次方程的应用和二次函数的应用,解题的关键是正确解读题意,根据题目给出的条件,准确列出方程和二次函数解析式.32.5%【解析】【分析】根据题意,列出方程即可求出x 的值.【详解】根据题意,得2(12)200(12)(14)100(1)(22001100)(1 4.4)x x x x x +⨯+++⨯+=⨯+⨯+整理,得2200x x -=解这个方程,得15%x =,20x =(不合题意,舍去)所以x 的值是5%.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.。
【精选3份合集】2017-2018年安徽省名校九年级上学期数学期末监测试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.对于反比例函数4y x=-,下列说法正确的是( ) A .y 的值随x 值的增大而增大B .y 的值随x 值的增大而减小C .当0x >时,y 的值随x 值的增大而增大D .当0x <时,y 的值随x 值的增大而减小【答案】C【分析】根据反比例函数的增减性逐一分析即可.【详解】解:在反比例函数4y x=-中,﹣4<0 ∴反比例函数的图象在二、四象限,且在每一象限内y 随x 的增大而增大∴A 选项缺少条件:在每一象限内,故A 错误;B 选项说法错误;C 选项当0x >时,反比例函数图象在第四象限,y 随x 的增大而增大,故C 选项正确;D 选项当0x <时,反比例函数图象在第二象限,y 随x 的增大而增大,故D 选项错误.故选C.【点睛】此题考查的是反比例函数的增减性,掌握反比例函数的图象及性质与比例系数的关系是解决此题的关键. 2.如图,平行四边形ABCD 中,EF ∥BC ,AE :EB=2:3,EF=4,则AD 的长为( )A .B .8C .10D .16【答案】C【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,可证明△AEF ∽△ABC ,再根据相似三角形的对应边成比例可解得BC 的长,而在▱ABCD 中,AD=BC ,问题得解.【详解】解:∵EF ∥BC∴△AEF ∽△ABC ,∴EF :BC=AE :AB ,∵AE :EB=2:3,∴AE :AB=2:5,∵EF=4,∴4:BC=2:5,∴BC=1,∵四边形ABCD 是平行四边形,∴AD=BC=1.【点睛】本题考查(1)、相似三角形的判定与性质;(2)、平行四边形的性质.3.下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔【答案】D【解析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【详解】解:水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、瓮中捉鳖是必然事件,故选项C不符合题意;D、守株待兔是随机事件,故选项D符合题意;故选:D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.已知⊙O的半径为5cm,点P在⊙O上,则OP的长为()A.4cm B.5cm C.8cm D.10cm【答案】B【分析】根据点与圆的位置关系解决问题即可.【详解】解:∵点P在⊙O上,∴OP=r=5cm,故选:B.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.5.下列说法正确的是()A.菱形都是相似图形B.矩形都是相似图形C.等边三角形都是相似图形D.各边对应成比例的多边形是相似多边形【答案】C【分析】利用相似图形的定义分别判断后即可确定正确的选项.【详解】解:A、菱形的对应边成比例,但对应角不一定相等,故错误,不符合题意;B、矩形的对应角相等,但对应边不一定成比例,故错误,不符合题意;C、等边三角形的对应边成比例,对应角相等,故正确,符合题意;D、各边对应成比例的多边形的对应角不一定相等,故错误,不符合题意,故选:C.【点睛】考查了相似图形的定义,解题的关键是牢记相似多边形的定义,难度较小.6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,观察两枚骰子向上一面的点数情况.则下列事件为随机事件的是()A.点数之和等于1 B.点数之和等于9C.点数之和大于1 D.点数之和大于12【答案】B【分析】根据随机事件的定义逐项判断即可.【详解】A、点数之和等于1,是不可能事件,不合题意;B、点数之和等于9,是随机事件,符合题意;C、点数之和大于1,是必然事件,不合题意;D、点数之和大于12,是不可能事件,不合题意;故选:B【点睛】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.随机事件是指在一定条件下,可能发生也可能不发生的事件.7.在数学活动课上,张明运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为()粒.A.125B.1250C.250D.2500【答案】B【解析】设瓶子中有豆子x粒,根据取出100粒刚好有记号的8粒列出算式,再进行计算即可.【详解】设瓶子中有豆子x粒豆子,根据题意得:1008100x,解得:1250x=,经检验:1250x=是原分式方程的解,答:估计瓶子中豆子的数量约为1250粒.故选:B.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.8.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>0【答案】A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.9.下图中①表示的是组合在一起的模块,在②③④⑤四个图形中,是这个模块的俯视图的是()A.②B.③C.④D.⑤【答案】A【详解】②是该几何体的俯视图;③是该几何体的左视图和主视图;④、⑤不是该几何体的三视图.故选A.【点睛】从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.10.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A.43B.34C.45D.35【答案】C【解析】∵∠C=90°,AC=4,BC=3,∴AB=5,∴sinB=45AC AB = , 故选C. 11.如图,已知ABC 的三个顶点均在格点上,则cos A 的值为( )A .33B .333C .5D .25 【答案】D【分析】过B 点作BD ⊥AC 于D ,求得AB 、AC 的长,利用面积法求得BD 的长,利用勾股定理求得AD 的长,利用锐角三角函数即可求得结果.【详解】过B 点作BD ⊥AC 于D ,如图,由勾股定理得,221310AB +,223332AC =+=∵11322ABC S AC BD BC ==⨯,即232BD == 在ABD 中,AD 90B ∠=︒,10AB =2BD =,()()222210222AD AB BD =-=-= ∴2225cos 10AD A AB ===. 故选:D .【点睛】本题考查了解直角三角形以及勾股定理的运用,面积法求高的运用;熟练掌握勾股定理,构造直角三角形是解题的关键.12.对于函数()229y x =+-,下列结论错误的是( )A .图象顶点是()2,9--B .图象开口向上C .图象关于直线2x =-对称D .图象最大值为﹣9 【答案】D【分析】根据函数解析式和二次函数的性质可以判断各个选项中的说法是否正确,本题得以解决.【详解】解:A .∵函数y=(x+2)2-9,∴该函数图象的顶点坐标是(-2,-9),故选项A 正确;B .a=1>0,该函数图象开口向上,故选项B 正确;C . ∵函数y=(x+2)2-9,∴该函数图象关于直线x=-2对称,故选项C 正确;D .当x=-2时,该函数取得最小值y=-9,故选项D 错误;故选:D .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(本题包括8个小题)13.把抛物线2y x =-向上平移2个单位,所得的抛物线的解析式是__________.【答案】2y -x 2=+【分析】根据题意直接运用平移规律“左加右减,上加下减”,在原式上加2即可得新函数解析式即可.【详解】解:∵2y x =-向上平移2个单位长度,∴所得的抛物线的解析式为2y -x 2=+.故答案为2y -x 2=+.【点睛】本题主要考查二次函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14.如图,反比例函数2y x=的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为 .【答案】1.【分析】由反比例函数的系数k的几何意义可知:OA•AD=2,然后可求得OA•AB的值,从而可求得矩形OABC的面积.【详解】∵反比例函数2yx的图象经过点D,∴OA•AD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=1.故答案为1.考点:反比例函数系数k的几何意义.15.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.【答案】3【解析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案. 【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.16.如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为___度.【答案】15【分析】圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【详解】解:∵∠AOB=70°-40°=30°∴∠1=12∠AOB=15° 故答案为:15°.【点睛】本题考查圆周角定理.17.已知两个二次函数的图像如图所示,那么 a 1________a 2(填“>”、“=”或“<”).【答案】>【分析】直接利用二次函数2=y ax bx c ++的图象开口大小与a 的关系进而得出答案.【详解】解:如图所示:22=y a x 的开口小于21=y a x 的开口,则a 1>a 2,故答案为:>.【点睛】此题主要考查了二次函数的图象,正确记忆开口大小与a 的关系是解题关键.18.关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,则实数a 的取值范围是______.【答案】1a 4>-且a 0≠ 【解析】由关于x 的一元二次方程2ax x 10++=有两个不相等的实数根,即可得判别式0>,继而可求得a 的范围.【详解】关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根, ()22b 4ac 14a 114a 0∴=-=-⨯⨯-=+>,解得:1a 4>-, 方程2ax 2x 10-+=是一元二次方程,a 0∴≠,a ∴的范围是:1a 4>-且a 0≠, 故答案为:1a 4>-且a 0≠.【点睛】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.三、解答题(本题包括8个小题)19.为支持大学生勤工俭学,市政府向某大学生提供了1万元的无息贷款用于销售某种自主研发的产品,并约定该学生用经营的利润逐步偿还无息贷款,已知该产品的生产成本为每件10元.每天还要支付其他费用25元.该产品每天的销售量(y 件)与销售单价(x 元)关系为40y x =-+.(1)设每天的利润为w 元,当销售单价定为多少元时,每天的利润最大?最大利润为多少元?(注:每天的利润=每天的销售利润一每天的支出费用)(2)若销售单价不得低于其生产成本,且销售每件产品的利润率不能超过50%,则该学生最快用多少天可以还清无息贷款?【答案】(1)当销售单价定为25元时,日销售利润最大为200元;(2)该生最快用100天可以还清无息贷款.【分析】(1)计算利润w =销量×每件的利润-支付的费用,化为顶点式,可得结论;(2)先得出每日利润的最大值,即可求解.【详解】(1)(10)(40)25w x x =--+-2-50425x x =+-2-(25)200x =-+∵1a =-<0,∴当x=25时,日利润最大,为200元,∴当销售单价定为25元时,日销售利润最大为200元;(2) 由题意得:101050%10x x ≥⎧⎪-⎨≤⎪⎩, 解得:1015x ≤≤,()225200w x =--+,∵1a =-<0,∴抛物线开口向下,当25x <时,w 随x 的值增大而增大,∴当x=15时,日利润最大为()21525200w =--+=100元,∵10000÷100=100,∴该生最快用100天可以还清无息贷款.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).20.某种蔬菜的售价1y (元)与销售月份x 之间的关系如图所示,成本2y (元)与销售月份x 之间的关系如图所示.(图的图象是线段,图的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价-成本) (2)设每千克该蔬菜销售利润为P ,请列出P 与x 之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?(3)已知市场部销售该种蔬菜4、5两个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.4、5两个月的销售量分别是多少万千克?【答案】(1)6月份出售这种蔬菜每千克的利润是2元;(2)P=2110633x x -+-,5月份出售这种蔬菜,每千克的收益最大为73元;(3)4月份的销售量为40000千克,5月份的销售量为60000千克. 【分析】(1)找出x=6时,y 1、y 2的值,根据利润=售价-成本进行计算即可;(2)利用待定系数法分别求出y 1、y 2关于x 的函数关系式,然后根据P=y 1-y 2得到关于x 的函数关系式,然后利用二次根式的性质进行求解即可;(3)求出当x=4时,P 的值,设4月份的销售量为t 千克,则5月份的销售是为(t+20000)千克,根据总利润=每千克利润×销售数量,即可得出关于t 的方程,解方程即可求得答案.【详解】(1)当x=6时,y 1=3,y 2=1,∵y 1-y 2=3-1=2,∴6月份出售这种蔬菜每千克的利润是2元;(2)设y 1=mx+n ,y 2=a(x-6)2+1,将(3,5)、(6,3)分别代入y 1=mx+n ,得3563m n m n +=⎧⎨+=⎩,解得:237mn⎧=-⎪⎨⎪=⎩,∴1273=-+y x;将(3,4)代入y2=a(x-6)2+1,得,4=a(3-6)2+1,解得:a=13,∴()222116141333y x x x=-+=-+,∴P=12y y-=()2222111017741365333333x x x x x x⎛⎫-+--+=-+-=--+⎪⎝⎭,∵103-<,∴当x=5时,P取最大值,最大值为73,即5月份出售这种蔬菜,每千克的收益最大,最大值为73元;(3)当x=4时,P=2110633x x-+-=2,设4月份的销售量为t千克,则5月份的销售量为(t+20000)千克,根据题意得:()72200002200003t t++=,解得:t=40000,∴t+20000=60000,答:4月份的销售量为40000千克,5月份的销售量为60000千克.【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质等知识,综合性较强,弄清题意,读懂图象,灵活运用相关知识是解题的关键.21.如图,在等腰ABC∆中,AB AC=,以AC为直径作O交BC于点D,过点D作DE AB⊥,垂足为E.(1)求证:DE是O的切线.(2)若3DE=30C∠=︒,求AD的长.【答案】(1)见解析;(2)AD 23π= 【解析】(1)连结OD ,根据等腰三角形性质和等量代换得1B ∠=∠,由垂直定义和三角形内角和定理得290B ∠+∠=︒,等量代换得2190∠+∠=︒,由平角定义得90DOE ∠=︒,从而可得证.(2)连结AD ,由圆周角定理得90ADC ∠=︒,根据等腰三角形性质和三角形外角性质可得60AOD ∠=︒,在Rt DEB ∆中,由直角三角形性质得23BD CD ==,在Rt ADC ∆中,由直角三角形性质得2OA OC ==,再由弧长公式计算即可求得答案.【详解】(1)证明:如图,连结OD .∵OC OD =,AB AC =,∴1C ∠=∠,C B ∠=∠,∴1B ∠=∠,∴DE AB ⊥,∴290B ∠+∠=︒,∴2190∠+∠=︒,∴90ODE ∠=︒,∴DE 为O 的切线.(2)解:连结AD ,∵AC 为O 的直径. ∴90ADC ∠=︒.∵AB AC =,∴30B C ∠=∠=︒,BD CD =,∴60AOD ∠=︒.∵3DE =∴3BD CD ==∴2OC =,∴60221803AD ππ=⨯= 【点睛】本题考查切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.已知:如图,在正方形ABCD 中,F 是AB 上一点,延长CB 到E ,使BE=BF ,连接CF 并延长交AE 于G .(1)求证:△ABE ≌△CBF ;(2)将△ABE 绕点A 逆时针旋转90°得到△ADH ,请判断四边形AFCH 是什么特殊四边形,并说明理由.【答案】 (1) 证明见解析;(2) 证明见解析.【解析】试题分析:(1)由于四边形ABCD 是正方形,所以AB=CB=DC ,因为AB ∥CD ,∠CBA=∠ABE ,从而得证.(2)根据旋转的性质可知△ABE ≌△ADH ,从而可证AF=CH ,然后利用AB ∥CD 即可知四边形AFCH 是平行四边形.试题解析:(1)证明:ABCD 四边形是正方形∴ AB CB DC == ,AB//CD90CBA ∠=︒∴180-180-9090ABE ABC ∠=︒∠=︒︒=︒∴ CBA ABE ∠=∠(等量代换)在△ABE 和△CBF 中{BE BFABE CBF AB CB=∠=∠=∴△ABE ≌△CBF (SAS )(2)答:四边形AFCH 是平行四边形理由:∵△ABE 绕点A 逆时针旋转90°得到△ADH∴△ABE ≌△ADH∴BE=DH又∵BE=BF (已知)∴BF=DH(等量代换)又∵AB=CD (由(1)已证)∴AB-BF=CD-DH即AF=CH又∵AB//CD 即AF//CH∴四边形AFCH 是平行四边形23.已知抛物线y =x 2+bx+c 经过原点,对称轴为直线x =1,求该抛物线的解析式.【答案】y =x 2﹣2x .【分析】根据抛物线经过原点可得c=0,根据对称轴公式求得b ,即可求得其解析式.【详解】∵抛物线y =x 2+bx+c 经过原点,∴c =0,又∵抛物线y =x 2+bx+c 的对称轴为x =1, ∴﹣2b =1, 解得b =﹣2∴抛物线的解析式为y =x 2﹣2x .【点睛】本题考查了待定系数法求二次函数的解析式,熟练掌握对称轴公式是解题的关键.24.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式; (2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A 、B 两种营销方案方案A :该文具的销售单价高于进价且不超过30元;方案B :每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由【答案】 (1) w =-10x 2+700x -10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;(3) A 方案利润更高.【分析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A 、B 中x 的取值范围,然后分别求出A 、B 方案的最大利润,然后进行比较.【详解】解:(1)w =(x -20)(250-10x +250)=-10x 2+700x -10000.(2)∵w =-10x 2+700x -10000=-10(x -35)2+2250∴当x =35时,w 有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A 方案利润高,理由如下:A 方案中:20<x≤30,函数w =-10(x -35)2+2250随x 的增大而增大,∴当x=30时,w 有最大值,此时,最大值为2000元.B 方案中:10x 50010x 2025-+≥⎧⎨-≥⎩,解得x 的取值范围为:45≤x≤49. ∵45≤x≤49时,函数w =-10(x -35)2+2250随x 的增大而减小,∴当x=45时,w 有最大值,此时,最大值为1250元.∵2000>1250,∴A 方案利润更高25.已知234==a b c (1)求a b c b++的值; (2)若2230a b c ++=-,求,,a b c 的值.【答案】(1)3;(2)a=-4,b=-6,c=-8.【解析】(1)设234a b c k ===,可得2a k =,3b k =,4c k =,代入原式即可解答;(2)把2a k =,3b k =,4c k =,带入(2)式即可计算出k 的值,从而求解. 【详解】(1)设234a b c k ===, 则2a k =,3b k =,4c k = ∴2349333a b c k k k k b k k++++=== (2)由(1)2232430k k k ⨯++⨯=-解得2k =-,4a =-,6b =-,8c =-【点睛】 本题考查比例的性质,设234a b c k ===是解题关键. 26.已知二次函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(2,3),(3,0).(1)则b =,c =;(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x <2时,y 的取值范围是.【答案】(1)b=2,c=3;(2)(0,3),(1,4)(3)见解析;(4)-12<y≤4【解析】(1)将点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y 的取值范围.