第3章线性回归问题与非线性回归分析

合集下载

《非线性回归分析》课件

《非线性回归分析》课件
• 常用的过滤方法包括皮 尔逊相关系数、方差分 析和卡方检验等。
封装式
• 基于模型的错误率和复 杂性进行特征选择。
• 常用的封装方法包括递 归特征消除法和遗传算 法等。
嵌入式
• 特征选择和模型训练同 时进行。
• 与算法结合在一起的特 征选择方法,例如正则 化(Lasso、Ridge)。
数据处理方法:缺失值填充、异常值 处理等
1
网格搜索
通过预定义的参数空间中的方格进行搜
随机搜索
2
索。
在预定义的参数空间中进行随机搜索。
3
贝叶斯调参
使用贝叶斯优化方法对超参数进行优化。
集成学习在非线性回归中的应用
集成学习是一种将若干个基学习器集成在一起以获得更好分类效果的方法,也可以用于非线性回归建模中。
1 堆叠
使用多层模型来组成一个 超级学习器,每个模型继 承前一模型的输出做为自 己的输入。
不可避免地存在数据缺失、异常值等问题,需要使用相应的方法对其进行处理。这是非线性回归 分析中至关重要的一环。
1 缺失值填充
常见的方法包括插值法、代入法和主成分分析等。
2 异常值处理
常见的方法包括删除、截尾、平滑等。
3 特征缩放和标准化
为了提高模型的计算速度和准确性,需要对特征进行缩放和标准化。
偏差-方差平衡与模型复杂度
一种广泛用于图像识别和计算机 视觉领域的神经网络。
循环神经网络
一种用于处理序列数据的神经网 络,如自然语言处理。
sklearn库在非线性回归中的应用
scikit-learn是Python中最受欢迎的机器学习库之一,可以用于非线性回归的建模、评估和调参。
1 模型建立
scikit-learn提供各种非线 性回归算法的实现,如 KNN回归、决策树回归和 支持向量机回归等。

第三节可直线化的非线性回归分析

第三节可直线化的非线性回归分析

米氏常数的测定
基本原则:将米氏方程 变 化 成 相 当 于 y=ax+b 的 直线方程,再用作图法 求出Km。
例:双倒数作图法
1.0
斜率=Km/Vmax
0.8
0.6
1/v
1 Km 1 1 V Vmax [S] Vmax
0.4
-1/Km 0.2
1/Vmax
0.0
-4 -2
0
2
4
6
1/[S](1/mmol.L-1)
2 2
bm
X2Xm
X 2Y
b1
X1 X m b2
X 2 X m bm
X
2 m
X
mY
由于SS1
X12,SS2
X 22,,SSm
X
2;
m
SP12 X1 X 2,,SP1m X1 X m,SP2m X 2 X m,;
SP1y X1Y,SP2 y X 2Y,,SPmy X mY ;
SP2
SP2m
SP1m b1 SP2m b2
SPm bm
若系数矩阵用A表示,未知元矩阵用b表示,常 数矩阵用K表示: Ab=K
为求解式中的b,一般应先求出A的逆矩阵A-1,令:
c11 c12
A1
(cij )
c 21
c 22
cm1 cm2
c1m c2m
8 10
酶的Km在实际应用中的意义
鉴定酶:通过测定Km,可鉴别不同来源或相同来源但在不 同发育阶段,不同生理状态下催化相同反应的酶是否是属 于同一种酶。
判断酶的最适底物(天然底物) 。 计算一定速度下底物浓度。 了解酶的底物在体内具有的浓度水平。 判断反应方向或趋势。 判断抑制类型。

第三章 线性回归模型的

第三章 线性回归模型的

例3.2 需求方程 我们可以将需求模型建立成双对数的形式,从而 估计需求弹性。 模型设为: lnQ = b0 + b1 ln P+ b2 lnI+b3 ln Pr+u 其中, Q 是每天的咖啡销售 I是收入 P 是咖啡每磅的价格 Pr 是相关产品——茶叶每磅的价格
估计结果为: lnQ=0.78 -0.25lnP +0.6I+ 0.38lnPr t (51.1) (-5.12) (15.12) (3.25) 解释: (1)自价格弹性 是 -.25,表明保持其他不变, 如果价格增加1%,需求量将减少0.25%。这是缺乏 弹性的——弹性的绝对值小于1 (2)收入弹性是0.6 (3)交叉价格弹性是.38,表明保持其他不变, 如果茶叶的价格增加1%,咖啡的需求量增加0.38%。 注: 如果交叉弹性是正的,表明它们是替代品; 如果交叉弹性是负的,表明它们是互补的。
这种“量化”通常是通过引入“虚拟变量”来完 成的。根据这些因素的属性类型,构造只取“0” 或“1”的人工变量,通常称为虚拟变量 dummy 虚拟变量(dummy 虚拟变量 variables),记为D。 variables 例如,反映文化程度的虚拟变量可取为: 例如,反映文化程度的虚拟变量可取为 1, D= 0, 非本科学历 本科学历
参数的含义: 参数的含义:
β
j
∂Y = ∂ ln X
j
∂Y = =或 ∂X j X j
∆Y ∆X j X j
度量了在给定解释变量(X)的相对变化时, 度量了在给定解释变量(X)的相对变化时,Y的 (X)的相对变化时 绝对变化。 绝对变化。
例3.4货币供给的增长率对GNP的影响模型为: GNP = b 0 + b 1 lnM + u 斜率b1度量对M的相对变化,GNP的绝对变化— —M变化1%,GNP的绝对变化量为b1/100。 例如:b1=2000,说明货币供给增加1% ,将使 GNP 增加2000/100 = $20 billion.

