大学一级高等数学试题及答案
大一公共科目《高等数学》考试试卷及参考答案
大学一年级专业考试试卷202X-202X 学年 1 学期 《高等数学》 课程 闭 卷(时间120分钟,总分100分)班级 姓名 学号一、单项选择题(每小题2分,共12分)1、函数(,)z f x y =的两个二阶混合偏导数(,),(,)xy yx f x y f x y 在区域D 内连续是这两个二阶混合偏导在D 内相等的( )条件.(A)充分 (B) 必要 (C)充分必要 (D) 无关2、对函数2(,)f x y x xy =+,原点(0,0) ( ).(A )不是驻点 (B )是驻点却不是极值点 (C )是极大值点 (D )是极小值点 3、若连续函数()f x 满足20()()ln 22x tf x f dt =+⎰,则()f x =( ) (A )ln 2xe (B )2ln 2xe (C )ln 2xe + (D )2ln 2xe +4、下列等式中,不是差分方程的是( )(A )22x x y y ∆-= (B )2x x x y y e -+= (C )20x y ∆= (D )33x x y y x ∆+=5、设a 为常数,则级数21sin n na n ∞=⎛ ⎝∑( ).(A )绝对收敛 (B )条件收敛 (C )发散 (D )收敛性取决于a 的值 6、下列级数中条件收敛的是( ). (A )11(1)1n n n n ∞-=-+∑ (B)n ∞= (C )21(1)n n n ∞=-∑ (D )111(1)ln()n n n n ∞-=+-∑ 二、填空题(每小题3分,共24分) 1、若22(,)x yf x y xy x xy y++=++,则(,)f x y = . 2、设(,)z x y 由方程333z xyz a -=确定,则zx∂∂= . 3、更换积分次序2313201(,)(,)x x dx f x y dy dx f x y dy -+=⎰⎰⎰⎰.4、设区域22{(,),0}D x y x y y x =+≤≥,则二重积分(,)DI f x y dxdy =⎰⎰化为极坐标系下的二次积分为I = .5、级数()112nn n x n∞=-⋅∑的收敛域为 .6、1(44)4nn n x x ∞=-≤≤∑的和函数()S x = .7、微分方程2xy y '-=-的通解为 .8、一阶差分方程120x x y y ++=的通解为x y = .三、计算题(每小题7分,共14分) 1、设()y z xy xf x =+,其中f 具有连续导数,求z z x y x y∂∂+∂∂.2、设(2)(ln ,)z f x y x y C =-∈,求22,,z z zx y x ∂∂∂∂∂∂.四、计算题(每小题7分,共14分) 1、计算二重积分Dydxdy x⎰⎰,其中D 是由直线y x =,2y x =及1x =,2x =所围成的闭区域.2、利用极坐标计算Dσ⎰⎰,其中D 为圆环形区域22224x y ππ≤+≤.五、计算题(每小题7分,共14分) 1、判别级数211(1)ln 1nn n ∞=⎛⎫-+ ⎪⎝⎭∑的敛散性,若收敛, 指出是条件收敛或是绝对收敛.2、把函数()ln(),(0)f x a x a =+>展开成关于x 的幂级数,并确定展开式成立的范围.六、应用题与计算题(每小题8分,共16分) 1、已知某生产商的生产函数为3144(,)100f x y x y =, 其中x 表示劳动力的数量,y 表示资本数量. 且每个劳动力与每单位资本的成本分别为150元及250元, 该生产商的总预算是50000元, 问该如何分配这笔钱用于雇佣劳动力和投入资本, 以使生产量最高.2、求微分方程22xy y y e '''+-=的通解.七、证明题(6分)设正项级数21nn u∞=∑和21nn v∞=∑都收敛,证明1n nn u v∞=∑绝对收敛..试卷答案及评分标准一、单项选择(共12分,每小题2分)1.A 2.B 3.B 4.D 5.C 6.D 二、填空(共24分,每小题3分)1、2x x y - ; 2、2yzz xy- ; 3132y - 4、sin 2(cos ,sin )d f r r rdr πθθθθ⎰⎰; 5、[1,3)-; 6、4xx-; 7、2y cx =+ 8、12xx y C ⎛⎫=⋅- ⎪⎝⎭三、计算题(共14分,每小题7分)1、解: 2()()()()()z y y y y y yy f xf y f f x x x x x x x∂''=++⋅-=+-∂-------------(3分)1()()z y yx xf x f y x x x ∂''=+⋅=+∂----------------------------------------------(2分) 2()z z yxy xy xf x y x∂∂+=+∂∂----------------------------------------------------(2分) 2、解:12ln x z y f f ''=⋅+ ----------(2分)12y x z f f y''=- ----------------(2分) 11121222ln (ln )ln xx z y f y f f y f ''''''''=+++-----------------(2分) 2111222ln 2ln f y f y f ''''''=++--------------------(1分)四、计算题(共14分,每小题7分)1.解:221x x Dyy dxdy dx dy xx =⎰⎰⎰⎰ -------------------(3分)2132xdx =⎰ -------------------(2分)94=-------------------(2分)2.