数学基础知识大全
初中数学基础知识点全总结
![初中数学基础知识点全总结](https://img.taocdn.com/s3/m/e1d273fbb1717fd5360cba1aa8114431b90d8ed6.png)
初中数学基础知识点全总结初中数学是整个数学学习体系中的重要基础阶段,掌握好基础知识点对于后续的学习至关重要。
下面将对初中数学的基础知识点进行全面总结。
一、数与代数1、有理数有理数包括整数和分数。
整数又包括正整数、零和负整数;分数包括正分数和负分数。
有理数的运算包括加、减、乘、除和乘方。
加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得零。
减法法则:减去一个数,等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。
除法法则:除以一个数等于乘以这个数的倒数;零不能作除数。
乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,如π、√2 等。
平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
算术平方根:正数 a 的正的平方根叫做 a 的算术平方根,记作√a。
立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
正数的立方根是正数,负数的立方根是负数,零的立方根是零。
3、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
整式:单项式和多项式统称为整式。
单项式是数或字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
整式的运算:整式的加减实质是合并同类项;整式的乘法包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式;整式的除法包括单项式除以单项式、多项式除以单项式。
分式:形如 A/B(A、B 是整式,且 B 中含有字母,B≠0)的式子叫做分式。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
数学知识大全
![数学知识大全](https://img.taocdn.com/s3/m/a9575bd4162ded630b1c59eef8c75fbfc77d9481.png)
数学知识大全数学作为一门科学,是研究数量、结构、空间以及变化等概念的学科。
它是现代科学的基础,也是解决实际问题的重要工具。
本文将为您呈现数学知识的大全,包括数学的基础概念、重要定理与公式、数学在实际生活中的应用等方面的内容。
一、数学的基础概念1. 数的分类:自然数、整数、有理数、实数、复数等。
2. 基本运算:加法、减法、乘法、除法,以及它们的性质和规律。
3. 数的因数与倍数:素数、合数、最大公约数、最小公倍数等概念。
4. 数列与级数:等差数列、等比数列、调和级数等。
二、重要定理与公式1. 代数方程:一元一次方程、二次方程等的解法及性质。
2. 解析几何:直线方程、圆方程、曲线的性质等。
3. 三角函数:正弦、余弦、正切等基本概念及相关公式。
4. 极限、导数与积分:函数的极限与连续性、导数的定义与应用、积分的概念与计算方法等。
三、数学在实际生活中的应用1. 金融领域:利息计算、投资收益分析、贷款利率计算等。
2. 统计学:数据收集与分析、概率与统计推断等。
3. 工程学:测量、建模、优化等领域中的数学方法应用。
4. 物理学:运动学、力学、电磁学中的数学描述与计算等。
四、数学的发展与进步1. 古代数学:埃及、希腊、印度等古代文明的数学成就。
2. 近代数学:微积分、解析几何等的发展与应用。
3. 现代数学:集合论、代数学、几何学等的研究进展。
4. 数学思维:数学的逻辑思维、证明方法及与其他学科的交叉等。
五、数学的重要性与学习方法1. 提高思维能力:数学训练可以培养逻辑推理能力和问题解决能力。
2. 学科交叉应用:数学与物理、化学、经济学等学科有着密切的联系。
3. 技术创新:现代科技的发展需要数学方法的应用与推动。
4. 学习方法:培养兴趣、理解概念、掌握基础、多实践与思考等。
六、数学的趣味性与乐趣1. 数学竞赛:参加数学竞赛可以激发学习兴趣与提高水平。
2. 数学游戏:数独、数学趣味题、数学解谜等游戏丰富了学习的方式。
小学一至三年级数学基础知识大全
![小学一至三年级数学基础知识大全](https://img.taocdn.com/s3/m/2f6b5a7eeffdc8d376eeaeaad1f34693daef10c8.png)
小学一至三年级数学基础知识大全一年级数学基础知识数的认识•认识0-99的数字•数的顺序和比较大小•数的分类:奇数和偶数简单的加法和减法•0-10的加减法运算•运用加法算式解决简单问题•运用减法算式解决简单问题图形与空间•认识常见的二维图形:正方形、长方形、圆形和三角形•进行简单的图形对称•探索物体的位置关系:上、下、左、右量的认识•长度的认识:用毫米和厘米测量•重量的认识:用千克和克测量•时间的认识:认识小时、分钟和秒二年级数学基础知识两位数加减法•计算两位数的加法和减法•进位和退位的概念•运用加减法解决实际问题数量的加减法•认识乘法的基本概念•利用加法和乘法解决实际问题•认识数轴和数线三角形和四边形•认识三角形和四边形的性质•探索多边形之间的关系•进行简单的多边形拼图活动时钟和日历•识别时钟上的整点和半点•认识24小时制和12小时制•使用日历进行日期和星期的推算三年级数学基础知识乘法和除法•计算两位数乘一位数的乘法•理解乘法和加法的关系•了解简单的乘法口诀表•利用乘法解决实际问题数学运算•认识数的整数和分数•进行简单的分数加减法运算•认识小数的概念数据分析•收集数据并整理成表格•制作简单的柱状图和折线图•分析数据并得出结论几何图形•认识平行线和垂直线•探索各种几何图形的性质•进行简单的几何图形拼图活动以上是小学一至三年级数学的基础知识大全,通过学习这些知识,孩子们可以打下扎实的数学基础,为更高级的数学学习奠定坚实的基础。
