第二章流体输送机械

合集下载

化工原理(第四版)谭天恩-第二章-流体输送机械

化工原理(第四版)谭天恩-第二章-流体输送机械

注意安全防护
在操作流体输送机械时,应注意安全防护 ,穿戴好防护用品,避免发生意外事故。
THANKS
感谢观看
高效节能设计
优化流体输送机械的结构和运行方式,降低能耗,提高能效比。
减少排放
采取有效的措施减少流体输送机械在运行过程中产生的污染物排放, 如采用密封性能好的机械部件、回收利用排放的余热等。
环保材料
选择对环境友好的材料和润滑剂,减少对环境的污染。
资源循环利用
对流体输送机械中的可回收利用部分进行回收再利用,减少资源浪费 。
化工原理(第四版)谭 天恩-第二章-流体 输送机械
目录
• 流体输送机械概述 • 离心泵 • 其他类型的泵 • 流体输送机械的性能比较与选用 • 流体输送机械的维护与故障处理
01
CATALOGUE
流体输送机械概述
流体输送机械的定义与分类
定义
流体输送机械是用于将流体从一 个地方输送到另一个地方的机械 设备。
05
CATALOGUE
流体输送机械的维护与故障处理
流体输送机械的日常维护与保养
定期检查
对流体输送机械进行定期检查,确保其正 常运转,包括检查泵、管道、阀门等部件
是否完好无损,润滑系统是否正常等。
清洗与清洁
定期对流体输送机械进行清洗,清除残留 物和污垢,保持机械内部的清洁,防止堵 塞和腐蚀。
更换磨损部件
流体输送机械的应用
工业生产
在化工、石油、制药等领 域,流体输送机械广泛应 用于原料、半成品和成品 的输送。
能源与环保
流体输送机械在燃煤、燃 气等能源输送以及通风、 除尘等环保领域也有广泛 应用。
城市供暖与空调
在集中供暖和空调系统中 ,流体输送机械用于将热 源或冷源输送到各个用户 。

第二章 流体输送机械

第二章  流体输送机械
当地大气压Pa↓,Hs`↓,Hg↓,易气蚀 Hg↑,易气蚀 吸入管Hf,0-1↑,易气蚀(故一般离心泵的吸入管比排出管粗) 密度ρ↑,Hs`↓,易气蚀 液体温度T↑,饱和蒸汽压↑,易气蚀
五、离心泵的工作点及流量调节
1、 管路的特性曲线
管路的特性曲线是表示一定的管路系统所必需的有效压 头He与流量Qe的关系。 在一稳定流动系统中,在1-1、2-2列柏努利方程式得: 当管路系统一定时,∆Z与∆P/ρg均为定值,上式可整理成 如下形式: 此式表示在特定的管路中,送液量Qe与所需压头He的关系 称此式为管路特性曲线方程。将此关系标绘在图上,即可 得He—Qe曲线。
二、离心泵的主要性能参数
单位:m 1、流量(送液能力Q )单位:m3/s 流量(送液能力 扬程( )单位:m 2、扬程(H)单位:m
2 We p2 − p1 u2 − u1 p2 − p1 2 H = = h0 + + + hf 1-2 = h0 + g ρg 2g ρg
3、轴功率(N轴) 轴功率( 4、效率(η) 效率(
为了确定离心泵的允许安装高度,在国 产的离心泵标准中,采用两种指标来表 示泵的抗气蚀性能。 1)离心泵的允许吸上真空度 1)离心泵的允许吸上真空度 2)气蚀余量 2)气蚀余量
1)离心泵的允许吸上真空度
为了避免气蚀现象,泵入口处压强应为允许的最低绝对压强,则Pa-P1为泵人 口处的最高真空度。 令Hs`=(Pa-P1)/ρg Hs`——离心泵的允许吸上真空度 离心泵的允许吸上真空度,是指在泵人口处可允许达到的最高真空度 离心泵的允许吸上真空度 ,m液柱。 ∴Hg=Hs`- u12/2g - Hf0-1
离心通风机
构造和原理:与离心泵相似:机壳、叶轮、吸入口、排出口 性能参数和特性曲线 :风量、全风压、静风压、轴功率、效率 离心通风机的特性曲线级有:Q-HT、Q-Hp、Q-N、Q-η 离心通风机的选择

化工原理第二章-流体输送机械

化工原理第二章-流体输送机械

w2 w2 w2 c2小,泵内流动阻力损失小
c2 c2
c2
uuu222
前径后弯向弯叶叶叶片片片
3) 理论流量
H T
u22 g
u2ctg2 gD2b2
若离心泵的几何尺寸(b2、D2、β2)和转速n一定,则式可表示