解:220sin sin Dd r rdr πππσθ=⋅⎰⎰⎰⎰-------------------(4分)22cos rd r πππ=-⎰ -------------------(1分)()222cos cos r r rdr πππππ=--⎰26π=- -------------------(2分)五、计算题(共14分,每小题7分)1.解:2221111(1)ln()ln(1),nn n n n n ∞∞==+-=+∑∑ -------------------------(2分)22221ln(1)11,ln(1)lim1,1n n n n n n →∞+→∞+=且221111ln(1)n n n n ∞∞==∴+∑∑且收敛收敛; ---------(3分)∴原级数为绝对收敛 --------(2分)2.解:()ln ln(1)x f x a a=++-------(2分)1(1)ln(1) (11)1n n n x x x n +∞=-+-<≤+∑=10(1)ln(1) (11)1n n n x x xa a n a+∞=⎛⎫- ⎪⎝⎭∴+-<≤+∑= -------(3分) ()()110(1) ()ln 1n n n n x f x a a x a n a+∞+=-∴=+-<≤+⋅∑---------(2分)六、计算题(共16分,每小题8分)1.解:目标函数3144(,)100f x y x y =在约束条件150********x y +=下的极值问题 作拉格朗日函数3144(,,)100(150********)L x y x y x y λλ=++-------(3分)11443344751500252500150250500000x y L x y L x y L x y λλλ--⎧=+=⎪⎪⎪=+=⎨⎪=+-=⎪⎪⎩; -----------------------------(3分) 25050x y ⇒== --------------------(2分)故该生产商雇佣250个劳动力和投入50个单位资本, 可使生产量最高. 2.解: 212110,1,2r r r r +-=⇒=-=特征方程:2 -------------(2分) 1212,x xY c e c e -∴=+对应齐次方程的通解 ----------------(2分)*,x y Ae =设特解形式为-----------------------------------(1分) 1,*x A y e =∴=代入原方程解得 --------------------(1分)1212*.x xx y Y y c e c ee -=+=++通解为---------------(1分)七、证明题(本题6分)解:, 222n n n n u v u v +≤证明: -----------(3分)211n n n n u v ∞∞==∑∑2又由和都收敛1n n n u v ∞=∴∑收敛, -----------(2分)1n n n u v ∞=∴∑绝对收敛 -----------(1分)。
大一高等数学考卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f'(a)等于()A.f(a)B.f(a+h)-f(a)/h(h趋于0)C.lim(f(a+h)-f(a))/h(h趋于0)D.f(a+h)-f(a)2.下列函数中,在x=0处连续但不可导的是()A.y=|x|B.y=x^2C.y=x^3D.y=1/x3.若函数f(x)在区间I上单调递增,则f'(x)在I上()A.必大于0B.必小于0C.可以为0D.不存在4.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在(a,b)内()A.单调递增B.单调递减C.有极值点D.无极值点5.设函数f(x)在x=a处连续,且lim(f(x)-f(a))/(x-a)=L,则f(x)在x=a处()A.可导,f'(a)=LB.可导,f'(a)不存在C.不可导D.无法确定二、判断题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f(x)在x=a处一定连续。
()2.若函数f(x)在区间I上单调递增,则f'(x)在I上一定大于0。
()3.若函数f(x)在区间I上有极值点,则f'(x)在I上一定存在零点。
()4.若函数f(x)在区间I上连续,则f(x)在I上一定可积。
()5.若函数f(x)在区间I上可导,则f(x)在I上一定连续。
()三、填空题(每题1分,共5分)1.函数f(x)=x^3-3x在x=1处的导数为______。
2.函数f(x)=e^x在x=0处的导数为______。
3.函数f(x)=lnx在x=1处的导数为______。
4.函数f(x)=sinx在x=π/2处的导数为______。
5.函数f(x)=cosx在x=0处的导数为______。
四、简答题(每题2分,共10分)1.简述导数的定义。
2.简述连续与可导的关系。
3.简述罗尔定理。
4.简述拉格朗日中值定理。
大一(第一学期)高数期末考试题及答案
页眉内容大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:101233()2x f x dx xe dx x x dx---=+-⎰⎰⎰123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一高数下考试题及答案
大一高数下考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当x趋近于a时,f(x)的极限为L,是指对于任意给定的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。
这个定义描述的是()。
