开关电源设计要求
开关电源工程化实用设计指南
开关电源工程化实用设计指南开关电源是一种非常重要的电力转换设备,它可以将输入的直流电压转换为输出的交流电压,从而满足各种电子设备的供电需求。
开关电源的工程化实用设计是一项涉及到多个领域的技术工作,包括电路设计、磁性元件设计、功率转换器设计、控制器设计和可靠性设计等。
下面将介绍开关电源的工程化实用设计指南。
一、电路设计开关电源的电路设计是整个设计的核心,也是最关键的一步。
在电路设计中,需要考虑以下几个方面的因素:输入和输出电压:开关电源的输入和输出电压需要根据电子设备的实际需求来确定。
在输入电压方面,需要考虑到电网电压的波动和噪声等因素,确保开关电源能够稳定工作。
在输出电压方面,需要根据电子设备的功率和负载特性来进行设计,确保输出的电压能够满足电子设备的供电需求。
功率容量:开关电源的功率容量需要根据电子设备的功率需求来确定。
在确定功率容量时,需要考虑到开关电源的最大负载和可能出现的峰值负载等因素,确保开关电源的功率容量足够且不会出现过载或损坏的情况。
电路拓扑:开关电源的电路拓扑是指其基本电路结构。
根据不同的需求,可以选择不同的电路拓扑来进行设计。
常用的电路拓扑包括BUCK型、BOOST型、BUCK-BOOST型等,需要根据实际情况来选择合适的电路拓扑。
控制方式:开关电源的控制方式是指如何控制开关管的导通和关断,以达到稳定输出电压的目的。
常用的控制方式包括脉冲宽度调制(PWM)、脉冲频率调制(PFM)和电流模式控制等,需要根据实际情况来选择合适的控制方式。
二、磁性元件设计开关电源中的磁性元件主要包括电感和变压器,它们在功率转换器中起到重要的作用。
在磁性元件设计中,需要考虑以下几个方面的因素:磁芯材料:磁芯材料的选择是磁性元件设计的关键。
常用的磁芯材料包括铁氧体、坡莫合金和非晶合金等,需要根据实际情况来选择合适的磁芯材料。
线圈设计:线圈设计是磁性元件设计的另一个关键因素。
在电感设计中,需要考虑到线圈的匝数、线径和绕制方式等因素,以确保电感能够满足开关电源的负载需求。
开关电源设计
第一章开关电源设计的一般考虑在设计开关电源之前,应当仔细研究要设计的电源技术要求。
现以一个通信电源模块的例子来说明设计要考虑的问题。
该模块的技术规范如下:1 电气性能除非另外说明,所有参数是在输入电压为220V,交流50Hz以及环境温度25℃下测试和规定的.表1.1调压范围2 效率额定电压输出电流限流范围过压范围调压范围1I(max)54.9V 28A 110% 58.8- 52.55- 45.7 >87%Imax 61.2V 52.75V 45.9V1.1 输入电压:单相交流额定电压有效值220V±20%频率:频率范围 45-65Hz电流:在满载运行时,输入220V,小于8A。
在264V时,冲击电流不大于18A效率:负载由50%-100%为表2.1值功率因数:大于0.90,负载在50%以上,大于0.95谐波失真:符合IEC 555-2要求启动延迟:在接通电源3秒内输出达到它的额定电平保持时间:输入176V有效值,满载,大于10mS1.2 输出电压:在满载时,输出电压设定在表1值的±0.2%电流:负载电流从零到最大值(参看表1),过流保护开始是恒流,当电压降低到一定值得时,电流截止.稳压特性:负载变化由零变到100%, 输入电压由176V变到264V最坏情况下输出电压变化不超过200mV.瞬态响应:在没有电池连接到输出端时,负载由10%变化到100%,或由满载变化的10%,恢复时间应当在2mS之内.最大输出电压偏摆应当小于1V.静态漏电流:当模块关断时,最大反向泄漏电流小于5mA.温度系数:模块在整个工作温度范围内≤±0.015%.温升漂移:在起初30秒内,±0.1%输出噪音:输出噪音满足通信电源标准,衡重杂音<2mV.1.3 保护输入:输入端保护保险丝定额为13A.输出过压:按表 1.1设置过压跳闸电压,输出电压超过这个电平时,将使模块锁定在跳闸状态.通过断开交流输入电源使模块复位.输出过流:过流特性按表1.1的给定值示于图1.过流时,恒流到60%电压,然后电流电压转折下降.(最后将残留与短路相同的状态)输出反接:在输入反接时,在外电路设置了一个保险丝烧断(<32A/ 55V)过热:内部检测器禁止模块在过热下工作,一旦温度减少到正常值以下,自动复位.1.4 显示和指示功能输入监视:输入电网正常显示.输出监视:输出电压正常显示.(过压情况关断).限流指示:限流工作状态显示.负载指示:负载大于低限电流显示.继电器:输入和输出和输入正常同时正常显示。
开关电源适配器设计方案
开关电源适配器设计方案开关电源适配器是一种将交流电转换成稳定的直流电的电子装置。
它广泛应用于各种电子设备中,如计算机、手机、电视等。
在设计开关电源适配器时,需要考虑其安全性、可靠性、效率和成本等因素。
下面是一个1200字以上的开关电源适配器设计方案。
设计需求:1.输入电压范围:85V-265VAC2.输出电压:12VDC3.输出电流:最大2A4.效率要求:高于85%5.安全标准:符合国际安全标准设计方案:一、输入部分设计:1.输入滤波电路:使用电源滤波电容器和电源滤波电感进行输入电压的滤波,以降低输入电源的噪声和干扰。
2.输入过压保护:使用过压保护电路,当输入电压超过设定范围时,断开输入电路,以保护电路安全。
3.输入过流保护:使用过流保护电路,当输入电流超过设定范围时,自动切断输入电路,以防止过载。
二、开关电源部分设计:1.双向开关电路:采用双向开关电路,可以实现输入和输出的电流、电压的正反向控制,以充分利用电能。
