条件分布及随机变量的独立性
2-2-3随机变量的独立性,条件分布
x
FX Y ( x y) pX Y ( x y) d x
x
[ p(x, y)
pY ( y)]d x.
y
FY X ( y x) pY X ( y x) d y
y
[ p(x, y)
pX (x)]d y.
备份题
例1 设
(X,Y )
~
p( x,
y)
Cy(1 0,
x),
0 x 1,0 其 它.
则称X和Y相互独立.
例1 已知 ( X ,Y ) 的分布律为
( X ,Y ) (1,1) (1,2) (1,3) (2,1) (2,2)
111 1
pij
6
9 18
3
(1) 求与应满足的条件;
(2) 若 X 与 Y 相互独立,求 与 的值.
(2,3)
解 将 ( X ,Y ) 的分布律改写为
Y X
1
1
1
6
1
2
3
p• j P{Y yj } 1 2
2 1 9
1
9
3 pi• P{ X xi }
1
1
18
3
1
3
1
18
2
3
(1)由分布律的性质知
0,
0,
2
3
1,
故与应满足的条件是 : 0, 0 且 1 .
3
(2) 因为 X 与 Y 相互独立, 所以有
pij pi• p• j , (i 1,2; j 1,2,3)
xe(x y)dy xe x
0
x>0
pY ( y) 0 xe( x y)dx e y
y >0
即:
3.4 随机变量的独立性
第2页
3.4 随机变量独立性
可以证明如下结论: (1)若 (X,Y)是连续型r.v ,则上述独立性的定义等价于:
对任意的 x, y, 有
f ( x , y ) f X ( x ) fY ( y )
第6页
3.4 随机变量独立性
例3.4.1
1.
P( X P( X P( X P( X
X ,Y 具有分布律右图,则:
1, Y 0) 1 6 P( X 1) P(Y 0) 2, Y 0) 1 6 P( X 2) P(Y 0) 1, Y 1) 2 6 P( X 1) P(Y 1) 2, Y 1) 2 6 P( X 2) P(Y 1)
p ij p i p j
离散型随机变量的联合分布列等于其边缘分布列的乘积
P { X x i | Y y j } p i , , P { Y y j | X x i } p j
任一变量的条件分布列等于其边缘分布列
要判断 X 和 Y 不独立,只需找到 X, Y 的一对取值(xi,yj),使得 P{X xi , Y y j } P{X xi }P{Y y j }.
P( X1 x1i1 )
i2 ,i3 ,in
P( X1 x1i1 , X 2 x2i2 ,, X n xnin )
P( X1 x1i1 , X 2 x2i2 )
f X1 ( x1 )
i3 ,i4 ,in
P( X1 x1i1 , X 2 x2i2 ,, X n xnin )
10条件分布与独立性
f (x,y)=fX(x)fY(y).
特别地,令x = μ1,y = μ2, 由上述等式得到
1
1,
2 1 2 1 2 2 1 2
从而ρ = 0.
综上所述, 得到以下的重要结论: 定理2 对于二维正态随机变量(X, Y), X与 Y相互独立的充要条件是参数ρ = 0.
讲评 随机变量的独立性往往由实际问题
PX≤ x Y y为随机变量X在条件Y= y下的条件
分布函数, 记作 FX Y ( x y).
即
x f (x, y)
FX Y ( x y)
dx. fY ( y)
则上式就是在给定条件Y= y下, 随机变量X的
条件分布函数.
而 f (x, y) 称为在给定条件
fY ( y)
Y= y下X的条件概率密度,
L
f (x1, x2,L , xn)dx2dx3L dxn,
(3.5)
fX1,X2 (x1, x2)
L
f (x1, x2,L , xn)dx3dx4L dxn.
(3.6)
定义2 若对于所有的实数x1,x2,…, xn有
F(x1, x2,L , xn) FX1 (x1)FX 2 (x2)L FXn (xn) (3.7) ,
随机变量的独立性是概率论与数理统计 中的一个很重要的概念,它是由随机事件的相 互独立性引申而来的.我们知道,两个事件A与B 是相互独立的,当且仅当它们满足条件 P(AB)=P(A)P(B).
由此, 可引出两个随机变量的相互独立性.
设X,Y为两个随机变量,于是{X≤x},{Y≤y}为 两个随机事件, 则两事件{X≤x},{Y≤y}相互独立, 相当于下式成立 P{X≤x,Y≤y}=P{X≤x} P{Y≤y}, 或写成 F(x,y)=FX(x)FY(y).