A. 函数在某点的连续性B. 函数在某点的可导性C. 函数在某点的极限D. 函数在某点的间断性答案:C2. 以下哪个函数是偶函数?()A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 以下哪个积分是收敛的?()A. ∫(1/x)dx 从1到∞B. ∫(1/x^2)dx 从1到∞C. ∫(1/x^3)dx 从1到∞D. ∫(1/x)dx 从0到1答案:B4. 以下哪个级数是发散的?()A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...答案:D5. 以下哪个是二阶导数?()A. f''(x) = 2xB. f'(x) = 2xC. f(x) = x^2D. f'(x) = 2答案:A二、填空题(每题4分,共20分)1. 函数f(x) = x^3 - 3x在x=0处的导数是________。
答案:02. 函数f(x) = e^x的不定积分是________。
答案:e^x + C3. 函数f(x) = sin(x)的不定积分是________。
答案:-cos(x) + C4. 函数f(x) = x^2在区间[0,1]上的定积分是________。
答案:1/35. 函数f(x) = x^2 + 2x + 1的极值点是________。
答案:x = -1三、计算题(每题10分,共30分)1. 计算极限:lim(x→0) [(x^2 + 1) / (x^2 - 1)]。
大学一年级高等数学试题及答案
大学一年级高等数学试题及答案一、选择题1. 下列哪个是函数?A)f(x) = √xB) f(x) = |x|C) f(x) = 2x - 1D) f(x) = x^2 + 1答案:C2. 函数f(x) = 3x^2 + 2x - 1的导函数是:A) f'(x) = 6x + 2B) f'(x) = 6x - 2C) f'(x) = 2x - 1D) f'(x) = 3x^2答案:A3. 已知函数f(x) = x^3 - 2x^2 - 3x + 2,求f'(x)的极值点。
A) (0, 2)B) (1, -2)C) (-1, 2)D) (2, -2)答案:D4. 求不定积分∫(3x^2 + 2x + 1)dx。
A) x^3 + x^2 + x + CB) x^3 + x + CC) x^2 + x + CD) x^3 + x^2 + C答案:A5. 设函数f(x) = e^x,求f''(x)。
A) f''(x) = e^xB) f''(x) = -e^xC) f''(x) = e^x + e^{-x}D) f''(x) = -e^x + e^{-x}答案:A二、填空题1. 已知曲线y = 3x^2 + 2x - 1,点P(2, 11),求曲线在点P处的切线方程。
答案:y = 12x - 132. 求曲线y = x^3 - 3x的导函数。
答案:y' = 3x^2 - 33. 对函数f(x) = sin^2x + cos^2x,求f'(x)。
答案:f'(x) = 04. 已知曲线y = 2e^x,点P(0, 2),求曲线在点P处的切线方程。
答案:y = 2x + 25. 求不定积分∫(2x + 1)dx。
答案:∫(2x + 1)dx = x^2 + x + C三、解答题1. 计算极限lim(x→0) [(1 + x)^(1/x)]。
大一高数试卷试题含解答.docx
大一高数试题及解答大一高数试题及答案一、填空题(每小题1分,共10分)________121.函数y=arcsin√1-x+──────的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是 ______________。
f( Xo+2 h)-f( Xo-3 h)3.设f( X)在 Xo 可导且f ' (Xo)=A,则lim───────────────h→o h=_____________ 。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞X7.设f(x,y)=sin(xy),则fx(x,y)= ____________。
_______R22√R-x8.累次积分∫dx∫f(X2+Y2)dy化为极坐标下的累次积分为____________。
00d3y3d2y9.微分方程───+──(─── )2的阶数为 ____________。
dx3xdx2∞∞10.设级数∑an 发散,则级数∑an _______________。
n=1n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111①1-──②1+──③ ────④xxx1-x12.x→ 0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X =Xo连续,则f(X)在X=Xo 可导②若f( X )在 X =Xo不可导,则f( X )在 X=Xo 不连续③若f( X )在 X =Xo不可微,则f( X )在 X=Xo 极限不存在④若f( X )在 X =Xo不连续,则f( X )在 X=Xo 不可导4.若在区间(a,b)内恒有f' (x)〈0,f " (x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F '(x)=G'(x),则()①F(X) +G (X)②F(X) -G (X)③F(X) -G (X)为常数为常数=0d④ ──∫F(x)dxd=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg──,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④──f(x,y)t2an+1∞9.