表示HT∞与QT呈线性关系,该直线的斜率与叶 片形状β2有关,即 β2>90°时,B<0, HT∞随QT的增加而增大。 β2=90°时,B=0, HT∞与QT的无关。 β2<90°时,B>0, HT∞随QT的增加而减少。
Ne
轴功率 N :电机输入到泵轴的功率,由于泵提供给流 体的实际扬程小于理论扬程,故泵由电机获得的轴功并不 能全部有效地转换为流体的机械能。
N Ne
有效功率 Ne:流体从泵获得的实际功率,可直
接由泵的流量和扬程求得
Ne = HgQρ
N QH 102
电机

2. 离心泵特性曲线及其换算
用20C清水测定
包括 :H~Q曲线(平坦型、陡降型、 驼峰型) N~Q曲线、 ~Q曲线
QgH
N
由图可见: Q,H ,N,
有最大值。
思考: ➢ 离心泵启动时均关闭 出口阀门,why? ➢为什么Q=0时,N0?
02
高效区
与最高效率相比, 效率下降5%~8%
设计点
3.离心泵性能的改变和换算
1)液体性质的影响 (1)密度:
思考:泵壳的主要作用是什么?
①汇集液体,并导出液体; ②能量转换装置
轴封装置:离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵 壳之间的密封。
作用:防止高压液体从泵壳内沿间隙漏出,或外界空气 漏入泵内。

化工原理(第二版)第二章

化工原理(第二版)第二章
3.允许吸上真空度H Hs,max=(Pa-P1)/ρ g Hs= Hs,max-0.3 Hg= Hs-u12/2g-Hf,o-1 Hs是泵生产厂家用20℃水作为实验介质,在贮槽液面压强为大 气压下测定的结果。若使用条件与此不符的时,应作如下的校正:

p0
g

p1
g

u12 2g
H f

p0
g

p1
g

u12 2g

pv
g


pv
g

H
f

p0
g
ha

pv
g
Hf

p0
g
h
pv
g
Hf
Hg max
47
(3)允许汽蚀余量的校正
h~20度清水,条件不同时要校正,校正曲线说明书
2. 离心泵的实际压头
实际压头比理论压头要小。具体原因如下: (1)叶片间的环流运动
主要取决于叶片数目、装置角2、叶轮大小、液体粘度等因素,而几 乎与流量大小无关。
c2 c2
23
阻 力 损 失
(2)水力损失 冲 击损 失 阻力损失 可近似视为与流速的平方呈正比
24
冲击损失 在设计流量下,此项损失最小。流量若偏离设计量越远, 冲击损失越大。
高效

设计点 Q
33
3.离心泵特性的影响因素
(1)流体的性质:
密度的影响
对 H~Q 曲线、~Q 曲线无影响,但N QgH ,
故,N~Q 曲线上移。
粘度的影响 当比 20℃清水的大时,H,N,
实验表明,当<20 厘斯时,对特性曲 线的影响很小,可忽略不计。

第二章 流体输送机械

第二章  流体输送机械

26
N一定
24
22
20
18
16
14
12
10
η
H P
80
70 60
50
8 40 6 30 4 20 2 10 00
0 20 40 60 80 100120 qv m3/s
离心泵的特性曲线
1.流量的影响
1)qv
, He
; qv
0,
H
也只能达到一定值。
e
2)qv ,Pa ;qv 0,Pa最小, 离心泵启动时,应关闭出口阀门。
ha
p1
g
u12 2g
pV
g
有效气蚀余量:与吸入管路条件有关,与泵的结构尺寸无关。
必需汽蚀余量(Δhr):表示液体从泵入口流到叶轮内最低压 力处的全部压头损失。
泵入口处压头
p1
g
u12 2g
有效汽蚀余量ha 必需汽蚀余量hr
叶轮压力最低处压头 pk
g
饱和蒸汽压头
pV
g
必需汽蚀余量越小,泵越不易发生汽蚀现象。
※泵向管路提供能量用以提高流体的势能和克服管路阻力损失。
2.2.3离心泵的流量调节和组合操作
管路特性方程:
H H0 Kqv2
泵的特性方程: He (qv ) C Dqv2
泵------供方 管路------需方
H
两特性曲线的交点即 为泵的工作点。
qV 工作点
2.流量调节
方法:改变管路特性曲线;
Q
4)离心泵的组合操作
A. 泵的并联
两台相同的离心泵并联,理论上讲在同 样的压头下,其提供的流量应为单泵的 两倍。
H H并 流量增加,使管路流动阻力增加 H