希望孩子们在数学学习中能够保持耐心和乐观的心态,不断提升自己的数学能力。
高中数学基础知识
![高中数学基础知识](https://img.taocdn.com/s3/m/ff341ac148649b6648d7c1c708a1284ac8500593.png)
高中数学基础知识一、函数部分: 1.函数性质:(1)单调性:增+增为 ,减+减为 ,增-减为 ,增+减不确定, (2)奇偶性:奇±奇为 ,偶±偶为 ,奇*奇为 ,偶*偶为 , 奇*偶为 。
2.分数指数幂与根式的性质: (1)m na = .(2)m na-= .2.指数式与对数式的互化: log a N b =⇔ .(1)、p a -= ; (2)、0a = (0a ≠) ; (3)、 log 1a = ;(4)、 log a a = ; (5)、a ( )b =; (6) log a n =( );3. 对数的换底公式 :log a N =4.对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则(1)log log a a M N += ; (2) log log a a M N -= ; (3)log na M = ; (4) log m na N = 。
二、三角函数:1.圆心角α= ;弧长公式:l = ;扇形面积公式:S= = 。
2.三角函数的定义:sin α= , cos α= ,tan α= .3.同角三角函数的基本关系:平方关系: , 商的关系:。
4.两角和与差的正弦、余弦、正切公式:①sin()αβ±= ;cos()αβ±= ;tan()αβ±= .②sin cos y a x b x =+= (tan baϕ= ). 5.二倍角公式: ①sin 2α= .②cos2α= = = (二倍角公式).③tan 2α= 。
④sin cos αα= ,2cos α= ; 2sin α= (降幂公式).r lα7.周期公式:①函数sin()y A x ωϕ=+及cos()y A x ωϕ=+的周期T = (A 、ω、ϕ为常数, 且A ≠0).②函数()φω+=x A y tan 的周期T = (A 、ω、ϕ为常数,且A ≠0). 8.正、余弦定理:⑴正弦定理: (R 2是ABC ∆外接圆直径)S = = = .⑵余弦定理:2a = ;2b = ; 2c = ;cos A = ;cos B = ;cos C = 。
高中数学基本知识点汇总(最新)
![高中数学基本知识点汇总(最新)](https://img.taocdn.com/s3/m/8d87ff72f08583d049649b6648d7c1c709a10b42.png)
高中数学基本知识点汇总(最新)一、集合与函数概念1. 集合的基本概念集合的定义:集合是某些确定的、互不相同的对象的全体。
集合的表示方法:列举法、描述法、图示法。
常见数集:自然数集N、整数集Z、有理数集Q、实数集R。
2. 集合间的关系与运算子集、真子集、相等关系。
并集、交集、补集的定义及运算。
集合运算的性质:交换律、结合律、分配律、摩根律。
3. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
函数的三要素:定义域、值域、对应关系。
函数的表示方法:列表法、图象法、解析法。
4. 函数的性质单调性:增函数、减函数的定义及判定。
奇偶性:奇函数、偶函数的定义及判定。
周期性:周期函数的定义及常见周期函数。
最值:函数的最大值和最小值及其求法。
二、基本初等函数1. 一次函数与二次函数一次函数的形式:y = kx + b(k≠0)。
一次函数的图象与性质:直线、斜率、截距。
二次函数的形式:y = ax^2 + bx + c(a≠0)。
二次函数的图象与性质:抛物线、顶点、对称轴、开口方向。
2. 指数函数与对数函数指数函数的形式:y = a^x(a>0且a≠1)。
指数函数的图象与性质:单调性、过定点(0,1)。
对数函数的形式:y = log_a(x)(a>0且a≠1)。
对数函数的图象与性质:单调性、过定点(1,0)。
3. 幂函数幂函数的形式:y = x^α。
常见幂函数的图象与性质:α为正整数、负整数、分数时的图象特点。
4. 三角函数正弦函数、余弦函数、正切函数的定义及图象。
三角函数的性质:周期性、奇偶性、单调性。
三角函数的诱导公式及恒等变换。
三、立体几何1. 空间几何体的结构特征多面体:棱柱、棱锥、棱台的定义及性质。
旋转体:圆柱、圆锥、圆台、球体的定义及性质。
2. 空间几何体的三视图主视图、俯视图、左视图的定义及绘制方法。
学习数学要具备的基础数学知识
![学习数学要具备的基础数学知识](https://img.taocdn.com/s3/m/611ad2fc8ad63186bceb19e8b8f67c1cfbd6ee48.png)
学习数学要具备的基础数学知识学习数学是我们提高逻辑思维和解决问题能力的重要途径。
然而,在开始学习数学之前,我们需要具备一些基础数学知识,这将为我们建立坚实的数学基础打下基础。
本文将介绍学习数学所需的基础数学知识。
1. 数字和计数系统:在学习数学之前,我们首先需要了解数字和计数系统。
数字是表示数量的符号,而计数系统定义了我们如何计数和表示数字。
最常见的计数系统是十进制,其中我们使用0到9的数字来表示所有的数量。
我们还应该了解其他计数系统,如二进制和十六进制等。
2. 四则运算:四则运算是数学的基本运算,包括加法、减法、乘法和除法。
掌握这些运算符号和规则对于解决数学问题至关重要。
我们需要了解优先级规则,例如先乘除后加减,以及括号的运用。
3. 小数和分数:学习数学时,我们还需要熟悉小数和分数的概念。
小数是一种表示部分数量的方式,分数则表示一个数量的一部分。
我们需要学习如何将小数转化为分数,以及如何进行小数和分数的加减乘除运算。
4. 百分数和比例:百分数和比例是日常生活中常见的数学概念,也是解决实际问题的重要工具。
百分数是以百分之一为单位的比例,用于表示一个数相对于100的部分。
比例则是两个量之间的关系,可以用分数、比或百分数表示。