【详解】(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得3=-4+2b+c 0=-9+3b+c ⎧⎨⎩,解得23b c =⎧⎨=⎩, 故答案为:b=2,c=3;(2)解:令x=0,c=3, 二次函数图像与y 轴的交点坐标为则(0,3),二次函数解析式为y=y =-x 2+2x +3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x <2时,y 的取值范围是:-12<y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.27.如图,一块等腰三角形钢板的底边长为80cm,腰长为50cm.(1)求能从这块钢板上截得的最大圆的半径;(2)用一个圆完整覆盖这块钢板,这个圆的最小半径是多少cm?【答案】(1)403cm;(2)40cm.【分析】(1)由于三角形ABC是等腰三角形,过A作AD⊥BC于D,那么根据勾股定理得到AD=30,又从这块钢板上截得的最大圆就是三角形的内切圆,根据内切圆的圆心的性质知道其圆心在AD上,分别连接AO、BO、CO,然后利用三角形的面积公式即可求解;(2)由于一个圆完整覆盖这块钢板,那么这个圆是三个三角形的外接圆,设覆盖圆的半径为R,根据垂径定理和勾股定理即可求解【详解】解:(1)如图,过A作AD⊥BC于D∵AB=AC=50,BC=80∴根据等腰三角形三线合一的性质及勾股定理可得AD=30,BD=CD=40,设最大圆半径为r,则S△ABC=S△ABO+S△BOC+S△AOC,∴S△ABC=12×BC×AD=12(AB+BC+CA)r1 2×80×30=12(50+80+50)r解得:r=403cm ;(2)设覆盖圆的半径为R,圆心为O′,∵△ABC是等腰三角形,过A作AD⊥BC于D,∴BD=CD=40,30=,∴O′在AD直线上,连接O′C,在Rt△O′DC中,由R2=402+(R-30)2,∴R=1253;若以BD长为半径为40cm,也可以覆盖,∴最小为40cm.【点睛】此题分别考查了三角形的外接圆与外心、内切圆与内心、等腰三角形的性质,综合性比较强,解题的关键是熟练掌握外心与内心的性质与等腰三角形的特殊性.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知32 )0,(0a b a b =≠≠,下列变形错误的是( )A .23a b =B .23b a =C .32b a =D .23a b = 【答案】B【解析】根据比例式的性质,即可得到答案.【详解】∵23a b =⇔32a b =,23b a =⇔23a b =,32b a =⇔32a b =,23a b =⇔32a b =, ∴变形错误的是选项B .故选B .【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键.2.在单词mathematics(数学)中任意选择一个字母,字母为“m”的概率为( )A .15B .211C .16D .213【答案】B【分析】根据概率公式进行计算即可.【详解】在单词“mathematics”中,共11个字母,其中有2个字母“m”,故从中任意选择一个字母,这个字母为“m”的概率是211. 故选:B .【点睛】本题考查概率的计算,熟记概率公式是解题关键.3.如图,小明夜晚从路灯下A 处走到B 处这一过程中,他在路上的影子( )A .逐渐变长B .逐渐变短C .长度不变D .先变短后变长【答案】A 【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【详解】当他远离路灯走向B 处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,。
〖汇总3套试卷〗合肥市2018年九年级上学期数学期末考试试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.边长相等的正方形与正六边形按如图方式拼接在一起,则ABC ∠的度数为( )A .10︒B .15︒C .20︒D .30【答案】B 【解析】利用多边形的内角和定理求出正方形与正六边形的内角和,进而求出每一个内角,根据等腰三角形性质,即可确定出所求角的度数.【详解】正方形的内角和为360°,每一个内角为90°;正六边形的内角和为720°,每一个内角为120°,则BAC ∠ =360°-120°-90°=150°,因为AB=AC,所以ABC ∠=ACB ∠=15°故选B【点睛】此题考查了多边形内角和外角,等腰三角形性质,熟练掌握多边形的内角和定理是解本题的关键. 2.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .【答案】B【解析】根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,直接判断即可.【详解】解:A .不是中心对称图形;B .是中心对称图形;C .不是中心对称图形;D .不是中心对称图形.故选:B .本题考查的知识点是中心对称图形的判定,这里需要注意与轴对称图形的区别,轴对称形是:一定要沿某直线折叠后直线两旁的部分互相重合;中心对称图形是:图形绕某一点旋转180°后与原来的图形重合. 3.如图,直角坐标平面内有一点(2,4)P,那么OP与x轴正半轴的夹角α的余切值为()A.2B.12C.55D.5【答案】B【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,∵P(2,4),∴OA=2,AP=4,.∴4 tan22APOAα===∴1 cot2=α.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.4.如图,在Rt△ABC中,CE是斜边AB上的中线,CD⊥AB,若CD=5,CE=6,则△ABC的面积是()A.24 B.25 C.30 D.36【分析】根据题意及直角三角形斜边上的中线等于斜边的一半可得:AB=2CE=12再根据三角形面积公式,即△ABC 面积=12AB×CD=30.故选C. 【详解】解:∵CE 是斜边AB 上的中线,∴AB =2CE =2×6=12,∴S △ABC =12×CD×AB =12×5×12=30, 故选:C .【点睛】本题的考点是直角三角形斜边上的中线性质及三角形面积公式.方法是根据题意求出三角形面积公式中的底,再根据面积公式即可得出答案.5.二次函数22y x =-图像的顶点坐标为( )A .(0,-2)B .(-2,0)C .(0,2)D .(2,0) 【答案】A【分析】根据顶点式的坐标特点,直接写出顶点坐标即对称轴.【详解】解:抛物线y=x 2-2是顶点式,根据顶点式的坐标特点可知,顶点坐标为(0,-2),故选A .【点睛】此题考查了二次函数的性质,二次函数y=a (x-h )2+k 的顶点坐标为()h k ,,对称轴为x=h . 6.若关于的一元二次方程2210kx x +-= 有两个不相等的实数根,则k 的取值范围是( ) A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠【答案】B【分析】根据一元二次方程的定义和根的判别式列出不等式求解即可.【详解】由题意得:20,4440k b ac k ≠∆=-=+>解得:1k >-且0k ≠故选:B .【点睛】本题考查了一元二次方程的根的判别式,熟记根的判别式是解题关键.对于一般形式20(a 0)++=≠ax bx c 有:(1)当240b ac ∆=->时,方程有两个不相等的实数根;(2)当240b ac ∆=-=时,方程有两个相等的实数根;(3)当240b ac ∆=-<时,方程没有实数根.7.如图,以点O 为位似中心,将△ABC 缩小后得到△A ′B ′C ′,已知OB =3OB ′,则△A ′B ′C ′与△ABC 的周长比为 ( )A .1:3B .1:4C .1:8D .1:9【答案】A 【分析】以点O 为位似中心,将△ABC 缩小后得到△A′B′C′,OB=1OB′,可得△A′B′C′与△ABC 的位似比,然后由相似三角形的性质可得△A′B′C′与△ABC 的周长比.【详解】∵以点O 为位似中心,将△ABC 缩小后得到△A′B′C′,OB=1OB′,,∴△A′B′C′与△ABC 的位似比为:1:1,∴△A′B′C′与△ABC 的周长比为:1:1.故选:A .【点睛】此题考查了位似图形的性质.此题难度不大,注意三角形的周长比等于相似比.8.如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4【答案】B 【解析】∵点(6,4)A -,D 是OA 中点∴D 点坐标(3,2)-∵(3,2)D -在双曲线(0)k y k x =<上,代入可得23k =- ∴6k =-∵点C 在直角边AB 上,而直线边AB 与x 轴垂直∴点C 的横坐标为-6又∵点C 在双曲线6y x -= ∴点C 坐标为(6,1)- ∴22(66)(14)3AC =-++-=从而1136922AOC S AC OB ∆=⨯⨯=⨯⨯=,故选B 9.如图,在正方形ABCD 中,点E 是CD 的中点,点F 是BC 上的一点,且BF =3CF ,连接AE 、AF 、EF ,下列结论:①∠DAE =30°,②△ADE ∽△ECF ,③AE ⊥EF ,④AE 2=AD•AF ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据题意可得tan ∠DAE 的值,进而可判断①;设正方形的边长为4a ,根据题意用a 表示出FC ,BF ,CE ,DE ,然后根据相似三角形的判定方法即可对②进行判断;在②的基础上利用相似三角形的性质即得∠DAE =∠FEC ,进一步利用正方形的性质即可得到∠DEA+∠FEC =90°,进而可判断③;利用相似三角形的性质即可判断④.【详解】解:∵四边形ABCD 是正方形,E 为CD 中点,∴CE =ED =12DC =12AD , ∴tan ∠DAE =12DE AD =,∴∠DAE ≠30°,故①错误; 设正方形的边长为4a ,则FC =a ,BF =3a ,CE =DE =2a ,∴2,2DE AD FC EC ==,∴DE AD FC EC=,又∠D =∠C=90°, ∴△ADE ∽△ECF ,故②正确;∵△ADE ∽△ECF ,∴∠DAE =∠FEC ,∵∠DAE+∠DEA =90°∴∠DEA+∠FEC =90°,∴AE ⊥EF .故③正确;∵△ADE ∽△ECF ,∴AD AE AE AF=,∴AE 2=AD•AF ,故④正确. 综上,正确的个数有3个,故选:C.本题考查了正方形的性质、锐角三角函数、相似三角形的判定和性质等知识,属于常考题型,熟练掌握正方形的性质和相似三角形的判定和性质是解题的关键.10.下列事件中,是随机事件的是( )A .两条直线被第三条直线所截,同位角相等B .任意一个四边形的外角和等于360°C .早上太阳从西方升起D .平行四边形是中心对称图形【答案】A【分析】根据随机事件的概念对每一事件进行分析.【详解】选项A,只有当两条直线为平行线时,同位角才相等,故不确定为随机事件.选项B ,不可能事件.选项C ,不可能事件选项D,必然事件.故选A【点睛】本题考查了随机事件的概念.11.将抛物线()2213y x =+-先向上平移3个单位长度,再向右平移1个单位长度可得抛物线( )A .22y x =B .()222y x =+C .226y x =-D .()2226y x =+-【答案】A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解.【详解】平移后的抛物线为()22211332y x x =+--+=故答案为A.【点睛】此题主要考查抛物线平移的性质,熟练掌握,即可解题.12.下列函数中,当x >0时,y 随x 的增大而增大的是( )A .y x 1=-+B .2y x 1=-C .1y x =D .2y x 1=-+【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A 、y x 1=-+,一次函数,k <0,故y 随着x 增大而减小,错误;B 、2y x 1=-(x >0),故当图象在对称轴右侧,y 随着x 的增大而增大,正确;C 、1y x=,k=1>0,分别在一、.三象限里,y 随x 的增大而减小,错误; D 、2y x 1=-+(x >0),故当图象在对称轴右侧,y 随着x 的增大而减小,错误.故选B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.二、填空题(本题包括8个小题)13.四边形ABCD 内接于⊙O ,∠A =125°,则∠C 的度数为_____°.【答案】1.【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠A+∠C =180°,∵∠A =125°,∴∠C =1°,故答案为:1.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键.14.已知锐角α,满足tanα=2,则sinα=_____.25 【解析】分析:根据锐角三角函数的定义,可得答案.详解:如图,由tanα=a b=2,得a=2b ,由勾股定理,得: 22a b +5,sinα=a c 5b 25.故答案为255.点睛:本题考查了锐角三角函数,利用锐角三角函数的定义解题的关键.15.已知二次函数y=3x2+2x,当﹣1≤x≤0时,函数值y的取值范围是_____.【答案】﹣13≤y≤1【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.16.如图,已知菱形ABCD中,∠B=60°,点E在边BC上,∠BAE=25°,把线段AE绕点A逆时针方向旋转,使点E落在边CD上,那么旋转角 的度数为______.【答案】60°或70°.【分析】连接AC,根据菱形的性质及等边三角形的判定易证△ABC是等边三角形.分两种情况:①将△ABE 绕点A逆时针旋转60°,点E可落在边DC上,此时△ABE与△ABE1重合;②将线段AE绕点A逆时针旋转70°,点E可落在边DC上,点E与点E2重合,此△AEC≌△AE2C.【详解】连接AC.∵菱形ABCD中,∠ABC=60°,∴△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∴∠ACD=60°.本题有两种情况:①如图,将△ABE 绕点A 逆时针旋转,使点B 与点C 重合,点E 与点E 1重合,此时△ABE ≌△ABE 1,AE=AE 1,旋转角α=∠BAC=60°;②∵∠BAC=60°,∠BAE=25°,∴∠EAC=35°.如图,将线段AE 绕点A 逆时针旋转70°,使点E 到点E 2的位置,此时△AEC ≌△AE 2C ,AE=AE 2,旋转角α=∠EAE 2=70°.综上可知,符合条件的旋转角α的度数为60度或70度.17.已知2x =-是一元二次方程240x mx ++=的一个解,则m 的值是__________.【答案】4【分析】把x=-2代入x 2+mx+4=0可得关于m 的一元一次方程,解方程即可求出m 的值.【详解】∵2x =-是一元二次方程240x mx ++=的一个解,∴4-2m+4=0,解得:m=4,故答案为:4【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 18.如图,在平面直角坐标系中,()()()0,44,46,2A B C 、、,则经过、、A B C 三点的圆弧所在圆的圆心M 的坐标为__________;点D 坐标为()8,2-,连接CD ,直线CD 与M 的位置关系是___________.【答案】(2,0)相切【分析】由网格容易得出AB的垂直平分线和BC的垂直平分线,它们的交点即为点M,根据图形即可得出点M的坐标;由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC 是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.【详解】解:如图,作线段AB,CD的垂直平分线交点即为M,由图可知经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0).连接MC,MD,∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,又∵MC为半径,∴直线CD是⊙M的切线.故答案为:(2,0);相切.【点睛】本题考查的直线与圆的位置关系,圆的切线的判定等知识,在网格和坐标系中巧妙地与圆的几何证明有机结合,较新颖.三、解答题(本题包括8个小题)19.解方程(1)2x2﹣7x+3=1;(2)x2﹣3x=1.【答案】(1)x1=2,x212;(2)x1 =1或x2 =2.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可; (2)提取公因式x 后,求出方程的解即可; 【详解】解: (1)2x 2﹣7x+2=1, (x ﹣2)(2x ﹣1)=1, ∴x ﹣2=1或2x ﹣1=1, ∴x 1=2,x 212=; (2)x 2﹣2x=1, x(x ﹣2)=1, x 1 =1 或,x 2 =2. 【点睛】本题主要考查了解一元二次方程,掌握解一元二次方程是解题的关键.20.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低1万元,平均每周多售出2辆. (1)当售价为22万元/辆时,平均每周的销售利润为___________万元;(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 【答案】(1)98 (2)20万元【分析】(1)根据当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆,即可求出当售价为22万元/辆时,平均每周的销售量,再根据销售利润=一辆汽车的利润×销售数量列式计算;(2)设每辆汽车降价x 万元,根据每辆的盈利×销售的辆数=90万元,列方程求出x 的值,进而得到每辆汽车的售价.【详解】(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是:25220.5-×1+8=14, 则此时,平均每周的销售利润是:(22−15)×14=98(万元); (2)设每辆汽车降价x 万元,根据题意得: (25−x−15)(8+2x )=90, 解得x 1=1,x 2=5,当x =1时,销售数量为8+2×1=10(辆); 当x =5时,销售数量为8+2×5=18(辆),为了尽快减少库存,则x =5,此时每辆汽车的售价为25−5=20(万元), 答:每辆汽车的售价为20万元. 【点睛】此题主要考查了一元二次方程的应用,本题关键是会表示一辆汽车的利润,销售量增加的部分.找到关键描述语,找到等量关系:每辆的盈利×销售的辆数=90万元是解决问题的关键.21.某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A ,B ,C ,D 四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a 的值为 ;(2)求C 等级对应扇形的圆心角的度数;(3)获得A 等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率. 【答案】(1)8 ;(2)144︒;(3)12【分析】(1)根据D 等级的人数除以其百分比得到班级总人数,再乘以B 等级的百分比即可得a 的值; (2)用C 等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数; (3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可 【详解】解:(1)班级总人数为1230%40÷= 人,B 等级的人数为4020%8⨯= 人,故a 的值为8; (2)16360144?40⨯︒=︒ ∴C 等级对应扇形的圆心角的度数为144︒. (3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种. ∴P (一男一女)61122==答:恰好选中一男一女参加比赛的概率为12. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A的结果数目m ,然后利用概率公式计算事件A 的概率为mn.也考查了统计图. 22.(阅读材料)某校九年级数学课外兴趣探究小组在学习完《第二十八章锐角三角函数》后,利用所学知识进行深度探究,得到以下正确的等量关系式:sin()sin cos cos sin αβαβαβ+=⋅+⋅,sin()sin cos cos sin αβαβαβ-=⋅-⋅cos()cos cos sin sin αβαβαβ+=⋅-⋅,cos()cos cos sin sin αβαβαβ-=⋅+⋅tan tan tan()1tan tan αβαβαβ++=-⋅,tan tan tan()1tan tan αβαβαβ--=+⋅,(理解应用)请你利用以上信息求下列各式的值:(1)sin15︒;(2)cos105︒(拓展应用)(3)为了求出海岛上的山峰AB 的高度,在D 处和F 处树立标杆CD 和EF ,标杆的高都是3丈,,D F 两处相隔1000步(1步等于6尺),并且,AB CD 和EF 在同一平面内,在标杆CD 的顶端C 处测得山峰顶端A 的仰角75°,在标杆EF 的顶端E 处测得山峰顶端A 的仰角30°,山峰的高度即AB 的长是多少步?(结果保留整数)(参考数据:2 1.4,3 1.7,5 2.2,6 2.4≈≈≈≈)【答案】(162-(226-(3)山峰的高度即AB 的长大约是719步 【分析】(1))sin15sin(4530)︒=︒-︒,直接利用所给等量关系式代入求解即可; (2)cos105cos 6045︒=︒+(),直接利用所给等量关系式代入求解即可; (3)连接CE ,返向延长CE 交AB 于点K ,再用含AK 的式子表示出KE ,KC ,再根据KE=CK+1000求解即可.【详解】解:(1)sin15sin(4530)︒=︒-︒sin 45cos30cos4530sin =︒︒-︒︒2321622-==(2)cos105cos 6045cos60cos45sin 60sin 45︒=︒+=︒︒-︒︒()12322622224-=⨯-⨯= (3)连接CE ,返向延长CE 交AB 于点K ,则35KB CD ===丈步,1000EC DF ==步,在Rt AKC ∆中,tan 75AKKC =同理:tan 30AKKE =∵31tan 45tan 30333tan 75tan(4530)1tan 45tan 30333113+++=+===-⋅--⨯3 1.7 3.63 1.7+≈≈- 1000KE KC EC KC =+=+∴1000tan 30tan 75AK AK=+∴1000tan 30tan 75AK AK-=解得:714AK ≈(步)∴7145719AB AK KB =+≈+=(步) 答:山峰的高度即AB 的长大约是719步. 