化工原理第二章 流体输送机械

化工原理第二章 流体输送机械
的状态参数。
注意:在选用离心泵时,应使离心泵在该点附近工作。
一般要求操作时的效率应不低于最高效率的92%。
例2-1 离心泵特性曲线的测定 附图为测定离心泵特性曲线的实验装置, 实验中已测出如下一组数据:泵进口处真 空表读数 p1=2.67×104 Pa(真空度) ,泵出 口处压强表读数 p2=2.55×105 Pa(表压) , 泵的流量 q=12.5×10-3 m3 /s ,功率表测 得电动机所消耗功率为 6.2kW ,吸入管 直径 d1=80mm,压出管直径 d2=60mm , 两测压点间垂直距离 Z2-Z1=0.5m,泵由 电动机直接带动,传动效率可视为 1,电 动机的效率为 0.93 ,实验介质为 20℃的 清水,试计算在此流量下泵的压头 H、轴 功率 N 和效率 η。
1
1
p K z g
u 2 0 2g

He K H f
压头损失—取决于管内布局及管内流速的大小
2 l le u H f d 2g
在管路中,通常用流量反应生产任务 u
l le 8 H f 2 4 qv2 d d g
转速
当液体的粘度不大且转速n变化不大时(小于20%),利用
出口速度三角形相似的近似假定,若不变,可推知:
q' n q n H n H n
2
H
转速增大
比例定律
n
n
p' n p n
3
0
Q
叶轮直径
当叶轮直径因切割而变小时,若变化程度小于20%,不 变,则
理论压头、实际压头及各种压头损失与流量的关系为 H
q-H
实际压 头

第二章_流体输送机械

第二章_流体输送机械

第二章_流体输送机械 22
2 流体输送机械—2.1.3 离心泵的主要性能参数
(3)叶轮转速n 1000~3000转/min(或r.p.m);2900转/min最常见。 泵在出厂前,必须确定其各项性能参数,即以上各参 数值,并把它标在铭牌上;这些参数是在最高效率条件下 用20℃ 的水测定的。
第二章_流体输送机械 23
Q/(m3/h)
电动机免因超载而受损。
图2-12 4B型离心泵的特性曲线
(3)η~Q曲线:有极值点(最大值),于此点下操作效
率最高,能量损失最小。在此点(设计点)对应的流量称
为额定流量。泵的铭牌上即标注额定值,泵在管路上操作
时,应在此点附近操作,一第二般章_不流体应输送低机于械 92%ηmax 。 26
2.1.2.2 实际压头
由于前弯叶片的绝对速度c2大,液体在泵壳内产生的冲 击剧烈得多,转化时的能量损失大为增加,效率低。故为获 得较高的能量利用率,离心泵总是采用后弯叶片。流体通过 泵的过程中压头损失的原因:
(1)叶片间的环流:由于叶片数目并非无限多,液体有
环流出现,产生涡流损失。
H
理论压头
(2)阻力损失:实际流体从泵进口 到出口有阻力损失。
Hhe g pz 2ug2 hf
第二章_流体输送机械 19
2 流体输送机械—2.1.3 离心泵的主要性能参数
2.1.3 离心泵的主要性能参数
(1)压头和流量
由b、c两截面间的柏努利方程:
pg b2 ub g 2Hh0pg c2 uc g 2hfb , c Hh0pcgpbuc22gub 2hfb , c
2 流体输送机械—2.1.4离心泵特性曲线 2.1.4 离心泵特性曲线(Characteristic

第二章流体输送机械

第二章流体输送机械
油泵
用于输送石油产品,油泵系列代号为Y。因油类液体具有易燃、易爆旳特点, 所以对此类泵密封性能要求较高。输送200℃以上旳热油时,还需设冷却装 置。
杂质泵
用于输送悬浮液及稠厚旳浆液等,其系列代号为P,又可分为污水泵、 砂泵、泥浆泵等。此类泵旳主要构造特点是叶轮上叶片数目少,叶片 间流道宽,有旳型号泵壳内还衬有耐磨材料。
离心泵旳并联 离心泵旳串联
离心泵旳类型与选择
离心泵旳类型
清水泵
用于输送物理、化学性质类似于水旳清洁液体。最简朴旳清水泵为单级单吸 式,系列代号为“IS”,构造简图如图,若需要旳扬程较高,则可选D系列 多级离心泵。若需要流量很大,则可选用双吸式离心泵,其系列代号为 “Sh” 。
防腐蚀泵
当输送酸、碱等腐蚀性液体时应采用耐腐蚀泵。耐腐蚀泵全部与液体介质接 触旳部件都采用耐腐蚀材料制作。离心耐腐蚀泵有多种系列,其中常用旳系 列代号为F。
6
2
3
1
4 5
离心泵旳性能参数
1.流量(Q) : 离心泵在单位时间送到管路系统旳液体体
积,常用单位为L/s或m3/h;
2.压头(H) :离心泵对单位重量旳液体所能提供旳有
效能量,其单位为m;
3.
液体所取得,一般用效率来反应能量损失;
4.轴功率(N): [指离心泵旳泵轴所需旳功率,单位为
1-泵体;2-泵盖;3-叶轮;4-轴;5-密封环;6-叶轮螺母;7-止动垫圈; 8-轴盖;9-填料压盖;10-填料环;11-填料;12-悬架轴承部件
离心泵旳选择
(1)拟定输送系统旳流量与压头
液体旳输送量一般为生产任务所要求,假如流量在一定范围内 波动,选泵时应按最大流量考虑。根据输送系统管路旳安排, 用柏努力方程计算在最大流量下管路所需旳压头。