3.2条件分布与随机变量的独立性
3e3 ydy e3
1
19
例5 甲乙两人约定中午12:30分在某地会面. 如果甲 来到的时间在12:15到12:45之间是均匀分布, 乙独立 地到达, 而且到达时间在12:00到13:00之间是均匀分 布, 试求先到的人等待另一人到达的时间不超过5分 钟的概率, 又甲先到的概率是多少?
解 由 X 与Y 独立性知
0
0, x 0
x0
ex , x 0
0, x 0
18
当 x 0时,有
fY|X ( y | x)
f (x, y) fX (x)
xe x(1
ex 0
y)
y
y 0
0
xexy y 0
0 y0
(2)当 X 3时,有
P(Y 1 X 3)
1 fY|X ( y | 3)dy
的边缘分布律中的部分数值, 试将其余数值填入表 中的空白处.
X
Y y1 y2 y3 P{ X xi } pi .
x1
1/ 8
x2
1/ 8
P{ y yj } p j 1/ 6
1
解 由于 P{ X x1,Y y1} P{Y y1} P{X x2 ,Y y1} 1/ 6 1/ 8 1/ 24,
1 p• j
i 1
pij
p• j p• j
1
同样, P{Y y j | X xi }也具有这两点性质。
9
例2 设 X与Y的联合概率分布如右表.
求Y 0 时, X 的条件概率 X Y -1 0 2 分布以及 X 0 时, Y 的条件 0 0.1 0.2 0
概率分布;
1 0.3 0.05 0.1 2 0.15 0 0.1
f ( x, y),( X ,Y ) 关于 Y 的边缘概率密度为fY ( y).若
3.2条件分布及其独立性
fX|Y (x| y)
f (x,y) fY (y)
1
2π 1 2
e
1 2(1
2
[ )
(
x1
2 1
)2
2
(x1)( y2 1 2
)
(
y2)2
2 2
]
1 2
1
e
(
y2
2
2 2
)2
2π 2
1
e
1 2(1
2)(
x1 1
y2 2
)2
2π 1 1 2
1
e
212
1 (1
2
[ )
x1
1 2
(
y 2 )]2
P{X xi,Y yj} P{Y yj}
pij pYj
(323)
其中P{Xxi|Yyj}是在事件“Yyj ”发生的条件下 事件“Xxi”
发生的条件概率 通常记作pi|j
不难验证 数列pi|j(i1 2 )满足概率分布所要求的性质
(1) pi|j 0 (2) pi| j 1 i
二、离散型随机变量的条件概率分布与独立性
一、条件分布与独立性的一般概念
条件分布函数 对每个给定的实数x 我们记条件概率P{Xx|A}为F(x|A)
并称F(x|A)(x)为在A发生的条件下X的条件分布函数 设A{Yy} 且P{Yy}0 则有
F(x|Y y) P{X x,Y y} F(x,y) P{Y y} FY (y)
(320)
说明 一般地 两个随机变量X和Y之间存在着相互联系 因而一
F(x y)和f(x y) 我们希望考虑在Yy的条件下X的条件分布
P{X x|Y y} lim P{X x| yΔ y Y y} Δ y0
多维随机变量及其分布,随机变量相互独立性,条件概率
P {Y1X1 }P {X1 ,Y1 } 0.010 , P {X1 } 0.045
P {Y2X1 }P {X1 ,Y2} 0.005 , P {X1 } 0.045
三、连续型随机变量的条件分
布
定义 设二维随机变量(X,Y)的概率密度为
xp 0(,xy,y ) 0p X(x)p Y(y) 其它 故X,Y 独立
问X和Y是否独立?
解:pX(x)
xe(xy)dy
0
xex
x>0
pY(y)0x e(xy)dx e y
y >0
即:
xex, x0
pX(x)0, 其它
ey,
pY
(
y)
0,
y0 其它
例3 设随机X变 和Y量 相互独 ,并立 且 X服从 N(a,σ2)Y , 在[b,b]上服从均,求 匀 (X分 ,Y)布 的联合概. 率密度
对(X,Y)的所有可能取值(xi, yj),有
P ( X x i,Y y j) P ( X x i) P ( Y y j)
则称X和Y相互独立.