【点睛】本题考查的知识点是锐角三角函数,解题的关键是读懂题意,能够灵活运用所给等量关系式.23.李老师将1个黑球和若干个白球放入一个不透明的口袋中并搅匀,让学生进行摸球试验,每次摸出一个球(放回),下表是活动进行中的一组统计数据. 摸球的次数n 100 150 200 500 800 1000 摸到黑球的次数m 23 31 60 130 203 251 摸到黑球的频率mn0.230.210.30_______________(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个黑球的概率是______.(结果都保留小数点后两位)(2)估算袋中白球的个数为________.(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算出两次都摸出白球的概率.【答案】表格内数据:0.26,0.25,0.25 (1)0.25;(2)1;(1)916.【分析】(1)直接利用频数÷总数=频率求出答案;(2)设袋子中白球有x个,利用表格中数据估算出得到黑球的频率列出关于x的分式方程,【详解】(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近0.25,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,11+x=0.25,x=1.答:估计袋中有1个白球.(1)由题意画树状图得:由树状图可知,所有可能出现的结果共有16种,这些结果出现的可能性相等,其中两次都摸出白球的有9种情况.所以P(两次都摸出白球)=916.【点睛】本题主要考查了模拟实验以及频率求法和树状图法与列表法求概率, 解决本题的关键是要熟练掌握概率计算方法.24.如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求DBC的长.【答案】(1)见解析;(2)143π【分析】(1)根据垂径定理、切线的性质求出AB ⊥CD ,AB ⊥BF ,即可证明; (2)根据圆周角定理求出∠COD ,根据弧长公式计算即可. 【详解】(1)证明:∵AB 是⊙O 的直径,DE =CE , ∴AB ⊥CD , ∵BF 是⊙O 的切线, ∴AB ⊥BF , ∴CD ∥BF ;(2)解:连接OD 、OC , ∵∠A =35°,∴∠BOD =2∠A =70°, ∴∠COD =2∠BOD =140°, ∴DBC 的长为:1406180π⨯=143π.【点睛】本题考查的是切线的性质、垂径定理、弧长的计算,掌握切线的性质定理、垂径定理和弧长的计算公式是解题的关键.25.在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠的拼成如图2所示的“L ”形状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知9AB =,16BC =,FG AD ⊥. 求(1)线段AF 与EC 的差值是___ (2)FG 的长度.【答案】9 6【分析】如图1,延长FG 交BC 于H ,设CE =x ,则E'H'=CE =x ,根据轴对称的性质得:D'E'=DC =E'F'=9,表示GH ,EH ,BE 的长,证明△EGH ∽△EAB ,则GH EHAB BE=,可得x 的值, 即可求出线段AF 、EC 及FG 的长,故可求解.【详解】(1)如图1,延长FG交BC于H,设CE=x,则E'H'=CE=x,由轴对称的性质得:D'E'=DC=E'F'=9,∴H'F'=AF=9+x,∵AD=BC=16,∴DF=16−(9+x)=7−x,即C'D'=DF=7−x=F'G',∴FG=7−x,∴GH=9−(7−x)=2+x,EH=16−x−(9+x)=7−2x,∴EH∥AB,∴△EGH∽△EAB,∴GH EH AB BE=,∴272 916x xx +-=-,解得x=1或31(舍),AF、EC及FG∴AF=9+x=10,EC=1,故AF-EC=9故答案为:9;(2)由(1)得FG=7−x =7-1=6.【点睛】本题考查了图形的拼剪,轴对称的性质,矩形、直角三角形、相似三角形等相关知识,积累了将实际问题转化为数学问题经验,渗透了数形结合的思想,体现了数学思想方法在现实问题中的应用价值.26.如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上.(1)、求证:△ABE≌△ADF;(2)、若等边△AEF的周长为6,求正方形ABCD的边长.【答案】(1)证明见解析;(226 +【解析】试题分析:(1)根据四边形ABCD 是正方形,得出AB=AD ,∠B=∠D=90°,再根据△AEF 是等边三角形,得出AE=AF ,最后根据HL 即可证出△ABE ≌△ADF ;(2)根据等边△AEF 的周长是6,得出AE=EF=AF 的长,再根据(1)的证明得出CE=CF ,∠C=90°,从而得出△ECF 是等腰直角三角形,再根据勾股定理得出EC 的值,设BE=x ,则,在Rt △ABE 中,AB 2+BE 2=AE 2,求出x 的值,即可得出正方形ABCD 的边长. 试题解析:(1)证明:∵四边形ABCD 是正方形, ∴AB=AD ,∵△AEF 是等边三角形, ∴AE=AF ,在Rt △ABE 和Rt △ADF 中, ∵AB =AD ,AE =AF ∴Rt △ABE ≌Rt △ADF ; (2)∵等边△AEF 的周长是6, ∴AE=EF=AF=2,又∵Rt △ABE ≌Rt △ADF , ∴BE=DF ,∴CE=CF ,∠C=90°, 即△ECF 是等腰直角三角形, 由勾股定理得CE 2+CF 2=EF 2, ∴,设BE=x ,则,在Rt △ABE 中,AB 2+BE 2=AE 2,即()2+x 2=4,解得x 1=2x 2=2,∴∴正方形ABCD 的边长为考点: 1.正方形的性质;2.全等三角形的判定与性质;27.如图,抛物线y=ax 2+bx+4(a ≠0)与x 轴交于点B (-3 ,0) 和C (4 ,0)与y 轴交于点A . (1) a = ,b = ;(2) 点M 从点A 出发以每秒1个单位长度的速度沿AB 向B 运动,同时,点N 从点B 出发以每秒1个单位长度的速度沿BC 向C 运动,当点M 到达B 点时,两点停止运动.t 为何值时,以B 、M 、N 为顶点的三角形是等腰三角形?(3) 点P 是第一象限抛物线上的一点,若BP 恰好平分∠ABC ,请直接写出此时点P 的坐标.【答案】(1)13-,13;(2)52530,,21111t =;(3)511(,)24 【解析】(1)直接利用待定系数法求二次函数解析式得出即可;(2)分三种情况:①当BM=BN 时,即5-t=t ,②当BM=NM=5-t 时,过点M 作ME ⊥OB ,因为AO ⊥BO ,所以ME ∥AO ,可得:BM BEBA BO =即可解答;③当BE=MN=t 时,过点E 作EF ⊥BM 于点F ,所以BF=12BM=12(5-t ),易证△BFE ∽△BOA ,所以BE BFBA BO=即可解答; (3)设BP 交y 轴于点G ,过点G 作GH ⊥AB 于点H ,因为BP 恰好平分∠ABC ,所以OG=GH ,BH=BO=3,所以AH=2,AG=4-OG ,在Rt △AHG 中,由勾股定理得:OG=32,设出点P 坐标,易证△BGO ∽△BPD ,所以BO GOBD PD=,即可解答. 【详解】解:解:(1)∵抛物线过点B (-3 ,0) 和C (4 ,0), ∴934016440a b a b -+⎧⎨++⎩== ,解得:1313a b ⎧=-⎪⎪⎨⎪=⎪⎩;(2)∵B (-3 ,0),y=ax 2+bx+4,∴A(0,4),0A=4,OB=3, 在Rt △ABO 中,由勾股定理得:AB=5, t 秒时,AM=t ,BN=t ,BM=AB-AM=5-t , ①如图:当BM=BN 时,即5-t=t ,解得:t=52;,②如图,当BM=NM=5-t 时,过点M 作ME ⊥OB ,因为BN=t ,由三线合一得:BE=12BN=12t ,又因为AO ⊥BO ,所以ME ∥AO ,所以BM BE BA BO =,即15-253tt = ,解得:t=3011;③如图:当BE=MN=t 时,过点E 作EF ⊥BM 于点F ,所以BF=12BM=12(5-t ),易证△BFE ∽△BOA ,所以BE BF BA BO=,即5t 253t-= ,解得:t=2511 .(3)设BP 交y 轴于点G ,过点G 作GH ⊥AB 于点H ,因为BP 恰好平分∠ABC ,所以OG=GH ,BH=BO=3,所以AH=2,AG=4-OG ,在Rt △AHG 中,由勾股定理得:OG=32,设P (m ,-13m 2+13m+4),因为GO ∥PD ,∴△BGO ∽△BPD ,∴BO GO BD PD = ,即2332113+433m m m =-++ ,解得:m 1=52,m 2=-3(点P 在第一象限,所以不符合题意,舍去),m 1=52时,-13m 2+13m+4=114故点P的坐标为511(,)24【点睛】本题考查用待定系数法求二次函数解析式,还考查了等腰三角形的判定与性质、相似三角形的性质和判定.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,两根竹竿AB 和AD 都斜靠在墙CE 上,测得,CAB CAD αβ∠=∠=,则两竹竿的长度之比AB AD 等于( ) A .sin sin αβ B .cos cos αβ C .sin sin βα D .cos cos βα【答案】D【分析】在两个直角三角形中,分别求出AB 、AD 即可解决问题.【详解】根据题意:在Rt △ABC 中,cos AC AB α=,则cos AC AB α=, 在Rt △ACD 中,cos AC ADβ=,则cos AC AD β=, ∴cos cos cos cos ACAB AC AD βααβ==. 故选:D .【点睛】本题考查了解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题. 2.按如图所示的运算程序,输入的 x 的值为12,那么输出的 y 的值为( )A .1B .2C .3D .4【答案】D【分析】把1=2x 代入程序中计算,知道满足条件,即可确定输出的结果. 【详解】把1=2x 代入程序, ∵12是分数, ∴120=-=-<y x 不满足输出条件,进行下一轮计算;把=2x -代入程序,∵2-不是分数 ∴()()22112122214044=--+=-⨯--⨯-+=>y x x 满足输出条件,输出结果y=4,故选D.【点睛】本题考查程序运算,解题的关键是读懂程序的运算规则.3.已知实数m ,n 满足条件m 2﹣7m+2=0,n 2﹣7n+2=0,则n m +m n 的值是( ) A .452 B .152 C .152或2 D .452或2 【答案】D【分析】①m≠n 时,由题意可得m 、n 为方程x 2﹣7x+2=0的两个实数根,利用韦达定理得出m+n 、mn 的值,将要求的式子转化为关于m+n 、mn 的形式,整体代入求值即可;②m=n ,直接代入所求式子计算即可.【详解】①m≠n 时,由题意得:m 、n 为方程x 2﹣7x+2=0的两个实数根,∴m+n=7,mn=2,n m +m n =22n m mn +=22m n mn mn +-()=27222-⨯=452; ②m=n 时,n m +m n=2. 故选D.【点睛】 本题主要考查一元二次方程根与系数的关系,分析出m 、n 是方程的两个根以及分类讨论是解题的关键. 4.关于x 的一元二次方程ax 2﹣4x+1=0有实数根,则整数a 的最大值是( )A .1B .﹣4C .3D .4【答案】D【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=16﹣4a≥0且a≠0,∴a≤4且a≠0,所以a 的最大值为4,故选:D .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.5.人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为( ) A .978×103B .97.8×104C .9.78×105D .0.978×106 【答案】C【详解】解:978000用科学记数法表示为:9.78×105,故选C .【点睛】本题考查科学记数法—表示较大的数.6.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为( ) A .9B .10C .11D .12 【答案】B【分析】观察得出第n 个数为(-2)n ,根据最后三个数的和为768,列出方程,求解即可.【详解】由题意,得第n 个数为(-2)n ,那么(-2)n-2+(-2)n-1+(-2)n =768,当n 为偶数:整理得出:3×2n-2=768,解得:n=10;当n 为奇数:整理得出:-3×2n-2=768,则求不出整数.故选B .7.用配方法解方程x 2+4x+1=0时,原方程应变形为( )A .(x+2)2=3B .(x ﹣2)2=3C .(x+2)2=5D .(x ﹣2)2=5 【答案】A【分析】先把常数项移到方程右侧,然后配一次项系数一半的平方即可求解.【详解】x 2+4x =﹣1,x 2+4x+4=3,(x+2)2=3,故选:A .【点睛】本题考查了解一元二次方程-配方法,掌握在二次项系数为1的前提下,配一次项系数一半的平方是关键. 8.下列四组a 、b 、c 的线段中,不能组成直角三角形的是( )A .1a =,3b =2c =B .13a =,14b =,15c =C .9a =,12b =,15c =D .8a =,15b =,=17c【答案】B 【分析】根据勾股定理的逆定理判断三角形三边是否构成直角三角形,依次计算判断得出结论.【详解】A.∵222214a b +=+=,2224c ==,∴222+=a b c ,A 选项不符合题意.B.∵22221141()()45400b c +=+=,2211()39a ==, ∴222bc a +≠,B 选项符合题意.C.∵2222912225a b +=+=,2215225c ==,∴222+=a b c ,C 选项不符合题意.D.∵2222815289a b +=+=,2217289c ==∴222+=a b c ,D 选项不符合题意.故选:B .【点睛】本题考查三角形三边能否构成直角三角形,熟练逆用勾股定理是解题关键.9.方程(2)x x x -=的根是( )A .2B .0C .0或2D .0或3【答案】D【分析】先把右边的x 移到左边,然后再利用因式分解法解出x 即可.【详解】解:22x x x -= 230x x -=()30x x -=120,3x x ==故选D.【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法是解决本题的关键.10.如图,在一块斜边长60cm 的直角三角形木板(Rt ACB )上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若CD :CB =1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为( )A .202.5cm 2B .320cm 2C .400cm 2D .405cm 2【答案】C 【分析】先根据正方形的性质、相似三角形的判定与性质可得13AF EF AC BC ==,设AF x =,从而可得3,2,6AC x EF CF x BC x ====,再在Rt ACB 中,利用勾股定理可求出x 的值,然后根据三角形的面积公式、正方形的面积公式计算即可.【详解】∵四边形CDEF 为正方形,∴//EF BC ,EF CD =,∴AEF ABC ,AF EF AC BC∴=, ∵:1:3CD CB =, 13AF EF CD AC BC BC ∴===, 设AF x =,则3,2AC x EF CF x ===,∴6BC x =,在Rt ACB 中,222AC BC AB +=,即222(3)(6)60x x +=, 解得5x =45x =-(不符题意,舍去), 125,245,85AC BC EF ∴===, 则剩余部分的面积为22211125245(85)400()22AC BC EF cm ⋅-=⨯=, 故选:C .【点睛】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理等知识点,利用正方形的性质找出两个相似三角形是解题关键.11.将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为( )A .y=﹣(x+1)2+1B .y=﹣(x ﹣1)2+3C .y=﹣(x+1)2+5D .y=﹣(x+3)2+3 【答案】B【解析】解:∵将抛物线y=﹣(x +1)2+1向右平移2个单位,∴新抛物线的表达式为y=﹣(x +1﹣2)2+1=﹣(x ﹣1)2+1.故选B .12.下列事件中,是随机事件的是( )A .三角形任意两边之和大于第三边B .任意选择某一电视频道,它正在播放新闻联播C .a 是实数,|a|≥0D .在一个装着白球和黑球的袋中摸球,摸出红球【答案】B【分析】随机事件就是可能发生也可能不发生的事件,根据定义即可判断.【详解】A 、三角形任意两边之和大于第三边是必然事件,故选项不合题意;B 、任意选择某一电视频道,它正在播放新闻联播,是随机事件,故选项符合题意;C 、a 是实数,|a|≥0,是必然事件,故选项不合题意;D 、在一个装着白球和黑球的袋中摸球,摸出红球,是不可能事件,故选项不合题意.故选:B .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(本题包括8个小题)13.已知二次函数y=-x -2x +3的图象上有两点A(-7,1y ),B(-8,2y ),则1y ▲ 2y .(用>、<、=填空).【答案】>.【解析】根据已知条件求出二次函数的对称轴和开口方向,再根据点A 、B 的横坐标的大小即可判断出y 1与y 1的大小关系:∵二次函数y=﹣x 1﹣1x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y 随x 的增大而增大.∵点A (﹣7,y 1),B (﹣8,y 1)是二次函数y=﹣x 1﹣1x+3的图象上的两点,且﹣7>﹣8,∴y 1>y 1.14.已知3-是关于x 的一元二次方程2230ax x -+=的一个解,则此方程的另一个解为____.【答案】1x =【分析】将x =-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入2230ax x -+=得,a=-1,∴原方程为2230x x --+=,解得:x=1或-3,【点睛】。
(汇总3份试卷)2018年合肥市九年级上学期数学期末检测试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是A.25πB.65πC.90πD.130π【答案】B【解析】解:由已知得,母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.2.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为( )A.14B.13C.12D.1【答案】B【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.【详解】解:设一双是红色,一双是绿色,则列表得:∵一共有12种等可能的情况,恰好是一双的有4种情况,∴恰好是一双的概率:41123 P==;故选择:B.【点睛】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.3.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是( )A.6 B.5 C.4 D.3【答案】B【解析】过点O 作OC⊥AB,垂足为C ,则有AC=12AB=12×24=12,在Rt △AOC 中,∠ACO=90°,AO=13, ∴OC=22AO AC -=5,即点O 到AB 的距离是5.4.方程05)1(22=-+-mx x m 是关于x 的一元二次方程,则m 的值不能是( )A .0B .12C .±1D .12- 【答案】C【详解】解:05)1(22=-+-mx x m 是关于x 的一元二次方程,则210m -≠, 解得m ≠±1故选C .【点睛】本题考查一元二次方程的概念,注意二次项系数不能为零.5.如图,是一个几何体的三视图,则这个几何体是( )A .长方体B .圆柱体C .球体D .圆锥体【答案】B 【分析】根据三视图的规律解答:主视图表示由前向后观察的物体的视图;左视图表示在侧面由左向右观察物体的视图,俯视图表示由上向下观察物体的视图,由此解答即可.【详解】解:∵该几何体的主视图和左视图都为长方形,俯视图为圆∴这个几何体为圆柱体故答案是:B.【点睛】本题主要考察简单几何体的三视图,熟练掌握简单几何体的三视图是解题的关键.6.二次函数224y x x =-+图像的顶点坐标是( )A .()1,2-B .()1,1-C .()1,1D .()1,2【答案】D【分析】先把二次函数进行配方得到抛物线的顶点式,根据二次函数的性质即可得到其顶点坐标.【详解】∵224y x x =-+ ()22211x x =--+-22(1)2x =--+, ∴二次函数224y x x =-+的顶点坐标为()12,. 故选:D .【点睛】本题考查二次函数的顶点坐标,配方是解决问题的关键,属基础题.7.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2,下列说法中不正确的是( )A .当1<a<5时,点B 在⊙A 内 B .当a<5时,点B 在⊙A 内C .当a<1时,点B 在⊙A 外D .当a>5时,点B 在⊙A 外【答案】B【解析】试题解析:由于圆心A 在数轴上的坐标为3,圆的半径为2,∴当d=r 时,⊙A 与数轴交于两点:1、5,故当a=1、5时点B 在⊙A 上;当d <r 即当1<a <5时,点B 在⊙A 内;当d >r 即当a <1或a >5时,点B 在⊙A 外.由以上结论可知选项A 、C 、D 正确,选项B 错误.故选B .点睛:若用d 、r 分别表示点到圆心的距离和圆的半径,则当d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内.8.