化工原理内容概要-第2章

化工原理内容概要-第2章

《化工原理》内容提要第二章流体输送机械1. 基本概念1)离心泵的主要构件:叶轮和蜗壳2)泵的流量q v:指泵的单位时间内送出的液体体积,等于管路中的流量,这是输送任务所规定必须达到的输送量。

3)泵的压头(又称扬程)He是指泵向单位重量流体提供的能量。

4)流体输送机械的分类:动力式(叶轮式)、容积式(正位移式)、其他类型。

5)离心泵的主要构件:叶轮和蜗壳。

6)离心泵的主要性能参数:流量、扬程、效率、轴功率。

7)离心泵特性曲线:描述压头、轴功率、效率与流量关系的曲线。

8)离心泵的工作点:泵特性曲线与管路特性曲线的交点。

9)离心泵的调节:改变管路特性(阀门的开大关小,改变K值);改变泵的特性(改变D、n,调节工作点)。

10)往复泵的结构:由泵缸、活塞、活塞杆、吸入和排出单向阀(活门)构成,有电动和汽动两种驱动形式。

2. 基本原理1)离心泵的工作原理:电动机经泵轴带动叶轮旋转,叶片间的液体在离心力作用下,沿叶片间的通道从叶轮中心进口处甩向叶轮外围,以很高速度汇入泵壳;液体经泵壳将大部分动能转变为静压能,以较高压力从压出口进入排出管。

2)泵的汽蚀现象:当水泵叶轮中心进口出压力低于操作温度下被输送液体的饱和蒸汽压时,液体将发生沸腾部分汽化。

所生成的汽泡,在随液体从叶轮进口向叶轮外围流动时,因压强升高,气泡立即凝聚。

高速度冲向原空间,在冲击点处产生高频高压强冲击。

当气泡的凝结发生在叶轮表面时,气泡周围液体在高压作用下如细小的高频水锤撞击叶片,加之气泡中可能带有氧气等对金属材料发生化学腐蚀作用,将导致叶片过早损坏。

3)离心泵的选用原则:①根据被输送液体的性质确定泵的类型;②确定输送系统的流量和所需压头;③根据所需流量和压头确定泵的型号。

4)往复泵的工作原理:活塞往复运动,在泵缸中造成容积的变化并形成负压和正压,完成一次吸入和排出。

5)气体输送的特点:气体的密度相对液体很小,①动力消耗大;②气体输送机械体积一般都很庞大;③输送机械内部气体压力变化的同时,体积和温度也将随之发生变化。

化工原理-2章流体输送机械——总结

化工原理-2章流体输送机械——总结

e、平衡孔 ——闭式或半闭式叶轮
后盖板与泵壳之间空腔液 体的压强较吸入口侧高
→轴向推力 →磨损 如何 解决? 平衡孔
平衡孔
F
平衡孔可以有效地减小轴向推力,但同时也降低了泵的效率。
2.2.2 离心泵的特性曲线 泵内造成功率损失的原因:
①阻力损失(水力损失) ——产生的摩擦阻力和局部阻力导致的损失。 ②流量损失(容积损失)
标准规定,离心泵实际汽蚀余量要比必须汽蚀余量大0.5m以上。
NPSH = (NPSH)r + 0.5
三、允许安装高度[Hg]
最大允许安装高度为:
2.2.5离心泵的类型与选用
一、离心泵的类型
按叶轮数目分类:单级、多级; 按吸液方式分类:单吸、双吸; 按输送液体性质分类:清水泵、耐腐蚀泵、油泵、杂质泵; 1) 清水泵---化工生产中最常用的泵型 (IS型、D型、Sh型) IS型-单级、单吸; 以IS100-80-125为例: IS—国际标准单级单吸清水离心泵; 100—吸入管内径,mm; 80—排出管内径,mm; 125—叶轮直径,mm
P 2 H Kqv g
1—低阻管路系统 2—高阻管路系统
由图得:需向流体提供的能量高于提高流体势能和克服 管道的阻力损失,其中阻力损失跟流体流量有 关。
(2)流体输送机械的压头(扬程)和流量
①扬程和升举高度是否相同?
扬程-能量概念;非升举高度 升举高度-泵将流体从低位升至高位 时,两液面间的高度差。
2.3.1往复泵的作用原理和类型
(1)作用原理
如图所示为曲柄连杆机构带动的往复
泵,它主要由泵缸、活柱(或活塞)和活 门组成。活柱在外力推动下作往复运动, 由此改变泵缸内的容积和压强,交替地打 开和关闭吸入、压出活门,达到输送液体 的目的。由此可见,往复泵是通过活柱的 往复运动直接以压强能的形式向液体提供