2.开关频率:选择合适的开关频率,以保证转换效率高、电磁干扰小。
3.开关控制IC:选择高性能的开关控制IC,具有过流、过压、短路等保护功能,并具有较高的工作效率和可靠性。
三、输出部分设计:1.输出稳压电路:使用稳压电路,保证输出电压稳定在12VDC,以满足设备对电压的要求。
2.输出过载保护:使用过载保护电路,当输出电流超过设定范围时,自动切断输出电路,保护设备安全。
3.输出短路保护:使用短路保护电路,当输出端短路时,自动切断输出电路,以防止设备损坏。
四、辅助电路和保护电路设计:1.温度保护:加装温度传感器,在温度超过设定范围时,自动切断电源,以确保电路安全。
2.过流保护:在输出端加装过流保护电路,当输出电流超过最大额定值时,自动切断输出电路,以保护电路和设备安全。
3.过压保护:在输出端加装过压保护电路,当输出电压超过设定范围时,自动切断输出电路,以防止设备损坏。
4.短路保护:在输出端加装短路保护电路,当输出端短路时,自动切断输出电路,以保护电路和设备安全。
ACDC开关电源的设计
AC/DC开关电源的设计一. 技术要求1.1 AC/DC 开关电源 1.输出电压: 直流,纹波电压(峰峰值)小于额定电压的0.5% 2. 输入电压: AC 三相380V ±10% 3. 输入电压频率: 50±5HZ 4. 负载短时过载倍数: 200% 5. 瞬态特性: 较好6.技术指标要求: 输出直流电压(V)10~12~14输出电流(A )140 1.2 设计条件1) 电路形式 全桥 全波整流 2) 工作频率 20KHZ3) 逆变器电路最高,最低电压 DC 592~450V4) 输出电压 max o V =14VDC min 10o V VDC = 输出电流 150A5) 开关管最大导通时间 max o T =22.5us 6) 开关管导通压降 1U ∆=3V7) 整流二极管导通压降 2U ∆=1V 8) 变压器允许温升 25C ︒ 9) 电原理图二、主电路原理与设计2.1主电路工作原理380V 市电经不控整流后变成了脉动的直流电,经直流滤波电路后变成平稳的直流供给逆变电路,逆变桥在驱动信号的作用下根据正弦脉宽调制原理将直流电变成一定电压一定频率的交流电,再经过隔离变压器来实现电压的匹配,经过整流来得到直流更好的直流电,经直流滤波隔离后供给负载。
采用SPWM 调制方式,通过电压负反馈调节输出电压,使输出电压稳定在一定的范围内。
2.2主电路结构UVW主电路原理简图如图所示主电路主奥包括以下几个部分:1)不控整流部分:主要采用三相不控整流,该电路结构简单,可靠性高。
2)DC滤波部分:注意用无源滤波电路来使电路中的有害谐波减少,提高对以后电路供电的可靠性。
3)逆变电路:采用功率IGBT为开关器件,SPWM调制方式,利用电压负反馈构成闭环控制,稳定输出电压。
4)隔离电路:主要是用隔离变压器来实现电路的隔离和电压的匹配。
5)二次逆变部分:注意是实现电压的二次变换,来实现供电的高可靠性和高直流性。
开关电源设计(精通型)
开关电源设计(精通型)一、开关电源基本原理及分类1. 基本原理开关电源的工作原理是通过控制开关器件的导通与关断,实现电能的高效转换。
它主要由输入整流滤波电路、开关变压器、输出整流滤波电路和控制电路组成。
在开关电源中,开关器件将输入的交流电压转换为高频脉冲电压,通过开关变压器实现电压的升降,经过输出整流滤波电路,得到稳定的直流电压。
2. 分类(1)PWM(脉冲宽度调制)型开关电源:通过调节脉冲宽度来控制输出电压,具有高效、高精度等特点。
(2)PFM(脉冲频率调制)型开关电源:通过调节脉冲频率来控制输出电压,适用于负载变化较大的场合。
二、开关电源关键技术与设计要点1. 高频变压器设计(1)选用合适的磁芯材料,保证变压器在高频工作时的磁通密度不超过饱和磁通密度。
(2)合理设计变压器的绕组匝数比,以满足输出电压和电流的要求。
(3)考虑变压器损耗,包括铜损、铁损和杂散损耗,确保变压器具有较高的效率。
2. 开关器件的选择与应用(1)开关频率:根据开关电源的设计要求,选择合适的开关频率。
(2)电压和电流等级:确保开关器件能承受最大电压和电流。
(3)功率损耗:选择低损耗的开关器件,提高开关电源的效率。
(4)驱动方式:根据开关器件的特点,选择合适的驱动电路。
3. 控制电路设计(1)稳定性:确保控制电路在各种工况下都能稳定工作。
(2)精度:提高控制电路的采样精度,降低输出电压的波动。
(3)保护功能:设置过压、过流、短路等保护功能,提高开关电源的可靠性。
三、开关电源设计实例分析1. 确定设计指标输入电压:AC 85265V输出电压:DC 24V输出电流:4.17A效率:≥90%2. 高频变压器设计选用EE型磁芯,计算磁芯尺寸、绕组匝数和线径。
3. 开关器件选择根据设计指标,选择一款适合的MOSFET作为开关器件。
4. 控制电路设计采用UC3842作为控制芯片,设计控制电路,实现开关电源的稳压输出。
5. 实验验证搭建实验平台,对设计的开关电源进行测试,验证其性能指标是否符合要求。
直流开关电源设计课设
直流开关电源设计课设
直流开关电源是一种将交流电转换为直流电的电路,其具有工作效率高、体积小、重量轻等优点,广泛应用于电子设备、工业控制、通信等领域。
以下是一些关于直流开关电源设计课程设计的建议:
1. 设计任务和要求:在开始课程设计之前,需要明确设计任务和要求,如设计一个降压型直流开关电源,输入电压为220V交流电,输出电压为12V直流电,输出电流为5A等。