如图,关于抛物线2(1)2y x =--,下列说法错误的是 ( )A .顶点坐标为(1,2-)B .对称轴是直线x=lC .开口方向向上D .当x>1时,y 随x 的增大而减小【答案】D【分析】根据抛物线的解析式得出顶点坐标是(1,-2),对称轴是直线x=1,根据a=1>0,得出开口向上,当x >1时,y 随x 的增大而增大,根据结论即可判断选项.【详解】解:∵抛物线y=(x-1)2-2,A 、因为顶点坐标是(1,-2),故说法正确;B 、因为对称轴是直线x=1,故说法正确;C 、因为a=1>0,开口向上,故说法正确;D 、当x >1时,y 随x 的增大而增大,故说法错误.故选D .9.如图,在Rt △ABC 中,∠C=90°,AC=3,AB=5,则cosB 的值为( )A .45B .34C .43D .35【答案】B【详解】解:在Rt △ABC 中,∠C=90°,AC=3,AB=5,由勾股定理,得:BC=22AB AC -=2253-=1.cosB=BC AB =45, 故选B .【点睛】本题考查锐角三角函数的定义.10.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )A .112B .512C .16D .12【答案】A【解析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,据此用黄灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是黄灯的概率为多少.【详解】根据题意可知,每分钟内黄灯亮的时间为秒,每分钟内黄灯亮的概率为516012P ==,故抬头看是黄灯的概率为112. 故选A.【点睛】本题主要考查求随机事件概率的方法,熟悉掌握随机事件A 的概率公式是关键.11.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2 B.3 C.4 D.5【答案】B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AGBF BE,又∵AE=BE,∴AE2=AG•BF=2,∴2,∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.12.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是13,则盒子中白球的个数是().A.3 B.4 C.6 D.8 【答案】B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12×13=4,即白球的个数是4.故选:B.【点睛】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P (A )=m n. 二、填空题(本题包括8个小题)13.如图,在矩形 ABCD 中,如果 AB =3,AD =4,EF 是对角线 BD 的垂直平分线,分别交 AD ,BC 于 点 EF ,则 ED 的长为____________________________.【答案】258【分析】连接EB ,构造直角三角形,设AE 为x ,则4DE BE x ==-,利用勾股定理得到有关x 的一元一次方程,即可求出ED 的长.【详解】连接EB ,∵EF 垂直平分BD ,∴ED=EB ,设AE x =,则4ED EB x ==-,在Rt △AEB 中,222AE AB BE +=,即:()22234x x +=-,解得:78x =. ∴725488ED EB ==-=, 故答案为:258. 【点睛】 本题考查了矩形的性质,线段的垂直平分线的性质和勾股定理,正确根据勾股定理列出方程是解题的关键. 14.菱形ABCD 的周长为20,且有一个内角为120°,则它的较短的对角线长为______.【答案】1【分析】根据菱形的性质可得菱形的边长为1,然后根据内角度数进而求出较短对角线的长.【详解】 如图所示:菱形ABCD 的周长为20,∴AB=20÷4=1, 又120ABC ∠=︒,四边形ABCD 是菱形,∴60A ∠=︒,AB=AD ,∴ABD △是等边三角形,∴ BD=AB=1.故答案为1.【点睛】本题主要考查菱形的性质及等边三角形,关键是熟练掌握菱形的性质.15.如图,△ABC 绕点B 逆时针方向旋转到△EBD 的位置,∠A=20°,∠C=15°,E 、B 、C 在同一直线上,则旋转角度是_______.【答案】35°【分析】根据旋转角度的概念可得∠ABE 为旋转角度,然后根据三角形外角的性质可进行求解.【详解】解:由题意得:∠ABE 为旋转角度,∵∠A=20°,∠C=15°,E 、B 、C 在同一直线上,∴∠ABE=∠A+∠C=35°;故答案为35°.【点睛】本题主要考查旋转及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.16.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线解析式为______.【答案】22(2)3y x =-+【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=2x 2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的解析式为22(2)3y x =-+,故答案为:22(2)3y x =-+【点睛】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减. 17.若点P(2a+3b ,﹣2)关于原点的对称点为Q(3,a ﹣2b),则(3a+b)2020=______.【答案】1【分析】直接利用关于原点对称点的性质得出3a+b =﹣1,进而得出答案.【详解】解:∵点P(2a+3b ,﹣2)关于原点的对称点为Q(3,a ﹣2b),∴23322a b a b +=-⎧⎨-=⎩, 故3a+b =﹣1,则(3a+b)2020=1.故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.18.一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是__________.【答案】16π【分析】根据三视图可得出该几何体为圆锥,圆锥的表面积=底面积+侧面积(侧面积将圆锥的侧面积不成曲线地展开,是一个扇形.),用字母表示就是S=πr²+πrl (其中l=母线,是圆锥的顶点到圆锥的底面圆周之间的距离).【详解】解:由题意可知,该几何体是圆锥,其中底面半径为2,母线长为6,∴²42616S r rl πππππ=+=+⨯⨯=故答案为:16π.【点睛】本题考查的知识点是几何体的三视图以及圆锥的表面积公式,熟记圆锥的面积公式是解此题的关键.三、解答题(本题包括8个小题)19.将一元二次方程232=1x x --化为一般形式,并求出根的判别式的值.【答案】23210x x -+=,-8【分析】先移项,将方程化为一般式,然后算判别式的大小可得.【详解】解:将方程化为一般形式为:23210x x -+=∴a=3,b=-2,c=1∴ 根的判别式的值为224(2)4318b ac -=--⨯⨯=-.【点睛】本题考查一元二次方程的化简和求解判别式,注意此题的判别式为负数,即表示方程无实数根. 20.已知:如图,⊙O 的直径AB 与弦CD 相交于点E ,且E 为CD 中点,过点B 作CD 的平行线交弦AD 的延长线于点F .(1)求证:BF 是⊙O 的切线;(2)连结BC ,若⊙O 的半径为2,tan ∠BCD=34,求线段AD 的长. 【答案】(1)见解析;(2)165【分析】(1)由垂径定理可证AB ⊥CD ,由CD ∥BF ,得AB ⊥BF ,则BF 是⊙O 的切线;(2)连接BD ,根据同弧所对圆周角相等得到∠BCD =∠BAD ,再利用圆的性质得到∠ADB=90°,tan ∠BCD= tan ∠BAD=34,得到BD 与AD 的关系,再利用解直角三角形可以得到BD 、AD 与半径的关系,进一步求解即可得到答案.【详解】(1)证明:∵ ⊙O 的直径AB 与弦CD 相交于点E ,且E 为CD 中点∴ AB ⊥CD, ∠AED =90°∵ CD // BF∴ ∠ABF =∠AED =90°∴ AB ⊥BF∵ AB 是⊙O 的直径∴ BF 是⊙O 的切线(2)解:连接BD∵∠BCD、∠BAD是同弧所对圆周角∴∠BCD =∠BAD∵ AB是⊙O的直径∴∠ADB=90°∵ tan∠BCD= tan∠BAD=3 4∴34 BD AD=∴设BD=3x,AD=4x∴AB=5x∵⊙O的半径为2,AB=4∴5x=4,x=4 5∴AD=4x=16 5【点睛】本题考查了切线的判定与性质,垂径定理,圆周角定理,解直角三角形的知识.关键是利用圆周角定理将已知角进行转化,利用直径证明直角三角形.21.如图,反比例函数y=kx(x>0)与直线AB:122y x=-交于点C(232,)m+,点P是反比例函数图象上一点,过点P作x轴的垂线交直线AB于点Q,连接OP,OQ.(1)求反比例函数的解析式;(2)点P在反比例函数图象上运动,且点P在Q的上方,当△POQ面积最大时,求P点坐标.【答案】(1)y =4x ;(2)P (2,2) 【分析】(1)点C 在一次函数上得:m =()123+2-2=3-12,点C 在反比例函数上:3-1=232+,求出 k 即可.(2)动点P (m ,4m ),则点Q (m ,1m 2﹣2),PQ=4m -1m 2+2,则△POQ 面积=1m 2PQ ,利用-b 2a 公式求即可. 【详解】解:(1)将点C 的坐标代入一次函数表达式得:m =()123+2-2=3-12, 故点C ()232,3-1+,将点C 的坐标代入反比例函数表达式得:3-1=232+,解得k =4, 故反比例函数表达式为y =4x ; (2)设点P (m ,4m),则点Q (m ,1m 2﹣2), 则△POQ 面积=12PQ×x P =12(4m ﹣12m+2)•m =﹣14m 2+m+2, ∵﹣14<0,故△POQ 面积有最大值,此时m =1-12-4⎛⎫⨯ ⎪⎝⎭=2, 故点P (2,2).【点睛】本题考查反比例函数解析式,及面积最大值问题,关键是会利用一次函数求点C 坐标,利用动点P 表示Q ,求出面积函数,用对称轴公式即可解决问题.22.如图,ABO 与CDO 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE .求证:FD=BE .【答案】详见解析【分析】根据中心对称得出OB=OD ,OA=OC ,求出OF=OE ,根据SAS 推出△DOF ≌△BOE 即可.【详解】证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB=OD ,OA=OC .∵AF=CE ,∴OF=OE .∵在△DOF 和△BOE 中,OB OD DOF BOE OF OE =⎧⎪∠=∠⎨⎪=⎩,∴△DOF ≌△BOE (SAS ).∴FD=BE .23.如图,在ABC ∆中,90BAC ∠=,AB AC =,点,D E 均在边BC 上,且45DAE ∠=.(1)将ABD ∆绕A 点逆时针旋转90,可使AB 与AC 重合,画出旋转后的图形ACG ∆,在原图中补出旋转后的图形.(2)求DAG ∠和ECG ∠的度数.【答案】(1)见解析;(2)=90DAG ∠︒,=90ECG ∠︒.【分析】(1)以C 为圆心BD 为半径作弧,与以A 为圆心AD 为半径作弧的交点即为G 点,然后连线即可得解;(2)根据旋转的性质可得∠CAG=∠BAD ,∠ACG=∠ABD ,然后根据题意即可得各角的大小.【详解】(1)△ACG 如图:(2)∵90BAC ∠=,45DAE ∠=,∴∠B+∠ACB=90°,∠BAD+∠CAE=45°,又∵ACG ∆为ABD ∆绕A 点逆时针旋转90所得,∴∠CAG=∠BAD ,∠ACG=∠ABD ,∴=90DAG DAE EAC GAC ∠=++︒∠∠∠,==90ECG ECA ACG ∠+︒∠∠.【点睛】本题主要考查画旋转图形,旋转的性质,解此题的关键在于熟练掌握其知识点.24.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a = ,b = ,c = .(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.【答案】解:(1)a =135,b =134.5,c =1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【分析】(1)根据表中数据和中位数的定义、平均数和方差公式进行计算可求出表中数据;(2)从不同角度评价,标准不同,会得到不同的结果.【详解】解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为1341352+=134.5; 根据方差公式:s 2=()()()()()2222211321351341355135135213613513713510⎡⎤-+-+-+-+-⎣⎦=1.6, ∴a =135,b =134.5,c =1.6;(2)①从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;②从中位数看,一班一分钟跳绳135以上的人数比二班多;③从方差看,S 2一<S 2二;一班成绩波动小,比较稳定;④从最好成绩看,二班速度最快的选手比一班多一人;⑤一班和二班的平均成绩相同,说明他们的水平相当.【点睛】此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力.25.某商场以每件20元购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价x 元,回答下列问题:(1)该商场每天售出衬衫 件(用含x 的代数式表示);(2)求x 的值为多少时,商场平均每天获利1050元?(3)该商场平均每天获利 (填“能”或“不能”)达到1250元?【答案】(1)602x -;(2)当15x =时,商场平均每天获利1050元;(3)能【分析】(1)根据题意写出答案即可.(2)根据题意列出方程,解出答案即可.(3)令利润代数式为1250,解出即可判断.【详解】(1)根据题意:每天可售出60件,如果每件衬衫每涨价1元,商场平均每天可少售出2件,则商场每天售出衬衫:602x -(2)(4020)(602)1050x x +--=解得115x =,25x =-(不符合题意,舍去).答:当15x =时,商场平均每天获利1050元.(3)根据题意可得:(4020)(602)1250x x +--=解得:x=5所以,商场平均每天获利能达到1250元【点睛】本题考查一元二次方程的应用,关键在于理解题意找出等量关系.26.放寒假,小明的爸爸把油箱注满油后准备驾驶汽车到距家300km 的学校接小明,在接到小明后立即按原路返回,已知小明爸爸汽车油箱的容积为70L ,请回答下列问题:(1)写出油箱注满油后,汽车能够行使的总路程()s km 与平均耗油量(/)x L km 之间的函数关系式; (2)小明的爸爸以平均每千米耗油0.1L 的速度驾驶汽车到达学校,在返回时由于下雨,小明的爸爸降低了车速,此时每千米的耗油量增加了一倍,如果小明的爸爸始终以此速度行使,油箱里的油是否够回到家?如果不够用,请通过计算说明至少还需加多少油?【答案】(1)70s x=;(2)不够,至少要加油20L 【分析】(1)根据总路程()s km ×平均耗油量(/)x L km =油箱总油量求解即可;(2)先计算去时所用油量,再计算返回时用油量,与油箱中剩余油量作比较即可得出答案.【详解】解:(1)由题意可得出总路程()s km 与平均耗油量(/)x L km 的函数关系式为:70s x=; (2)小明的爸爸始终以此速度行使,油箱里的油不能够回到家小明爸爸去时用油量是:3000.130⨯=(L )油箱剩下的油量是:703040-=(L )返回每千米用油量是:0.120.2⨯=(/L km )返回时用油量是:3000.260⨯=(L )40L >.所以,油箱里的油不能够回到家,至少要加油:604020L -=()【点睛】本题考查的知识点是求反比例函数的解析式,比较基础,易于掌握.27.如图,在平面直角坐标系中,四边形OABC 的顶点坐标分别为O (0,0),A (6,0),B (4,3),C (0,3).动点P 从点O 出发,以每秒32个单位长度的速度沿边OA 向终点A 运动;动点Q 从点B 同时出发,以每秒1个单位长度的速度沿边BC 向终点C 运动.设运动的时间为t 秒,PQ 2=y .(1)直接写出y 关于t 的函数解析式及t 的取值范围: ;(2)当PQ =10时,求t 的值;(3)连接OB 交PQ 于点D ,若双曲线y k x=(k≠0)经过点D ,问k 的值是否变化?若不变化,请求出k 的值;若变化,请说明理由.【答案】(1)22520254y t t =-+(0≤t ≤4);(2)t 1=2,t 2=65;(2)经过点D 的双曲线k y x =(k ≠0)的k 值不变,为10825. 【分析】(1)过点P 作PE ⊥BC 于点E ,由点P ,Q 的出发点、速度及方向可找出当运动时间为t 秒时点P ,Q 的坐标,进而可得出PE ,EQ 的长,再利用勾股定理即可求出y 关于t 的函数解析式(由时间=路程÷速度可得出t 的取值范围);(2)将10代入(1)的结论中可得出关于t 的一元二次方程,解之即可得出结论;(2)连接OB ,交PQ 于点D ,过点D 作DF ⊥OA 于点F ,求得点D 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值,此题得解.【详解】解:(1)过点P 作PE ⊥BC 于点E ,如图1所示.当运动时间为t秒时(0≤t≤4)时,点P的坐标为(32t,0),点Q的坐标为(4-t,2),∴PE=2,EQ=|4-t-32t|=|4-52t|,∴PQ2=PE2+EQ2=22+|4-52t|2=254t2-20t+21,∴y关于t的函数解析式及t的取值范围:y=254t2−20t+21(0≤t≤4);故答案为:y=254t2−20t+21(0≤t≤4).(2)当PQ=10时,254t2−20t+21=(10)2整理,得1t2-16t+12=0,解得:t1=2,t2=65.(2)经过点D的双曲线y=kx(k≠0)的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=2,BC=4,∴OB22OC BC1.∵BQ∥OP,∴△BDQ∽△ODP,∴2332BD BQ ttOD OP===,∴OD=2.∵CB∥OA,∴∠DOF=∠OBC.在Rt△OBC中,sin∠OBC=35OCOB=,cos∠OBC=BCOB=45,∴OF=OD•cos∠OBC=2×45=125,DF=OD•sin∠OBC=2×35=95,∴点D的坐标为(125,95),∴经过点D的双曲线y=kx(k≠0)的k值为125×95=10825..【点睛】此题考查勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当t的值;(2)利用相似三角形的性质及解直角三角形,找出点D的坐标.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个【答案】B【分析】根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.2.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y =x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )A.c<﹣3 B.c<﹣2 C.c<14D.c<1【答案】B【分析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,由此可知方程x2+x+c=0有两个不相等的实数根,即△=1-4c>0,再由题意可得函数y= x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,由此可得关于c的不等式组,解不等式组即可求得答案.【详解】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以△=1-4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y= x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则140 110cc-⎧⎨++⎩><,解得c<﹣2,故选B.【点睛】本题考查了二次函数与一元二次方程的关系,正确理解题中的定义,熟练掌握二次函数与一元二次方程的关系是解题的关键.3.抛物线y=x 2+2x-2最低点坐标是( )A .(2,-2)B .(1,-2)C .(1,-3)D .(-1,-3)【答案】D【分析】利用配方法把抛物线的一般式转化为顶点式,再写出顶点坐标即可.【详解】∵()22222211213y x x x x x =+-=++--=+-,且10a =>, ∴最低点(顶点)坐标是()13--,. 故选:D .【点睛】此题考查利用顶点式求函数的顶点坐标,注意根据函数的特点灵活运用适当的方法解决问题. 4.已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( )A .2cmB .4cmC .6cmD .8cm【答案】B【详解】由题意可知,在直角三角形中,30°角所对的直角边等于斜边的一半,所以斜边=2×2=4cm. 考点:含30°的直角三角形的性质.5.若点()1,6A x -,2(,2)B x -,()3,2C x 在反比例函数21m y x +=(m 为常数)的图象上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .321x x x <<C .231x x x <<D .213x x x <<【答案】D【分析】根据反比例函数的性质,可以判断出x 1,x 2,x 3的大小关系,本题得以解决. 【详解】解:∵反比例函数21m y x+=(m 为常数),m 2+1>0, ∴在每个象限内,y 随x 的增大而减小,∵点A (x 1,-6),B (x 2,-2),C (x 3,2)在反比例函数21m y x+=(m 为常数)的图象上,∵6202-<-<<, ∴x 2<x 1<x 3,故选:D.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答. 6.13的倒数是( ) A .3 B .13 C .13- D .3-【答案】A 【分析】根据乘积为1的两个数互为倒数进行解答即可.