03-非线性回归模型的线性化

03-非线性回归模型的线性化
• 将上述模型还原,两边取自然指数
yˆt aˆxtbˆ
• 用来测量当 xt变化 1%时 yt变化 % • 柯布-道格拉斯生产函数模型就是幂函数模型
Qt Lat Ct eut
• 其中Qt表示生产量,Lt表示生产力投入,Ct表示资本投入 量, ,, 是需要被估计的回归系数
• 请对上述模型线性化
• 若回归系数 1 时,该模型是报酬不变型; • 若回归系数 1 时,该模型是报酬递增型; • 若回归系数 1 时,该模型是报酬递减型。 • 例3-1 • 利用柯布--道格拉斯生产函数模型评价中国台湾农业生产
• 例3-5
(b1<0, b2>0, b3<0)
(6) 生长曲线 (logistic) 模型
yt
k
1 e f (t)ut
k
1 e abtut
美国人口统计学家Pearl和Reed广泛研究了有机体的生长,得到了上述数学
模型。生长模型(或逻辑斯谛曲线,Pearl-Reed曲线)常用于描述有机体生
长发育过程。其中k和0分别为yt的上限和下限。
•当a>0,
Lim
t
yt
,k当a>0,b>0,
Lim
t-
yt
0
•曲线有拐点,坐标是 ( Lnb , k,) 但是曲线关于拐点不对称
ae
•对于龚伯斯曲线线性化的前提也是必须知道k的取值,
•线性化过程
yt* Lnb at ut 0 1t ut
其中
yt*
Ln
k yt
1
•案例3-1,3-2,3-3.
yt 0 1xt* ut
变量yt 和xt* 已变换成为线性关系。
(4) 双曲线函数模型

回归分析中的线性与非线性模型选择

回归分析中的线性与非线性模型选择

回归分析中的线性与非线性模型选择回归分析作为一种常用的数据分析方法,可以用来研究自变量与因变量之间的关系。

在回归分析中,模型的选择是一个关键问题,决定了最终结果的准确性和可解释性。

线性和非线性模型是两种常见的选择,本文将讨论线性和非线性模型在回归分析中的选择问题,并探讨如何判断何时使用线性模型和何时使用非线性模型。

一、线性模型线性模型是回归分析中最基本的模型,它假设自变量与因变量之间存在线性关系。

线性模型的数学形式可以表示为:Y = β0 + β1*X1 + β2*X2 + ... + βn*Xn+ ε其中,Y是因变量,X1、X2、...、Xn是自变量,β0、β1、β2、...、βn是回归系数,ε是误差项。

线性模型的优点是简单、易于解释和计算,模型的形式清晰。

在一些数据集合具有线性关系的情况下,线性模型可以得到较好的拟合效果。

但是,在实际问题中,自变量与因变量之间的关系往往是复杂的,可能存在非线性关系。

二、非线性模型非线性模型是考虑了自变量与因变量之间的非线性关系的模型。

非线性模型的数学形式可以是多项式形式、指数形式、对数形式等。

在回归分析中,选择合适的非线性模型是一个挑战。

一种常见的方法是通过观察自变量与因变量的散点图来判断是否需要使用非线性模型。

如果散点图呈现出明显的非线性趋势,那么使用非线性模型可能会得到更好的拟合效果。

此外,可以使用统计方法来判断是否需要使用非线性模型,例如利用残差分析、F检验、信息准则等。

三、线性与非线性模型的选择在实际应用中,选择线性模型还是非线性模型需要综合考虑多个因素。

以下是一些建议:1. 数据的线性性:观察数据集合自变量与因变量的散点图,判断是否存在明显的非线性趋势。

如果散点图呈现出明显的非线性关系,那么考虑使用非线性模型。

2. 拟合效果:比较线性模型和非线性模型的拟合效果。

可以使用拟合优度指标(如R方值)来评估模型的拟合程度,选择拟合效果较好的模型。

3. 解释性:考虑模型的解释性和可解释性。

第3章 线性回归与非线性回归

第3章 线性回归与非线性回归

Yt B1 B2 X t ut
假设 u t u t -1 v t -1 1 其中,v满足OLS假定,并且 是已知的。
Yt 1 B1 B2 X t 1 ut 1
方程(9 - 2)的两边同时乘以 , 得到 :
Yt -1 B1 B2 X t -1 u t -1
View/Residual Tests/Heteroskedasticity Tests 或者 eq01.hettest(type=Glejser) c car pmg pop rgnp


斯皮尔曼(Spearman)秩相关检验。 戈德费尔德-匡特(Goldfeld-Quandt)检验 巴特莱特(Bartlett)检验 匹克(Peak)检验 布鲁尔什-培甘(Breusch-Pagan)检验 CUSUMSQ检验

在方程定义窗口的定义栏中输入: 线性化方法:ls log(Y) c log(K) log(L) 非线性方法:ls Y=c(1)*K^c(2)*L^c(3)

有时遇到估计结果不符合常规或显示出无法收敛 的错误信息时,需要设定选项重新估计。 (1)初始值(Start Value) 初始值是EViews进行第一次迭代计算时参数所取 的数值。这个值保存在与回归函数有关的系数向 量中。回归函数必须定义初始值。例如如果回归 函数包含表达式1/C (1),就不能把C (1)的初始值 设定为0,同样如果包含表达式LOG (C (2)),那C (2)必须大于零。



建模过程仍是先打开方程定义窗口,在定义栏中输 入模型的非线性表达式即可。不同的是有时候可能 迭代无法收敛,则需要通过修改选项设置来重新估 计。 与例3.6比较,可以看出,线性化与NLS法的参数估 计值完全一样,统计量输出相同,这是由于线性化 仅改变了变量的形式,而NLS法也没有改变y和1/x 的线性关系,在这两种情况下进行最小二乘估计对 于待估参数来说是等价的。