设a n≥0,且lim─────=p,则级数∑an()n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散210.方程y'+3xy=6xy是①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=e③y=xx3②y=x3+1④y=ln│x│12.设f(x)在(a,b)可导,a〈x〈1 x〈2 b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f ' (ζ)(b-a)②f(b)-f(a)=f ' (ζ)(x2-x 1)③f(x 2)-f(x 1)=f'(ζ)(b-a)④f(x 2)-f(x 1)=f'(ζ)(x2-x 1)13.设f( X)在 X =Xo 的左右导数存在且相等是f( X)在 X =Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x 4 4②x 4+c41x16.lim─── ∫ 3tgt2dt=()x→0x301① 0② 1③ ──④ ∞3xy17.limxysin─────=()x→0x 2+y 2y→0③∞① 0②1④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y ' =p,则y"=p'dp②设y ' =p,则y"=───dydp③设y ' =p,则y"=p───dy1dp④设y ' =p,则y" =─────pdy∞∞n19.设幂级数∑ anx在x(oxo≠0)n收敛,则∑ anx在│x│〈│xo│()n=on=o①绝对收敛②条件收敛③发散④收敛性与an 有关sinx20.设D域由y=x,y=x2 所围成,则∫∫ ─────dσ=()Dx11sinx① ∫ dx∫ ───── dy0xx__1√ysinx② ∫ dy∫─────dx0yx__1√xsinx③ ∫ dx∫─────dy0xx__1√xsinx④ ∫ dy∫─────dx0xx三、计算题(每小题5分,共45分)___________y'1.设。
大学大一高数试题及答案
大学大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^2-4x+3,若f(a)=0,则a的值为()。
A. 1B. 3C. -1D. 2答案:B2. 极限lim(x→0) (sin x)/x的值为()。
A. 0B. 1C. ∞D. -1答案:B3. 若函数f(x)在点x=a处可导,则()。
A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不连续D. f(x)在x=a处的导数为0答案:A4. 设数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,n∈N*,则a_3的值为()。
A. 5B. 7C. 9D. 11答案:C二、填空题(每题5分,共20分)1. 计算定积分∫(0到1) x^2 dx的值为______。
答案:1/32. 若矩阵A=\[\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}\],则A 的行列式det(A)为______。
答案:-23. 设函数f(x)=x^3-6x^2+11x-6,f'(x)=3x^2-12x+11,则f'(1)的值为______。
答案:24. 函数y=ln(x)的反函数为______。
答案:e^y三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-12在x=2处的切线方程。
答案:首先计算f'(x)=3x^2-6x+4,代入x=2得到f'(2)=6,然后计算f(2)=0,所以切线方程为y-0=6(x-2),即y=6x-12。
2. 计算级数∑(1到∞) (1/n^2)的和。
答案:该级数为π^2/6。
3. 已知函数f(x)=x^3-3x^2+2,求f(x)的极值点。
答案:首先求导f'(x)=3x^2-6x,令f'(x)=0,解得x=0或x=2。
然后计算二阶导数f''(x)=6x-6,代入x=0和x=2,得到f''(0)<0,f''(2)>0,所以x=0是极大值点,x=2是极小值点。
大一高数试题及答案
大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)的值。
A. 3x^2-3B. x^2-3C. 3x^2+3D. x^3-3答案:A2. 求极限lim(x→0) (sinx/x) 的值。
A. 0B. 1C. 2D. -1答案:B3. 设曲线y=x^2+1与直线y=2x+3相交于点A和点B,求交点的横坐标。
A. -2, 1B. 1, 2C. -1, 2D. 1, -2答案:C4. 计算定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 1/4答案:B二、填空题(每题5分,共20分)5. 设函数f(x)=x^2-4x+3,求f(2)的值。
答案:-16. 求不定积分∫(1/x) dx。
答案:ln|x|+C7. 设函数f(x)=e^x,求f'(x)的值。
答案:e^x8. 计算定积分∫(0,π) sinx dx。
答案:2三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6的极值点。
解:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
当x<1或x>11/3时,f'(x)>0,函数单调递增;当1<x<11/3时,f'(x)<0,函数单调递减。
因此,x=1为极大值点,x=11/3为极小值点。
10. 求曲线y=x^3-3x^2+2在点(1,0)处的切线方程。