【详解】解:∵13×1=1, ∴13的倒数是1. 故选A .【点睛】本题考查了倒数的概念,熟记倒数的概念是解答此题的关键.7.在同一平面直角坐标系中,函数y=x ﹣1与函数1y x=的图象可能是 A . B . C . D .【答案】C【解析】试题分析:一次函数y=kx+b 的图象有四种情况:①当k 0>,b 0>时,函数y=kx+b 的图象经过第一、二、三象限;②当k 0>,b 0<时,函数y=kx+b 的图象经过第一、三、四象限;③当k 0<,b 0>时,函数y=kx+b 的图象经过第一、二、四象限;④当k 0<,b 0<时,函数y=kx+b 的图象经过第二、三、四象限.因此,∵函数y=x ﹣1的k 0>,b 0<,∴它的图象经过第一、三、四象限.根据反比例函数()k y k 0x=≠的性质:当k 0>时,图象分别位于第一、三象限;当k 0<时,图象分别位于第二、四象限.∵反比例函数1y x=的系数1>0,∴图象两个分支分别位于第一、三象限. 综上所述,符合上述条件的选项是C .故选C .8.下列美丽的壮锦图案是中心对称图形的是( )A .B .C .D .【答案】A【解析】根据中心对称图形的定义逐项进行判断即可得.【详解】A 、是中心对称图形,故此选项正确;B 、不是中心对称图形,故此选项错误;C 、不是中心对称图形,故此选项错误;D 、不是中心对称图形,故此选项错误,故选A .【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.9.关于x 的一元二次方程x 2+bx ﹣10=0的一个根为2,则b 的值为( )A .1B .2C .3D .7【答案】C【解析】根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x 2+bx ﹣10=0得4+2b ﹣10=0解得b=1.故选C .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 10.已知0x =是方程22210x x a ++-=的一个解,则a 的值是( )A .±1B .0C .1D .-1 【答案】A【分析】利用一元二次方程解得定义,将0x =代入22210x x a ++-=得到210a -=,然后解关于a 的方程.【详解】解:将0x =代入22210x x a ++-=得到210a -=,解得1a =±故选A【点睛】本题考查了一元二次方程的解.11.关于x 的一元二次方程x 2+mx ﹣1=0的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定 【答案】A【解析】计算出方程的判别式为△=m 2+4,可知其大于0,可判断出方程根的情况.【详解】方程x 2+mx ﹣1=0的判别式为△=m 2+4>0,所以该方程有两个不相等的实数根,【点睛】此题主要考查根的判别式,解题的关键是求出方程根的判别式进行判断.12.下列方程中,是一元二次方程的是( )A .230x -=B .220x y -=C .213x x +=-D .20x = 【答案】D【解析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【详解】解:A 、是一元一次方程,故A 不符合题意;B 、是二元二次方程,故B 不符合题意;C 、是分式方程,故C 不符合题意;D 、是一元二次方程,故D 符合题意;故选择:D.【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx+c=0(a ≠0)的形式,则这个方程就为一元二次方程.二、填空题(本题包括8个小题)13.若点(p ,2)与(﹣3,q )关于原点对称,则p+q =__.【答案】1【分析】直接利用关于原点对称点的性质得出p ,q 的值进而得出答案.【详解】解:∵点(p ,2)与(﹣3,q )关于原点对称,∴p =3,q =﹣2,∴p+q =3﹣2=1.故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确掌握关于原点对称点的坐标之间的关系是解题关键. 14.已知扇形的半径为6,面积是12π,则这个扇形所对的弧长是_____.【答案】4π.【分析】根据扇形的弧长公式解答即可得解.【详解】设扇形弧长为l ,面积为s ,半径为r . ∵1161222S lr l π==⨯⨯=, ∴l=4π.故答案为:4π.本题考查了扇形面积的计算,弧长的计算,熟悉扇形的弧长公式是解题的关键,属于基础题. 15.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .【答案】103. 【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴2210=3AD AE DE =+ 考点: 1.相似三角形的判定与性质;2.勾股定理.16.抛物线y =ax 2+bx +c 的部分图象如图所示,则当y <0时,x 的取值范围是_____.【答案】x <﹣1或x >1.【分析】利用二次函数的对称性得到抛物线与x 轴的另一个交点坐标为(1,0),然后写出抛物线在x 轴下方所对应的自变量的范围即可.【详解】∵抛物线的对称轴为直线1x =,而抛物线与x 轴的一个交点坐标为(-1,0),∴抛物线与x 轴的另一个交点坐标为(1,0),∴当0y <时,x 的取值范围为1x <-或3x >.故答案为:1x <-或3x >.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.。
合肥市庐阳区2017届九年级上期末数学试卷含答案解析
19.已知:如图,在⊙O 中,直径 CD 交弦 AB 于点 E,且 CD 平分弦 AB,连接 OA,BD. (1)若 AE= ,DE=1,求 OA 的长. (2)若 OA∥BD,则 tan∠OAE 的值为多少?
A.110°B.115°C.120° D.125°
第 1 页(共 29 页)
6.如图,A、B 是曲线 y= 上的点,经过 A、B 两点向 x 轴、y 轴作垂线段,若 S 阴影=1,则 1S +2S =( )
A.3 B.4 C.5 D.6 7.如图,反比例函数 y1 = 与一次函数 2y =ax+b 交于点(4,2)、(▱2 ,▱4)两 点,则使得 y1<y2 的 x 的取值范围是( )
2016-2017 学年安徽省合肥市庐阳区九年级(上)期末数学试 卷
一、选择题(共 10 小题,每小题 4 分,共 40 分) 1.抛物线 y=(x▱1 )2 +2 的顶点坐标是( ) A.(▱1 ,2) B.(▱1 ,▱2 ) C.(1,▱2 ) D.(1,2) 2.下列图形中既是轴对称图形又是中心对称图形的是( )
第 2 页(共 29 )
16.已知二次函数的顶点坐标为 A(1,9),且其图象经过点(▱1 ,5) (1)求此二次函数的解析式; (2)若该函数图象与 x 轴的交点为 B、C,求△ABC 的面积. 17.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为 A(▱2 ,1)、B (▱3,2)、C(▱1 ,4). (1)以原点 O 为位似中心,在第二象限内画出将△ABC 放大为原来的 2 倍后的 △A 1B 1C1. (2)画出△ABC 绕 C 点逆时针旋转 90°后得到的△A2 B2 C.
〖汇总3套试卷〗合肥市2018年九年级上学期期末达标检测数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若34yx=,则x yx+的值为()A.1 B.47C.54D.74【答案】D【解析】∵34yx=,∴x yx+=434+=74,故选D2.如图,在Rt△ABC中,∠ACB=900,CD⊥AB于点D,BC=3,AC=4,tan∠BCD的值为()A.34;B.43;C.45;D.54;【答案】A【分析】根据余角的性质,可得∠BCD=∠A,根据等角的正切相等,可得答案.【详解】由∠ACB=90°,CD⊥AB于D,得∠BCD=∠Atan∠BCD=tan∠A=34 BCAC=,故选A.【点睛】此题考查锐角三角函数的定义,利用余角的性质得出∠BCD=∠A是解题关键.3.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是13,则盒子中白球的个数是().A.3 B.4 C.6 D.8 【答案】B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12×13=4,即白球的个数是4.故选:B.那么事件A 的概率P (A )=m n. 4.已知a =3,b =5,且b 与a 的方向相反,用a 表示b 向量为( ) A .35b a =B .53b a =C .35b a =-D .53b a =-【答案】D【分析】根据a =3,b =5,且b 与a 的方向相反,即可用a 表示b 向量. 【详解】a =3,b =5,b =53a ,b 与a 的方向相反,∴5.3b a =-故选D. 【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.5.如图,在ABCD □中,AE BC ⊥,垂足为E ,BAE DEC ∠=∠,若45,sin 5AB B ==,则DE 的长为( )A .203B .163C .5D .125【答案】A【分析】根据题意先求出AE 和BE 的长度,再求出∠BAE 的sin 值,根据平行线的性质得出∠ADE=∠BAE ,即可得出答案.【详解】∵45,sin 5AB B ==,AE BC ⊥ ∴4AE AB sinB == 223AB AE -=∴35BE sin BAE AB ∠== ∵ABCD 是平行四边形 ∴AD ∥BC又∵∠BAE=∠DEC ∴∠BAE=∠ADE∴35AE sin ADE sin BAE DE ∠=∠== ∴203DE =故答案选择A. 【点睛】本题考查的是平行四边形的综合,难度适中,涉及到了平行四边形的性质以及三角函数值相关知识,需要熟练掌握.6.某商品原价为180元,连续两次提价后售价为300元,设这两次提价的年平均增长率为x ,那么下面列出的方程正确的是( ) A .180(1+x )=300 B .180(1+x )2=300 C .180(1﹣x )=300 D .180(1﹣x )2=300【答案】B【分析】本题可先用x 表示出第一次提价后商品的售价,再根据题意表示出第二次提价后的售价,然后根据已知条件得到关于x 的方程.【详解】当商品第一次提价后,其售价为:180(1+x ); 当商品第二次提价后,其售价为:180(1+x )1. ∴180(1+x )1=2. 故选:B . 【点睛】本题主要考查一元二次方程的应用,要根据题意表示出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于2即可.7.若要得到函数2(1)2y x =-+的图象,只需将函数2yx 的图象( )A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度 【答案】A【分析】找出两抛物线的顶点坐标,由a 值不变即可找出结论.【详解】∵抛物线y=(x-1)1+1的顶点坐标为(1,1),抛物线y=x 1的顶点坐标为(0,0), ∴将抛物线y=x 1先向右平移1个单位长度,再向上平移1个单位长度即可得出抛物线y=(x-1)1+1.【点睛】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键. 8.下列运算中,正确的是( ). A .2x - x = 2 B .x 2 y ÷ y = x 2 C .x ⋅ x 4 = 2x D .(-2x )3 = -6x 3【答案】B【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解. 【详解】A. 2x - x = x,故本选项错误, B. x 2 y ÷ y = x 2 ,故本选项正确, C. 45x x x ⋅=,故本选项错误, D.()3328x x -=- ,故本选项错误. 故选B. 【点睛】此题考查幂的乘方与积的乘方、合并同类项、同底数幂的除法,解题关键在于掌握运算法则. 9.已知点()()()1233,2,,1,A y B y C y --,都在函数3y x=-的图象上,则y 1、y 2、y 3的大小关系是( ) A .y 2>y 1>y 3 B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 2【答案】A【分析】根据反比例函数图象上点的坐标特征,将点()()()1233,2,,1,A y B y C y --,分别代入函数3y x=-,求得123,,y y y 的,然后比较它们的大小.【详解】解:把()()()1233,2,,1,A y B y C y --,分别代入:3,y x=-12331,,3,2y y y ∴===-∵32>1>3-, ∴2y >1y >3y 故选:A . 【点睛】本题考查的是反比例函数的性质,考查根据自变量的值判断函数值的大小,掌握判断方法是解题的关键. 10.在平面直角坐标系中,对于二次函数22()1y x =-+,下列说法中错误的是( ) A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =D .它的图象可以由2y x 的图象向右平移2个单位长度,再向上平移1个单位长度得到【答案】C【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确. 【详解】解:二次函数22()1y x =-+,10a =>,∴该函数的图象开口向上,对称轴为直线2x =,顶点为(2,1),当2x =时,y 有最小值1,当2x >时,y 的值随x 值的增大而增大,当2x <时,y 的值随x 值的增大而减小;故选项A 、B 的说法正确,C 的说法错误; 根据平移的规律,2yx 的图象向右平移2个单位长度得到2(2)y x =-,再向上平移1个单位长度得到22()1y x =-+;故选项D 的说法正确, 故选C . 【点睛】本题考查二次函数的性质、二次函数的最值,二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质解答.11.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是()A .5B .6C .7D .8【答案】B【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可. 【详解】解:∵半径OC 垂直于弦AB , ∴AD=DB=127 在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)27 )2, 解得,OA=4 ∴OD=OC-CD=3, ∵AO=OE,AD=DB,故选B 【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键12.为了让市民游客欢度“五一”,泉州市各地推出了许多文化旅游活动和景区优惠,旅游人气持续兴旺.从市文旅局获悉,“五一”假日全市累计接待国内外游客171.18万人次,171.18万这个数用科学记数法应表示为( ) A .1.7118×102 B .0.17118×107 C .1.7118×106 D .171.18×10【答案】C【分析】用科学记数法表示较大数的形式是10n a ⨯ ,其中110a ≤<,n 为正整数,只要确定a,n 即可. 【详解】将171.18万用科学记数法表示为:1.7118×1. 故选:C . 【点睛】本题主要考查科学记数法,掌握科学记数法是解题的关键. 二、填空题(本题包括8个小题)13.某一建筑物的楼顶是“人”字型,并铺上红瓦装饰.现知道楼顶的坡度超过0.5时,瓦片会滑落下来.请你根据图中数据判断这一楼顶铺设的瓦片是否会滑落下来?________.(填“会”或“不会”)【答案】不会【分析】根据斜坡的坡度的定义,求出坡度,即可得到答案. 【详解】∵∆ABC 是等腰三角形,AB=AC=13m ,AH ⊥BC , ∴CH=12BC=12m , ∴2213125-=m , ∴楼顶的坡度=50.512AH CH =<, ∴这一楼顶铺设的瓦片不会滑落下来. 故答案是:不会. 【点睛】本题主要考查斜坡坡度的定义,掌握坡度的定义,是解题的关键.14.若点P(2a+3b ,﹣2)关于原点的对称点为Q(3,a ﹣2b),则(3a+b)2020=______.【分析】直接利用关于原点对称点的性质得出3a+b =﹣1,进而得出答案. 【详解】解:∵点P(2a+3b ,﹣2)关于原点的对称点为Q(3,a ﹣2b),∴23322a b a b +=-⎧⎨-=⎩,故3a+b =﹣1, 则(3a+b)2020=1. 故答案为:1. 【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.15.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 . 【答案】【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147. 考点:概率公式.16.请你写出一个函数,使它的图象与直线y x =无公共点,这个函数的表达式为_________.【答案】1y x=-(答案不唯一) 【分析】直线y x =经过一三象限,所以只要找到一个过二、四象限的函数即可.【详解】∵直线y x =经过一三象限,1y x=-图象在二、四象限 ∴两个函数无公共点 故答案为1y x=- 【点睛】本题主要考查正比例函数的图象与性质,掌握正比例函数与反比例函数的图象与性质是解题的关键. 17.一元二次方程2310x x -++=的两根之积是_________. 【答案】1-【分析】根据一元二次方程两根之积与系数的关系可知. 【详解】解:根据题意有两根之积x 1x 2=ca=-1. 故一元二次方程-x 2+3x+1=0的两根之积是-1. 故答案为:-1. 【点睛】本题重点考查了一元二次方程根与系数的关系,是基本题型.两根之积x 1x 2=c a.【答案】4cm≤A′C≤8cm【分析】根据矩形的性质得到∠C=90°,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时,点A’在BC边上也随之移动,由此得到:点E与B重合时,A′C最小,当F与D重合时,A′C最大,据此画图解答.【详解】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=10cm,CD=AB=6cm,当点E与B重合时,A′C最小,如图1所示:此时BA′=BA=6cm,∴A′C=BC﹣BA′=10cm﹣6cm=4cm;当F与D重合时,A′C最大,如图2所示:此时A′D=AD=10cm,∴A′C=22=8(cm);106综上所述:A′C的取值范围为4cm≤A′C≤8cm.故答案为:4cm≤A′C≤8cm.【点睛】此题考查折叠问题,利用了矩形的性质,解题中确定点E与F的位置是解题的关键.三、解答题(本题包括8个小题)19.已知,如图,在△ABC中,∠C=90°,点D是AB外一点,过点D分别作边AB、BC的垂线,垂足分别为点E、F,DF与AB交于点H,延长DE交BC于点G.求证:△DFG∽△BCA【答案】见解析【分析】通过角度转化,先求出∠D=∠B,然后根据∠C=∠DFG=90°,可证相似.【详解】∵ DF⊥BC于F,∠C=90°∴∠DFG=∠C=90°又DE⊥AB于点E∴∠DGB+∠B=90°又∠DGB+∠D=90°∴∠B=∠D∴△DFG∽△BCA.【点睛】本题考查证相似,解题关键是通过角度转化,得出∠D=∠B.20.已知反比例函数3kyx-=,(k为常数,3k≠).(1)若点(2,3)A在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围.【答案】(1)k=9;(2)k<3(2)根据反比例函数的性质得30k-<,然后解不等式即可;【详解】解:(1)∵点(2,3)A在这个函数的图象上,323k∴-=⨯,解得9k=;(2)∵在函数3kyx-=图象的每一支上,y随x的增大而增大,30k∴-<,得3k<.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数kyx=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.21.为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.分数段频数频率74.5~79.5 2 0.0579.5~84.5 m 0.284.5~89.5 12 0.389.5~94.5 14 n94.5~99.5 4 0.1(1)表中m=__________,n=____________;(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在_________分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.【答案】 (1)8,0.35;(2)见解析;(3)89.5~94.5;(4)23. 【分析】(1)根据频数=总数×频率可求得m 的值,利用频率=频数÷总数可求得n 的值;(2)根据m 的值补全直方图即可;(3)根据中位数的概念进行求解即可求得答案;(4)画树状图得到所有等可能的情况数,找出符合条件的情况数,然后利用概率公式进行求解即可.【详解】(1)m =40×0.2=8,n =14÷40=0.35, 故答案为8,0.35;(2)补全图形如下:(3)由于40个数据的中位数是第20、21个数据的平均数,而第20、21个数据均落在89.5~94.5, ∴推测他的成绩落在分数段89.5~94.5内,故答案为89.5~94.5;(4)选手有4人,2名是男生,2名是女生,画树状图如下:共有12种等可能的结果,其中一名男生一名女生的结果数有8种,所以恰好是一名男生和一名女生的概率为82123=. 【点睛】本题考查了频数(率)分布表,频数分布直方图,中位数,列表法或树状图法求概率,正确把握相关知识是解题的关键.22.如图,在矩形纸片ABCD 中,已知2AB =6=BC E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB C E '',点B 、C 的对应点分别为点B ',C '.(1)连接AC .