《非线性回归》课件

《非线性回归》课件

灵活性高
非线性回归模型形式多样,可以根据 实际数据和问题选择合适的模型,能 够更好地适应数据变化。
解释性强
非线性回归模型可以提供直观和易于 理解的解释结果,有助于更好地理解 数据和现象。
预测准确
非线性回归模型在某些情况下可以提 供更准确的预测结果,尤其是在数据 存在非线性关系的情况下。
缺点
模型选择主观性
势。
政策制定依据
政府和决策者可以利用非线性回归模型来评估不同政策方案的影响,从而制定更符合实 际情况的政策。例如,通过分析税收政策和经济增长之间的关系,可以制定更合理的税
收政策。
生物学领域
生态学研究
在生态学研究中,非线性回归模型被广 泛应用于分析物种数量变化、种群动态 和生态系统稳定性等方面。通过建立非 线性回归模型,可以揭示生态系统中物 种之间的相互作用和环境因素对种群变 化的影响。
模型诊断与检验
诊断图
通过绘制诊断图,可以直观地观察模型是否满足回归分析的假设条件,如线性关系、误差同方差性等 。
显著性检验
通过显著性检验,如F检验、t检验等,可以检验模型中各个参数的显著性水平,从而判断模型是否具 有统计意义。
04
非线性回归在实践中的应用
经济学领域
描述经济现象
非线性回归模型可以用来描述和解释经济现象,例如消费行为、投资回报、经济增长等 。通过建立非线性回归模型,可以分析影响经济指标的各种因素,并预测未来的发展趋
VS
生物医学研究
在生物医学研究中,非线性回归模型被用 于分析药物疗效、疾病传播和生理过程等 方面。例如,通过分析药物浓度与治疗效 果之间的关系,可以制定更有效的治疗方 案。
医学领域
流行病学研究
在流行病学研究中,非线性回归模型被用于 分析疾病发病率和死亡率与各种因素之间的 关系。通过建立非线性回归模型,可以揭示 环境因素、生活方式和遗传因素对健康的影 响。

第三章非线性回归分析-PPT文档资料

第三章非线性回归分析-PPT文档资料

图 3.9
y t = b 0 + b 1 x t + b 2 x t2 + b 3 x t3 + u t
图 3.10
y t = b 0 + b 1 x t + b 2 x t2 + b 3 x t3 + u t
另一种多项式方程的表达形式是 y t = b 0 + b 1 x t + b 2 x t2 + u t (3.14) 其中 b1>0, b2>0 和 b1<0, b2<0 情形的图形分别见图 3.11 和 3.12。令 xt 1 = xt, x t 2 = xt 2,上 式线性化为, y t = b 0 + b 1 x t1 + b 2 x t2 + u t (3.15) 如经济学中的边际成本曲线、平均成本曲线与图 3.11 相似。
t t
k Lnb 估参数。曲线有拐点,坐标为( a 2 ,
) ,曲线的上下两部分对称于拐点。
be
图 3 .1 3 y t = k / (1 +
at u t
)
图 3 .1 4
b >0 情 形 的 图 形 见 图 3.7 。 x t 和 y t 的 关 系 是 非 线 性 的 。 令 y t* = 1/ y t, x t* = 1/ x t, 得
图 3.7
y t = 1/ ( a + b / x t ),
( b > 0)
图 3.8
y t = a + b /x t ,
(xt b 图 3 .6
e ut
yt = a xt b
⑷ 双曲线函数模型 1/ y t = a + b / x t + u t 也可写成, y t = 1/ ( a + b / x t + u t) y t* = a + b x t* + u t 已 变 换 为 线 性 回 归 模 型 。 其 中 ut 表 示 随 机 误 差 项 。 (3.9) (3.10)

《回归分析 》课件

《回归分析 》课件
参数显著性检验
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。

第三章回归分析预测方法

第三章回归分析预测方法

1984
539
7136
1992
769
8683
1985
577
7658
1993
801
9317
1986
613
7784
1994
855
9675
1987
644
8108
2019
842
8542
1988
670
7583
2019
860
8584
1989
695
8002
2019
890
9612
1990
713
8442
2019
920
x
相关但无
线性关系
-3
-2
-1
0
1
2
3
x
2、回归分析与相关分析
研究和测度两个或两个以上变量之间关系的方 法有回归分析和相关分析。
相关分析。研究两个或两个以上随机变量之 间线性依存关系的紧密程度。通常用相关系 数表示,多元相关时用复相关系数表示。
回归分析。研究某一随机变量(因变量)与 其他一个或几个普通变量(自变量)之间的 数量变动的关系。
回本章目录
一、一元线性回归模型
一元线性回归(Linear regression),只研究一个 自变量与一个因变量之间的统计关系。
对于只涉及一个自变量的简单线性回归模型可表
示为: yb0b1xe
其中,b0和b1称为模型的参数;e是随机误差项,
又称随机干扰项,有 e N0,2
在线性回归模型中加入随机误差项是基于 以下原因:
第一节 引言
本章学习目的与要求:
通过本章的学习,了解回归分析预测法 的概念,掌握回归分析中各系数的计算方法 及回归预测方法,能够运用Excel工具来进行 预测。