2. 电路原理图设计:根据设计任务和要求,设计电路原理图,包括主电路、控制电路、保护电路等。
在设计过程中,需要考虑电路的稳定性、可靠性和安全性。
3. 元器件选型:根据电路原理图,选择合适的元器件,如开关管、电感、电容、二极管等。
需要注意元器件的规格参数、性能指标和可靠性。
4. 计算和优化:根据设计任务和要求,进行电路参数的计算和优化,如开关频率、占空比、电感值等。
可以通过模拟仿真软件对计算结果进行验证和优化。
5. 实验调试:根据设计任务和要求,进行实验调试,包括电路板的制作、元器件的安装和调试、实际运行效果的测试等。
6. 报告撰写:在完成实验调试后,撰写课程设计报告,包括设计任务和要求、设计思路和方案、实验结果和分析等。
7. 答辩和评估:在完成课程设计报告后,进行答辩和评估,包括回答问题、展示成果、接受评估和改进建议等。
通过以上的课程设计过程,可以帮助学生深入了解直流开关电源的原理和设计方法,提高实际操作能力和解决问题的能力,同时也可以为学生的后续学习和职业发展提供支持和帮助。
开关电源的pcb设计规范
开关电源的PCB设计规范在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:一、从原理图到PCB的设计流程建立元件参数->输入原理网表->设计参数设置->手工布局->手工布线->验证设计->复查->CAM输出.二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些.最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil. 焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损.当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开.三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响.例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法.每一个开关电源都有四个电流回路: 1. 电源开关交流回路2. 输出整流交流回路3. 输入信号源电流回路4. 输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量.所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去.电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns.这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短.建立开关电源布局的最好方法与其电气设计相似,最佳设计流程如下:·放置变压器·设计电源开关电流回路·设计输出整流器电流回路·连接到交流电源电路的控制电路·设计输入电流源回路和输入滤波器设计输出负载回路和输出滤波器根据电路的功能单元,对电路的全部元器件进行布局时,要符合以下原则:1 首先要考虑PCB尺寸大小.PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小则散热不好,且邻近线条易受干扰.电路板的最佳形状矩形,长宽比为3:2或4:3,位于电路板边缘的元器件,离电路板边缘一般不小于2mm.2 放置器件时要考虑以后的焊接,不要太密集.3 以每个功能电路的核心元件为中心,围绕它来进行布局.元器件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元器件之间的引线和连接, 去耦电容尽量靠近器件的VCC.4 在高频下工作的电路,要考虑元器件之间的分布参数.一般电路应尽可能使元器件平行排列.这样,不但美观,而且装焊容易,易于批量生产.5 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向.6 布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起.7 尽可能地减小环路面积,以抑制开关电源的辐射干扰.四、布线开关电源中包含有高频信号,PCB上任何印制线都可以起到天线的作用,印制线的长度和宽度会影响其阻抗和感抗,从而影响频率响应.即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题甚至再次辐射出干扰信号.因此应将所有通过交流电流的印制线设计得尽可能短而宽,这意味着必须将所有连接到印制线和连接到其他电源线的元器件放置得很近.印制线的长度与其表现出的电感量和阻抗成正比,而宽度则与印制线的电感量和阻抗成反比.长度反映出印制线响应的波长,长度越长,印制线能发送和接收电磁波的频率越低,它就能辐射出更多的射频能量.根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻. 同时、使电源线、地线的走向和电流的方向一致,这样有助于增强抗噪声能力.接地是开关电源四个电流回路的底层支路,作为电路的公共参考点起着很重要的作用,它是控制干扰的重要方法.因此,在布局中应仔细考虑接地线的放置,将各种接地混合会造成电源工作不稳定.在地线设计中应注意以下几点:1. 