例1 已知(X,Y)的分布律为
(X,Y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3)
1
1
1
1
p ij
6
9 18
3
(1)求 与 应满足;的条件
(1)求在 X1的条件 ,Y的 下条件分 ; 布律
(2)求在 Y0的条件 ,X的 下条件分 . 布律
解 Y X 0 1 2 3P{Yj}
0 0 .84 0 .0 03 0 .0 02 0 .0 0100 .900 1 0 .06 0 .0 01 0 .0 00 0 .0 8002 .080 2 0 .01 0 .0 00 0 .0 50 0 .0 4001 .020 P{Xi} 0 .91 0 .0 04 0 .0 53 0 .0 2113 .000
随机变量的独立性
f (x, y)
fX
(
x)
fY
(
y)
1 4
e
x 2
y
0
x 0, y 0 其他
P( X 2Y )
dx
1
e
x
2
y
dy
0
x/2 4
1 x x e 2 e 4 dx
1 e
3x 4
dx
2
02
02
3
两个随机变量函数的分布
• 随机变量函数的分布:
• 已知随机变量X的分布,如何求随机变量 Y=g(X)的分布
Fmax (z) (F (z))n Fmin (z) 1 [1 F (z)]n
例:设X与Y 独立,均服从U (0, 1), 分别求M max( X ,Y ), N min( X ,Y )的概率密度。
0, x 0
解:X、Y的分布函数F ( x)
x,
0
x
1
1, x 1
0, x 0
例:设X与Y 独立,且 X, Y 等可能地取值 0和1. (1)求 U = max(X, Y) 的分布列. (2)求V = X+Y的分布列.
解: X 0 1 p 1/2 1/2
Y0 1 P 1/2 1/2
(1) U = max(X, Y) 的取值为: 0, 1
P(U=0) = P(X=0, Y=0) = P(X=0)P(Y=0) =1/4
Fmin (z) P( N z) 1 P( N z) 1 P( X z,Y z) 1 P( X z)P(Y z)
即 Fmin (z) 1 (1 FX (z))(1 FY (z))
推广:
设X1, X2 ,, Xn是n个相互独立的随机变量,它们的分布函数分别
第2节 条件分布与独立性
解 (1)若( X , Y ) ~ N (0,0,1,1, ), 则
X |Y ( x | y) ~ N ( y,1 2 );
Y | X ( y | x) ~ N ( x,1 ).
2
推广
(2) 设( X ,Y ) ~ N ( 1 , 2 , , , ), 则
.
对于任意给定 xi , 如果 P{ X xi } 0, 则在X xi的
性质:pi| j 0,
p
i
i| j
1;
p j|i 0,
p
j
j|i
1.
问题 : 联合分布、边缘分布和条件分布有什么关系?
联合分布、边缘分布和条件分布的关系 X Y
y1 p11 p21 pi 1
y2 p12 p22 pi 2
2. 连续型变量独立的定义
设两个连续型随机变量 X 和 Y 的联合密度和边缘 密度分别为 f ( x, y )和 f X ( x )与fY ( y ). 则
严格地说 , 连续型随机变量X与Y 相互独立是指 f ( x, y ) f X ( x ) fY ( y ) 在整个平面上几乎处处(即面积为0的区域除外)成立.
3. 一般型随机变量的条件分布 设 X 是一随机变量, A 是一随机事件, 则由如下条件 概率确定的函数
F ( x A) P X x A , x 称为在A 发生条件下 X的条件分布函数 .
二、随机变量的独立性
随机变量独立的直观含义
随机变量 X 和 Y 相互独立的直观含义是指它 们之间在概率上相互毫无影响, 也就是说 , 任何一 个的取值都不会影响到另一个取值的分布.