则AC =______,DAC ∠=______°;(2)当B C ''恰好经过点D 时,求线段CE 的长;(3)在点E 从点C 移动到点D 的过程中,求点C '移动的路径长.【答案】(1)22,30;(2)2322CE =-;(3)CC '的长223π= 【分析】(1)直接利用勾股定理可求出AC 的长,再利用特殊角的三角函数值可得出∠DAC 的度数(2)设CE=x ,则DE=2x -,根据已知条件得出AD B DEC '',再利用相似三角形对应线段成比例求解即可.(3)点C?运动的路径长为´CC 的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC22AC 2622AB BC +=+=∵21sin 30222AB AC ===︒ ∴ACB DAC 30∠∠==︒(2)由已知条件得出,A 2B '=,D 2B '=,D 62C '= 易证AB D DC E ''∆∆∽∴C E DC BD AB ''='' ∴6222CE -= ∴2322CE =(3)如图所示,C'运动的路径长为CC '的长由翻折得:30C AD DAC '∠=∠=︒∴60CAC '∠=︒∴CC '的长602222ππ⋅== 【点睛】本题考查的知识点有相似三角形的判定与性质,特殊的三角函数值,弧长的相关计算等,解题的关键是弄清题意,综合利用各知识点来求解.23.如图,反比例函数y =k x (k≠0,x >0)的图象与矩形OABC 的边AB 、BC 分别交于点E 、F ,E (32,6),且E 为BC 的中点,D 为x 轴负半轴上的点.(1)求反比倒函数的表达式和点F 的坐标;(2)若D (﹣32,0),连接DE 、DF 、EF ,则△DEF 的面积是 . 【答案】(1)y =9x ,F (3,3);(2)S △DEF =1. 【分析】(1)利用待定系数法即可求得反比例函数的解析式,根据题意求得B 的坐标,进而得到F 的横坐标,代入解析式即可求得纵坐标;(2)设DE 交y 轴于H ,先证得H 是OC 的中点,然后根据S △DEF =S 矩形OABC +S △ODH ﹣S △ADF ﹣S △CEH ﹣S △BEF 即可求得.【详解】(1)∵反比例函数y =k x (k≠0,x >0)的图象过E (32,6), ∴k =32×6=1,∴反比例函数的解析式为y =9x , ∵E 为BC 的中点, ∴B (3,6),∴F 的横坐标为3,把x =3代入y =9x 得,y =93=3, ∴F (3,3);(2)设DE 交y 轴于H ,∵BC ∥x 轴,∴△DOH ∽△ECH , ∴OH D CH CEO ==3232=1, ∴OH =CH =3,∴S △DEF =S 矩形OABC +S △ODH ﹣S △ADF ﹣S △CEH ﹣S △BEF =3×6+12×32×3﹣12×(3+32)×3﹣13322⨯⨯﹣13322⨯⨯=1.【点睛】此题主要考查反比例函数与相似三角形,解题的关键是熟知反比例函数的图像与性质及相似三角形的判定与性质.24.如图,在由边长为1个单位长度的小正方形组成的网格图中,△ABC 的顶点都在网格线交点上. (1)图中AC 边上的高为 个单位长度;(2)只用没有刻度的直尺,在所给网格图中按如下要求画图(保留必要痕迹):①以点C 为位似中心,把△ABC 按相似比1:2缩小,得到△DEC ;②以AB 为一边,作矩形ABMN ,使得它的面积恰好为△ABC 的面积的2倍.【答案】(1)32;(2)①见解析,②见解析【分析】(1)利用等面积法即可求出AC边上的高;(2)①利用位似图形的性质得出对应点位置连接即可;②利用矩形的判定方法即可画出.【详解】解:(1)由图可知225552AC=+=,设AC边上的高为x,则由三角形面积公式可得:116552 22x⨯⨯=⨯解得32x=,即AC边上的高为32. (2)①如图所示:△DEC即为所求.②如图所示:矩形ABMN即为所求.【点睛】本题考查作位似图形,矩形的判定,勾股定理.(1)中熟练掌握等面积法是解决此问的关键;(2)中能作出AC 的中点是解题关键;(3)中注意矩形的四个角都是直角,且矩形的一边为AB ,另一边要与△ABC 中AB 边上的高相等.25.某商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,经调查表明,这种台灯的售价每上涨1元,其销量就减少10个,市场规定此台灯售价不得超过60元.(1)为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元?(2)若商场要获得最大利润,则应上涨多少元?【答案】(1)50元;(2)涨20元.【分析】(1)设这种台灯上涨了x 元,台灯将少售出10x ,那么利润为(40+x-30)(600-10x )=10000,解方程即可;(2)根据销售利润=每个台灯的利润×销售量,每个台灯的利润=售价-进价,列出二次函数解析式,根据二次函数的性质即可求最大利润.【详解】解:(1)设这种台灯上涨了x 元,依题意得:()()40306001010000x x +--=,化简得:2504000x x -+=,解得:40x =(不合题意,舍去)或10x =,售价:401050+=(元)答:这种台灯的售价应定为50元.(2)设台灯上涨了t 元,利润为y 元,依题意:()()403060010y t t =+--∴2105006000y t t =-++对称轴25t =,在对称轴的左侧y 随着t 的增大而增大,∵单价在60元以内,∴20t ≤∴当20t =时,12000y =最大元,答:商场要获得最大利润,则应上涨20元.【点睛】此题考查一元二次方程和二次函数的实际运用---销售利润问题,能够由实际问题转化为一元二次方程或二次函数的问题是解题关键,要注意的是二次函数的最值要考虑自变量取值范围,不一定在顶点处取得,这点很容易出错.26.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.【答案】 (1)见解析;(2)13. 【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.27.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系.销售量y (千克)… 34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【答案】(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.【分析】(1)根据表格内的数据,利用待定系数法可求出y 与x 之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润每千克利润销售数量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】(1)设y 与x 之间的函数关系式为y=kx+b ,将(22.6,34.8)、(24,32)代入y=kx+b ,22.634.82432k b k b +=⎧⎨+=⎩,解得:280k b =-⎧⎨=⎩, ∴y 与x 之间的函数关系式为y=﹣2x+1.当x=23.5时,y=﹣2x+1=2.答:当天该水果的销售量为2千克.(2)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=35,x2=3.∵20≤x≤32,∴x=3.答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.【点睛】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知矩形ABCD ,下列结论错误的是( )A .AB =DCB .AC =BD C .AC ⊥BD D .∠A+∠C =180°【答案】C【分析】由矩形的性质得出AB =DC ,AC =BD ,∠A =∠B =∠C =∠D =90°,则∠A+∠C =180°,只有AB =BC 时,AC ⊥BD ,即可得出结果.【详解】∵四边形ABCD 是矩形,∴AB =DC ,AC =BD ,∠A =∠B =∠C =∠D =90°,∴∠A+∠C =180°,只有AB =BC 时,AC ⊥BD ,∴A 、B 、D 不符合题意,只有C 符合题意,故选:C .【点睛】此题主要考查了矩形的性质的运用,熟练掌握矩形的性质是解题的关键.2.为了测量某沙漠地区的温度变化情况,从某时刻开始记录了12个小时的温度,记时间为t (单位:h )温度为y (单位:C ︒).当48t ≤≤时,y 与t 的函数关系是21011y t t =-++,则48t ≤≤时该地区的最高温度是( )A .11C ︒B .27C ︒ C .35︒CD .36C ︒ 【答案】D【分析】利用配方法求最值.【详解】解:221011(5)36y t t t =-++=--+∵a=-1<0∴当t=5时,y 有最大值为36故选:D【点睛】本题考查配方法求最值,掌握配方法的方法正确计算是本题的解题关键.3.若一个矩形对折后所得矩形与原矩形相似,则此矩形的长边与短边的比是( ).A .2:1B .4:1 C.2:1 D .1:2【答案】C 【分析】根据相似图形对应边成比例列出关系式即可求解.【详解】如图,矩形ABCD 对折后所得矩形与原矩形相似,则矩形ABCD ∽矩形BFEA ,设矩形的长边长是a ,短边长是b ,则AB=CD=EF=b ,AD=BC=a ,BF=AE=2a , 根据相似多边形对应边成比例得:BF EF =AB BC ,即b 2=b a a∴222=b 1a ∴b=2::1a故选C.【点睛】本题考查相似多边形的性质,根据相似多边形对应边成比例建立方程是关键.4.如图,△ABC 中,点D 是AB 的中点,点E 是AC 边上的动点,若△ADE 与△ABC 相似,则下列结论一定成立的是( )A .E 为AC 的中点B .DE 是中位线或AD·AC=AE·ABC .∠ADE=∠CD .DE ∥BC 或∠BDE+∠C=180°【答案】D 【分析】如图,分两种情况分析:由△ADE 与△ABC 相似,得,∠ADE=∠B 或∠ADE=∠C ,故DE ∥BC 或∠BDE+∠C=180°.【详解】因为,△ADE 与△ABC 相似,所以,∠ADE=∠B 或∠ADE=∠C所以,DE ∥BC 或∠BDE+∠C=∠BDE+∠ADE=180°故选D【点睛】本题考核知识点:相似性质.解题关键点:理解相似三角形性质. 5.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.12B.22C.32D.3【答案】B【详解】解:连接AD,CD,设正方形网格的边长是1,则根据勾股定理可以得到:OD=AD=,OC=AC=,∠OCD=90°.则cos∠AOB=22.故选B.6.抛物线y=3(x+2)2﹣(m2+1)(m为常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【分析】根据二次函数的性质求出抛物线的顶点坐标,根据偶次方的非负性判断.【详解】抛物线y =3(x+2)2﹣(m 2+1)的的顶点坐标为(﹣2,﹣(m 2+1)),∵m 2+1>0,∴﹣(m 2+1)<0,∴抛物线的顶点在第三象限,故选:C .【点睛】本题考查的是二次函数的性质,掌握二次函数的顶点坐标的确定方法、偶次方的非负性是解题的关键. 7.如图,在扇形纸片AOB 中,OA =10,ÐAOB=36°,OB 在直线l 上.将此扇形沿l 按顺时针方向旋转(旋转过程中无滑动),当OA 落在l 上时,停止旋转.则点O 所经过的路线长为( )A .B .C .D .【答案】A【分析】点O 所经过的路线是三段弧,一段是以点B 为圆心,10为半径,圆心角为90°的弧,另一段是一条线段,和弧AB 一样长的线段,最后一段是以点A 为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】由题意得点O 所经过的路线长.故选A.【点睛】 解题的关键是熟练掌握弧长公式:,注意在使用公式时度不带单位.8.半径为3的圆中,30的圆心角所对的弧的长度为( )A .2πB .32πC .34πD .12π 【答案】D【分析】根据弧长公式l=180n r π ,计算即可. 【详解】弧长=303=1802ππ⨯ , 故选:D .【点睛】本题考查弧长公式,解题的关键是记住弧长公式,属于中考常考题型.9.数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A,B的距离,他们设计了如图的测量方案:从树A沿着垂直于AB的方向走到E,再从E沿着垂直于AE的方向走到F,C为AE上一点,其中4位同学分别测得四组数据:①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB;④∠F,∠ADB,FB.其中能根据所测数据求得A,B两树距离的有()A.1组B.2组C.3组D.4组【答案】C【分析】根据三角函数的定义及相似三角形的判定定理及性质对各选项逐一判断即可得答案.【详解】∵已知∠ACB的度数和AC的长,∴利用∠ACB的正切可求出AB的长,故①能求得A,B两树距离,∵AB//EF,∴△ADB∽△EDF,∴AB ADEF DE=,故②能求得A,B两树距离,设AC=x,∴AD=CD+x,AB=tanxACB∠,AB=tanx CDADB+∠;∵已知CD,∠ACB,∠ADB,∴可求出x,然后可得出AB,故③能求得A,B两树距离,已知∠F,∠ADB,FB不能求得A,B两树距离,故④求得A,B两树距离,综上所述:求得A,B两树距离的有①②③,共3个,故选:C.【点睛】本题考查相似三角形的判定与性质及解直角三角形的应用,解答道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形,解直角三角形即可求出.10.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,3,4 C.3,4,7 D.5,2,8【答案】B【解析】根据三角形三边关系定理得出:如果较短两条线段的和大于最长的线段,则三条线段可以构成三角形,由此判定即可.【详解】A .1+2=3,不能构成三角形,故此选项错误;B .2+3>4,能构成三角形,故此选项正确;C .3+4=7,不能构成三角形,故此选项错误;D .5+2<8,不能构成三角形,故此选项错误.故选:B .【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形. 11.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x ﹣k )2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定【答案】C 【解析】分析:(1)将点A(0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入2(6) 2.6y a x =-+,得:36a+2.6=2, 解得:160a ,=- ∴y 与x 的关系式为21(6) 2.660y x =--+; 当x=9时,()2196 2.6 2.45 2.4360y =--+=>, ∴球能过球网, 当x=18时,()21186 2.60.2060y =--+=>, ∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.12.对于反比例函数32y x=,下列说法错误的是( ) A .它的图像在第一、三象限B .它的函数值y 随x 的增大而减小C .点P 为图像上的任意一点,过点P 作PA x ⊥轴于点A .POA ∆的面积是34.D .若点()11,A y -和点()2B y 在这个函数图像上,则12y y <【答案】B 【分析】对反比例函数32y x =化简得32y x=,所以k=32>0,当k >0时,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A 、∵k=32>0,∴它的图象分布在第一、三象限,故本选项正确; B 、∵它的图象分布在第一、三象限,∴在每一象限内y 随x 的增大而减小,故本选项错误;C 、∵k=32,根据反比例函数中k 的几何意义可得POA ∆的面积为12k ⨯=34,故本选项正确;D 、∵它的图象分布在第一、三象限,在每一象限内y 随x 的增大而减小,∵x 1=﹣1<0,x 2=0,且x 1>x 2,∴12y y <,故本选项正确.故选:B .【点睛】题考查的是反比例函数的性质,熟知反比例函数y=k x (k≠0)中,当k >0时函数图象的两个分支分别位于一三象限是解答此题的关键.二、填空题(本题包括8个小题)13.点A(﹣2,y 1),B(0,y 2),,y 3)是二次函数y =ax 2﹣ax (a 是常数,且a <0)的图象上的三点,则y 1,y 2,y 3的大小关系为_____(用“<”连接).【答案】y 1<y 3<y 1【分析】求出抛物线的对称轴,求出C 关于对称轴的对称点的坐标,根据抛物线的开口方向和增减性,即可求出答案.【详解】y=ax 1﹣ax(a 是常数,且a <0),对称轴是直线x 122a a -=-=, 即二次函数的开口向下,对称轴是直线x 12=, 即在对称轴的左侧y 随x 的增大而增大,。
合肥市庐阳区2017-2018学年度第一学期九年级期末考试数学试卷 (2)
学校: ______________ 姓名: _____________ 班级: _______________ 考号: ______________________
k (x<0)的图象交于 A(-6,1). x
七、(本题满分 12 分) 22.某公司 2017 年初刚成立时投资 1000 万元购买新生产线生产新产品,此外生产每件该产品还需要成本 40 元。按规定,该产品售价不得低于 60 元/件且不得超过 160 元/件,且每年售价确定以后不再变化,该 产品销售量 y(万件)与产品售价 x(元)之间的函数关系如图所示。 (1)求 y 与 x 之间的函数关系式,并写出 x 的取值范围; (2)求 2017 年该公司的最大利润? (3)在 2017 年取得最大利润的前提下,2018 年公司将重新确定产品 售价,能否使两年共盈利达 980 万元,若能,求出 2018 年产品的售价; 若不能,说明理由。
8.如图,在三角形纸片 ABC 中,AB=6,BC=8,AC=4,沿虚线剪下的涂色部分的三角形与△ABC 相似的是 ( ) 16.如图在长为 2 个单位长度,宽为 1 个单位长度的矩形网格中,给出了格点△ ABC, (顶点是网格线的交点) ,按要求画图: (1)将△ABC 向右平移 3 个单位长度得到△A´B´C´; (2)以 A 为位似中心,在网格内将△ABC 作位似变换,且放大到原来的两倍,得 到△ADE. 9.如图,Rt△ABC 内接于⊙O,BC 为直径,AB=8,AC=6,D 是弧 AB 中点,CD 与 AB 的交点为 E,则 CE:DE
一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分) 1. 抛物线 y=2(x-3)2+1 的顶点坐标是( ) A.(3,1) B.(3,-1) C.(-3,1) D.(-3,-1) 2.若 sin(∠A+15°)=
九年级上册合肥数学期末试卷测试卷(含答案解析)
九年级上册合肥数学期末试卷测试卷(含答案解析)一、选择题1.一组数据0、-1、3、2、1的极差是( ) A .4B .3C .2D .12.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( ) A .42B .45C .46D .48 3.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=04.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB 上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或65.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45° 6.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1 B .()1,1-C .()1,1--D .()1,1-7.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部8.下列函数中属于二次函数的是( ) A .y =12x B .y =2x 2-1C .y 23x +D .y =x 2+1x+19.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .5610.如图,AB ,AM ,BN 分别是⊙O 的切线,切点分别为 P ,M ,N .若 MN ∥AB ,∠A =60°,AB =6,则⊙O 的半径是( )A .32 B .3 C .323 D .311.2的相反数是( ) A .12-B .12C .2D .2-12.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题13.如图,A 、B 、C 是⊙O 上三点,∠ACB =30°,则∠AOB 的度数是_____.14.二次函数23(1)2y x =-+图象的顶点坐标为________.15.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .16.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.17.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.18.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.19.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 20.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.21.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则2MNPM =_____.22.如图,已知PA ,PB 是⊙O 的两条切线,A ,B 为切点.C 是⊙O 上一个动点.且不与A ,B 重合.若∠PAC =α,∠ABC =β,则α与β的关系是_______.23.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,△BEF是直角三角形.24.