5. 平方根和乘方:在学习数学时,我们将经常遇到平方根和乘方的概念。
平方根是一个数的平方等于另一个给定数的操作的反操作。
乘方是将一个数自乘若干次的操作。
了解这些概念有助于我们解决方程和理解图形的性质。
6. 代数基础:代数是数学的一个重要分支,涉及未知数和变量的使用。
在学习代数之前,我们需要掌握一些代数基础知识,如变量、系数、常数和表达式等。
我们还需要了解如何通过运算和化简来简化和解决代数表达式。
7. 几何基础:几何是另一个重要的数学分支,研究图形、形状和空间的性质。
在学习几何之前,我们需要了解一些基本的几何概念,如点、线、面、角、三角形和多边形等。
我们还需要学习如何计算图形的周长、面积和体积。
高中数学必考知识点大全
![高中数学必考知识点大全](https://img.taocdn.com/s3/m/6b4c4766492fb4daa58da0116c175f0e7cd1190d.png)
高中数学必考知识点大全
一、代数基础
1. 整式与分式
2. 多项式运算
3. 因式分解与公式运用
4. 二次根式与有理化
5. 分式方程与多项式方程
二、函数与方程
1. 一次函数与二次函数
2. 指数函数与对数函数
3. 三角函数及其应用
4. 参数方程与平面向量
5. 不等式与绝对值方程
三、数列与数学归纳法
1. 等差数列与等比数列
2. 通项公式与求和公式
3. 数列的极限与数列的应用
4. 数学归纳法的原理与应用
四、平面几何与立体几何
1. 相交线与平行线
2. 圆的性质与圆周角
3. 三角形的性质与判定
4. 四边形的性质与判定
5. 空间几何体的性质与计算
五、概率与统计
1. 随机事件的概率与计算
2. 排列与组合的计算
3. 概率模型与事件独立性
4. 统计图表与统计量
5. 抽样调查与统计推断
六、导数与微分
1. 函数的极限与连续性
2. 一元函数的导数计算
3. 导数的应用与函数图像
4. 高阶导数与曲线的凹凸性
5. 微分学在实际问题中的应用
七、数学证明与解题方法
1. 数学证明的基本思路
2. 数学归纳法与递推关系
3. 数学问题的建模与解决
4. 数学解题方法与策略
5. 数学解题的技巧与应用
综上所述,以上列举的是高中数学中的必考知识点大全。
熟练掌握这些知识点对于高中数学的学习和考试都具有重要意义。
希望同学们能够认真学习并掌握这些数学知识,为自己的学业打下坚实的基础。
祝愿大家在数学学习中取得优异的成绩!。
高中数学基础知识汇总
![高中数学基础知识汇总](https://img.taocdn.com/s3/m/020a680268eae009581b6bd97f1922791688be1d.png)
高中数学基础知识汇总一、集合、简易逻辑(14课时,8个)1、集合;2.子集、补集;3.交集、并集;4.逻辑连结词;5.四种命题;6.充要条件。
二、函数(30课时,12个)1、映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩展;7.有理指数幂的运算性质;8.指数函数;9.对数;10.对数的运算性质;11.对数函数。
三、数列(12课时,6个)1、数列的有关概念;2.等差数列;3.等差数列的前n项和;4.数列求和的常用方法。
四、三角函数(46课时,17个)1、角的概念的扩展;2.弧度的概念;3.任意的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.期中轴线对称、伸缩变换和图象的间断点;11.函数的图象与性质;12.还请大家注意平移和伸缩变换,它们是研究图象的基本方法。
五、平面解析几何(16课时,7个)1、平面直角坐标系;2.直线方程;3.圆的方程。
六、不等式(10课时,5个)1、不等式的基本性质;2.一元一次不等式和一元二次不等式;3.不等式的证明。
七、平面向量(12课时,8个)1、向量的基本概念及表示方法;2.向量的运算。
高中语文基础知识汇总一、表达方式:记叙、描写、抒情、议论、说明二、文学体裁:诗歌、小说、散文、剧本、传记文学、报告文学、寓言三、修辞手法:比喻、借代、夸张、对偶、对比、反复、反问、设问、引用、四、表现手法:象征、联想、想象、衬托(正衬、反衬)、烘托(即托与衬的区别)、渲染、用典、动静相衬、虚实相生等五、选材剪材:选材要围绕写作中心,选择感受最深的事来写,选择材料要典型新颖。
剪裁就是对详写和略写的安排。
材料有详有略,才能突出中心。
六、结构安排:包括开头和结尾、段落和层次、过渡和照应,以及伏笔和点睛之笔。
数学基础知识资料大全
![数学基础知识资料大全](https://img.taocdn.com/s3/m/a4a55c1d3d1ec5da50e2524de518964bcf84d2ab.png)
数学基础知识资料大全数学是一门基础学科,广泛应用于自然科学、工程技术、社会科学等领域。
掌握好数学基础知识对于学习其他学科有着重要的作用。
本文介绍了数学基础知识的相关资料,旨在帮助读者系统学习数学知识。
1. 数学基础概念1.1. 数学符号数学符号是数学表达式中使用的特殊标记,用于表示数字、运算、关系等。
常见的数学符号包括加减乘除、等于号、大于小于号等。
1.2. 数学运算数学运算是数学中的基本操作,包括加法、减法、乘法、除法等。
通过运算,可以对数进行加工和处理,得到新的数值结果。
1.3. 数学公式数学公式是数学表达式的抽象形式,由符号和数字组成。
数学公式能够准确地描述数学关系和规律,是数学研究和应用中的重要工具。
2. 数学基础理论2.1. 数学基本概念•整数:包括正整数、负整数和零,用于表示没有小数部分的数值。
•分数:表示一个整数除以另一个整数的结果,包括真分数和假分数。
•小数:表示小数部分的数值,可以有有限位数或无限循环。
2.2. 代数学基础•代数方程:表示未知数与已知数之间的等量关系,常见的代数方程包括一元一次方程、二元一次方程等。
•多项式:由若干项的和构成的代数表达式,可分为一元多项式和多元多项式。
2.3. 几何学基础•几何图形:平面和立体中的图形,包括点、线、面等。
•几何关系:描述几何图形之间的位置关系和相互影响,如平行、垂直、相似等。