pi 1
yj p1 j p2 i pij
高等数学3.4 随机变量的独立性与条件分布
2 3/15 3/15
0 1
(2) 由( X , Y ) 的联合分布律知 X 的边缘分布为 X P 0 1/15 1 10/15
由条件分布定义可知
P Y = 0 X = 0 = P Y = 1 X = 0 = P Y = 2 X = 0 =
P X = 0 , Y = 0 P X = 0 P X = 0 , Y = 1 P X = 0 P X = 0 , Y = 2 P X = 0
Y P
1 1/2
2 1/9 +α
3 1/18 +β
若X 与 Y 相互独立, 则有 1 = P X = 1, Y = 2 = P X= 1 9 1 1 = ( + ) 3 9 1 = P X = 1, Y= 3 = P X =1 18 1 1 = ( + ) 3 18
Y P = 2
dt
=
同理
x R
fY ( y ) =
( y 2 )2 exp , 2 2 2 2 2 1
y R
若 = 0 , 则对于任意实数 x 与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 因此 X 与 Y 是相互独立的 . 反之, 若 X 与Y 相互独立, 则对于任意实数 x与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 若取 x = 1 , y = 2 , 则有
1 2
2
2 2 ( x ) ( x ) 2 2 1 1 + 2 2 1 1
y 2 ( x 1 ) x 1 1 = 2 2 1 2 1 2(1 ) 2
2
所以( X , Y )关于X的边缘密度为
随机变量的独立性及联合分布的定义及计算方法
随机变量的独立性及联合分布的定义及计算方法随机变量是统计学中一个重要的概念,指的是随机试验中可能取到的数值。
对于多个随机变量之间的关系,独立性和联合分布是常用的概念和方法。
本文将依次介绍随机变量独立性的定义和判定方法、随机变量的联合分布的定义和常见计算方法。
一、随机变量的独立性随机变量的独立性是指在给定条件下,多个随机变量之间不存在相关性,即一个随机变量的取值不会对其他随机变量的取值产生影响。
常用的判定方法包括:1. 互不影响如果两个随机变量之间互不影响,则这两个变量是独立的。
例如,投掷两个骰子,其中一个骰子的点数不会影响另一个骰子的点数,因此两个骰子的点数是独立的随机变量。
2. 相互独立如果多个随机变量之间的任意两个变量都是独立的,则这些随机变量是相互独立的。
例如,投掷三个骰子,每个骰子的点数都是独立的随机变量,因此三个骰子的点数是相互独立的随机变量。
3. 独立性定义下的概率乘法公式对于两个独立的随机变量X和Y,它们同时取到某个值的概率等于它们各自取到这个值的概率的乘积。
即P(X=x,Y=y)=P(X=x)P(Y=y)。
该公式也适用于多个独立的随机变量。
二、随机变量的联合分布多个随机变量的联合分布是指这些随机变量取值组合所对应的概率分布函数。
常用的计算方法包括:1. 联合分布函数对于两个随机变量X和Y,它们的联合分布函数定义为F(x,y)=P(X<=x,Y<=y)。
该函数可以用来计算任意两个随机变量的联合分布。
对于多个随机变量,联合分布函数的定义相应地拓展。
2. 联合概率密度函数对于连续型随机变量,它们的联合概率密度函数可以通过对应的联合分布函数求导得到。
即f(x,y)=∂^2 F(x,y)/∂x∂y。
该函数可以用来计算任意两个连续型随机变量的联合分布。
对于多个连续型随机变量,联合概率密度函数的定义相应地拓展。
3. 边缘分布和条件分布对于联合分布中的任意一个随机变量,我们都可以将它的概率分布函数单独计算出来,称为边缘分布。
条件分布及其独立性
分析
设(X Y)是连续型随机向量 分布函数和密度函数分别为 F(x y)和f(x y) 我们希望考虑在Yy的条件下X的条件分布
由于{Yy}是一个零概率事件
P{X x|Y y} P{X x,Y y} P{Y y}
(328)
的分子、分母均为0 因而直接根据条件概率定义来考虑X的
(320)
对给定的x和y 如果事件{Xx}与事件{Yy}独立 则有
此时
F(x y) P{Xx Yy}P{Xx}P{Yy} FX(x)FY(y)
F(x|Yy)FX(x)
(321)
一、条件分布与独立性的一般概念
条件分布函数 对每个给定的实数x 我们记条件概率P{Xx|A}为F(x|A)
条件分布函数 对每个给定的实数x 我们记条件概率P{Xx|A}为F(x|A)
并称F(x|A)(x)为在A发生的条件下X的条件分布函数 设A{Yy} 且P{Yy}0 则有
F(x|Y y) P{X x,Y y} F(x,y) P{Y y} FY (y)
(1) pi|j 0 (2) pi| j 1 i
二、离散型随机变量的条件概率分布与独立性
条件概率分布
设(X Y)是二维离散型随机向量 其概率分布为
P{Xxi Yyj}pij i j1 2 则由条件概率公式 当P{Yyj}0时 有
P{X
xi |Yຫໍສະໝຸດ 1 x2 , π 0,
| x|1, 其他.
于是 对一切x(|x|1) 有
fY|X (y| x)
f (x, y) fX (x)
2
1, 1 x2 0,
| y| 1 x2, 其他.