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____.三、解答题25.如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是AD上一点,连接AF交CD的延长线于点E.(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为AD的中点时,求AF的值.26.现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64m的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3m处达到最高,高度为1m.(1)求喷灌出的圆形区域的半径;(2)在边长为16m的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)27.我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=22,AB=4.试判断点D是不是△ABC 边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.28.如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.(1)求证:∠ABC=∠ABO;(2)若AB=10,AC=1,求⊙O的半径.29.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.30.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x元时,日盈利为w元.据此规律,解决下列问题:(1)降价后每件商品盈利元,超市日销售量增加件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?31.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).32.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=12AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当35ANAB=且67AMAC=时,求CP的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.2.C解析:C【解析】【分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为4646462+=.故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.3.C解析:C【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可. 【详解】 A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意; B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意; C 、x 2﹣2x+1=0, △=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意; D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意; 故选:C . 【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.4.D解析:D 【解析】 【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN ACAC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可. 【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8, ∴CMB CAB CAN ∠>∠>∠,AB=10, CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽, ∴CN ACAC CB =, ∴3668k =, 32k ∴=,6BM∴=.②当CAN MCB∠=∠时,如图2中,过点M作MH CB⊥,可得BMH BAC∆∆∽,∴BM MH BHBA AC BC==,∴41068k MH BH==,125MH k∴=,165BH k=,1685CH k∴=-,MCB CAN∠=∠,90CHM ACN∠=∠=︒,ACN CHM∴∆∆∽,∴CN MHAC CH=,∴123516685kkk=-,1k∴=,4BM∴=.综上所述,4BM=或6.故选:D.【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.5.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.6.A解析:A【解析】【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【详解】∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.【点睛】本题考查了由抛物线的顶点式写出抛物线顶点的坐标,比较容易.7.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r 时,点在圆内.8.B解析:B【解析】【分析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【详解】解:A. y=12x是正比例函数,不符合题意;B. y=2x2-1是二次函数,符合题意;C. yD. y=x2+1x+1不是二次函数,不符合题意.故选:B.【点睛】本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.9.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π共2个,∴卡片上的数为无理数的概率是21 =63.故选B.【点睛】本题考查了无理数的定义及概率的计算.10.D解析:D【解析】【分析】根据题意可判断四边形ABNM为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO≌△BPO,可得AP=BP=3,在直角△APO中,利用三角函数可解出半径的值.【详解】解:连接OP,OM,OA,OB,ON∵AB,AM,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN∥AB,∠A=60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO和△BPO中,OAP OBPAPO BPOOP OP∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO≌△BPO(AAS),∴AP=12AB=3,∴tan∠OAP=tan30°=OPAP=3,∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.11.D解析:D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.12.B解析:B【解析】【分析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系二、填空题13.60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB =2∠ACB=60°.故答案为:60°.【点解析:60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB=2∠ACB=60°.故答案为:60°.【点睛】考查了圆周角定理的运用,同弧或等弧所对的圆周角等于圆心角的一半.14.【解析】【分析】二次函数(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性解析:()1,2【解析】【分析】二次函数2()y a x h k =-+(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程23(1)2y x =-+知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程2()y a x h k =-+中的h ,k 所表示的意义. 15.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x ,解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,16.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.17.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛解析:-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.18.720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019 解析:720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).19.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.20.2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM+∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算即可解答本题.【详解】解:∵二次函数y =2x2﹣4x+4=2(x ﹣1)2+2,∴点P 的坐标为(1解析:【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算2MN PM 即可解答本题. 【详解】解:∵二次函数y =2x 2﹣4x +4=2(x ﹣1)2+2,∴点P 的坐标为(1,2),设点M 的坐标为(a ,2),则点N 的坐标为(a ,2a 2﹣4a +4), ∴2MN PM =()222442(1)a a a -+--=()22222212422121a a a a a a a a -+-+=-+-+=2, 故答案为:2.【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P 左边,设出点M 、点N 的坐标,表达出2MN PM. 22.或【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点解析:αβ=或180αβ+︒=【解析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C 在优弧AB 上时,如图,连接OA 、OB 、OC ,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴180αβ+︒=;当点C 在劣弧AB 上时,如图,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC= 90°-α=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴αβ=.综上:α与β的关系是180αβ+︒=或αβ=. 故答案为:αβ=或180αβ+︒=. 【点睛】本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.23.1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到解析:1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.24.2+【解析】【分析】设线段AB=x,根据黄金分割点的定义可知AD=AB,BC=AB,再根据CD=AB ﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点解析:5【解析】【分析】设线段AB=x,根据黄金分割点的定义可知AD=352AB,BC=352AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC =32x -,则CD =AB ﹣AD ﹣BC =x ﹣x =1,解得:x =故答案为:【点睛】 本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.三、解答题25.(1)见解析;(2【解析】【分析】(1)根据条件得出AD =AC ,推出∠AFC =∠ACD ,结合公共角得出三角形相似; (2)根据已知条件证明△ACF ≌△DEF ,得出AC =DE ,利用勾股定理计算出AE 的长度,再根据(1)中△AFC ∽△ACE ,得出AF AC =AC AE,从而计算出AF 的长度. 【详解】(1)∵CD ⊥AB ,AB 是⊙O 的直径∴AD =AC∴∠AFC =∠ACD .∵在△ACF 和△AEC 中,∠AFC =∠ACD ,∠CAF =∠EAC∴△AFC ∽△ACE(2)∵四边形ACDF 内接于⊙O∴∠AFD +∠ACD =180°∵∠AFD +∠DFE =180°∴∠DFE =∠ACD∵∠AFC =∠ACD∴∠AFC =∠DFE .∵△AFC ∽△ACE∴∠ACF =∠DEF .∵F 为AC 的中点∵在△ACF 和△DEF 中,∠ACF =∠DEF ,∠AFC =∠DFE ,AF =DF∴△ACF ≌△DEF .∴AC =DE =5.∵CD ⊥AB ,AB 是⊙O 的直径∴CH =DH =3.∴EH =8在Rt △AHC 中,AH 2=AC 2-CH 2=16,在Rt △AHE 中,AE 2=AH 2+EH 2=80,∴AE =∵△AFC ∽△ACE ∴AFAC =AC AE ,即5AF ,∴AF 【点睛】本题属于圆与相似三角形的综合,涉及了圆内接四边形的性质,勾股定理,等弧所对的圆周角相等,相似三角形的判定定理等,解题的关键是灵活运用所学知识,正确寻找全等三角形.26.(1)8m ;(2)不可以,水管高度调整到0.7m ,理由见解析.【解析】【分析】(1)根据题意设最远的抛物线形水柱的解析式为2(3)1y a x =-+,然后将(0,0.64)代入解析式求得a 的值,然后求解析式y=0时,x 的值,从而求得半径;(2)利用圆与圆的位置关系结合正方形,作出三个等圆覆盖正方形的图形,然后利用勾股定理求得圆的半径,从而使问题得解.【详解】解:(1)由题意,设最远的抛物线形水柱的解析式为2(3)1y a x =-+,将(0,0.64)代入解析式,得910.64a += 解得:125a =- ∴最远的抛物线形水柱的解析式为21(3)125y x =--+ 当y=0时,21(3)1025x --+= 解得:128;2x x ==-所以喷灌出的圆形区域的半径为8m ;(2)如图,三个等圆覆盖正方形设圆的半径MN=NB=ME=DE=r ,则2r 2r∴在Rt△AMN 中,22216)(162)r r r -+-=(2(162)2560r r -++= 解得:8828221r =+-(其中882+822116+->,舍去) ∴88282218.5r =+-≈设最远的抛物线形水柱的解析式为2(3)1y a x =-+,将(8.5,0)代入25.51=0a + 解得: 4=121a - ∴24(3)1121y x =--+ 当x=0时,y=850.7121≈ ∴水管高度约为0.7m 时,喷灌区域恰好可以完全覆盖该绿化带【点睛】本题考查待定系数法求二次函数解析式,根据题意设抛物线为顶点式是本题的解题关键.27.(1)是,理由见解析;(2)125;(3)D (0,42)或D (0,6) 【解析】【分析】(1)依据边长AC=22AB=4,D 是边AB 的中点,得到AC 2=AD AB ,可得到两个三角形相似,从而得到∠ACD=∠B ;(2)由点D 是△ABC 的“理想点”,得到∠ACD=∠B 或∠BCD=∠A ,分两种情况证明均得到CD ⊥AB ,再根据面积法求出CD 的长;(3)使点A 是B ,C ,D 三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D 的坐标即可.【详解】(1)D 是△ABC 边AB 上的“理想点”,理由:∵AB=4,点D 是△ABC 的边AB 的中点,∴AD=2,∵AC 2=8,8AD AB •=,∴AC 2=AD AB ,又∵∠A=∠A ,∴△ADC ∽△ACB ,∴∠ACD=∠B ,∴D 是△ABC 边AB 上的“理想点”.(2)如图②,∵点D 是△ABC 的“理想点”,∴∠ACD=∠B 或∠BCD=∠A,当∠ACD=∠B 时,∵∠ACD+∠BCD=90︒,∴∠BCD+∠B=90︒,∴∠CDB=90︒,当∠BCD=∠A 时,同理可得CD ⊥AB ,在Rt △ABC 中,∵∠ACB=90︒,AB=5,AC=4,∴222254AB AC -=-=3, ∵1122AB CD AC BC ⋅=⋅, ∴1153422CD , ∴125CD =. (3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90︒,∠ACM=45︒,∴∠AMC=∠ACM=45︒,∴AM=AC,∵∠MAH+∠CAO=90︒,∠CAO+∠ACO=90︒,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴MH BH OC OB,∴253aa,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴2111CD D A D B,∴226(2)(3)m m m,解得m=42,∴D1(0,42);②当∠BCA=∠CD2B时,点A是△BCD2“理想点”,可知:∠CD2O=45 ,∴OD2=OC=6,∴D2(0,6).综上,满足条件的点D的坐标为D(0,42)或D(0,6).【点睛】此题考查相似三角形的判定及性质,通过证明三角形相似得到点是三角形某条边上的“理想点”,通过点是三角形的“理想点”,从而证明出三角形相似,由此得到点的坐标,相互反推的思想的利用,注意后者需分情况进行讨论.28.(1)详见解析;(2)⊙O的半径是132.【解析】【分析】(1)连接OA,求出OA∥BC,根据平行线的性质和等腰三角形的性质得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根据矩形的性质求出OD=AC=1,根据勾股定理求出BC,根据垂径定理求出BD,再根据勾股定理求出OB即可.【详解】(1)证明:连接OA,∵OB=OA,∴∠OBA=∠OAB,∵AC切⊙O于A,∴OA⊥AC,∵BC⊥AC,∴OA∥BC,∴∠OBA=∠ABC,∴∠ABC=∠ABO;(2)解:过O作OD⊥BC于D,∵OD ⊥BC ,BC ⊥AC ,OA ⊥AC ,∴∠ODC =∠DCA =∠OAC =90°,∴OD =AC =1,在Rt △ACB 中,AB =10,AC =1,由勾股定理得:BC =()22101-=3, ∵OD ⊥BC ,OD 过O ,∴BD =DC =12BC =132⨯=1.5, 在Rt △ODB 中,由勾股定理得:OB =()22131 1.5+=, 即⊙O 的半径是13. 【点睛】 此题主要考查切线的性质及判定,解题的关键熟知等腰三角形的性质、垂径定理及切线的性质.29.(1)(2,﹣2);(2)(1,0);(3)10.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A 2B 2C 2的面积.试题解析:(1)如图所示:C 1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C 2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A 2B 2C 2是等腰直角三角形,∴△A 2B 2C 2的面积是:××=10平方单位.故答案为10.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理30.(1)(30-x);10x;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【解析】【分析】(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x元,超市平均每天可多售出10x件;(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w,化为一般式后,再配方可得出结论.【详解】解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x件;(2)设每件商品降价x元时,利润为w元根据题意得:w=(30-x)(100+10x)= -10x2+200x+3000=-10(x-10)2+4000∵-10<0,∴w有最大值,当x=10时,商场日盈利最大,最大值是4000元;答:每件商品降价10元时,商场日盈利最大,最大值是4000元.【点睛】本题考查的知识点是二次函数的实际应用,根据题意找出等量关系式列出利润w关于x的二次函数解析式是解题的关键.31.(1)13;(2)23.【解析】【分析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A型矩形纸片的概率为13;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为42 63 =.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.32.(1)52;(2)①菱形,理由见解析;②AM=209,MN410;(3)1.【解析】【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA′交MN于O.设AM=MA′=x,由MA′∥AB,可得'MAAB=CMCA,由此构建方程求出x,解直角三角形求出OM即可解决问题.(3)如图3中,作NH⊥BC于H.想办法求出NH,CM,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB2222435AC BC+=+=,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴ANAC=AMAB,∵AN=12 AC∴12=5AM,∴AM=52.(2)①如图2中,∵NA ′∥AC ,∴∠AMN =∠MNA ′,由翻折可知:MA =MA ′,∠AMN =∠NMA ′, ∴∠MNA ′=∠A ′MN ,∴A ′N =A ′M ,∴AM =A ′N ,∵AM ∥A ′N ,∴四边形AMA ′N 是平行四边形,∵MA =MA ′,∴四边形AMA ′N 是菱形.②连接AA ′交MN 于O .设AM =MA ′=x , ∵MA ′∥AB ,∴'ABC MA C ∽∴'MA AB =CM CA , ∴5x =44x -, 解得x =209, ∴AM =209 ∴CM =169, ∴CA 22MA CM -22201699⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=43, ∴AA 22'AC CA +22443⎛⎫+ ⎪⎝⎭4103 ∵四边形AMA ′N 是菱形,∴AA ′⊥MN ,OM =ON ,OA =OA 210,∴OM=22AM AO-=222021093⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎝⎭=2109,∴MN=2OM=410.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴△ABC∽△NBH∴NHAC=BNAB=3BH∴NH4=25=3BH∴NH=85,BH=65,∴CH=BC﹣BH=3﹣65=95,∴AM=67AC=247,∴CM=AC﹣AM=4﹣247=47,∵CM∥NH,∴△CPM∽△HPN∴PCPH=CMNH,∴PC9PC5+=4785,∴PC=1.【点睛】本题考查了相似三角形的综合应用,涉及相似三角形的判定与性质、菱形的判定、勾股定理等知识点,综合性较强,难度较大,解题的关键是综合运用上述知识点.。