第三章 1.3可线性化的回归分析

第三章  1.3可线性化的回归分析

可线性化的回归分析[学习目标]1.进一步体会回归分析的基本思想.2.通过非线性回归分析,判断几种不同模型的拟合程度.[知识链接]1.有些变量间的关系并不是线性相关,怎样确定回归模型答首先要作出散点图,如果散点图中的样本点并没有分布在某个带状区域内,则两个变量不呈现线性相关关系,不能直接利用线性回归方程来建立两个变量之间的关系,这时可以根据已有函数知识,观察样本点是否呈指数函数关系或二次函数关系,选定适当的回归模型.2.如果两个变量呈现非线性相关关系,怎样求出回归方程答可以通过对解释变量进行变换,如对数变换或平方变换,先得到另外两个变量间的回归方程,再得到所求两个变量的回归方程.([预习导引]1.非线性回归分析对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型.2.非线性回归方程曲线方程曲线图形公式变换变换后的线性函数y=ax b·c=ln av=ln xu=ln yu=c+bvy =a e bxc =ln a u =ln yu =c +bxy =a e b x.c =ln a v =1xu =ln yu =c +bvy =a +b ln xv =ln x u =yu =a +bv#要点一 线性回归分析例1 某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 35 销售额y (万元)4926…3954(1)由数据易知y 与x 具有线性相关关系,若b =,求线性回归方程y =a +bx ; (2)据此模型预报广告费用为4万元时的销售额.解 (1)x -=4+2+3+54=,y -=49+26+39+544=42,∴a =y --b x -=42-×= ∴回归直线方程为y =+. (2)当x =4时,y =+×4=, 故广告费用为6万元时销售额为万元.跟踪演练1 为了研究3月下旬的平均气温(x )与4月20日前棉花害虫化蛹高峰日(y )的关系,某地区观察了2006年2011年的情况,得到了下面的数据:(1)对变量x,y进行相关性检验;(2)据气象预测,该地区在2012年3月下旬平均气温为27 ℃,试估计2012年4月化蛹高峰日为哪天.解制表.(1)r=∑6i=1xiyi-6x-y-(∑6i=1x2i-6x-2)(∑6i=1y2i-6y-2)≈- 8.由|r|>,可知变量y和x存在很强的线性相关关系.(2)b=错误!≈-,a=错误!-b错误!≈.所以,线性回归方程为y=-.当x=27时,y=-×27=.据此,可估计该地区2012年4月12日或13日为化蛹高峰日."要点二可线性化的回归分析例2 在一化学反应过程中,化学物质的反应速度y(g/min)与一种催化剂的量x(g)有关,现收集了8组观测数据列于表中:催化剂的量x/g15182124273033\ 36化学物质的反应速度y(g·min-1)6830277020565350解根据收集的数据,作散点图(如图),根据已有的函数知识,可以发现样本点分布在某一条指数函数曲数y=c1e c2x的周围,其中c1和c2是待定的参数.令z=ln y,则z=ln y=ln c1+c2x,即变换后的样本点应该分布在直线z=a+bx(a=ln c1,b=c2)的周围.由y与x的数据表可得到变换后的z与x的数据表:x15182124!27303336z,作出z与x的散点图(如图).由散点图可观察到,变换后的样本点分布在一条直线的附近,所以可用线性回归方程来拟合.由z与x的数据表,可得线性回归方程:z=+,所以y与x之间的非线性回归方程为y=e-+.*规律方法 可线性化的回归分析问题,画出已知数据的散点图,选择跟散点拟合得最好的函数模型进行变量代换,作出变换后样本点的散点图,用线性回归模型拟合.跟踪演练2 电容器充电后,电压达到100 V ,然后开始放电,由经验知道,此后电压U 随时间t 变化的规律用公式U =A e bt (b <0)表示,现测得时间t (s)时的电压U (V)如下表:t /s 0 1 2 3 4 56(7 8910U /V 100 75 55 40 30$2015101055试求:电压U 对时间t 的回归方程.(提示:对公式两边取自然对数,把问题转化为线性回归分析问题)解 对U =A e bt 两边取对数得ln U =ln A +bt ,令y =ln U ,a =ln A ,x =t ,则y =a +bx ,得y 与x 的数据如下表:x.1 2345678910{y/根据表中数据作出散点图,如下图所示,从图中可以看出,y 与x 具有较强的线性相关关系,由表中数据求得x -=5,y -≈,进而可以求得b ≈-,a =y --bx -=,所以y 对x 的线性回归方程为y =-.由y =ln U ,得U =e y ,U =-=·e -,因此电压U 对时间t 的回归方程为U =·e-.要点三非线性回归模型的综合应用例3 某地区不同身高的未成年男性的体重平均值如下表:身高x/cm60【708090100110体重y/kg-身高x/cm120130140150160170体重y/kg(试建立y与x之间的回归方程.解根据题干表中数据画出散点图如图所示.由图看出,样本点分布在某条指数函数曲线y=c1e c2x的周围,于是令z=ln y. *x 60708090100110120130140¥150160170z&画出散点图如图所示.由表中数据可得z与x之间的线性回归方程:z=+,则有y=+.规律方法根据已有的函数知识,可以发现样本分布在某一条指数型函数曲线y =c1e c2x的周围,其中c1和c2是待定参数;可以通过对x进行对数变换,转化为线性相关关系.*跟踪演练3 对两个变量x ,y 取得4组数据(1,1),(2,,(3,,(4,,甲、乙、丙三人分别求得数学模型如下: 甲 y =+1, 乙 y =-++,丙 y =-·+,试判断三人谁的数学模型更接近于客观实际. 解 甲模型,当x =1时,y =;当x =2时,y =; 当x =3时,y =;当x =4时,y =.乙模型,当x =1时,y =1;当x =2时,y =; 当x =3时,y =;当x =4时,y =.丙模型,当x =1时,y =1;当x =2时,y =; 当x =3时,y =;当x =4时,y =.观察4组数据并对照知,丙的数学模型更接近于客观实际.1.在一次试验中,当变量x 的取值分别为1,12,13,14时,变量y 的值分别为2,3,4,5,则y 与1x的回归方程为( )A .y =1x +1B .y =2x+3C .y =2x +1D .y =x -1 答案 A解析 由数据可得,四个点都在曲线y =1x+1上.2.某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:广告费2~5 6 84销售额3040605070@则广告费与销售额间的相关系数为( )A. B.0.919 C. D.答案B3.根据统计资料,我国能源生产发展迅速.下面是我国能源生产总量(单位:亿吨标准煤)的几个统计数据:年份1996200120062011产量·根据有关专家预测,到2020年我国能源生产总量将达到亿吨左右,则专家所选择的回归模型是下列四种模型中的哪一种( )A.y=ax+b(a≠0) B.y=ax2+bx+c(a≠0)C.y=a x(a>0且a≠1) D.y=log a x(a>0且a≠1)答案A4.某种产品的广告费支出x与销售额y之间有下表关系,现在知道其中一个数据弄错了,则最可能错的数据是__________.x/万元)24568y/万元3040605070答案(6,50)一、基础达标1.下表提供了某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据.根据表中提供的数据,求出y关于x的线性回归方程是y=+,那么表中t的值是( )x3456,yt4A.4.5 B.4 C.3 D.答案C2.下列数据x,y符合哪一种函数模型( )x1$2345678910y 。