例38(2) 设(X Y)是在D{(x y)|x2y21}上服从均匀分布 的随机向量 求fX|Y (x|y)
证明随机变量相互独立
证明随机变量相互独立要证明随机变量相互独立,可以通过验证它们的联合分布函数和边缘分布函数,或者联合概率密度和边缘概率密度之间的关系来进行判断。
以下是证明随机变量X和Y相互独立的一般步骤:1. 定义独立性:如果两个随机变量X和Y满足对于所有可能的事件A和B,它们的联合概率等于各自概率的乘积,即P(A∩B) = P(A)P(B),那么称X和Y是相互独立的。
2. 使用分布函数:对于连续型随机变量,如果X和Y相互独立,则它们的联合分布函数F(x, y)等于边缘分布函数的乘积,即F(x, y) = F_X(x) * F_Y(y)。
类似地,对于离散型随机变量,它们的联合概率质量函数等于边缘概率质量函数的乘积。
3. 使用概率密度函数:对于具有概率密度函数的随机变量,如果X和Y相互独立,则它们的联合概率密度函数f(x, y)等于边缘概率密度函数的乘积,即f(x, y) = f_X(x) * f_Y(y)。
4. 检验条件独立性:随机变量X和Y相互独立还意味着给定任何其他随机变量Z的条件下,X和Y仍然是独立的。
这可以用条件概率来表示,即P(X|Z)和P(Y|Z)的乘积应该等于P(X, Y|Z)。
5. 数学期望的性质:如果X和Y相互独立,那么它们的乘积的期望值等于各自期望值的乘积,即E(XY) = E(X)E(Y)。
这是独立性的一个结果,但不能用来作为独立性的判定标准,因为不线性相关并不意味着独立。
6. 实证检验:在实际应用中,可以通过收集数据并计算这些概率或期望值来检验随机变量是否独立。
如果实证数据与独立性的定义相符合,则可以认为它们是独立的。
7. 理论推导:在某些情况下,可以通过理论推导来证明独立性。
例如,如果已知随机变量是由某些独立的实验或过程生成的,那么这些随机变量可能是独立的。
8. 测度论方法:在更高级的数学框架下,如测度论,可以使用σ-代数和概率测度的概念来定义和证明独立性。
这通常涉及到对事件集合的操作和概率的公理化定义。
随机变量的独立性
定义3. 7 设X 和Y 为两个随机变量,若对于任意的x 和y 有 P{X x,Y y} P{X x}P{Y y},
则称X 和Y 是相互独立的( Mutually independent )。
若二维随机变量( X , Y )的分布函数为 F (x,y) ,其边缘分
布函数分别为FX (x)和FY (y),则上述独立性条件等价于对所有x 和y 有
fY
(
y)
e y,y
0,
0, 其他。
求X 和Y 的联合概率密
度 f (x,y) 。
解 由X 和Y 相互独立可知
f (x,y) fX (x) fY ( y)
e(xy),x 0,y 0,
0,其他。
概率学与数理统计
F (x,y) FX (x)FY ( y) 。
(3.13)
1. 对于二维离散型随机变量,上述独立性条件等价于对于
( X , Y )的任何可能取的值 (xi,y j ) 有
P{X x,Y y} P{X xi}P{Y y j}。
(3.14)
2. 对于二维连续型随机变量,独立性条件的等价形式是对
一切x 和y 有
f (x,y) fX (x) fY ( y) ,
(3.15)
这里, f (x,y)为( X , Y )的概率密度函数,而 fX (x) 和 fY ( y)
分别是边缘概率密度函数。
如在例3.7中,(1)有放回摸球时,X 与Y 是相互独立的;而
(2)无放回摸球时,X 与Y 不是相互独立的。
π
1 y2,1 0,
y 1, 其他。
可见在圆域 x2 y2 1 上,f (x,y) fX (x) fY ( y) ,故X 和Y 不相
互独立。
3.2条件分布与随机变量的独立性(课件)
P Y y 且 X x F y X x P Y y X x P X x
F ( x, y ) FX ( x ) F y X x FY ( y)F x Y y
独立性: 事件A与 B 独立
2 x, 0 x 1 f X ( x) 其它 0,
1
x
y x f ( x, y ) f 当 x 0 或 x 1 时, Y X y x 不存在. f X ( x)
1, f ( x, y) 0,
0 x 1, x y x yx
其它
求条件密度函数.