第二章流体输送机械

第二章流体输送机械

第一节 离心泵
一、 离心泵的操作原理与构造
1. 操作原理
离心泵启动后泵轴带动叶轮高速旋转,产生离心力,液体 在离心力的作用下,从叶轮中心被抛向叶轮外缘的过程中获
得了能量。由于泵壳中流道逐渐扩大,液体流速减小,使部
分动能转换为静压能。最终液体以较高的压强从泵的排出口
进入排出管路,输送至目的地。
当叶轮内的液体被抛出后,叶轮中心处形成低压区,造成 吸入口处压强低于贮槽液面的压强,在此压强差的作用下, 液体便沿着吸入管道连续地吸入泵内。
◇ 影响泵效率的因素: ①水力损失:实际流体在叶片间的通道内及泵壳中 流动造成的能量损耗。 ②容积损失:因叶轮外缘液体的压强高于叶轮中心 吸入口,部分液体将由泵体与旋转叶轮间的缝隙漏 回吸入口,造成容积损失。 ③机械损失:轴承、轴封等处的机械摩擦,以及叶 轮盖板外表面与液体间的摩擦造成机械损失。
【例2-1】 用水对离心泵的性能进行测定,实验测得:
H 或 he
3. 离心泵的流量调节
图2-12 改变阀门开度 时流量变化的示意图
(2)改变泵的特性
优点:不额外增加管路阻力,而且
H 或 he
通过改变转速或叶轮直径实现。
在一定范围内可保持泵在高效率区
工作,能量利用较为经济。 缺点:用电动机直接带动时转速调 节不便,需变速装置或价格昂贵的 变速原动机,而且难以做到流量连
p2 p1 H ( z2 z1 ) g N e QHg N N ◇ 理论压头、流量及效率与液体密度无关。
◇ 因Ne =QHg ,泵的轴功率是随着密度的增大 而增大。
(2) 黏度的影响: ◇ 当液体的运动黏度小于2×10-5m2/s时,黏度对离心 泵特性的影响可忽略。 ◇ 当输送液体的黏度较大时,泵内的阻力损失增大, 泵的特性参数将变差。黏度对离心泵的影响甚为复杂, 难以用理论方法推算。 ◇ 可利用算图对黏度的影响进行修正。

流体输送设备

流体输送设备

第二章 流体输送设备§1 概述 2-1 流体输送概述气体的输送和压缩,主要用鼓风机和压缩机。

液体的输送,主要用离心泵、漩涡泵、往复泵。

固体的输送,特别是粉粒状固体,可采用流态化的方法,使气-固两相形成液体状物流,然后输送,即气力输送。

流体输送在化工中用处十分广泛,有化工厂的地方,就有流体输送。

流体输送机械主要分为三大类:(1)离心式。

靠离心力作用于流体,达到输送物料的目的。

有离心泵、多级离心泵、离心鼓风机、离心通风机、离心压缩机等。

(2)正位移式。

靠机械推动流体,达到输送流体的目的。

有往复泵、齿轮泵、螺杆泵、罗茨风机、水环式真空泵、往复真空泵、气动隔膜泵、往复压缩机等。

(3)离心-正位移式。

既有离心力作用,又有机械推动作用的流体输送机械。

有漩涡泵、轴流泵、轴流风机。

象喷射泵属于流体作用输送机械。

本章主要研究连续输送机械的原理、结构及设计选型。

§2 离心泵及其计算 2-2 离心泵构造及原理若将某池子热水送至高m 10的凉水塔,倘若外界不提供机械能,水能自动由低处向高处流吗?显然是不能的,如图2-1所示,我们在池面与凉水塔液面列柏努利方程得:图2-1 流体输送示意图f e h gu g p z h g u g p z +++=+++2222222111ρρ∵00211===p p z ,(表压),01012==u m z ,,若泵未有开动,则:0=e h代入上式得: gud l le 21010000022⎪⎭⎫ ⎝⎛++++=+++λ∴dl l gu e++⨯-=λ121022 2u 为虚数 此计算说明,泵不开动,热水就不可能流向凉水架,就需要外界提供机械能量。

能对流体提供机械能量的机器,称为流体输送机械。

离心泵是重要的输送液体的机械之一。

如图2-2 所示,离心泵主要由叶轮和泵壳所组成。

图2-2 离心泵构造示意图先将液体注满泵壳,叶轮高速旋转,将液体甩向叶轮外缘,产生高的动压头⎪⎪⎭⎫⎝⎛g u 22,由于泵壳液体通道设计成截面逐渐扩大的形状,高速流体逐渐减速,由动压头转变为静压头⎪⎪⎭⎫ ⎝⎛g P ρ,即流体出泵壳时,表现为具有高压的液体。