解:首先求导数y'=3x^2-6x,代入x=1得y'|_(x=1)=-3。
切线方程为y-0=-3(x-1),即y=-3x+3。
11. 计算二重积分∬D (x^2+y^2) dxdy,其中D是由x^2+y^2≤4所围成的圆域。
解:将二重积分转换为极坐标系下的形式,即∬D (x^2+y^2) dxdy = ∫(0,2π) ∫(0,2) (ρ^2) ρ dρ dθ = 8π。
大一上高等数学(I )试题及答案
高等数学(I )一.填空题(每小题5分,共30分)1. 已知0)(2sin lim 30=+>-x x xf x x , 则20)(2lim xx f x +>-= 。
2. 曲线x y ln =上曲率最大的点为__________________。
3. 极限]cos 1[cos lim x x x -+∞>-的结果是_________。
4. 极限 20arcsin lim ln(1)x x x x x →-+=_____________。
5. 曲线)0()1ln(>+=x xe x y 的斜渐近线为( )。
6. 当1→x 时,已知1-x x 和k x a )1(-是等价无穷小,则a =_____,.___=k二、计算题(每小题5分,共20分) 1. x x x x e sin 1023lim ⎪⎪⎭⎫ ⎝⎛+->-2.dx e x x 32⎰ 3.dx x ⎰+cos 2114. 22(tan 1)x e x dx +⎰三.(6分)已知曲线)(x y y =的参数方程⎩⎨⎧++==)41ln(2arctan 2t t y t x ,求22dx y d dx dy ,。
四.(8分)设xx x f )1ln()(ln +=,求⎰dx x f )(五.(10分)设)(x f 31+=x ,把)(x f 展开成带Peano 型余项的n 阶麦克劳林公式,并求).0()50(f六(12分).已知)(x f 是周期为5的连续函数,它在0=x 的某邻域内满足关系式)sin 1(x f +-)(8)sin 1(3x x x f α+=-,其中)(x α是当0→x 时比x 高阶的无穷小,且)(x f 在1=x 处可导,求曲线)(x f y =在点))6(,6(f 处的切线方程。
七.(14分)设函数)(x f 在],[b a 上具有连续导函数)(x f ',且0)()(==b f a f , 证明:2)(4)(a b M dx x f b a -≤⎰,其中|)(|],[x f Max M b a x '=∈。
(完整版)大一高等数学期末考试试卷及答案详解
大一高等数学期末考试一试卷一、选择题(共12 分)1.( 3 分)若 f ( x)2e x , x 0,为连续函数 , 则a的值为 ().a x, x0(A)1 (B)2 (C)3 (D)-12.( 3 分)已知f(3) 2, 则lim f (3 h) f (3) 的值为().h02h(A)1 (B)3 (C)-1(D)1 23.( 3 分)定积分212xdx 的值为().cos2(A)0 (B)-2 (C)1(D)24.(3分)若f (x)在x x0处不连续,则 f ( x) 在该点处().(A)必不行导 (B) 必定可导 (C) 可能可导 (D) 必无极限二、填空题(共 12 分)1.(3 分)平面上过点(0,1) ,且在任意一点 ( x, y) 处的切线斜率为 3x2的曲线方程为.2.( 31x4 sin x) dx.分)( x213.( 3分) lim x2 sin1=.x0x4.( 3分) y2x33x2的极大值为.三、计算题(共42 分)1.( 6x ln(15x).分)求 limsin 3x2x02.(6 分)设ye xx2, 求 y .13.( 6分)求不定积分x ln(1 x2 )dx.x 4.( 63f ( x 1)dx, 此中f (x) 1, x 1,分)求cosxe x1,x 1.5. ( 6 分)设函数 yy x f ( x) 由方程e t dtcostdt 0 所确立 , 求 dy.6. ( 6 分)设 f ( x)dxsin x 2 C, 求 f (2 x 3)dx.3 n7. ( 6 分)求极限 lim 1 .2nn四、解答题(共 28 分)1. ( 7 分)设 f (ln x) 1 x, 且 f (0)1, 求 f ( x). 2. ( 7 分)求由曲线 ycos x2x与 x 轴所围成图形绕着 x 轴旋转一周2所得旋转体的体积 .3. ( 7 分)求曲线 y x 3 3x 2 24x 19 在拐点处的切线方程 .4. ( 7 分)求函数 yx1 x 在 [ 5,1] 上的最小值和最大值 .五、证明题 (6 分)设 f ( x) 在区间 [ a, b] 上连续 , 证明b b a1 bf (x)dx[ f (a) f (b)]( x a)( x b) f ( x) dx.a22 a标准答案一、 1 B;2C; 3D; 4 A.二、 1y x31;22 ;3 0;40.3三、 1解 原式limx5x 5 分x 03x 251 分32 解Q ln y lne x x ln( x 2 1),2 分x 2 12y e x[12x] 4 分x 21 2x 2 13 解原式1ln(1 x 2 ) d (1 x 2 )3 分21[(12)ln(12 (12) 12xdx]2xx )xx 22 分1[(1 x 2 )ln(1 x 2 )x 2 ] C1 分24解令 x1 t, 则2 分320 f ( x)dx1 f (t )dt1t2 t11 costdt1 (e 1)dt0 [ e tt ]12e 2 e 15两边求导得 eyy cosx 0,cosxQ ye ycosxsin x 1dycosx dxsin x 16 解f (2 x 3) dx1 f (2 x2 1sin(2 x 3)2 C21 分1 分1 分 1 分2 分1 分1 分2 分3)d(2 x 2)2 分4 分32 n 37 解原式 = lim3 24 分1n2n3= e22 分四、 1 解令 ln xt, 则 xe t ,f (t) 1 e t ,3 分f (t )(1 e t )dt = t e tC.2 分Q f (0)1, C 0,2 分f (x) xe x .1 分2 解V x2 23 分cos xdx222cos 2 xdx2 分2.2 分23 解 y3x 2 6x 24, y6x 6,1 分令 y 0, 得 x 1.1 分当x 1时 , y0; 当 1 x时 , y0,2 分(1,3) 为拐点 ,1 分该点处的切线为 y 3 21(x 1).2 分4 解 y 11x2 1 x 1, 2 分2 12 1 x令 y0, 得 x3 . 