0dy 0, x 0 解 2 x, 0 x 1 2 x , 0 x 1 f X ( x ) f ( x , y )d y 0, 其它 0dy 0, x 1 0 x 1 时, y yx f X ( x) f ( x , y )d y
0dy 1 dy 0dy 2x x x
x
x
f ( x, y ) fY X y x f X ( x)
x
x 1
x x
y x
例 设X和Y的联合密度函数为 0 x 1, x y x yx 1, f ( x, y) y求条件密度函数. 0, 其它 yx 解
X Y
例 设随机变量 X 与 Y 独立, 下表列出二维随机向量 ( X , Y ) 的联合分布律 及边缘分布律 的部分数值,
将其余数值 填入空白处.
X
Y
y1
1 24 1 8 1 6
3.2.边缘分布_条件分布
2、连续型r.v.边缘分布
设(X, Y)~f (x, y),(x, y)R2,F(x, y)为分布 函数,则
FX ( x) F ( x, )
称
x
f ( x, y)dydx
f X ( x) f ( x, y)dy
为(X, Y )关于X 的边缘密度函数;
同理,称
例8 (X,Y)~ N(1, 12, 2, 22, ),求 fY | X ( y | x)
1 1 f X ( x) exp{ ( x 1 ) 2 } 解、由Ex3知, 2 12 2 1
f ( x, y ) fY | X ( y | x ) f X ( x)
1 2 2
二、条件分布
1. 离散型随机变量的条件分布律 例6.已知(X,Y)的分布律为 X \Y -1 0 pi.
-2 0 1/10 3/10 2/5 3/10 3/10 3/5 p.j 2/5 3/5 求X|Y = -1的条件分布律。
P{ X xi , Y 1} P{ X xi | Y 1} P{Y 1}
2 exp{ [ y2 2 ( x 1 )]2 } 2 2 2 2 1 1
1
2 Y | X N ( 2 ( x 1 ), 2 2 (1 2 )) 1
三、随机变量的相互独立性
定义 如果对任意实数x, y, F(x, y)=FX(x)FY(y)
其分量X及Y的分布函数为二维随机变量(X, Y) 关于X及关于Y的边缘分布函数, 分别记作 FX(x), FY(y), 边缘分布函数可以由(X ,Y)的分 布函数F(x, y)来确定.
定义
FX ( x) P{ X x} F ( x, ) lim F ( x, y )
随机变量的独立性和条件概率分布
随机变量的独立性和条件概率分布是概率论中的重要概念,在很多领域都有广泛的应用。
独立性的概念是指两个或多个事件之间的关系,而条件概率分布则是指随机变量在给定一些条件下的概率分布。
首先来看独立性。
在数学上,独立性通常指的是两个随机变量之间的关系。
如果两个随机变量X和Y是独立的,那么它们可以分别考虑,而且它们之间的任何影响都不会相互影响。
具体来说,如果两个随机变量X和Y是独立的,那么它们的联合概率分布可以拆分成它们各自的概率分布的乘积。
即,P(X=x, Y=y) = P(X=x) * P(Y=y)。
举个例子,假设我们有两个骰子,我们把它们连续掷两次。
我们可以定义随机变量X为第一次掷出的点数,随机变量Y为第二次掷出的点数。
如果我们假设这两个骰子是六面的,并且它们是公平的,那么每个点数出现的概率都是1/6。
因此,我们可以计算出X和Y的概率分布,分别为P(X=1)=P(X=2)=P(X=3)=P(X=4)=P(X=5)=P(X=6)=1/6和P(Y=1)=P(Y=2)=P(Y=3)=P(Y=4)=P(Y=5)=P(Y=6)=1/6。
现在,假设我们想知道掷出的两个点数是相等的这个事件的概率。
我们可以用独立性来计算。
因为X和Y是独立的,所以P(X=x, Y=y) =P(X=x) * P(Y=y),因此,P(X=Y) = ΣP(X=x, Y=x) = ΣP(X=x) *P(Y=x) = 1/6 * 1/6 + 1/6 * 1/6 +...+1/6 * 1/6 = 1/6。
接下来看条件概率分布。
条件概率分布是指,在给定一些条件下,随机变量的概率分布。
具体来说,如果我们知道了一些关于随机变量的信息,那么我们可以通过条件概率分布来计算在这些信息下随机变量的取值的概率。
条件概率分布通常用P(X|Y)表示,表示给定Y的条件下,X的概率分布。
它可以通过原始的概率分布计算得到。
具体来说,如果我们知道了Y的取值,那么我们可以将联合概率分布进行归一化,得到在Y取值的条件下,X取值的概率分布。
多维随机变量及其分布,随机变量的相互独立性,条件概率
2 0.020 0.008 0.004 0.032
3 0.010 0.002 0.001 0.013
P{Y j}
0.900 0.080 0.020 1.000
P{Y 0 X 1} P{ X 1,Y 0} 0.030 , P{ X 1} 0.045
P{Y 1 X 1} P{ X 1,Y 1} 0.010 ,
d y. pX (x)
请同学们思考
为什么不能用条件概率的定义来直接定义条
件分布函数 FX Y ( x y)? 答 条件分布是指在一个随机变量取某个确定值
的条件下,另一个随机变量的分布, 即 FX Y ( x y) P{ X x Y y} . 由于P{Y y}可能为零(连续型时一定为零).故直接 用条件概率来定义时, 会出现分母为零. 因此,在条件分布中,作为条件的随机变量的取值是 确定的数.