线性回归与非线性回归分析

线性回归与非线性回归分析

线性回归与非线性回归分析随着数据科学的发展,回归分析成为一种常用的统计方法,用于预测和建立变量之间的关系模型。

在回归分析中,线性回归和非线性回归是两种常见的分析方法。

本文将就线性回归和非线性回归进行详细探讨,并对它们的应用领域进行比较。

一、线性回归线性回归是最简单、最常用的回归方法之一。

它假设自变量和因变量之间存在线性关系,并试图找到一条直线来拟合数据点。

线性回归的数学表达式为:y = β0 + β1x + ε其中,y是因变量,x是自变量,β0和β1是回归系数,ε表示误差项。

通过最小二乘法,可以求得回归系数的估计值,进而进行预测和推断。

线性回归的优点在于计算简单,易于解释和理解。

它适用于自变量和因变量之间呈现线性关系的情况,比如销售额与广告投入的关系、学习时间与考试成绩的关系等。

然而,线性回归也有其局限性,它无法处理非线性的关系,对于复杂的数据模型拟合效果较差。

二、非线性回归与线性回归相反,非线性回归适用于自变量和因变量之间存在非线性关系的情况。

非线性回归通过引入非线性项或函数来建立数学模型,使得模型能够更好地拟合实际数据。

非线性回归的数学表达式为:y = f(β0 + β1x1 + β2x2 + ... + βnxn) + ε其中,f()表示非线性函数,x1、x2、...、xn是自变量,y是因变量,β0、β1、...、βn是回归系数,ε表示误差项。

通过使用最小二乘法或最大似然估计等方法,可以求得回归系数的估计值,并进行预测和推断。

非线性回归的优点在于能够更准确地拟合复杂的数据模型,能够处理自变量和因变量之间的非线性关系。

它适用于许多实际问题,如生长模型、生态系统模型等。

然而,非线性回归的缺点在于计算复杂度高,模型选择的难度较大。

三、线性回归与非线性回归的比较线性回归和非线性回归在应用领域和适用性方面有所不同。

线性回归适用于自变量和因变量之间呈现线性关系的情况,适合用于预测、关联分析等领域。

而非线性回归适用于自变量和因变量之间存在非线性关系的情况,适合用于复杂模型的拟合和解释。

回归分析(设计)非线性回归

回归分析(设计)非线性回归

图2.18 S型曲线 y
1 a b ex
例2.4 通过试验得到表2.4的测试数据,求 x 与 y 的回归方程。 解 将测试数据描一散点图,如图2.19所示。 从图2.19可以看出, 与 之间似乎有双曲线 x y 关系,即 1 1
: 则得 y a bx
3 108.20 8 11 110.60
4 109.58 9 14 110.90
5 109.50 10 15 110.0
7 110.00 11 16 110.76
8 109.53
y
序 号
x
y
(例如,第一组数据 x(1) 2, y(1) 106.42 对应为 x 1和 y 1的数据 x 1 , y 1 。利用线性回归系数 2 106.42 计算公式,可以求出 a 0.008966, b 0.0008303 ,从 而得到和的回归方程:
i
f i ( ) 0 i ˆ
对于式(2.32)一般可用最优化迭代算法, 求出最优解 ˆ ,从而确定非线性回归数学模型。 具体最优化迭代算法可参见参考文献[10]。
x1 1 ( z1 , z 2 , , z k ) x 2 2 ( z1 , z 2 , , z k ) x m m ( z1 , z 2 , z k )
则上述方程即可写成
y b0 b1 x 1 b2 x 2 bm x m
从而,这一类问题均可化为多元线性回归问题加 以处理。 数学理论已证明,任何连续函数可用足够高阶 的多项式任意逼近。因此,对比较复杂的实际问 题,可以不问 y与诸因素的确切关系如何,而直 接用多项式回归。
例2.5 实验测得两个变量 x 与 y 的关系如表 2.5所示,试求变量 y 对 x 的回归方程。