3. 数学基础应用3.1. 数学知识在生活中的应用•日常计算:如购物计算、时间计算等。
•金融领域:利息计算、投资分析等。
•工程技术:建筑设计、机械制造等领域的计算。
3.2. 数学知识在科学研究中的应用•物理学:运动学、热力学等物理学知识的数学表达。
•化学学:化学反应速率、溶解度等的数学描述。
•生物学:群体增长模型、遗传规律等的数学分析。
4. 数学基础练习资料4.1. 数学基础题库•一元一次方程题库:适合初学者练习代数方程的解法。
•几何基础题库:包括平面几何和立体几何题目,帮助巩固几何知识。
数学基础知识与基本技能有哪些
![数学基础知识与基本技能有哪些](https://img.taocdn.com/s3/m/cc172709a9956bec0975f46527d3240c8547a16b.png)
数学基础知识与基本技能有哪些数学作为一门基础学科在我们的日常生活和各行各业中都起着重要作用。
在学习和使用数学的过程中,一些基础知识和基本技能是至关重要的。
本文将讨论数学基础知识与基本技能的相关内容。
1. 数学基础知识1.1. 数的分类•自然数:正整数,包括0和正整数,用来计数。
•整数:包括正整数、负整数和0。
•有理数:可以表示为两个整数的比值,包括整数和分数。
•无理数:不能表示为有理数的数,如 $\\sqrt{2}$。
1.2. 基本运算•加法:两个数相加。
•减法:一个数减去另一个数。
•乘法:两个数相乘。
•除法:一个数除以另一个数。
1.3. 基本代数知识•代数表达式:由数字、变量、运算符号和括号组成的表达式。
•方程:含有未知数的等式。
•不等式:两个表达式之间的关系,可以是大于、小于、大于等于或小于等于。
1.4. 几何基础•几何图形:如点、线、面等。
•平行线、垂直线:线的相对位置关系。
•三角形、四边形:由线段组成的多边形。
1.5. 概率与统计•概率:某一事件发生的可能性。
•均值、中位数、众数:统计数据集的三种中心趋势度量。
2. 数学基本技能2.1. 四则运算•熟练进行加减乘除的计算。
•掌握运算符的优先级规则。
2.2. 方程和不等式求解•理解方程和不等式的解的概念。
•独立解决简单的方程和不等式问题。
2.3. 几何推理•利用几何知识解决直角三角形、相似三角形等几何问题。
•掌握几何证明方法。
2.4. 概率与统计问题•使用基本概率统计概念解决实际问题。
•分析和解释统计图表。
3. 数学在现代社会的应用数学不仅是一门学科,更是一种思维工具,能够应用到各个领域。
在现代社会中,数学的应用广泛,涉及到科学、工程、经济、金融等各个领域。
例如:•密码学:数学方法被广泛应用于保护信息安全。
•金融领域:数学模型用于风险管理和股票市场分析。
•医学领域:数学方法用于生物医学工程和医学影像处理。
•交通运输:数学优化方法帮助提高交通效率。
数学知识点总结初中基础
![数学知识点总结初中基础](https://img.taocdn.com/s3/m/1d7301754a73f242336c1eb91a37f111f1850d3a.png)
数学知识点总结初中基础一、数与代数1. 整数s和有理数- 整数包括正整数、零和负整数,是实数的离散部分。
- 有理数是由整数和分数构成的数集,可以表示为两个整数的比,形式为a/b,其中a和b是整数,b不等于零。
2. 无理数- 无理数是不能表示为简单分数的实数,例如圆周率π和黄金比例φ。
3. 代数表达式- 代数表达式是由数字、字母(代表变量)和运算符(加、减、乘、除)组成的数学表达式。
4. 方程与不等式- 方程是两个表达式通过等号连接的式子,求解方程就是找到使得等式成立的变量值。
- 不等式表示两个表达式之间的大小关系,使用符号“<”或“>”来表示。
5. 函数- 函数是一种特殊的关系,每个输入值(自变量)对应一个输出值(因变量)。
- 函数的图像是坐标平面上的点集,其中每个点的横纵坐标满足函数关系。
二、几何1. 平面几何- 点、线、面是构成平面几何的基本元素。
- 直线、射线和线段是线的基本形式,其中线段是有限长度的直线部分。
2. 三角形- 三角形是三条线段首尾相连形成的图形,根据边长和角度的不同,三角形有多种分类,如等边三角形、等腰三角形和直角三角形。
3. 圆- 圆是由所有与给定点(圆心)距离相等的点组成的平面图形。
- 圆的周长(圆周)和面积的计算公式分别是C=2πr和A=πr²,其中r是圆的半径。
4. 四边形- 四边形是由四条线段首尾相连形成的图形,常见的四边形有正方形、长方形、菱形和梯形。
5. 几何变换- 几何变换包括平移(移动)、旋转(绕一点转动)、轴对称(关于某条直线对称)和缩放(放大或缩小)。
三、统计与概率1. 数据的收集和整理- 数据可以通过观察、实验和调查等方式收集。
- 数据整理通常包括分类、汇总和制表等步骤。
2. 描述性统计- 描述性统计包括计算数据的中心趋势(如平均数、中位数和众数)和离散程度(如方差和标准差)。
3. 概率- 概率是衡量事件发生可能性的数值,通常介于0和1之间。
数学高中基础知识总结归纳
![数学高中基础知识总结归纳](https://img.taocdn.com/s3/m/7d9dd5b3f71fb7360b4c2e3f5727a5e9856a27f0.png)
数学高中基础知识总结归纳数学是一门理科学科,也是人类文明进步不可或缺的一部分。
在高中阶段,数学作为一门重要的学科,为我们打下了坚实的基础。
下面将对数学高中基础知识进行总结归纳,帮助大家回顾和巩固相关知识。
一、代数基础1. 数与代数运算在代数学中,我们研究的是关于数及其运算的性质和规律。
数的运算包括加法、减法、乘法和除法等基本运算。
代数方程是数与代数运算的关系表达式,常见的形式有一元二次方程、线性方程组等。
2. 多项式及其运算多项式是若干项的代数和,由系数与幂次构成。
多项式的运算包括加减乘除及整除等。
我们可以通过因式分解、配方法等技巧对多项式进行化简。
3. 函数与方程函数是数与数之间的对应关系,常见的函数包括线性函数、二次函数、指数函数等。
方程是含有一个或多个未知数的等式,我们可以通过求解方程来确定未知数的值。
二、几何基础1. 几何图形几何图形是平面内或空间内的形状,常见的有点、线、面、体等。