第二章流体输送机械

第二章流体输送机械
力,而且可以较好的消除轴向推
力。
二.离心泵主要构件的结构及功能
2.泵壳 呈蜗牛壳状
思考:泵壳的主要作用是什么? ①汇集液体,并导出液体; ②能量转换装置(动能变静压能)
3.导轮 请点击观看动画
为了减少液体直接进入蜗壳时的碰撞,在叶 轮与泵壳之间有时还装有一个固定不动的带有叶 片的圆盘,称为导轮。导轮上的叶片的弯曲方向 与叶轮上叶片的弯曲方向相反,其弯曲角度正好 与液体从叶轮流出的方向相适应,引导液体在泵 壳的通道内平缓的改变方向,使能量损失减小, 使动能向静压能的转换更为有效。
泵轴
思考: 为什么叶片弯曲? 泵壳呈蜗壳状? 答案见后面的内容
吸入导管
压出导管
泵壳
叶轮
底阀
一、离心泵构造及工作原理
2、离心泵的工作原理
思考: 流体在泵内都获得了哪几种能量? 其中哪种能量占主导地位? 请点击观看动画
答案:动能和静压能,其中静压能占主导
思考:泵启动前为什么要灌满液体
气缚现象 请点击观看动画
气 缚
离心泵启动时,如果泵壳内存在空气,由于空气的密度远
小于液体的密度,叶轮旋转所产生的离心力很小,叶轮中心
处产生的低压不足以造成吸上液体所需要的真空度,这样,
离心泵就无法工作,这种现象称作气缚。
为了使启动前泵内充满液体,在吸入管道底部装一止
逆阀。此外,在离心泵的出口管路上也装一调节阀,用于
开停车和调节流量。
u2
u u 1 2 2 2 r2 r1 2 2
2 2


2 1
w1
1
c1
u
理论压头H
在1与2之间列伯努利方程式,得:
H
2 p 2 p1 c 2 c12 g 2g

中农大环境工程原理课件第2章 流体输送机械

中农大环境工程原理课件第2章 流体输送机械

忽略位能差
H p静压头的增量有以下两方面
(1)离心力作功
R2 F dR
g R1
R2 R1
R 2
g
dR
2
2g
(R2 2
R12 )
u2 2 u12 2g
w w (2)能量转换 由于流道扩大,流速由
,变小 12
转变为静压能
w12 w22 2g
HT
u22 u12 2g
w12 w22 2g
c22 c12 2g
叶轮的类型
蜗壳
蔽式叶轮:适用于输送清洁液体 敞式和半蔽式叶轮:流道不易堵塞,适用于输送含有固体
颗粒的液体悬浮液,效率低。
按吸液方式:单吸式、双吸式。
后盖板 平衡孔
单(吸a) 式
双吸式
单吸式:结构简单,液体从叶轮一侧被吸入。 双吸式:吸液能力大,基本上消除轴向推力。
二、离心泵的基本方程式
液体在叶轮中的运动及其简化假设 ① 简化假设 (a)叶片数目无限多,且无限薄,严格将流体限定在叶 轮流道内; (b)流体为理想流体,无能量损失;
② 液体质点的运动 圆周运动——液体随叶轮一起旋转,圆周速度为u; 切向运动——相对于叶轮的运动,相对速度w; 合成运动——流体相对于壳体的运动,绝对速度c。
各速度间的关系
叶片安装角β——相对速度w与圆周速度u反向延长线间的夹角。 夹角α——绝对速度c和圆周速度u间的夹角。
w β
c α
u
ω
c
w
c cu
c cos
u r
crctg
α cu
β
u
液体质点在叶轮内的运动情况
各速度之间相互关系:
c wu
w2 c2 u2 2cu cos

2.1.1 流体输送机械的作用

2.1.1  流体输送机械的作用

压强
谢谢!
Bye-bye!
第二章 流体输送机械
2.1 概述 2.2 离心泵
2.3 其他类型泵
2.4 气体输送机械
2.1.1
流体输送机械的作用
复习
1.什么是流体?
气体和液体统称为流体。
2.什么是柏努利方程? gz1+1/2u12+p1/ρ+We=gz2+1/2u22+p2/ρ+Σhf
流体输送机械:
对流体做功,以完成输送任务的机械。
令He=We/g
单位同长度单位
Hf=Σhf/g

He=Δz+ Δu2/2g+ Δp/ρg+Hf
位压头 动压头 静压头 压头损失
外加压头
He 泵对单位重量液体所提供的能量。
当用泵输送液体时,一般Δu2/2g可忽略, 能量用来。。。。。。
静压能 提高液体的位能 克服管路的阻力 (能量损失)
2.若流体为气体
若流体为液体: 流体输送机械为泵 若流体为气体:
风机
流体输送机械按工况不同
压缩机 真空泵
流体输送机械为完成任务,其需要能量。
此能量可由柏努利方程求得:
We=gΔz+Δu2/2+Δp/ρ+Σhf
以单位质量流体为衡算基准
1.若流体为液体
采用以单位重量为衡算基准
We/g=Δz+Δu2/2g+Δp/ρg+Σhf/g
采用以单位体积为衡算基准
Weρ=ρgΔz+ρΔu2/2+Δp+ρΣhf
单位同压力
令HT=Weρ
得 HT=ρgΔz+
全风压 位风压