第3章 1.1 回归分析 1.2 相关系数 1.3 可线性化的回归分析

第3章 1.1 回归分析 1.2 相关系数 1.3 可线性化的回归分析

§1回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析1.了解回归分析的思想和方法.(重点)2.掌握相关系数的计算和判断线性相关的方法.(重点)3.了解常见的非线性回归模型转化为线性回归模型的方法.(难点)[基础·初探]教材整理1回归分析阅读教材P73~P75,完成下列问题.设变量y对x的线性回归方程为y=a+bx,由最小二乘法知系数的计算公式为:b=l xyl xx=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2=∑i=1nx i y i-n x y∑i=1nx2i-n x2,a=y-b x.教材整理2相关系数阅读教材P76~P78,完成下列问题.1.相关系数r的计算假设两个随机变量的数据分别为(x1,y1),(x2,y2),…,(x n,y n),则变量间线性相关系数r=l xyl xx l yy=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2∑i=1n(y i-y)2=∑i=1nx i y i-n x y∑i=1nx2i-n x2∑i=1ny2i-n y2.2.相关系数r与线性相关程度的关系(1)r的取值范围为[-1,1];(2)|r|值越大,误差Q越小,变量之间的线性相关程度越高;(3)|r|值越接近0,误差Q越大,变量之间的线性相关程度越低.3.相关性的分类(1)当r>0时,两个变量正相关;(2)当r<0时,两个变量负相关;(3)当r=0时,两个变量线性不相关.判断(正确的打“√”,错误的打“×”)(1)两个变量的相关系数r>0,则两个变量正相关.()(2)两个变量的相关系数越大,它们的相关程度越强.()(3)若两个变量负相关,那么其回归直线的斜率为负.()【答案】(1)√(2)×(3)√教材整理3可线性化的回归分析阅读教材P79~P82,完成下列问题.1.非线性回归分析对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型.2.非线性回归方程A.y =2+13x B .y =2e x C .y =2e 1xD .y =2+ln x【解析】 分别将x 的值代入解析式判断知满足y =2+ln x . 【答案】 D[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑:[小组合作型]i i 3-1-1①,对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图②.由这两个散点图可以判断()图3-1-1A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关(2)两个变量x,y与其线性相关系数r有下列说法:①若r>0,则x增大时,y也随之相应增大;②若r<0,则x增大时,y也相应增大;③若r=1或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上,其中正确的有()A.①②B.②③C.①③D.①②③(3)有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和其身体健康情况;④正方形的边长和面积;⑤汽车的重量和百公里耗油量.其中两个变量成正相关的是A.①③B.②④C.②⑤D.④⑤【精彩点拨】可借助于线性相关概念及性质作出判断.【自主解答】(1)由这两个散点图可以判断,变量x与y负相关,u与v正相关,故选C.(2)根据两个变量的相关性与其相关系数r之间的关系知,①③正确,②错误,故选C.(3)其中①③成负相关关系,②⑤成正相关关系,④成函数关系,故选C.【答案】(1)C(2)C(3)C1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r 来检验线性相关显著性水平时,通常与0.75作比较,若r >0.75,则线性相关较为显著,否则为不显著.[再练一题]1.下列两变量中具有相关关系的是( )【导学号:62690052】A .正方体的体积与边长B .人的身高与体重C .匀速行驶车辆的行驶距离与时间D .球的半径与体积【解析】 选项A 中正方体的体积为边长的立方,有固定的函数关系;选项C 中匀速行驶车辆的行驶距离与时间成正比,也是函数关系;选项D 中球的体积是43π与半径的立方相乘,有固定函数关系.只有选项B 中人的身高与体重具有相关关系.【答案】 Bx (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:(1)(2)气象部门预测下个月的平均气温约为6 ℃,据此估计该商场下个月毛衣的销售量.【精彩点拨】 (1)可利用公式求解; (2)把月平均气温代入回归方程求解.【自主解答】 (1)由散点图易判断y 与x 具有线性相关关系.x=(17+13+8+2)÷4=10,y=(24+33+40+55)÷4=38,∑4i=1x i y i=17×24+13×33+8×40+2×55=1 267,∑4i=1x2i=526,b=∑4i=1x i y i-4x y ∑4i=1x2i-4x2=1 267-4×10×38526-4×102≈-2.01,a=y-b x≈38-(-2.01)×10=58.1,所以线性回归方程为y=-2.0x+58.1.(2)气象部门预测下个月的平均气温约为6 ℃,据此估计,该商场下个月毛衣的销售量为y=-2.0 x+58.1=-2.0×6+58.1≈46(件).1.回归分析是定义在具有相关关系的两个变量基础上的,因此,在作回归分析时,要先判断这两个变量是否相关,利用散点图可直观地判断两个变量是否相关.2.利用回归直线,我们可以进行预测.若回归直线方程y=a+bx,则x=x0处的估计值为y0=a+bx0.3.线性回归方程中的截距a和斜率b都是通过样本估计而得到的,存在着误差,这种误差可能导致预报结果的偏差,所以由线性回归方程给出的是一个预报值而非精确值.4.回归直线必过样本点的中心点.[再练一题]2.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:(1)(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.【解】(1)如图:(2)∑4i=1x i y i=6×2+8×3+10×5+12×6=158,x=6+8+10+124=9,y=2+3+5+64=4,∑4i=1x2i=62+82+102+122=344,b=158-4×9×4344-4×92=1420=0.7,a=y-b x=4-0.7×9=-2.3,故线性回归方程为y=0.7x-2.3.(3)由(2)中线性回归方程得当x=9时,y=0.7×9-2.3=4,预测记忆力为9的同学的判断力约为4.[探究共研型]探究1【提示】非线性回归问题有时并不给出经验公式.这时我们可以画出已知数据的散点图,把它与学过的各种函数(幂函数、指数函数、对数函数等)图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量变换,把问题化为线性回归分析问题,使之得到解决.其一般步骤为:探究2已知x和y之间的一组数据,则下列四个函数中,模拟效果最好的为哪一个?①y=32③y=4x; ④y=x2.【提示】观察散点图中样本点的分布规律可判断样本点分布在曲线y=3×2x-1附近.所以模拟效果最好的为①.某地区不同身高的未成年男性的体重平均值如下表:(2)如果一名在校男生身高为168 cm,预测他的体重约为多少?【精彩点拨】先由散点图确定相应的拟合模型,再通过对数变换将非线性相关转化为线性相关的两个变量来求解.【自主解答】(1)根据表中的数据画出散点图,如下:由图看出,这些点分布在某条指数型函数曲线y=c1e c2x的周围,于是令z=ln y,列表如下:作出散点图,如下:由表中数据可求得z与x之间的回归直线方程为z^=0.693+0.020x,则有y =e0.693+0.020x.(2)由(1)知,当x=168时,y=e0.693+0.020×168≈57.57,所以在校男生身高为168 cm,预测他的体重约为57.57 kg.两个变量不具有线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型,如y=c1e c2x,我们可以通过对数变换把指数关系变为线性关系,令z=ln y,则变换后样本点应该分布在直线z=bx+a(a=ln c1,b=c2)的周围.[再练一题]3.在一次抽样调查中测得样本的5个样本点,数据如下表:【解】作出变量y与x之间的散点图如图所示.由图可知变量y与x近似地呈反比例函数关系.设y=kx,令t=1x,则y=kt.由y与x的数据表可得y与t的数据表:作出y 与t 的散点图如图所示.由图可知y 与t 呈近似的线性相关关系.又t =1.55,y =7.2,∑i =15t i y i =94.25,∑i =15t 2i =21.312 5,b =∑i =15t i y i -5t y∑i =15t 2i -5t 2=94.25-5×1.55×7.221.312 5-5×1.552≈4.134 4,a =y -b t =7.2-4.134 4×1.55≈0.8, ∴y =4.134 4t +0.8.所以y 与x 的回归方程是y =4.134 4x+0.8.[构建·体系]1.下列结论正确的是( )①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A .①②B .①②③C .①②④D .①②③④【解析】 函数关系和相关关系的区别是前者是确定性关系,后者是非确定性关系,故①②正确;回归分析是对具有相关关系的两个变量进行统计分析的一种方法,故③错误,④正确.【答案】 C2.下表是x 和y 之间的一组数据,则y 关于x 的线性回归方程必过点( )C.(2.5,4) D.(2.5,5)【解析】线性回归方程必过样本点的中心(x,y),即(2.5,4),故选C.【答案】 C3.对具有线性相关关系的变量x和y,由测得的一组数据求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为________.【导学号:62690053】【解析】由题意知x=2,y=3,b=6.5,所以a=y-b x=3-6.5×2=-10,即回归直线的方程为y=-10+6.5x.【答案】y=-10+6.5x4.部门所属的10个工业企业生产性固定资产价值与工业增加值资料如下表(单位:百万元):【解析】x=3+3+5+6+6+7+8+9+9+1010=6.6.y=15+17+25+28+30+36+37+42+40+4510=31.5.∴r=∑10i=1(x i-x)(y i-y)∑10i=1(x i-x)2∑10i=1(y i-y)2=0.991 8.【答案】0.991 85.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)【解】 (1)x =16(8+8.2+8.4+8.6+8.8+9)=8.5, y =16(90+84+83+80+75+68)=80, ∵b =-20,a =y -b x , ∴a =80+20×8.5=250, ∴回归直线方程为y =-20x +250.(2)设工厂获得的利润为L 元,则L =x (-20x +250)-4(-20x +250)=-20⎝ ⎛⎭⎪⎫x -3342+361.25, ∴该产品的单价应定为334元时,工厂获得的利润最大.我还有这些不足:(1) (2)我的课下提升方案: (1) (2)。