在高中数学中,我们研究的主要是平面几何。
常见的几何图形包括直线、曲线、多边形等。
2. 三角函数与三角关系三角函数是通过角的度量值与直角三角形的边比值来定义的函数,例如正弦函数、余弦函数等。
三角关系是指角与三角函数之间的关系,常见的有正弦定理、余弦定理等。
3. 向量与坐标向量是带有方向的量,由大小和方向两部分组成。
向量的运算包括加减乘除等,我们可以通过向量进行几何推理和计算。
坐标是确定几何图形位置的一种方法,常见的有平面直角坐标系和空间直角坐标系。
三、概率与统计基础1. 概率基本概念概率是指某一事件发生的可能性大小,它的取值范围是0到1。
常见的概率计算方法包括频率法、古典概型及几何概型等。
2. 统计基本概念统计是通过对数据进行收集、整理、分析和解释,从而得出结论的科学方法。
常见的统计方法包括数据收集、频数分布、描述统计和推断统计等。
3. 概率与统计的应用概率与统计在我们的日常生活中具有广泛的应用,例如通过概率计算可以进行赌博游戏的分析,通过统计可以对市场销售情况进行预测等。
初中数学知识点大全
![初中数学知识点大全](https://img.taocdn.com/s3/m/7a70154e7ed5360cba1aa8114431b90d6d858940.png)
初中数学知识点大全
1.基础运算:加法、减法、乘法、除法等四则运算法则。
2.整数与有理数:整数、正负数的概念、绝对值、相反数、倒数等。
3.小数与分数:小数的表示与运算、分数的概念、分数的四则运算、约分与通分等。
4.百分数与比例:百分数的概念、百分数与分数的转换、百分数的四则运算、比例的概念与比例式的运用等。
5.算术平方根与立方根:算术平方根的概念、算术平方根的性质、立方根的概念与计算等。
6.代数基础:代数式的概念、代数式的运算、字母表示法与未知数的应用等。
7.线性方程与一元一次方程:一元一次方程的概念、一元一次方程的解集、一元一次方程的应用等。
8.图形的基本认识:点、线、面的概念、图形的分类与性质等。
9.直线与平面图形的性质:直线的性质、平行线与垂直线的关系、多边形的性质与分类等。
10.长方形、正方形与三角形:长方形与正方形的性质与计算、三角形的性质与计算等。
11.圆与圆的计算:圆的性质与计算、圆内接四边形的性质等。
12.相似与全等:相似与全等的概念、相似三角形的性质与计算等。
13.倍数与约数:倍数的概念、约数的概念与性质等。
14.整系数一元二次方程:一元二次方程的概念、一元二次方程的解的判别式与性质等。
15.统计学与概率:统计学的基本概念、统计表与统计图的制作与分析、简单概率与事件的发生等。
以上是初中数学的主要知识点,它们包括了数的运算、代数、几何、函数、方程、概率等各个方面。
在学习过程中,需要掌握这些知识点,并能够熟练应用于解题。
数学基础知识大全
![数学基础知识大全](https://img.taocdn.com/s3/m/2a7b8bb3951ea76e58fafab069dc5022aaea469c.png)
数学基础知识大全前言数学作为一门基础学科,贯穿人类历史的各个领域,是自然科学和社会科学的重要工具。
本文将全面介绍数学的基础知识,从基本概念到常见定理,帮助读者建立起扎实的数学基础。
一、基本概念1. 数的分类数可以分为自然数、整数、有理数、无理数等。
自然数是最基本的数,用来表示计数;整数包括自然数和它们的负值;有理数可以表示为两个整数的比;无理数是不能表示为有理数的数,如$\\pi$和$\\sqrt{2}$。
2. 运算法则数学中的基本运算包括加法、减法、乘法、除法。
运算法则包括交换律、结合律、分配律等,这些法则是进行复杂运算的基础。
3. 数轴数轴是一个用来表示各种数的直线,其中数和坐标是一一对应的。
数轴上的位置可以用来表示数的大小和相对关系。
二、代数学1. 代数方程代数方程是数由字母和数字组成的等式,一般包括未知数和常数。
解代数方程是代数学的重要内容,包括一元一次方程、一元二次方程等。
2. 代数函数代数函数是一种特殊的关系,它将一个或多个自变量映射到一个因变量。
常见的代数函数包括线性函数、二次函数、指数函数和对数函数等。
三、几何学1. 几何基本概念几何学是研究空间形状、大小、相对位置等性质的数学学科。
几何学的基本概念包括点、直线、面、角度等。
2. 几何图形几何图形是几何学中的重要概念,包括直线、圆、多边形、圆锥、圆柱等。
熟练掌握几何图形的性质可以帮助我们解决很多实际问题。
四、概率与统计1. 概率概率是研究随机现象发生的可能性的数学分支。
概率理论可以用来描述随机事件发生的规律性,并在实践中有着广泛的应用。
2. 统计统计学是研究数据收集、整理、分析和解释的学科。
统计方法可以帮助我们从数据中发现规律、做出预测和推断。
五、数学分析1. 极限极限是数学分析中的重要概念,用来描述函数在某点附近的性质。
掌握极限理论对于理解微积分和数学分析具有重要意义。
2. 微积分微积分是研究变化的数学分支,包括求导、积分、微分方程等内容。
小学数学知识点总结大全完整版
![小学数学知识点总结大全完整版](https://img.taocdn.com/s3/m/08c81dc2f424ccbff121dd36a32d7375a517c665.png)
小学数学知识点总结大全数学基础知识数的概念1.自然数:正整数和0,用于表示物体个数和序号。
2.整数:包括正整数、负整数和0,用于表示物体个数、序号和相反意义的量。
3.小数:由整数部分和小数部分组成,用于表示十分之几、百分之几、千分之几等。
4.分数:表示两个整数之间的关系,分子表示部分数量,分母表示整体被分成了几份。
数的运算1.加法:将两个数合并成一个数的运算。
2.减法:已知两个数的和与其中的一个数,求另一个数的运算。
3.乘法:求几个相同加数和的运算。
4.除法:已知两个数的积与其中的一个数,求另一个数的运算。
5.幂运算:求一个数的n次方的运算。
计量单位1.长度单位:米、分米、厘米、毫米等。
2.面积单位:平方米、平方分米、平方厘米、平方毫米等。
3.体积单位:立方米、立方分米、立方厘米、立方毫米等。
4.质量单位:克、千克、吨等。