第二章 流体输送机械

第二章  流体输送机械

第二章 流体输送机械离心泵特性【2-1】某离心泵用15℃的水进行性能实验,水的体积流量为540m 3/h ,泵出口压力表读数为350kPa ,泵入口真空表读数为30kPa 。

若压力表与真空表测压截面间的垂直距离为350mm ,吸入管与压出管内径分别为350mm 及310 mm ,试求泵的扬程。

解 水在15℃时./39957kg m ρ=,流量/V q m h =3540 压力表350M p kPa =,真空表30V p kPa =-(表压)压力表与真空表测压点垂直距离00.35h m = 管径..12035031d m d m ==,流速 / ./(.)1221540360015603544V q u m s d ππ===⨯. ../.221212035156199031d u u m s d ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭扬程 222102M V p p u u Ηh ρg g--=++ ()(.)(.)....⨯--⨯-=++⨯⨯332235010301019915603599579812981....m =++=0353890078393 水柱【2-2】原来用于输送水的离心泵现改为输送密度为1400kg/m 3的水溶液,其他性质可视为与水相同。

若管路状况不变,泵前后两个开口容器的液面间的高度不变,试说明:(1)泵的压头(扬程)有无变化;(2)若在泵出口装一压力表,其读数有无变化;(3)泵的轴功率有无变化。

解 (1)液体密度增大,离心泵的压头(扬程)不变。

(见教材) (2)液体密度增大,则出口压力表读数将增大。

(3)液体密度ρ增大,则轴功率V q gHP ρη=将增大。

【2-3】某台离心泵在转速为1450r/min 时,水的流量为18m 3/h ,扬程为20m(H 2O)。

试求:(1)泵的有效功率,水的密度为1000kg/m 3; (2)若将泵的转速调节到1250r/min 时,泵的流量与扬程将变为多少?解 (1)已知/,/V q m h H m kg m ρ===331820 1000水柱,有效功率 .e V P q gH W ρ==⨯⨯⨯=181000981209813600(2) 转速 /min 11450n r =时流量3118V q m h =/,扬程1220m H O H =柱转速/m i n 21250n r = 流量 ./322111250181551450V V n q q m h n ==⨯= 扬程 .2222121125020149m H O 1450n H H n ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭柱 管路特性曲线、工作点、等效率方程【2-4】用离心泵将水由敞口低位槽送往密闭高位槽,高位槽中的气相表压为98.1kPa ,两槽液位相差4m 且维持恒定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