线性回归和非线性回归

线性回归和非线性回归

线性回归和非线性回归
1 线性回归
线性回归是一种广泛使用的机器学习算法,它用于预测一个或多个连续的输入x变量和一个输出y变量之间的关系。

它是一种拟合数据模型的方法,试图找到一个线性关系,可以近似地预测未知输入变量。

给定一组输入变量x1,x2,...,xn,以及一系列输出y,线性回归提供一个称为线性模型的参数形式a1, a2, ..., an,以及偏置b 的等式,这样可以表示为:y = a1x1 + a2x2 + ... + anxn + b。

如果x, y的关系是线性的,那么我们可以使用线性回归找到当前数据关系的最佳参数模型。

2 非线性回归
非线性回归是一种用于预测一个变量与多个输入变量之间关系的机器学习算法。

与线性运动不同,它假设输入变量和输出变量之间的关系是非线性的。

非线性回归模型可以产生任意曲线和非线性模式,在复杂的数据集中表现很好。

通常,使用回归杂波分析,根据提供的数据和观察结果,可以选择正确的非线性函数。

例如,可以考虑使用多项式函数,偏微分方程,自定义神经网络或其他函数。

非线性回归

非线性回归
∂������ ∂θ
= −2
������ ������������ − ������������ ������������������������������ ������������������ = 0
(3)
设法求出θ 的解,用������(hat 西塔)表示,整理(3)式有:
������ ������������ ������������������������������ ������������ = (������������������������������ )������������2������
������ ������������ = ������������ + ������������
(1)
此模型与线性模型类似,我们采用最小二乘法极小化:
������ 2 ������ ������ = (������������ − ������������ )
(2)
估计θ ,S 代替 S(θ ) ,S 对θ 求微分后导数等于零得到 S 的最小值,
������ , = ������0 + ������1 ������ ������ = ������0 + ������1 ������ , ������ , = ������0 + ������1 ������ ,
, ������ , = ������0 + ������1 ������
但此种方式存在明显的局限性,为了说明它,我们先来回顾一下线性回归模 型中核心的最小二乘法(OLS) 。 1.1 最小二乘法回顾 在线性回归中,我们学会了普通最小二乘法(OLS),但它在使用时有相应的前 提假设: (1)正确的期望函数。第一个条件意味着计量模型的适用性,它不仅指出 期望函数部分包括所有重要的自变量, 同时随机变量部分包括不重要的可以忽略 的自变量;此外,还意味着我们需要确定一个较为合理的模型形式(不论是线性 还是非线性模型) ,这一点可以通过观察散点图进行判定。 (2) 自变量(Y)等于期望函数与随机变量之和,这一条假设使得 Y 的概率密 度函数可以通过随机变量的概率密度函数加以计算: ������������ = ������ ������,������ 2 = ������随机变量 y − Xβ ������ 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.条件指数
m ki , i 0,1, 2, p i
条件指数(condition index)可以用来判断多重共线性是否存在 以及多重共线性的严重程度,通常认为:
0 k 10, 没有多重共线性 10 k 100, 存在较强的多重共线性 k 100,存在严重的多重共线性


3Байду номын сангаас1 线性回归的常见问题

3.1.1 多重共线性 3.1.2 异方差性 3.1.3 自相关性
3.1.1 多重共线性 1.概念
对于模型 Yi 0 1 X 1i 2 X 2i k X ki i
i=1,2,…,n
其基本假设之一是解释变量之间不存在完全共线 性。
0


x
(b)非常数方差

例2.1 GNP与残差散点图,存在异方差。
12,000,000 8,000,000
4,000,000
RESID
0
-4,000,000
-8,000,000
-12,000,000 1,000
2,000 GNP
3,000
4,000
从残差图可以看出,误差项具有明显的异方差性, 误差随着自变量的增加而增加

3.差分法
时间序列数据、线性模型:将原模型 变换为差分模型: Yi =1X1i+2 X2i ++k Xki+ i 可以相对有效地消除原模型中的多 重共线性。
一般讲,增量之间的线性关系远比总量 之间的线性关系弱得多。
例如:
Year GDP CONS
中国GDP与居民消费C的总量与增量数据 ΔGDP ΔCONS
(2)滞后变量的引入
在经济计量模型中,往往需要引入滞后经济变量来反 映真实的经济关系。 例如,消费=f(当期收入, 前期收入)
显然,两期收入间有较强的线性相关性。
(3)样本资料的限制
由于完全符合理论模型所要求的样本数据较难收集,特 定样本可能存在某种程度的多重共线性 一般经验:
诊断方法