正确选择单点接地通常,滤波电容公共端应是其它的接地点耦合到大电流的交流地的唯一连接点,同一级电路的接地点应尽量靠近,并且本级电路的电源滤波电容也应接在该级接地点上,主要是考虑电路各部分回流到地的电流是变化的,因实际流过的线路的阻抗会导致电路各部分地电位的变化而引入干扰.在本开关电源中,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而采用一点接地,即将电源开关电流回路中的几个器件的地线都连到接地脚上,输出整流器电流回路的几个器件的地线也同样接到相应的滤波电容的接地脚上,这样电源工作较稳定,不易自激.做不到单点时,在共地处接两二极管或一小电阻,其实接在比较集中的一块铜箔处就可以.2. 尽量加粗接地线若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏,因此要确保每一个大电流的接地端采用尽量短而宽的印制线,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,如有可能,接地线的宽度应大于3mm,也可用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用.进行全局布线的时候,还须遵循以下原则:1.布线方向:从焊接面看,元件的排列方位尽可能保持与原理图相一致,布线方向最好与电路图走线方向相一致,因生产过程中通常需要在焊接面进行各种参数的检测,故这样做便于生产中的检查,调试及检修注:指在满足电路性能及整机安装与面板布局要求的前提下.2.设计布线图时走线尽量少拐弯,印刷弧上的线宽不要突变,导线拐角应≥90度,力求线条简单明了.3.印刷电路中不允许有交叉电路,对于可能交叉的线条,可以用“钻”、“绕”两种办法解决.即让某引线从别的电阻、电容、三极管脚下的空隙处“钻”过去,或从可能交叉的某条引线的一端“绕”过去,在特殊情况下如何电路很复杂,为简化设计也允许用导线跨接,解决交叉电路问题.因采用单面板,直插元件位于top面,表贴器件位于bottom 面,所以在布局的时候直插器件可与表贴器件交叠,但要避免焊盘重叠. 3.输入地与输出地本开关电源中为低压的DC-DC,欲将输出电压反馈回变压器的初级,两边的电路应有共同的参考地,所以在对两边的地线分别铺铜之后,还要连接在一起,形成共同的地.五、检查布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查线与线、线与元件焊盘、线与贯通孔、元件焊盘与贯通孔、贯通孔与贯通孔之间的距离是否合理,是否满足生产要求. 电源线和地线的宽度是否合适,在PCB中是否还有能让地线加宽的地方.注意:有些错误可以忽略,例如有些接插件的Outline的一部分放在了板框外,检查间距时会出错;另外每次修改过走线和过孔之后,都要重新覆铜一次.六、复查根据“PCB检查表”,内容包括设计规则,层定义、线宽、间距、焊盘、过孔设置,还要重点复查器件布局的合理性,电源、地线网络的走线,高速时钟网络的走线与屏蔽,去耦电容的摆放和连接等.七、设计输出输出光绘文件的注意事项:a. 需要输出的层有布线层底层、丝印层包括顶层丝印、底层丝印、阻焊层底层阻焊、钻孔层底层,另外还要生成钻孔文件NC Drillb. 设置丝印层的Layer时,不要选择Part Type,选择顶层底层和丝印层的Outline、Text、Linec. 在设置每层的Layer时,将Board Outline选上,设置丝印层的Layer时,不要选择Part Type,选择顶层底层和丝印层的Outline、Text、Line.d. 生成钻孔文件时,使用PowerPCB的缺省设置,不要作任何改.。
TL494降压开关电源的设计
TL494降压开关电源的设计一、设计任务及要求:1、掌握TL494主要性能参数、端子功能、工作原理及典型应用2、掌握DC—DC降压型开关电源原理,掌握电路布线及焊接。
主要技术指标:设计要求:1直流输入:0—30v,电压变化范围为+15%~-20%;2输出电压:5v—30v连续可调,最大输出电流1.5A二、DC—DC变换器buck线路(降压电路)的原理图如图1所示,降压线路的基本特征为:输出电压低于输入电压,输出电流为连续的,输入电流是脉动的。
图1S为开关管,D为续流二极管,当给S一个高电平使得开关管导通,输入电源对电感,电容充电,同时向负载供电。
当给S一个低电平时使得开关管关断,负载电流经二极管续流。
改变开关管的占空比即能改变输出的平均电压。
三、TL494中文资料及应用电路TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。
TL494主要特征集成了全部的脉宽调制电路。
片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。
内置误差放大器。
内止5V参考基准电压源。
可调整死区时间。
内置功率晶体管可提供500mA的驱动能力。
推或拉两种输出方式。
TL494引脚图TL494工作原理简述TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。
四、电路设计输出为5V的电源电路:电路分析:50u/50v是滤波电容对输入电源滤波,47欧的电阻主要是当8和11引脚输出高电平时不足以驱动大功率三极管,通过47欧电阻来上拉高电平,将高电平拉高驱动三极管,当三极管导通以后就铅位到三极管基极和发射极的管压降。
8和11引脚处的150欧电阻是限流电阻。
2和3引脚处连接成PI 调节器,提高精度,增加电路的稳定性。
开关电源类产品设计的安全规范