5.时间单位:秒、分钟、小时、天、月、年等。
6.货币单位:元、角、分等。
分数的运算1.分数加法:分母相同的分数相加,分子相加;分母不同的分数需要通分后相加。
2.分数减法:同分母分数相减,分子相减;异分母分数需要通分后相减。
3.分数乘法:分子相乘的积作为新分数的分子,分母相乘的积作为新分数的分母。
4.分数除法:将除法转换为乘法,即除以一个分数等于乘以其倒数。
小数的运算1.小数加法:将小数点对齐,按位相加,保留相应位数的小数。
2.小数减法:同小数点对齐,按位相减,保留相应位数的小数。
3.小数乘法:忽略小数点,按整数乘法计算,然后根据因数中小数点后的位数确定结果中小数点的位置。
4.小数除法:将除数乘以10的整数次幂,使其成为整数,然后进行整数除法,最后将商的小数点向左移动相应的位数。
平面几何1.点:没有长度、宽度和高度的物体。
2.线段:有两个端点的线段,可以测量长度。
3.射线:有一个端点,无限延伸的线段。
4.直线:无端点,无限延伸的线段。
5.角:由两条射线的公共端点形成的图形。
6.三角形:由三条边组成的图形。
数学初高中基础知识点总结
![数学初高中基础知识点总结](https://img.taocdn.com/s3/m/8cf1318d88eb172ded630b1c59eef8c75ebf9577.png)
数学初高中基础知识点总结一、基本概念1. 数与数系数是人们用来计数、度量和表示事物数量的工具。
数是分数、百分数、小数、无理数、整数等。
数系是根据一定的定义和规则所组成的一个数学系统。
常见数系有自然数、整数、有理数、实数和复数等。
2. 整式与方程整式是由数字和字母及它们的乘积以及它们的和或差所组成的代数式。
整式有单项式、多项式等。
方程是含有未知数的等式。
方程可分为一元一次方程、一元二次方程、高次方程等。
3. 函数函数是用于描述变量之间关系的一种工具。
函数包括定义域、值域、单调性、奇偶性、周期性等概念。
4. 极限极限是无穷数列与函数的一种概念,是研究无穷的一个基本环节。
极限的概念是微积分的基础。
5. 排列组合排列是从n个不同元素中任取m(m≤n)个元素按一定的次序排成一列的行为。
组合是从n个不同元素中任取m(m≤n)个元素并成一组的行为。
6. 概率概率是用来描述随机事件发生可能性的一种工具,它涉及到样本空间、事件、概率分布等概念。
二、基本运算1. 加减乘除加法是满足交换律、结合律的运算,减法是加法的逆运算,乘法满足交换律、结合律、分配律,除法是乘法的逆运算。
2. 整除与除法一个整数a被另一个整数b整除,当且仅当存在整数c,使得a=bc,此时a是b的倍数,b是a的约数。
3. 分数的加减乘除分数是用来表示一个数与另一个数的比值关系,分数的运算包括加减乘除,需要通分、约分等运算。
4. 指数与根指数是幂的一种表示形式,根是指数的逆运算。
指数运算和根的运算包括乘方、开方等。
5.代数式的加减乘除代数式是由数字、字母及它们的乘积、和或差所组成的式子,代数式的加减乘除包括合并同类项、配方法等。
三、代数1. 分式分式是表示两个整式的比值。
分式的计算包括分式的加减乘除、通分、约分等。
2. 二次根式二次根式是x 的二次幂的平方根的形式。
二次根式的计算包括提取公因数、合并同类项等。
3. 一元二次方程一元二次方程是形如ax^2+bx+c=0的方程,它的一元二次方程求解包括用求根公式、配方法等。
数学基础知识点总结大全
![数学基础知识点总结大全](https://img.taocdn.com/s3/m/81af2269182e453610661ed9ad51f01dc2815782.png)
数学基础知识点总结大全一、整数及其性质•整数的概念及表示方法•整数的加法、减法、乘法和除法规则•整数的性质:偶数、奇数、质数、合数•整数的互质、最大公因数和最小公倍数•整数的比较大小二、分数和小数•分数的概念与表示•分数的加减乘除运算•分数的化简与约分•小数与分数的相互转化•循环小数与有限小数三、代数•代数表达式的基本概念•代数表达式的合并与展开•一元一次方程的解法•一元二次方程的解法•不等式的解法•绝对值方程与不等式•二元一次方程组的解法四、几何•点、线、面、体的基本概念•直线、射线、线段的性质•角的概念与性质•三角形的性质与分类•四边形的性质与分类•圆的性质与圆周率•空间图形的体积与表面积五、概率与统计•随机试验、样本空间与事件的概念•概率的基本概念与计算方法•排列与组合的基本概念•概率统计与频率统计的比较•统计图表的绘制与解读六、函数•函数的概念与表示•一次函数、二次函数、绝对值函数的性质•函数的运算:加法、减法、乘法、除法、复合•函数的奇偶性与周期性•函数的图像与变化规律七、数列与级数•数列的概念与表示方法•等差数列、等比数列、递推数列的性质•级数的概念与求和法•等比级数的性质及求和公式八、平面向量•平面向量的概念与表示•平面向量的加法、减法、数量积、向量积•向量的线性运算•向量的平行与垂直性质•向量的共线与共面关系九、坐标系与直角坐标系•直角坐标系的建立与性质•点、向量在直角坐标系中的表示•点、向量的距离与中点公式•直线、圆的方程与性质•圆与直线的位置关系十、三角函数•角度制、弧度制与转换公式•正弦、余弦、正切函数的定义与性质•三角函数的基本关系式•三角函数的图像与性质•三角恒等式十一、数学推理与证明•数学归纳法的原理与应用•直接证明、反证法、数学归纳法的应用•数学问题的创设与解决•数学方法在其他学科中的应用结语以上就是关于数学基础知识点的总结大全。
掌握这些基硫知识点对于建立数学基础、提高数学能力具有重要意义。
高三数学基础知识点大全
![高三数学基础知识点大全](https://img.taocdn.com/s3/m/c1fffbfb2dc58bd63186bceb19e8b8f67c1cef84.png)