1 分4y( 5)56,2.55,y3 5, y(1) 1,2 分44最小值为 y(5)56, 最大值为 y35 . 2 分44五、证明ba)( x b) f(x) ba)( x b) df ( x)1 分(x( xaabb[( x a)( x b) f (x)] aaf ( x)[2 x ( a b)dx1分ba [2 x (a b)df ( x)1分[2 x (a b)] f ( x)(b a)[ f ( a) f (b)]移项即得所证 .b ba2 a f ( x)dx1分b2 a f ( x)dx,1分1分。
大一下学期高等数学考试题及答案
大一下学期高等数学考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当自变量趋近于某一点时,函数值趋近于某一个确定的数值,这个确定的数值称为该点处函数的()。
A. 极限值B. 导数值C. 积分值D. 定积分值答案:A2. 函数f(x)=x^2+3x+2的导数为()。
A. 2x+3B. 2x+6C. x^2+3D. 2x^2+3x答案:A3. 曲线y=x^3-3x+2的拐点是()。
A. (1,0)B. (-1,-2)C. (0,2)D. (2,8)答案:A4. 函数f(x)=sin(x)在区间[0, 2π]上的定积分为()。
A. 0B. 2C. -2D. 4答案:A5. 以下哪个函数是奇函数()。
A. f(x)=x^2B. f(x)=x^3C. f(x)=cos(x)D. f(x)=sin(x)答案:B二、填空题(每题4分,共20分)6. 函数f(x)=x^2-4x+3的极小值点是______。
答案:27. 曲线y=e^x在点(0,1)处的切线斜率为______。
答案:18. 函数f(x)=ln(x)的不定积分为______。
答案:x*ln(x)-x+C9. 函数f(x)=x^3的二阶导数为______。
答案:6x10. 曲线y=x^2-4x+5与x轴的交点个数为______。
答案:0三、计算题(每题10分,共30分)11. 求极限lim(x→0) (sin(x)/x)。
答案:112. 计算定积分∫(0 to 1) (x^2-2x+1) dx。
答案:(1/3)x^3 - x^2 + x | from 0 to 1 = 1/3 - 1 + 1 = 1/313. 求函数f(x)=x^2-6x+8的极值点。
答案:极小值点为x=3,极大值点不存在。
四、证明题(每题10分,共10分)14. 证明函数f(x)=x^3在R上是增函数。
答案:略五、应用题(每题10分,共10分)15. 一个物体从高度为100米的塔上自由落下,求物体落地时的速度。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷及答案详解一、选择题1. 该题为微分求导题,考察对基本微分法则的掌握。
解答:根据指数函数的求导法则,对指数函数f(x)进行求导,得到f'(x)=3x^2。
将x=2代入f'(x),得到f'(2)=3×2^2=12。
因此,选项C为正确答案。
2. 该题为函数极值题,考察对函数极值点的判断和求解。
解答:首先计算函数f(x)的导函数f'(x)。
根据导数定理,函数在极值点处的导数为0。
将f'(x)=2x-3=0,求解得到x=3/2。
接下来通过二阶导数的符号判断极值类型。
计算f''(x)=2,由此可知二阶导数恒为正,故x=3/2是函数f(x)的极小值点。
因此,选项A为正确答案。
3. 该题为定积分计算题,考察对定积分的理解和计算。
解答:根据定积分的定义,将被积函数f(x)=2x在区间[1,3]上进行积分,即∫(1->3) 2x dx。
对函数f(x)进行不定积分,得到F(x)=x^2+C。
将上限3代入不定积分结果,再减去下限1代入不定积分结果,得到∫(1->3) 2x dx=F(3)-F(1)=(3)^2+C-(1)^2+C=9+C-1-C=8。
因此,选项B为正确答案。
4. 该题为二重积分计算题,考察对二重积分的理解和计算。
解答:首先对被积函数f(x,y)=x+2y进行内积分,得到f_1(y)=xy+2y^2/2=x(y+y^2)。
接下来对内积分结果进行外积分,即对f_1(y)在区间[0,1]上积分,得到∫(0->1) x(y+y^2) dy。
先对y进行积分,得到∫(0->1) (xy+xy^2) dy=x/2 + x/3=5x/6。
因此,选项C为正确答案。
二、填空题1. 该题为极限计算题,考察对极限的求解。
解答:将x趋近于无穷大时,分子和分母的最高次项均为x^4,根据极限的最高次项的性质,可以将该极限简化为计算3/(-2)= -3/2。
(完整版)大一高数试题及答案.doc,推荐文档
C. 2(x 1) 2x
D. 2(x 1) x
2.已知 f(x)=ax+b,且 f(-1)=2,f(1)=-2,则 f(x)=( )
A.x+3
B.x-3
C.2x
D.-2x
3. lim ( x ) x ( ) x x 1
A.e
B.e-1
C.