开关电源类产品设计的安全规范开关电源是现代电子产品中常见的电源形式之一,其具有高效、可靠、节能等优点,被广泛应用于各个领域。
然而,开关电源的设计和使用中,存在一些潜在的安全隐患,因此必须遵循一些安全规范,以确保产品的安全性和稳定性。
安全规范1. 遵循安全标准开关电源是一种高压、高功率、高频率的电源设备,必须遵循一些安全标准,以确保产品的设计和使用符合安全规范。
目前, 国际电工委员会制定的IEC 60950-1、IEC 62368-1的安全标准是开关电源类产品设计必须遵循的国际安全标准。
2. 确保电源的绝缘和接地开关电源的输入端和输出端都必须进行绝缘处理,并且需要接地。
在设计中,应保证绝缘距离符合标准要求,以防止电击和其他安全隐患。
3. 控制电源输出电压和电流在设计中应加入保险丝、电感、电容等元器件来限制电压和电流,避免过载或短路,这是必要的安全措施,可以防止因电压或电流过大造成的设备故障或安全事故。
4. 选择合适的元器件在组装开关电源时,选择元器件的品牌和质量非常关键,一定要选择经过认证和质量可靠的元器件,以确保产品质量可靠稳定、安全性高。
5. 遵循EMC兼容规范开关电源可能会对周围的电子设备产生干扰,因此,还需要满足EMC(电磁兼容性)规范,以确保开关电源产品对其他电子设备没有干扰,符合产品安全标准。
结论开关电源是一种高压、高功率、高频率的电源设备,为了保障产品的安全性和稳定性,我们应该遵守一些安全规范,例如遵循相关安全标准,确保电源绝缘和接地,控制电源输出电压和电流,并选用质量可靠的元器件。
只有这样,才能生产出安全、优质的开关电源类产品。
开关电源电路设计要点与调试
开关电源电路设计要点与调试开关电源是一种用于电子设备的电源供应,其具有高效率、稳定性和可调性等优点。
设计和调试开关电源时,需要注意一些重要要点。
一、开关电源设计要点:1.选择适当的拓扑结构:开关电源的拓扑结构有多种,如降压型、升压型、升降压型等。
要根据设备的功率需求和使用环境来选择合适的拓扑结构。
2.选择合适的功率器件:开关电源的功率器件主要包括开关管、二极管和变压器等。
需要选择具备合适功率和工作频率范围的器件,并且要考虑其可靠性和成本。
3.控制和保护电路设计:开关电源需要有稳定的控制和保护功能,如输出电压、电流的监测和调节,过载、过压、短路等故障的保护。
需要设计相应的反馈和控制电路,保证开关电源的可靠工作。
4.选择合适的滤波电路:开关电源在工作过程中会产生较大的开关干扰,需要采取合适的滤波措施,减小开关干扰对其他电子设备的影响。
5.选择合适的输出电容:开关电源的输出端需要连接电容进行滤波,以减小输出纹波。
应选择适当容量和质量的电容,保证输出电压稳定。
6.保证开关电源的安全性:开关电源设计时需要考虑一些安全因素,如避免触电危险、瞬态过电压保护等,保证电源的安全可靠性。
7.合理布局和散热设计:开关电源的布局设计要合理,器件的热量要及时散热,避免温度过高对电源稳定性的影响。
二、开关电源调试要点:1.确认电源输入输出参数:在开关电源调试之前,首先要明确电源的输入和输出参数,如输入电压范围、输出电压和电流等,以便调试和验证工作的正确性。
2.建立逐步调试的过程:开关电源调试时可以采用逐步调试的方法,即先调试一部分功能,然后逐渐增加其他功能的调试。
这样可以避免在调试过程中出现一些难以排查的问题。
3.注意开关电源的保护功能:在调试的过程中,要注意开关电源的保护功能是否正常,如过载、过压、短路等故障保护功能是否有效。
可以通过人工模拟故障情况进行测试。
4.确保开关电源的稳定性:开关电源在调试过程中需要保证输出电压和电流的稳定性。
开关电源类产品设计的安全规范
开关电源类产品设计的安全规范
可以包括以下几个方面:
1. 电源适配器外壳:外壳应该具备防火、耐高温、耐磨损等性能,并符合相关安全认证标准。
2. 输入端和输出端的隔离:为了防止电源适配器输入和输出电流相互影响,必须在两者之间建立有效的隔离,例如使用绝缘材料等。
3. 过压保护和过流保护:开关电源应该具备过压保护和过流保护功能,以确保在异常电压或电流情况下能够自动切断电源,保护用户设备的安全。
4. 短路保护:开关电源应该具有短路保护功能,以避免电流过大导致设备损坏或火灾等事故的发生。
5. 静电保护:开关电源应该具备静电保护功能,以防止静电对电源和用户设备的伤害。
6. 过热保护:开关电源应该具备过热保护功能,即在温度超过一定限制时能够自动切断电源,以避免设备过热引发火灾等危险。
7. 外壳接地:开关电源的外壳应该接地,以防止漏电等问题。
8. 符合相关认证标准:开关电源应该符合相关的安全认证标准,如CE认证、UL认证等,以确保产品的安全性。
总之,安全规范是开关电源类产品设计中非常重要的一部分,可以保证产品的使用安全和可靠性。
不同地区和国家可能会有略微不同的要求和标准,设计师需要熟悉并遵守相应的规定。
开关电源设计报告
1开关电源主电路设计1.1主电路拓扑结构选择由于本设计的要求为输入电压176-264V交流电,输出为24V直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。
前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck电路构成。
总体要求是先将AC176-264V整流滤波,然后再经过BUCK电路稳压到24V。
考虑到变换器最大负输出功率为1000W,因此需采用功率级较高的Buck电路类型,且必须保证工作在CCM工作状态下,因此综合考虑,本文采用全桥隔离型Buck变换器。