高三数学基础知识点大全一、代数与函数1. 数与式- 实数与复数- 四则运算与整式- 代数式的运算与等式辨识2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 绝对值方程与不等式- 分式方程与不等式3. 函数与图像- 一次函数与二次函数- 幂函数与指数函数- 对数函数与指数方程4. 等差数列与等比数列- 基本性质与通项公式- 求和公式与应用二、几何与实数1. 平面图形- 直线与角度- 三角形与四边形- 圆与圆内接正多边形2. 立体图形- 空间几何体的性质与计算- 空间坐标与向量3. 合作的基本原理- 合作原理与比例- 合作原理与百分数4. 推理与证明- 相似三角形与比例应用- 数列的应用问题三、概率与统计1. 概率与事件- 随机事件与概率- 事件的运算与应用2. 随机变量与概率分布- 随机变量的概念与性质- 离散型随机变量与分布3. 统计与抽样- 数据的收集与整理- 统计指标与样本均数四、数学思维与方法1. 分析与综合- 问题分析与解决方法- 综合应用与技巧2. 探究与证明- 探究问题与数学模型- 数学证明与思维方法3. 推理与推断- 数学推理与推断- 数学归纳与猜想4. 沟通与交流- 数学沟通与表达- 数学交流的方法和技巧五、考试与应试技巧1. 高考数学命题规律- 高考命题特点与基本规律- 高考数学试题类型概述2. 高考数学答题技巧- 高考数学常见题型解题技巧- 高考数学复习与备考建议六、数学知识的应用领域1. 自然科学与工程技术- 数学在物理、化学、生物等领域的应用- 数学在工程技术中的应用2. 经济与金融- 数学模型与经济问题- 数学在金融领域的应用3. 计算机与信息技术- 数学在计算机科学中的应用- 数学在信息技术中的应用4. 社会与统计学- 数学在社会科学中的应用- 数学在统计学中的应用以上是高三数学基础知识点的大全,通过掌握这些知识,将能够更好地应对数学考试,并将数学知识运用到实际生活和各个领域中。
数学基础知识大全
![数学基础知识大全](https://img.taocdn.com/s3/m/b6fad123a200a6c30c22590102020740be1ecd83.png)
数学基础知识大全数学是一门基础学科,广泛应用于科学、工程、经济和社会领域。
掌握一些数学基础知识对于解决问题和提高思维能力至关重要。
本文将介绍数学的一些基础知识,包括数的概念、运算法则、代数、几何、概率与统计等内容。
一、数的概念数是用来计数和测量的抽象概念。
基本的数包括自然数、整数、有理数和实数。
自然数是最基本的数,包括0和所有正整数。
整数由自然数、负整数和0组成。
有理数是可以表示为两个整数的比值的数,包括整数和分数。
实数包括有理数和无理数,可以用点来表示在数轴上的位置。
二、数的四则运算数的四则运算包括加法、减法、乘法和除法。
加法是将两个数相加得到结果,减法是从一个数中减去另一个数得到结果,乘法是将两个数相乘得到结果,除法是将一个数分成若干个相等的部分。
基于四则运算的运算法则包括结合律、交换律和分配律等。
三、代数代数是用代号表示数和运算的一种数学分支。
代数包括代数方程、代数式、多项式、因式分解、方程组等内容。
代数方程是一个包含未知数的等式,通过求解可以确定未知数的值。
代数式是由常数、变量和运算符组成的表达式,可以进行计算和化简。
多项式是由若干个代数式相加组成的表达式。
四、几何几何是研究空间、形状和大小关系的数学分支。
几何包括平面几何和立体几何两个方面。
平面几何研究平面上的点、线、角、多边形等概念和性质。
立体几何研究三维空间中的点、线、面、体等概念和性质。
几何还包括图形的相似、全等、投影等内容。
五、概率与统计概率与统计是研究随机事件和数据分析的数学分支。
概率是描述随机事件发生可能性的数值,可以通过频率或理论计算得到。
统计是收集、整理和分析数据的过程,通过统计方法可以得到数据的规律和结论。
概率与统计在科学研究、财务管理和社会学等领域具有广泛的应用。
六、数学思维与解题技巧数学思维是一种推理和问题解决能力,包括归纳思维、演绎思维和逻辑思维等。
归纳思维是从具体例子中总结出一般规律,演绎思维是根据已知条件得出结论,逻辑思维是根据事实和逻辑关系进行推理。
初三数学知识点大全
![初三数学知识点大全](https://img.taocdn.com/s3/m/e9b02965ef06eff9aef8941ea76e58fafab04599.png)
初三数学知识点大全一、代数知识1. 整数与有理数- 整数的加法、减法、乘法、除法- 有理数的概念及其运算- 绝对值与相反数2. 代数表达式- 单项式与多项式- 合并同类项- 因式分解3. 一元一次方程与不等式- 方程的解法- 解不等式的基本原理- 实际问题的建模与求解4. 二元一次方程组- 代入法与消元法- 三元一次方程组的解法5. 函数的基本概念- 函数的定义与表示- 常见函数:一次函数、二次函数、反比例函数 - 函数的性质与图象二、几何知识1. 平面几何- 点、线、面的基本性质- 角的概念与分类- 三角形的性质与分类- 四边形的性质与计算2. 圆的基本性质- 圆的定义与性质- 圆周角与圆心角的关系- 弧长与扇形面积的计算3. 空间几何- 空间图形的基本概念- 立体图形的表面积与体积计算- 棱柱、棱锥、圆柱、圆锥的结构特征4. 相似与全等- 全等三角形的判定与性质- 相似三角形的判定与性质- 相似多边形与相似比5. 解析几何初步- 坐标系的建立与应用- 直线与曲线的方程- 点、线、面间的距离与角度计算三、概率与统计1. 统计的基本概念- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率的初步认识- 随机事件的概率- 概率的计算方法- 条件概率与独立事件3. 随机变量与分布- 离散型随机变量及其分布- 连续型随机变量及其分布- 期望值与方差的概念四、数列与数学归纳法1. 等差数列与等比数列- 数列的概念与表示- 等差数列的通项公式与求和公式 - 等比数列的通项公式与求和公式2. 数学归纳法- 数学归纳法的原理- 证明方法与步骤- 应用数学归纳法解决实际问题五、数论基础1. 质数与合数- 质数的定义与性质- 质数的分布与筛法2. 最大公约数与最小公倍数- 最大公约数的求法- 最小公倍数的求法3. 整数的性质- 整数的分解与因式分解- 整数的奇偶性六、解题技巧与策略1. 逻辑推理与证明- 演绎推理与归纳推理- 证明的基本方法2. 解题策略- 分析法与综合法- 归纳法与反证法3. 应试技巧- 时间管理与题目顺序- 常见错误分析与应对结语:初三数学的学习不仅要求掌握基础知识点,还要求能够灵活运用这些知识解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学基础知识大全