D.1
4.函数 y
x 3 的连续区间是( )
4.若在区间(a,b)内恒有 f ' ( x) 0, f "( x) 0 ,则在
(a,b)内曲线弧y=f(x)为 ( )
①上升的凸弧
②下降的凸弧
③上升的凹弧
④下降的凹弧
5.设 F ' ( x) G' ( x) ,则 ( )
① F(X)+G(X) 为常数 ② F(X)-G(X) 为常数 ③ F(X)-G(X) =0
1.(-1,1)
2.2x-y+1=0
4.y=x2+1
5.
1 2
arctan x 2
c
7.ycos(xy)
3.5A 6.1
π/2 π 8.∫ dθ ∫ f(r2)rdr
0
0
9.三阶
பைடு நூலகம்
10.发散
二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的 ( )内,1~10每小题1分,11~20每小题2分,共30分)
B.x5+C
C. 2 x 3 C 3
x5 D.
C
15
13.
8
3
e
x
dx
( )
8
A.0
B. 2
8
3
e
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期
末总复习题
一、填空题
1、已知向量2a i j k =+-r r
r r ,2b i j k =-+r r r r ,则a b ⋅r r = -1 。
2、曲线2x z =绕z 轴旋转所得曲面方程为 z=x 2 + y 2 。
3、级数1113n n n
∞
=⎛⎫
+ ⎪⎝⎭∑的敛散性为 发散 。
4、设L 是上半圆周2
2
2
a y x =+(0≥y ),则曲线积分221
L ds x y
+⎰= a π 5.交换二重积分的积分次序:⎰⎰
--01
2
1),(y
dx y x f dy =
dy y x dx ),(f 0
x
-12
1
⎰
⎰
6.级数∑
∞
=+1)
1(1
n n n 的和为 1 。
二、选择题
1、平面0)1(3)1(=+++-z y x 和平面02)1()2(=+--+z y x 的关系 ( B )
A 、重合
B 、平行但不重合
C 、一般斜交
D 、垂直
2. 下列曲面中为母线平行于z 轴的柱面的是 ( C )
A 、2221x z +=
B 、2221y z +=
C 、2221x y +=
D 、22221x y z ++= 3. 设)0(4:2
2
>≤+y y x D ,则32222
ln(1)
1
D
x x y dxdy x y ++=++⎰⎰
( A ) A 、2π B 、0 C 、1 D 、4π
4、设)0(4:22>≤+y y x D ,则⎰⎰=D
dxdy ( A )
A 、π16
B 、π4
C 、π8
D 、π2
5、函数22504z x y =--在点(1,-2)处取得最大方向导数的方向是 ( A ) A 、216i j -+ B 、216i j -- C 、216i j + D 、216i j - 6
、
微
分
方
程
222()()0
y y y '''+-=的阶数为
( B )
A 、1
B 、2
C 、4
D 、6
7.下列表达式中,微分方程430y y y ''-+=的通解为
( D )
A 、3x x y e e C =++
B 、3x x y e Ce =+
C 、3x x y Ce e =+
D 、312x x y C e C e =+ 8
.