其主电路拓扑结构如下图所示:下面将对全桥隔离型BUCK变换器进行稳态分析,主要是推导前级输出电压V与后级输g 出电压V之间的关系,为主电路参数的设计提供参考。
将前级输出电压V代替前级电路,作g 为后级电路的输入,且后级BUCK变换器工作在CCM模式,BUCK电路中的变压器可以用等效电路代替。
由于全桥隔离型BUCK变换器中变压器二次侧存在两个引出端,使得后级BUCK电路的工作频率等同于前级二倍的工作频率,如图1-1所示。
在2T的工作时间内,总共可分为四种S 开关阶段,其具体分析过程如下:1)当0<t<DT时,此时Q、Q和D导通,其等效电路图如图1-2所示。
S145/?1-1) 1-2) 1-3)3) du.•川L i (t )m 严+仃(t )c 二二v (t )R图1-3在DT<t<T 时等效电路SSv=0sv=-v Li=i -v /R C当TS <t<a+D )TS 时,此时Q2、1-4) 1-5)1-6)Q 和D 导通,其等效电路图如图1-2所示。
36图1-2在0<t<DT 时等效电路Sv=nvs gv=nv -vL gi=i -v /RC2)当DT<t<T 时,此时Q ~Q 全部关断,D 和D 导通,其等效电路图如图1-3SS 1465所示。
开关电源类产品设计的安全规范
开关电源类产品设计的安全规范
主要包括以下几个方面:
1. 电气安全:开关电源应满足电气安全要求,包括额定电压、额定电流、绝缘电阻、接线等方面的要求。
产品应具备过电压保护、过载保护、短路保护等功能,并能及时断开电路避免引起火灾、触电等安全问题。
2. 材料安全:开关电源的外壳、绝缘材料、导线等材料应符合环保要求,不得使用有害物质和易燃材料。
在设计和制造过程中应遵守相关环保法规,确保产品无毒、无害、无辐射。
3. 温度安全:开关电源在工作时会产生一定的热量,产品设计应合理布局散热部件,确保电源温度不超过安全范围,避免因温度过高引发火灾、烧坏电路等安全问题。
4. 防护安全:开关电源应具备适当的防护措施,如过压保护、过流保护、过热保护等功能。
产品外壳应具备防水、防尘、防护击等功能,避免引发触电、触碰引发人身伤害。
5. 标识和警示标识:开关电源应标明产品名称、型号、额定电压、额定电流、制造商信息等,并在明显位置设立警示标识,如高压警示、使用注意事项等,提醒用户正确使用和维护产品。
6. 产品测试和认证:开关电源应通过相关的安全测试和认证,如CE认证、UL认证等。
在设计和生产过程中,应按照相关的标准和规范进行测试和评估,确保产品符合安全要求。
以上是开关电源类产品设计的安全规范的一些主要内容,设计师在设计过程中应充分考虑这些因素,确保产品的安全性和可靠性。
具体的规范可以根据不同地区和国家的法律法规进行参考和遵守。
开关电源电路设计要点与调试
开关电源电路设计要点与调试开关电源是一种将电能转换为特定电压、电流和频率的电力转换装置,具有高效率、体积小、重量轻等优点,广泛应用于各种电子设备中。
开关电源的设计和调试是开发电子产品的重要环节,下面将重点介绍开关电源电路设计要点以及调试方法。
一、开关电源电路设计要点1.选用适当的拓扑结构:开关电源的拓扑结构包括开关正激式(buck)、开关反激式(flyback)、开关共激式(forward)等。
在选择拓扑结构时需要考虑输入电压范围、输出电压需求、功率密度要求、成本等因素。
不同拓扑结构有不同的工作原理和电路参数设计要求,设计时需要综合考虑各种因素才能确定最合适的拓扑结构。
2.合理选择功率元件和元器件:功率元件是开关电源中最关键的部件,直接影响开关电源的效率和可靠性。
常见的功率元件包括MOSFET、IGBT、二极管等。
在选择功率元件时需要考虑电压和电流的要求,以及功率元件的损耗和热散。
此外,还需要合理选择其他元器件,如电感、电容、变压器等,以满足开关电源的稳定性和工作要求。
3.设计稳压控制回路:开关电源的稳压控制回路起到控制输出电压稳定的作用。
常见的稳压控制回路有电压模式控制和电流模式控制。
在设计稳压控制回路时需要考虑输出电压波动范围、响应速度、幅值准确性、稳定性等因素,并根据具体需求选择合适的控制模式和电路结构。
4.进行开关频率和PWM信号设计:开关频率和PWM信号的设计直接影响开关电源的转换效率和输出波形质量。
一般来说,较高的开关频率可以减小电感器件和滤波器的体积,但会增加功率元件开关损耗;较低的开关频率可以降低功率元件开关损耗,但会增加电感器件和滤波器的体积。
同时,PWM信号的设计要考虑到占空比的合理选择、工作频率的稳定性等因素。
5.安全保护和电磁兼容设计:开关电源需要考虑到安全保护和电磁兼容的设计要求。
常见的安全保护设计有过载保护、过温保护、短路保护等,以保证开关电源的正常工作和安全可靠。
电磁兼容设计包括滤波器设计、接地设计等,以减小开关电源对周围电子设备的干扰和抗干扰能力。
多路输出开关电源的设计及应用原则
多路输出开关电源的设计及应用原则多路输出开关电源是一种常见的电源设计,适用于多种应用场景。
本文将介绍多路输出开关电源的设计原则和应用原则。
设计原则:1. 输入电压范围:多路输出开关电源应具有较宽的输入电压范围,以适应不同输入电源的变化。
常见的输入电压范围为100-240VAC或直流电压范围为12-48VDC。
2. 输出电压和电流:多路输出开关电源应提供多个可调节的输出电压和电流通道,以满足不同设备的需求。
每个输出通道应具有稳定且可靠的电压和电流输出。