1、十进制计数法:
一个、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法。
2、整数的读法:
从高位一级一级读,读出级名亿、万,每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”。
3、整数的写法:
从高位一级一级写,哪一位一个单位也没有就写0。
4、四舍五入法:
求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法。
5、整数大小的比较:
位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。
“ 小数部分”把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。
如1/10记作0.1,7/100记作0.07。
小数点右边第一位叫十分位,计数单位是十分之一0.1;第二位叫百分位,计数单位是百分之一0.01……
小数部分最大的计数单位是十分之一,没有最小的计数单位。
小数部分有几个数位,就叫做几位小数。
如0.36是两位小数,3.066是三位小数。
1、小数的读法:
整数部分整数读,小数点读点,小数部分顺序读。
2、小数的写法:
小数点写在个位右下角。
3、小数的性质:
小数末尾添0去0大小不变。
4、小数点位置移动引起大小变化:
右移扩大左缩小。
5、小数大小比较:
整数部分大就大;整数相同看十分位大就大;以此类推。
分数和百分数的意义
1、分数的意义:
把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数.在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位.
2、百分数的意义:
表示一个数是另一个数的百分之几的数,叫做百分数.也叫百分率或百分比.百分数通常不写成分数的形式,而用特定的“%”来表示.百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称.
3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位.
4、成数:几成就是十分之几.
■分数的种类
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
■分数和除法的关系及分数的基本性质
1、除法是一种运算,有运算符号;分数是一种数.因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子.
2、由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质.
3、分数的分子和分母都乘以或者除以相同的数0除外,分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据.
■约分和通分
1、分子、分母是互质数的分数,叫做最简分数.
2、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分.
3、约分的方法:用分子和分母的公约数1除外去除分子、分母;通常要除到得出最简分数为止.
4、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.
5、通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数.
■倒数
1、乘积是1的两个数互为倒数.
2、求一个数0除外的倒数,只要把这个数的分子、分母调换位置.
3、 1的倒数是1,0没有倒数
■分数的大小比较
1、分母相同的分数,分子大的那个分数就大.
2、分子相同的分数,分母小的那个分数就大.
3、分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小.
4、如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大.
■百分数与折数、成数的互化:
例如:三折就是30%,七五折就是75%,成数就是十分之几,六成五就是65%.
■纳税和利息:
税率:应纳税额与各种收入的比率.
利率:利息与本金的百分率.由银行规定按年或按月计算.
利息的计算公式:利息=本金×利率×时间
百分数与分数的区别主要有以下三点:
1.意义不同。
百分数是“表示一个数是另一个数的百分之几的数.”它只能表示两数之间的倍数关系,不能表示某一具体数量.如:可以说 1米是 5米的 20%,不可以说“一段绳子长为20%米.”因此,百分数后面不能带单位名称.
分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”.分数不仅可以表
示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的3/4;还可以表示一定的数量,如:犌3/4 米等.
2.应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较.而分数常常是在测量、计算中,得不到整数结果时使用.
3.书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示.如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不
约分;百分数的分子可以是自然数,也可以是小数.
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果
不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数.
感谢您的阅读,祝您生活愉快。