现在如果限制Y 取值从1.5米到1.6米, 在这个限制下求X 的 分布.
定义 设 ( X ,Y ) 是二维离散型随机变量,对于固定
的 j, 若 P{Y y j } 0, 则称
P{ X
xi Y
yj}
P{X xi ,Y P{Y y j }
yj}
pij , p j
为在Y y j条件下随机变量 X 的条件分布律. 对于固定的 i, 若 P{ X xi } 0, 则称
若 (X,Y)是连续型r.v ,则上述独立性的 定义等价于:
若对任意的 x, y, 有
p(x, y) pX (x) pY ( y)
成立,则称X,Y相互独立 .
其中 p(x, y) 是X,Y的联合密度, pX (x), pY ( y)分别是X的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件分布及随机变量的独立性
1.设二维离散型随机变量),(Y X 只取 )2,1(),1,1(),0,0(-- 及 )0,2( 四对值,相应概率依次为
12
5,31,61,121 ,试判断随机变量X 与Y 是否相互独立。
所以,X 与Y 不独立。
2. 设随机变量X 与Y 相互独立,试完成下表:
3.设二维连续型随机变量(,)X Y 的联合密度函数为
1,01,02,
(,)0,x y x f x y <<<<⎧⎪=⎨⎪⎩其他.
试判定X 与Y 是否相互独立。
解:
()(,)X f x f x y dy
+∞
-∞
=⎰
.
当0x ≤或1x ≥时,
()0
X f x =;当01x <<时,
20
()12x
X f x dy x
==⎰.
()(,)Y f y f x y dx
+∞
-∞
=⎰
.
由于当(,){01,02}x y x y x ∈<<<<时,
(,)()()
X Y f x y f x f y ≠⋅,
且区域{01,02}x y x <<<<的面积不为0,所以,X 与Y 不相互独立.
4. 设二维连续型随机变量),(Y X 的联合密度函数为
201,01
(,)0
x y cxy f x y <<<<⎧=⎨
⎩其他, 求常数c ,并判断X 与Y 是否相互独立。
6=c 。
求X 的边缘密度:()()⎰
+∞
∞
-=
dy
y x f x f X ,。
当
10≥≤x x 或时,()0=x f X ;
当10<<x 时,
()⎰
==
1
226x
dy xy x f X 。
求Y 的边缘密度函数:()()⎰+∞
∞
-=dx
y x f
y f Y
,。
当
10≥≤y y 或时,()0=y f Y ;
当
10<<y 时,
()⎰
==
1
2
236y dx xy y f Y 。
由于对任x ,y ,有
()()()y f x f y x f Y X =,。
所以,X 与Y 相互独立。
5.设X 和Y 是两个相互独立的随机变量,X 在(0,1)内服从均匀分布,Y 的概率密度为
⎪⎩⎪⎨⎧≤>=-0
,
00,
2
1)(2/y y e y f y Y .
(1)求X 与Y 的联合概率密度;(2)设关于a 的二次方程为 022
=++Y Xa a ,求此方程有实根的概率。
解:由X ~U (0,1)知X 的密度为:
()X f x =
1,
01;0,
x <<⎧⎨⎩其他.
由X Y 与独立知,(X ,Y )的一个联合密度为:
方程有实跟的概率为:。