3. 选用高效率元件:在设计多路输出开关电源时,应选用高效率的元件,如高效率开关模式电源芯片、高频开关管和高效率变压器等,以降低能量损耗并提高电源的效能。
4. 保护功能:多路输出开关电源应具有完善的保护功能,如过流保护、过压保护、过温保护和短路保护等,以保护电源和被供电设备的安全性。
5. 电磁干扰抑制:多路输出开关电源应采取一系列措施,以减少电磁辐射和抑制电磁干扰,以确保电源和被供电设备的正常工作。
应用原则:1. 通信设备:多路输出开关电源适用于通信设备,如路由器、交换机和无线设备等,以为这些设备提供稳定和可靠的电源。
2. 工业自动化设备:多路输出开关电源可用于工业自动化设备,如PLC系统、工业控制器和变频器等,以为这些设备提供稳定的供电。
3. 医疗设备:多路输出开关电源也常用于医疗设备,如医疗仪器、手术器械和检测设备等,以确保这些设备的安全性和稳定性。
4. LED照明:多路输出开关电源常用于LED照明系统,如LED灯带、LED灯具和LED显示屏等,以为这些照明设备提供高效和稳定的电源。
总之,多路输出开关电源是一种常用的电源设计,广泛应用于通信、工业、医疗和照明等领域。
在设计和应用过程中,需要遵循设计原则,并根据不同的应用需求进行选择和配置。
在设计多路输出开关电源时,还需要考虑以下几点:6. 冷却系统设计:多路输出开关电源在工作时会产生一定的热量,因此应设计合适的冷却系统,以确保电源能够在稳定的温度范围内工作。
开关电源设计与调试
图2-2-a 纯电阻负载开关电路 晶体管的开关特性参数: 1、延时时间 延时时间 td:从输入信号Vin变正起,到集电 极电流Ic上升到最大值Icm的10%所需时间。 2、上升时间 上升时间 tr:集电极电流Ic从10%上升到最 大值Icm的90%所需时间。 3、储存时间 储存时间 ts:从输入信号变负起,集电极电 流最大值Icm下降到90%所需时间。 4、下降时间 下降时间 tf:集电极电流Ic从90%Icm下降 到10%Icm所需时间。 11 图2-2-b 纯电阻负载的开关损耗
件下的数据,这意味着BJT 、MOSFET要带一个无限大的散热片才能达到此参数。
17
开关电源设计要点 ♫ 3.0
开关电源变压器设计要点
18
3.1 变压器铁芯的磁化曲线
根据图3-1可以求得双激式和单激 式变压器初级线圈的匝数分别为:
B Bm
V
c
B
Uτ 108 单激式: N1 = (3-1) S ( Bm − Br )
电源输出功率的大小,决定开关电源选择什么样的工作方式或电路,从性价比 方面来考虑,一般输出功率低于5瓦的开关电源,最好选用反激式单IC开关电 源,如FSD200、ICE2A0565等。这些单IC开关电源把驱动电路和电源开关管 同封装在一个壳体中,其电路很简单,并且工作频率很高,因此,滤波电容以及 开关变压器的体积都可以做得很小,开关电源的体积做得非常小。 单从成本方面考虑,20瓦以下的开关电源,也可以选用晶体管自激式开关电源。 这种开关电源电路相对比较很简单,但由于晶体管的导通和关断时间相对比场效 应管大很多,因此,这种开关电源一般工作频率不能选得很高,所以体积相应要 大一些。随着输出功率增大,自激式开关电源的工作频率也要相应降低,其在成 本方面就不再具有优势。 输出功率在15~100瓦之间,如果对输出电压负载特性要求不是很高,最好选 用带驱动IC的场效应管反激式开关电源;如果对输出电压负载特性要求比较高, 可选用场效应管正激式开关电源,但正激式开关电源体积比较大,成本也较高。
DC-DC升压开关电源设计
一、设计要求本课程要求设计一个DC-DC升压开关电源,输入低压直流信号,输出为高压直流信号。
设计要求:1、输入5V直流,输出12V、100mA直流2、在额定负载情况下,纹波的峰-峰值<=30mV3、输出尖峰电压峰-峰值<=200mV4、100mA电压下降<=30mV二、设计方案1、理论基础The boost converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。
在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。
随着电感电流增加,电感里储存了一些能量。
当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。
而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。
升压完毕。
说起来升压过程就是一个电感的能量传递过程。
充电时,电感吸收能量,放电时电感放出能量。
如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。
如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。
2、实际方案本课题采用驱动式开关升压方式,主要利用电容和电感的储能特性实现。
具体可以分为以下几个部分。
第一个是振源,因为是开关电路,所以需要利用高频的方波信号实现三极管的导通与截止。
然后的主放大电路用来给负载端升压,需要一个三极管和一个电感,利用电感的储能实现直流信号的输出。
由于在开关闭合的瞬间,电感上会产生巨大的瞬时电压,而且电感的充电与放电是交替进行的,所以输出不可能是一个单纯的直流信号,那么就需要一个滤波电路把交流信号滤除。
之后为了稳定输出电压,就需要一个负反馈调节电路来控制主放大电路的开关。
三、方框图四、框内电路设计1、振荡电路此部分电路是由一个555定时器构成的多谐振荡器,它的工作原理如下:555的阈值输入THR和触发输入TRI相连,由电容的端电压Uc控制。