合肥市九年级上学期数学期末考试试卷
合肥市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018八上·苍南月考) 在平面直角坐标系中,点P(-4,3)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分)(2018·开封模拟) 一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是()A . 3.6B . 3.8C . 3.6或3.8D . 4.23. (2分)(2017·竞秀模拟) 如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A . ①B . ②C . ③D . ④4. (2分) (2019九上·江岸月考) 一元二次方程x2-4x+4=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 无法确定5. (2分) (2019九上·深圳期末) 如图,在平面直角坐标系中,点P是反比例函数y= (x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A . 3B . ﹣3C .D . ﹣6. (2分)(2018·湛江模拟) 如图,AB是⊙O的切线,A为切点,连接OB交⊙O于点C.若OA=3,tan∠AOB=,则BC的长为()A . 2B . 3C . 4D . 57. (2分)(2018·青岛模拟) 如图,反比例函数y=(x<0)与一次函数y=x+4的图象交于A、B两点的横坐标分别为-3,-1.则关于x的不等式<x+4(x<0)的解集为()A . x<-3B . -3<x<-1C . -1<x<0D . x<-3或-1<x<08. (2分) (2019九上·深圳期末) 如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A .B .C .D .9. (2分) (2019九上·北碚期末) 某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A .B .C .D .10. (2分) (2019九上·长春月考) 将抛物线平移,得到抛物线,下列平移方式中,正确的是()A . 先向左平移1个单位,再向上平移2个单位B . 先向左平移1个单位,再向下平移2个单位C . 先向右平移1个单位,再向上平移2个单位D . 先向右平移1个单位,再向下平移2个单位11. (2分) (2019九上·深圳期末) 按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O ,连AO、BO、CO ,并取它们的中点D、E、F ,得△DEF ,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2④△ABC与△DEF 的面积比为4:1.A . 1B . 2C . 3D . 412. (2分) (2019九上·深圳期末) 二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(-3,y1)、点B(- ,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x-5)=-3的两根为x1和x2 ,且x1<x2 ,则x1<-1<5<x2 .其中正确的结论有()A . 2个B . 3个C . 4个D . 5个二、填空题 (共4题;共5分)13. (2分)已知△ABC中,AB=AC,cos∠B= ,BC=2,把△ABC绕点C旋转,使点B落在边AB上的点E的位置,则AE=________.14. (1分) (2019八下·抚州期末) 如图,等腰直角三角形ABC中,AC=BC=,点D是斜边AB上的一点,将△BCD沿CD翻折得△ECD,连接AE,若△ADE是等腰三角形,则BD的长是________.15. (1分) (2016九上·南昌期中) 如图:矩形ABCD中AB=2,BC= ,⊙A是以A为圆心,半径r=1的圆,若⊙A绕着点B顺时针旋转,旋转角为α(0°<α<180°);当旋转后的圆与矩形ABCD的边相切时,α=________度.16. (1分) (2019九上·深圳期末) 在正方形ABCD中,点E为BC边上一点且CE=2BE ,点F为对角线BD 上一点且BF=2DF ,连接AE交BD于点G ,过点F作FH⊥AE于点H ,连结CH、CF ,若HG=2cm ,则△CHF 的面积是________cm2 .三、解答题 (共7题;共50分)17. (10分) (2016八上·端州期末) 先化简,再求值:(x+1+ )÷ ,其中.18. (5分) (2019九上·深圳期末) 关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)= ③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)= =﹣(2+ ).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.19. (10分) (2019九上·深圳期末) 四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF ,连接AE、AF、EF .(1)求证:△ADE≌△ABF;(2)若BC=12,DE=5,求△AEF的面积.20. (10分) (2019九上·深圳期末) 如图,直线与反比例函数的图象相交于点,且与轴相交于点.(1)求、的值;(2)若点在轴上,且的面积是的面积的,求点的坐标.21. (2分)(2018·西山模拟) 某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛,预赛分为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?22. (2分)(2019·龙湖模拟) 如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE 的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF及AF长.23. (11分) (2019九上·深圳期末) 已知二次函数y=ax2+bx+3的图象分别与x轴交于点A(3,0),C(-1,0),与y轴交于点B .点D为二次函数图象的顶点.(1)如图①所示,求此二次函数的关系式:(2)如图②所示,在x轴上取一动点P(m , 0),且1<m<3,过点P作x轴的垂线分别交二次函数图象、线段AD , AB于点Q、F , E ,求证:EF=EP;(3)在图①中,若R为y轴上的一个动点,连接AR ,则 BR+AR的最小值________(直接写出结果).参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共50分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、。
2017-2018 学年庐阳区九年级(上)期末考试数学试卷
5 2017-2018 学年庐阳区九年级(上)期末考试试卷一、选择题(本大题共 10 小题,每小题 4 分,共 40 分)1. 抛物线 y = 2(x - 3)2 +1 的顶点坐标是( )A. (3,1)B. (3, -1)C. (-3,1)D. (-3, -1)2. 若sin(∠A + 15︒) = 3 ,则tan ∠A 的值为( ) 2A.1 2B.33 C. 1D. 223. 反比例函数 y = 1 - k 图像的每条曲线上 y 都随 x 增大而增大,则 k 的取值范围是( )kA . k > 1B . k > 0C . k < 1D . k < 04. 将抛物线 y = (2x -1)2 1 向左平移 2个单位,再向上平移 1 个单位后得到的抛物线解析式为()A. y = (2x - 1)2-12 B. y = (2x - 1)2+ 12C. y = 4x 2-1D. y = 4x 2 +1第 5 题图第 6 题图5. 如图,已知点 C 是线段 AB 的黄金分割点(其中 AC > BC ), AB = 4 ,则线段 BC 的大小是()C. 3 -D. 6 - 2 6. O 是∆ABC 的外接圆, ∠ABO = 20︒ , ∠OAC = 40︒ ,则∠OBC 的度数为() A. 30︒B. 40︒C. 60︒D.120︒7.如图,直线 l 1 // l 2 // l 3 ,直线 AC 分别交 l 1 , l 2 , l 3 于 A 、B 、C ,直线 DF 交 l 1 , l 2 , l 3 于点 D 、E 、F , AC 与 DF 相交于点 G ,且 AG = 2 , GB = 1 , BC = 5 ,则AD的值为()FCA. 12B. 13C. 25D.3 58. 如图,在三角形纸片 ABC 中, AB =6, BC = 8, AC = 4 ,沿虚线剪下的涂色部分的三角形与∆ABC 相似的是()A.B.C.D.第 7 题图A. 5 - 1B. 2 5 - 2 5yx O 12yxO 12yO 15 xyO 15 x9.如图,Rt∆ABC 内接于O ,BC 为直径,AB = 8, AC = 6, D 是弧AB 的中点,CD 与AB 的交点为E ,则CE : DE 等于()A. 7 : 2B. 5 : 2C. 4 :1D. 3 :110.如图,∆ABC 和∆DEF 都是等边三角形,BC =10 3, EF = 8 ,点A 在∆DEF 的高DG 上,点D 在∆ABC 的高AH 上,设AD =x ,∆ABC 和∆DEF 的重合部分(阴影部分)面积记为y ,则y 关于x 的大致图象为()A. B. C. D.二、填空题(本大题共4 小题,每小题5 分,满分20 分)1.坡脚为45︒的破面的坡度为.12.已知二次函数y =-x2 + 2x +m 的部分图象如图所示,则关于x 的一元二次方程x2- 2x -m = 0 的解为.13.如图,以原点O 为端点的两条射线与反比例函数y =6交于A, B 两点,且∠1 =∠2 =∠3 ,则∆ABO x的面积是.14.∆ABC 中,AB = 7, AC = 8, BC = 9 ,现在把边AB, AC, BC 分别截去长为a、b、c 的一段,截得的长为a、b、c 的三条线段组成的三角形和∆ABC 三边剩下的线段组成的三角形相似且面积比为1: 9 ,则ya、b、c 的长分别为. 6543A2B123第12 题图三、(本大题共2 小题,每小题8 分,满分16 分)15. 计算:sin 30︒+ tan 30︒- (π- 3)0 + 2-1–1 O–11 2 3 4 5 6第13 题图31x3 D16.如图,在长为 2 个单位长度,宽为 1 个单位长度的矩形网格中,给出了格点∆ABC (顶点是网格线的交点),按要求画图.(1) 将∆ABC 向右平移 3 个单位长度得到∆A 'B 'C ' ; (2) 以 A 为位似中心,在网格内将∆ABC 作位似变换,且放大到原来的两倍,得到∆ADE .四、(本大题共 2 小题,每小题 8 分,满分 16 分)17. 如图, ∆ABC 中, D 为 AC 上的一点,若 AB = AD = BC = a , BD = CD = 1 ,求 a 的值.BC18. 如图,一次函数 y 1 (1) 求点 B 的坐标;= x + m 的图像与反比例函数 y 2 A= k(x < 0) 的图像交于 A (-6,1) 和 B .x(2) 直接写出当 y 1 ≥ y 2 时 x 的取值范围.x五、(本大题共 2 小题,每小题 10 分,满分 20 分)19. 如图所示,小山的顶部是一块平地,在这块平地上有一高压输电的铁架, ∠B =30︒ ,斜坡 BC 的长是40 米,在山坡的坡顶C 处测得铁架顶端 A 的仰角为 60︒ ,AC = 30 米,求铁架顶端 A 到地平面的高度 AD ( ≈ 1.732 ,精确到 0.1 米)yBAO20.如图,二次函数与一次函数交于顶点A(-4, -1) 和点B(-2, 3) 两点,一次函数与y 轴交于点C .(1)求二次函数y1 和一次函数y2 的解析式;(2)y 轴上存在点P 使∆PAB 的面积为9,求点P 的坐标.六、(本题满分12 分)21.如图I ,直线l 是足球场的底线,AB 是球门,P 点是射门点,连接PA、PB ,∠APB 叫做射门角.(1)如图II ,点P 是射门点,另一射门点Q 在过A、B、P 三点的圆外(未超过底线l ).证明:∠APB >∠AQB(2)如图III ,O 经过球门端点A、B ,直线m ⊥l ,垂足为C 且与O 相切与点Q ,OE ⊥AB 于点E ,连接OQ、OB ,若AB = 2a, BC =a ,求此时一球员带球沿直线m 向底线方向运球时最大射门角的度数.七、(本题满分12 分)2.某公司2017 年初刚成立时投资1000 万元购买新生产线生产新产品,此外,生产每件该产品还需要成本40 元.按规定,该产品售价不得低于60 元/件且不超过160 元/件,且每年售价确定以后不再变化,该产品的年销售量y (万件)与产品售价x (元)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式,并写出x 的取值范围;(2)求2017 年该公司的最大利润?(3)在2017 年取得最大利润的前提下,2018 年公司将重新确定产品售价,能否使两年共盈利达980 万元.若能,求出2018 年产品的售价;若不能,请说明理由.八、(本题满分14 分)23.如图I ,AD 为等腰三角形ABC 中线,延长DA 至F ,使AF =AD ,点E 为AC 边上的点且AE =AD ,延长EA 至G 使AG =AE ,连接DE、EF、FG、GD ,GD 交AB 于点H .(1)证明:∠GDB =∠ADE ;(2)连接GB ,①当∠BGC = 90︒时(如图II),AD=,AH=;GC HB②当B、G、F 三点共线时(如图III ),AD=,AH=;GC HB(3)如图I ,若AD = 3, DC = 4 ,求AH 的值.图I 图II 图III。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年安徽省合肥市庐阳区九年级(上)期末数学试卷
学校:___________姓名:___________班级:___________考号:___________
一、选择题(本大题共10小题,共40.0分)
1、抛物线 y=2(x -3)2 +1 的顶点坐标是( ) A.(3,1) B.(3,-1) C.(-3,1) D.(-3,-1)
2、若:()2315sin o =+∠A ,则 tan ∠A 的值为( )
A 、21
B 、33
C 、1
D 、2
2 3、反比例函数x
k y -=1图象的每条曲线上y 都随x 增大而增大,则k 的取值范围是( ) A 、k >1
B 、k >0
C 、k <1
D 、k <0 4、将抛物线()212-=x y 向左平移
21个单位,再向上平移1个单位后得到的抛物线的解析式为( ) A 、12122-⎪⎭⎫ ⎝⎛-=x y B 、12122+⎪⎭⎫ ⎝
⎛-=x y C 、142-=x y D 、142+=x y
5、如图,已知点C 是线段AB 的黄金分割点(其中 AC >BC ),AB=4,则线段 BC 的大小是(
) A 、15- B 、252- C 、53- D 、526-
6、⊙O 是△ABC 的外接圆,∠ABO=20°,∠OAC=40°,则∠OBC 的度数为( )
A 、 30o
B 、40o
C 、60o
D 、120o
7、如图,直线 l 1∥l 2∥l 3,直线 AC 分别交 l 1、l 2、l 3于点 A 、B 、C ,直线DF 分别交 l 1、l 2、l 3于点
D 、
E 、
F ,AC 与DF 相交于点
G ,且 AG=2,GB=1,BC=5,则
FC AD 的值为( ) A 、21 B 、31 C 、52 D 、53
8、如图,在三角形纸片ABC 中,AB=6,BC=8,AC=4,沿虚线剪下的涂色部分的三角形与△ABC 相似的是( )
9、如图,Rt △ABC 内接于⊙O ,BC 为直径,AB=8,AC=6,D 是弧AB 中点,CD 与AB
的交点为 E ,则 CE :DE 等于:( )
A 、7:2
B 、5:2
C 、4:1
D 、3:1
10、如图,△ABC 和△DEF 都是等边三角形,38310==EF BC ,,点A 在△DEF 的高DG 上,点D 在△ABC 的高AH 上,设 AD=x ,△ABC 和△DEF 的重合部分(阴影部分)面积记为 y ,则y 关于x 的大致函数图象为( )
二、填空题(本大题4小题,每小题5分,满分20分)
11、坡角为45°的坡面的坡度为 ;
12、已知二次函数m x x y ++-=22的部分图象如
图所示,则关于x 的一元二次方程0
22=--m x x 的解为 ;
13、如图,以原点 O 为端点的两条射线与反比例函数x
y 6=交于A 、B 两点,且∠1=∠2=∠3,则△ABO 的面积是 ;
14、△ABC 中,AB=7,AC=8,BC=9,现在把边 AB 、AC 、BC 分别截去长为 a 、b 、c (a <b <c )的一段,以长为 a 、b 、c 的三条线段组成的三角形和△ABC 三边剩下的线段组成的三角形相似且面积比为 1:9,则a 、b 、c 的长分别为
三、(本大题共 2 小题,每小题 8
分,满分 16 分) 15、计算:sin 30° + tan 30°-(π-3)0 + 2-1
16、如图在长为2个单位长度,宽为1个单位长度的矩形
网格中,给出了格点△ABC ,(顶点是网格线的交点),按
要求画图: (1)将△ABC 向右平移 3 个单位长度得到△A´B´C´;
(2)以A 为位似中心,在网格内将△ABC 作位似变换,
且放大到原来的两倍,得到△ADE.
四、(本大题共2小题,每小题8分,满分16分)
17、如图,△ABC 中,D 为AC 上的一点,若 AB=AD=BC=a ,BD=CD=1,求 a 的值。
18、如图,一次函数m x y +=1的图象与反比例函数()02<=
x x
k y 的图象交于点A(-6,1)和点B 。
(1)求点B 的坐标;
(2)直接写出当21y y ≥时x 的取值范围。
五、(本大题共2小题,每小题10分,满分20分)
19、如图所示,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,∠B=30°,斜坡 BC 的长是40米,在山坡的坡面C 处测得铁架顶端A 的仰角为 60°,AC=30 米,
求铁架顶端A 到地平面的高度AD 。
(732.13 ,精确到0.1米)
20、如图,二次函数与一次函数交于顶点 A(-4,-1)和点B(-2,3)两点,一次函数与y 轴交于点 C ;
(1)求二次函数y
1与一次函数y 2的解析式;
(2)y 轴上存在点P ,使△P AB 的面积为9,求点P 的坐标.
21、如图1,直线l是足球场的底线,AB是球门,点P是射门点,连接PA,PB,∠APB叫做射门角;
(1)如图2,点P 是射门点,另一射门点Q在过A、B、P三点的圆外(未越过底线l),
证明:∠APB>∠AQB;
(2)如图3,⊙O经过球门端点A、B,直线m⊥l,垂足为C且与⊙O 相切于点Q,OE⊥AB于点E,连接OQ、OB。
若AB=2a,BC=a,求此时一球员带球沿直线m向底线方向运球时最大射门角的度数。
22、某公司2017年初刚成立时投资1000万元购买新生产线生产新产品,此外,生产每件该产品还需要成本40元。
按规定,该产品售价不得低于60元/件且不得超过160元/件,且每年售价确定以后不再变化,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示。
(1)求y 与x之间的函数关系式,并写出x 的取值范围;
(2)求2017年该公司的最大利润?
(3)在2017年取得最大利润的前提下,2018年公司将重新确定产品售价,
能否使两年共盈利达980万元,若能,求出2018 年产品的售价;若不能,
请说明理由。
23、如图1,AD 为等腰三角形ABC 的中线,延长DA 至F ,使AF=AD ,点E 为AC 边上的点且AE=AD ,延长EA 至G 使AG=AE ,连接DE 、EF 、FG 、GD ,GD 交AB 于点 H 。
(1)证明:∠GDB =∠ADE ;
(2)连接 GB ,①当∠BGC=90°时(如图2),=GC AD ;=HB
AH ; ②当 B 、G 、F 三点共线时(如图3),=GC
AD ;=HB AH . (3) 如图1,若AD=3,DC=4,求 AH 的值。