lim 0
n n u →∞
=为无穷级数
1
n
n u ∞
=∑收敛的
( B )
A 、充要条件
B 、 必要条件
C 、充分条件
D 、什么也不是
三、已知1=a ϖ
,3=b ϖ
,b a ϖϖ⊥,求b a ϖϖ+与b a ϖ
ϖ-的夹角.P7
四、一平面垂直于平面
0154=-+-z y x 且过原点和点
()3,7,2-,求该平面方程.(参考课
本P7例题)
五、设,,,22xy v y x u ue z v =-==求
O
221202
1
42b -a b a ))((cos 231))((2)301()(b - a 2
)301(a b a 0
ab b a =∴=
=⨯+-+=∴
-=-=-+=+-=-==++=+=+=∴⊥θθ )( 解:b a b a b a b a b a b Θ0
z y 13x 4705B 4-A 54-1n 0C 3B A 2-0D 0D Cz By Ax =++=+∴⊥=++==+++故有: ,, 又, 依题可得解:设平面方程为C Θ)2()2()2()2()()()22()()()(z du z dz 23322332222222xy y x e y
z y y x x e x z dy xy y x e dx y y x x e xdy ydx e y x ydy xdx e xy d e y x y x d e dv ue du e dv
v u xy xy xy xy xy xy xy xy v v --=∂∂-+=∂∂--+-+=+-+-=-+-=+=∂∂+∂∂= ,进而可得
变性,得
解:由全微分方程的不
y
z
x z dz ∂∂∂∂,,
. P19
六、求由z xyz sin =所确定的函数()y x z z ,=的偏导数
y
z x z ∂∂∂∂,
xy
z xz y z y
z xy xz y z z y xy z yz x z x z xy yz x z z x z xyz z xyz -=
∂∂=∂∂--∂∂-=
∂∂=∂∂--∂∂=-=cos 0cos cos 0cos 0
sin sin 解得:求偏导数得:两边对解得:求偏导数得:两边对得解:由
七、求旋转抛物面2222y x z +=在点⎪⎭
⎫ ⎝
⎛-2,2
1,10M 处的切平面和法线方程.
{}{}
2
4
12411
2221
4
1
3240
)2()2
1(2)1(41,2,4,1,4,44),(,4),(,22),(0220
-=--=+--=-
=
-+=++-=---++---=-=='='+=z y x z y x z y x z y x M n y x n y
y x f x y x f y x y x f M y x 即:法线方程式为:即:处的切面方程式为:
故曲面在点所以:则:
解:令
八、求函数())2sin(,y x xy y x f ++=在点()0,0P 处沿从点()0,0P 到点()2,1Q 的方向的
方向导数。
{}55
225115
2)0,0(51)0,0(2
)0,0(,1)0,0()
2cos(2),(),2cos(),(5251PQ 21PQ )
0,0(0=•+•
=•
'
+•'=∂∂='
='∴++='
++='⎭
⎬
⎫⎩⎨⎧== 故又,上单位向量易知的方向,
,即向量解:这里的方向x x y x y x f f f f f y x x y x f y x y y x f ι
ιιΘ
九、计算二重积分⎰⎰D
xydxdy ,其中D 是由x 轴,y 轴与单位圆122=+y x 在第一象
限所围的区域.
169
)1(212
1,1
D Y D Y X D D D 213121=
-==≤≤≤≤⎰⎰⎰⎰⎰dy y y dx y x dy dsdy y x y y x y
y x y y D
故可用不等式组表示:此时积分,积分,后对型区域,则先对看成把型区域,型区域也是既是的草图可判断的草图,如图所示,从解:画出微积分区域
十、计算L
yds ⎰Ñ
,其中L 是顶点为()0,1A ,()1,0B 和()0,0O 的三角形边界. (参考P79例2)
()[]1
2)()()()(,2
110)0()(,2
101)0()(2
2)1(11)(,
10,0,100,10,1,,L
10
102
10
102
1
2
1
0+=+++++=+==++=+==++=+==-+-+=+≤≤=≤≤=≤≤-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
⎰
⎰OB
OA
AB
OB OA AB
ds y x ds y x ds y x ds y x ydy dy y ds y x xdx dx x ds y x dx dx x x ds y x x y y x x x y OA OB AB 故得: 则: , 的方程分别为:解:
十一、求微分方程0sin cos cos sin =-ydy x ydx x 满足初始条件4
0π
=
=x y
的特解.P167
x C y C y x dy y
y
dx x x dy y
y dx x x cos cos ,
ln cos ln cos ln ,cos sin cos sin ,cos sin cos sin =+-=-==⎰⎰简化得:得:两边积分::
解:将方程分离变量得 )cos 2
2
arccos(,cos 22cos ,22
40x y x y C y x =====或故所求方程的特解为:
得:带入,将条件π。