1.一些经验方法
3.方差扩大因子法
与特征根法比较,方差扩大因子法可以较准确地说明哪些变量 与其他变量有严重的共线性,严重程度如何


例3.2 承接例3.1,用方差扩大因子法检验 多重共线性检验SPSS 除PMG外,其他变量都与别的变量存在程度不同的 共线性问题,其中MOB的共线性最严重。
Coefficientsa Unstandardized Coefficients B Std. Error 2E+007 3E+007 1.419 .267 -3E+007 5027085 -59.875 198.552 -30540.9 9557.981 Standardized Coefficients Beta 2.484 -.415 -.071 -1.099 Collinearity Statistics Tolerance VIF .005 .180 .018 .008 218.079 5.548 55.074 118.205
(2)White异方差性检验


怀特检验通过OLS估计求得残差的估计值,然后利用残差估 计值的平方与解释变量及其交叉项辅助回归式,得到拟合优 度 ,从而构建统计量进行检验。 怀特检验的原假设为原回归模型不存在异方差,被择假设 为原回归模型存在异方差。

方程对象窗口:
View/Residual Test/Heteroskasticity/White
Variance Proportions MOB PMG POP .00 .00 .00 .00 .13 .00 .00 .61 .00 .26 .01 .08 .74 .25 .92
GNP .00 .00 .01 .81 .18
a. Dependent Variable: QMG


从条件指数可以看到,最大的条件数为162.804,说明自变 量间存在严重的共线性。 如果有某几个自变量的方差比例值在某一行同时较大(接 近1),则这几个自变量间就存在共线性。
5.回归系数的有偏估计


岭回归法 主成分法 偏最小二乘法 差分法

3.1.2 异方差性
1.异方差的含义 在一元线性回归模型中,如果 的方差是随解释变量变化 的量,则称此时随机误差序列存在异方差。 在多元线性回归模型中,如果 的方差协方差矩阵主对角 线的元素不相等,则表明存在异方差
第3章 线性回归问题与非线性回 归分析


应用普通最小二乘法时要求模型的随机误差项必须满足 :
(1)无偏性假定。即所有随机误差项的期望为0 (2)同方差性假定。即所有随机误差项的方差相等 (3)无序列相关性假定。即随机误差项之间无序列相关性 (4)解释变量与随机误差项相互独立。即解释变量为非随机变 量 (5)正态性假定。即随机误差项服从均值为0的正态分布。 在此基础上估计的参数才是最优线性无偏估计量。 但在实际操作处理过程中,这些基本的假定条件不一定满足,这 使得模型无法应用OLS方法估计或运用OLS方法得到的估计量不 具备最优线性无偏的特点。因此在建立模型后,需要检验随机误 差项是否符合OLS的假设条件。如果不符合,则需要对估计方法 进行改进和修改。
例3.1 根据例2.1计算特征值及条件指数 多重共线性检验SPSS
• 打开[Linear Regression: Statistics]子对话框,选择 [Collinearity diagnostics(共线性诊断)],单击[Continue]返 回主对话框并单击[OK]按钮。这样SPSS 便可输出所有检 查多重共线性的指标。
3.异方差性的检验

※图示检验法 ※ White异方差性检验
(1)图示检验法(残差图形态及判别)
残 差






一般认为,如果回归方程满足所给出 的基本假设,所有残差应该在e=0的 附近随机变化,并在变化不大的一条 带子内。 图a中的残差都落在变化不大的一条 带子内,也就可以说明回归模型满足 基本假设。
很大。因此,异方差性多出现在横截面样本之中。
至于时间序列,则由于因变量观察值来自不同时 期的同一样本单元,通常因变量的不同观察值之 间的差别不是很大,所以异方差性一般不明显。
23
2.异方差性的后果


存在异方差问题时,利用OLS方法估计的参数仍 具有无偏一致性,但不再具有有效性,即:异方 差条件下的估计系数的方差不等于最小二乘估计 方法下的最小方差 ,所以不具备有效性。
对于模型 Yi 0 1 X 1i 2 X 2i k X ki i 同方差假设为 Var( i ) 2 如果出现Var( i ) i2
即对于不同的样本点,随机误差项的方差不再是常数,则 认为出现了异方差性。

为什么会产生这种异方差性呢? 一方面是因为随机误差项包括了测量误差和模型 中被省略的一些因素对因变量的影响,另一方面 来自不同抽样单元的因变量观察值之间可能差别

F-statistic是辅助方程整体显著性的F统计量;Obs*R-squared 是怀特检验的统计量 。 通过比较 Obs*R-squared的概率值和 显著性水平可以对方程是否存在异方差进行判断。
例3.3 对例2.1进行怀特检验 回归方程的 White 异方差检验的结果:
White Heteroskedasticity Test: F-statistic Obs*R-squared 12.04670 33.43969 Probability Probability 0.000000 0.002489
Model 1
t .979 5.315 -5.569 -.302 -3.195
(Constant) MOB PMG POP GNP
Sig . .335 .000 .000 .765 .003
a. Dependent Variable: QMG
克服多重共线性的方法
1.排除引起共线性的变量


找出引起多重共线性的解释变量,将它排除出去, 是最为有效的克服多重共线性问题的方法。
a Collinearity Diagnostics
Model 1
Dimension 1 2 3 4 5
Eig envalue 4.797 .175 .027 .001 .000
Condition Index 1.000 5.240 13.250 88.903 162.804
(Constant) .00 .00 .01 .08 .92
如果某两个或多个解释变量之间出现了相关性, 则称为多重共线性(Multicollinearity)。
如果存在 c1X1i+c2X2i+…+ckXki=0
i =1,2,…,n
其中: ci 不全为0,则称为解释变量间存在完全共线性。
多重共线性在实际的多元线性回归分析尤其是
涉及经济变里的模型中很常见。即在决定一个因变
333
329 383 673 1079 769 909 1909 1196 806 1784 2806 4230 7034 7313
1996
68498
40172
9093
5643
由表中的比值可以直观地看到,增量的线性关 系弱于总量之间的线性关系,可以部分克服共线性 的问题。 原模型和差分模型经过检验都具有多重共线性, 但程度不同。
量的多个自变量中,有部分自变量呈高度相关,也
就是说,这些变量被用来解释因变量时导致所提供 的信息出现“重叠”。例如、模型中如果有多个自 变量有共同的上升趋势,它们之间很可能有高度的 相关关系导致共线性。
实际经济问题中的多重共线性
相关文档
最新文档