qV 2r2b2w2 sin 2 A2w2 sin 2
w2 C2
qV
qV
2 r2b2 sin 2 A2 sin
cos2 u2 w2 cos 2
2
代入
HT
u2C2
cos2
g
二式代入上式 HT 中:所以
HT
u22 g
u2 gA2
qV ctg 2
HT u22 / g
2 90
2 90 2 90
鼓风机,压缩机,真空泵等。
本章主要介绍常用输送机械的工作原理和特性,以便 选择与使用。
第一节 概述
一、离心泵作用
向流体提供能量:用于提高流体势能(低能位向高能位
输送流体)和克服管路的阻力损失。
铭牌:
转 速
压流
量 头
轴 功 率 和 效 率
允 许 汽 蚀 余 量
二、输送流体所需能量
1、管路特性曲线方程
qV 2r1b1c1 sin 1 2r1b1w1 sin 1
注:2r2b2
出口截面积
c2 sin2 w2 sin 2 径向管口流速
r2
w2
c2 u2
b2
(3)机械能守恒 ——假定:理想流体无阻力损失、定态流动 旋转坐标系:叶轮水平放置,叶轮进出口截面列柏氏方程:
p1
g
Z1
u12 2g
w12 2g
Hf
P g
u 2 2g
KqV 2
一般情况下,动能差一项可忽略
H
P g
KqV 2
管路特性方程
H
8( l )
K
[
d
2d4g
]
该式表明了管路中流体的 流量与需补加能量的关系
ΔP
g
2 1
管路特性曲线
qv
2、压头(扬程)与流量是输送机械的主要技术指标 压头He:指输送机械向单位重量流体提供的有效能量,J/N
按工作原理
动力式(叶轮式):离心泵、轴流泵 容积式(正位移式): 压缩机、旋转泵
第二节 离心泵
一、离心泵工作原理
1、泵结构 叶轮(1、2、3、4) 向流体做功 泵壳 使动能→势能,是能量转化装置
2、旋转流体的考察方法
第一章中只是介绍了流体在重力场中的能量守恒及转换
本节离心泵中是旋转液体,因而存在着离心力,
qV
c2
w2 α2 β2 2
r2
u2
β1
1
w1
αcu111
离心泵理论HT - qV图
(2)叶轮形状对理论压头的影响
HT
u22 g
u2 gA2
qV ctg 2
w2
c2
2
2
u2
w2
c2
2
2
u2
w2 2
c2 2 u2
(a)
(b)
(c)
2 90o 后弯叶轮 ctg2 0,qV ,HT
2 90o 径向叶轮 ctg2 0,HT与qV 无关
叶轮通道内,切向速度u与半径有关 相对速度 w 与叶片间流道有关, 外缘流道宽,相对速度 w 小。
2
1
静止坐标系:
p1
g
Z1
C12 2g
HT
p2
g
Z2
C22 2g
HT
P2 P1 g
C22 C12 2g
;(1)
P2 P1 u22 u12 w12 w22
g
2g
2g
HT
u22 u12 2g
在重力场 离心力场中,其总势能则应为
位能(Z) 压强能( p ) 离心力场势能( u2 )
g
2g
流体质点的考察方法:拉格朗日法及欧拉法 静止坐标参照系
旋转流体的考察方法: 旋转坐标参照系
3、离心力场中的机械能守恒 (1)液体在叶片间的运动
c2
w2 α2 β2 2
r2
u2
β1
1
w1
αcu111
u —切向速度(流体随叶轮旋转具有的速度)
Z1
p1
g
u12 2g
H
Z2
p2
g
u22 2g
Hf
H:单位重量流体需补加的能量
z
2
2
H P u2
g 2g
Hf
1 p1 1
Hf
l d
u2 2g
8( l )
[
d
2d 4g
]qV2 KqV2
8( l )
K
[
d
2d4g
]
K由管路特性决定
H P u2
g 2g
第二章 流体输送机械
第一节 概述 第二节 离心泵 第三节 往复泵 第四节 其他化工用泵 第五节 气力输送机械
流体在流动过程中将损失部分机械能,只能由高能位 向低能位处流动。但在多数情况下需将流体由低能位向高 能位处输送,因而为完成输送任务必须依靠输送机械向流 体补加足够的机械能。
用以输送液体的机械通称为泵 输送气体的机械按不同的情况称为通风机,
g
c2
w2 α2 β2 2
r2
u2
β1
1
w1
αcu111
离心泵设计:为使HT大,cosα1=0,因此使流体从径向进入 叶轮,此时α1=90ο
故:
HT
u2C2
cos2
g
离心泵理论压头
3、离心泵理论压头的影响因素 (1)流量对压头的影响 由图可知:
c2
w2 α2 β2 2
r2
u2
β1
1
w1
αcu111
w —相对速度(流体沿叶轮间通道流动,相对于叶轮的速度) C — 绝对速度( u 与 w 的向量和)
三者关系:(余弦定理)
w12 C12 u12 2C1u1 cos1 w22 C22 u22 2C2u2 cos2
(2)离心泵流量:
c2
w2 α2 β2 2
r2
u2
β1
Hale Waihona Puke 1w1αcu111
qV 2r2b2c2 sin 2 2r2b2w2 sin 2
He = H
输送机械向流体提供的能量He 应与管路所需补加能量H相等
流体输送机械在不同流量下压头也不同,压头与流量的 关系由输送机械本身特性决定,是流体输送机械的主要 技术指标,讨论He~qV关系,即确立泵的特性方程是本 章的主要内容。
三、流体输送机械分类
输送液体—泵:离心泵、往复泵 按流体性质
输送气体—机:通风机、鼓风机、压缩机
2 90o 前弯叶轮 ctg2 0,qV ,HT
为什么采用后弯叶片?
后弯可获得较高能量利用率
理论压头 = 势能 + 动能
前弯C2大,动能
c22 2g
虽大,
但流体动能经蜗壳部分转化为
势能过程中,阻力损失也大。
p2
g
Z2
u22 2g
w22 2g
(
p1
g
Z1
u12 2g
)
为总势能,包括常规势能和离心力场势能
w12 以相对速度计的动能
2
2g
P2 P1 u22 u12 w12 w22
1
g
2g
2g
P2 P1 u22 u12 w12 w22
g
2g
2g
u r
说明: u2 u1
w1 w2
w12 w22 2g
C22 C12 ;(2) 2g
离心泵理论压头
(1)、(2)式表明:离心泵以势能和动能两种形式向流体
提供能量。对于常用的后弯叶片叶轮,C22 C12 u22 u12 ,而且
2g
2g
w1>w2,说明提供能量中势能所占比例更大。
消去其中w1、w2,得:
HT
u2C2 cos2 u1C1 cos1
相关文档
最新文档