高川+200w开关电源设计方案
200w开关电源设计方案1、设计要求:输入额定电压:AC220V输出额定电压:DC50V输出额定电流:4A2、方案思路:该电源接入220V 交流电来供电。
总共可分为三大部分:整流部分(含滤波)、DC/DC 部分以及反馈部分。
整流部分采取桥式不控整流来获得脉动直流,再利用滤波器对电压实现平滑的调节,获得直流。
DC/DC 部分采取半桥来改变电路状态,此部分重点是对同一桥臂上下开关管(MOSFET )状态的控制以及变压器的设计。
反馈部分可采取SG3525芯片来对开关管控制,实现关断和开通。
3、方案对比:此开关电源由于其输出功率较大,不宜采用反激式开关电源,从设计难度和成本上考虑,可选取半桥来设计此开关电源。
4、变压器设计:先利用功率(视在功率),即Ap 来选取磁芯和框架。
磁芯:Ju c m P K K A fB p A 410000t ⨯= 原边匝数:fA B U N C m i 1=(此时输入电压为直流电压的一半) 副边匝数:i U N U N 1o 2=线径可利用线圈中流过的有效电流进行计算。
5、反馈回路:反馈回路芯片利用SG3525来对控制开关管的通断。
6、计算:1.整流滤波,其滤波电容阻值:可按照功率来选取,可按照1w/1-2u 来选择电容阻值。
2.DC/DC 后输出滤波,其电感和电容值: 电感:oi fI U L 12n =(输入电压为整流滤波后电压的一半) 电容:pp U T I C _o 8∆>(p P U _∆为纹波电压) 3.负载:o I U R o =7、硬件电路:1.主电路:2.控制回路:。
开关电源的原理与设计
开关电源的原理与设计开关电源是一种高效、稳定并且广泛应用于各种电子设备中的电源供应方式。
本文将探讨开关电源的原理与设计方法,帮助读者理解和应用开关电源技术。
一、开关电源的原理开关电源的工作原理主要基于开关器件(如晶体管或MOSFET)、变压器和滤波电路。
其基本原理如下:1. 输入电压通过整流桥变成直流电压,然后经过输入滤波电路去除大部分的纹波。
2. 直流电压通过PWM(脉宽调制)技术控制开关器件,使其周期性地开关。
3. 开关器件的快速开关与关断导致电压和电流的变化,并通过变压器传导到输出端。
4. 输出电压经过输出滤波电路去除纹波,然后供应给负载。
二、开关电源的设计要素1. 选定开关器件:合适的开关器件应具备低导通电阻、快速开关速度和高耐受电压等特点。
2. 设计变压器:变压器的设计应根据输入输出电压比例、功率需求和开关频率来选择合适的磁芯和线圈参数。
3. 输出滤波:合理设计输出滤波电路以减小输出纹波,采用合适的电容和电感来实现滤波效果。
4. 转换控制电路:PWM技术常用于控制开关器件的开关频率和占空比,需要设计合适的控制电路来实现转换。
三、开关电源的设计步骤1. 确定功率需求:根据需求确定开关电源的输出功率和电压范围。
2. 选择开关器件:根据功率需求选择适合的开关器件,考虑其导通电阻、开关速度和电压容忍度等。
3. 设计变压器:根据输入输出电压比例和功率需求设计变压器的磁芯和线圈参数。
4. 设计滤波电路:根据输出电压的纹波要求确定输出滤波电路的参数,包括电容和电感等。
5. 设计转换控制电路:选择合适的PWM控制芯片或设计自己的控制电路,实现开关器件的控制。
四、开关电源的优点1. 高效性:相比线性电源,开关电源的转换效率更高,能够节省能源并减少功耗。
2. 稳定性:开关电源具有更好的稳定性和调节性能,能够在不同负载条件下保持输出电压的稳定。
3. 体积小巧:开关电源采用高频开关器件和储能元件,使得电源尺寸更小、重量更轻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源设计要求
开关电源设计要求.infoad {
FLOAT: left; MARGIN:3px;
}电源标准
1. 输入电压范围:110V±15%与220V±15%的适应。
(最好是自动切换),短时间电压变化报警后,电压恢复后可恢复正常工作。
2. 输出电流:0-5.5A可调。
电流纹波:纹波峰—峰值要小于50mV
电流冲击:随机过程脉冲尽量无(对外界干扰不受影响)
开机电流缓冲:缓冲时间10S
正常工作后电流要相当稳定:即随外界环境变化后电流要稳定工作,在两个极端温度(15℃,40℃)中电源电流稳定。
3. 电源耐压:电源要耐1500V电压而不漏电。
4. 调制:
(1)模拟调制:调治频率10KHZ,满偏电压:4.5V(4.5V 时对应输出设定的最大电流,此设定值是可变的)。
(2)TTL调制:调制频率10KHZ,TTL调制电压范围:2.5V 以下没电流,以上有电流,2.5V以上有满偏电流。
5. 过流保护:电流超过设定电流后保护。
过温保护:温度超出设定的32℃保护,温度恢复正常,工作正常。
输入电压超出范围保护:超出110V±10%与220V±10%后电源报警,5S内电压恢复正常后正常工作。
6. 开启电流电压0.6V:模拟调制中0.6V以下无电流,0.6V—4.5V有电流。
7.另外有两路制冷输出:12V ,制冷方式为TEC,设定工作温度为23度,高于23.5度时制冷电路开始制冷工作,低于22.5度时TEC开始制热。
采用温度传感器进行两路温度控制。
TEC制冷方式是由电压控制TEC最大制冷电流可调,电流可调范围是0-3A
制冷电路采用恒流电路。
8.使用环境工作温度(-10~40)℃ ,相对湿度:≤90% 冷却形式强制风冷。