高中物理选修3-2第一章知识点详解版备课讲稿
高中物理选修3-2第一章知识点详解版
![高中物理选修3-2第一章知识点详解版](https://img.taocdn.com/s3/m/89eb77bcd1d233d4b14e852458fb770bf78a3be5.png)
第一章电磁感应学问点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。
....中磁通量发生改变2、产生感应电流的方法.(1)磁铁运动。
(2)闭合电路一部分运动。
(3)磁场强度B改变或有效面积S改变。
注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。
不管是动生电流还是感生电流,我们都统称为“感应电流”。
3、对“磁通量改变”需留意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不肯定切割,切割不肯定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生改变。
4、分析是否产生感应电流的思路方法.(1)推断是否产生感应电流,关键是抓住两个条件:①回路是闭合导体回路。
②穿过闭合回路的磁通量发生改变。
留意:第②点强调的是磁通量“改变”,假如穿过闭合导体回路的磁通量很大但不改变,那么不论低通量有多大,也不会产生感应电流。
(2)分析磁通量是否改变时,既要弄清晰磁场的磁感线分布,又要留意引起磁通量改变的三种状况:①穿过闭合回路的磁场的磁感应强度B发生改变。
②闭合回路的面积S发生改变。
③磁感应强度B和面积S的夹角发生改变。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的改变。
①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。
②凡是由磁通量的削减引起的感应电流,它所激发的磁场阻碍原来磁通量的削减。
(2)楞次定律的因果关系:闭合导体电路中磁通量的改变是产生感应电流的缘由,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生改变时,才会有感应电流的磁场出现。
高中物理选修3-2:自感现象知识点总结
![高中物理选修3-2:自感现象知识点总结](https://img.taocdn.com/s3/m/293a5f9baf1ffc4ffe47acf6.png)
高中物理选修3-2:自感现象知识点总结理物高中考点/易错点1自感现象1、自感:由于线圈本身的电流发生变化而产生的电磁感应现象.2、自感电动势:由于自感现象而产生的电动势.3、自感电动势对电流的作用:电流增加时,感应电动势阻碍电流的增加;电流减小时,感应电动势阻碍电流的减小.4、实验与探究考点/易错点2自感系数1、物理意义:描述线圈本身特性的物理量,简称自感或电感.2、影响因素:线圈的形状、长短、匝数、有无铁芯.线圈越粗、越长,匝数越多,其自感系数就越大;有铁芯时线圈的自感系数比没铁芯时大得多.3、单位:亨利,简称亨,符号是H.常用的较小单位有mH和μH.考点/易错点3日光灯1、主要组成:灯管、镇流器和启动器.2、灯管(1)工作原理:管中气体导电时发出紫外线,荧光粉受其照射时发出可见光.可见光的颜色由荧光粉的种类决定.(2)气体导电的特点:灯管两端的电压达到一定值时,气体才能导电;而要在灯管中维持一定大小的电流,所需的电压却低得多.3、镇流器的作用日光灯启动时:提供瞬时高压;日光灯启动后:降压限流.4、启动器(1)启动器的作用:自动开关.(2)启动器内电容器的作用:减小动、静触片断开时产生的火花,避免烧坏触点.考点/易错点4自感现象的理解1、对自感电动势的进一步理解(1)自感电动势产生的原因通过线圈的电流发生变化,导致穿过线圈的磁通量发生变化,因而在原线圈中产生感应电动势.(2)自感电动势的作用阻碍原电流的变化,而不是阻止,电流仍在变化,只是使原电流的变化时间变长,即总是起着推迟电流变化的作用.(3)自感电动势的方向当原电流增大时,自感电动势方向与原电流方向相反,电流减小时,自感电动势方向与原电流方向相同.2、自感现象的分析思路(1)明确通过自感线圈的电流怎样变化(是增大还是减小).(2)判断自感电动势方向.电流增强时(如通电),自感电动势方向与原电流方向相反;电流减小时(如断电),自感电动势方向与原电流方向相同.(3)分析电流变化情况,电流增强时(如通电),自感电动势方向与原电流方向相反,阻碍增加,电流逐渐增大.电流减小时(如断电),由于自感电动势方向与原电流方向相同,阻碍减小,线圈中电流方向不变,电流逐渐减小.特别提醒自感电动势阻碍原电流的变化,而不是阻止,电流仍在变化,只是使原电流的变化时间变长.考点/易错点5自感现象中灯泡亮度变化在处理通断电灯泡亮度变化问题时,不能一味套用结论,如通电时逐渐变亮,断电时逐渐变暗,或闪亮一下逐渐变暗.要具体问题具体分析,关键要搞清楚电路连接情况.自感现象的分析技巧在求解有关自感现象的问题时,必须弄清自感线圈的工作原理和特点,这样才能把握好切入点和分析顺序,从而得到正确答案.1.自感现象的原理当通过导体线圈中的电流变化时,其产生的磁场也随之发生变化.由法拉第电磁感应定律可知,导体自身会产生阻碍自身电流变化的自感电动势.2.自感现象的特点(1)自感电动势只是阻碍自身电流变化,但不能阻止.(2)自感电动势的大小跟自身电流变化的快慢有关.电流变化越快,自感电动势越大.(3)自感电动势阻碍自身电流变化的结果,会给其他电路元件的电流产生影响.①电流增大时,产生反电动势,阻碍电流增大,此时线圈相当于一个阻值很大的电阻;②电流减小时,产生与原电流同向的电动势,阻碍电流减小,此时线圈相当于电源.3.通电自感与断电自感自感现象中主要有两种情况:即通电自感与断电自感.在分析过程中,要注意:(1)通过自感线圈的电流不能发生突变,即通电过程中,电流是逐渐变大;断电过程中,电流是逐渐变小,此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.特别提醒线圈对变化电流的阻碍作用与对稳定电流的阻碍作用是不同的.对变化电流的阻碍作用是由自感现象引起的,它决定了要达到稳定值所需的时间;对稳定电流的阻碍作用是由绕制线圈的导线的电阻引起的,决定了电流所能达到的稳定值.考点/易错点6日光灯的工作原理1、构造日光灯的电路如图所示,由日光灯管、镇流器、开关等组成.2、日光灯的启动当开关闭合时,电源把电压加在启动器的两极之间,使氖气放电而发出辉光,辉光产生的热量使U 形动触片膨胀伸长,从而接通电路,于是镇流器的线圈和灯管的灯丝中就有电流通过,电路接通后,启动器中的氖气停止放电,U形动触片冷却收缩,两个触片分开,电路自动断开,通过镇流器的电流迅速减小,会产生很高的自感电动势,方向与原来电压方向相同,形成瞬间高压加在灯管两端,使灯管中的气体开始导电,于是日光灯管就成了通路开始导电发光.3、日光灯正常工作时镇流器的作用由于日光灯使用的是交流电源,电流的大小和方向做周期性变化,当交流电的大小增大时,镇流器上的自感电动势阻碍原电流增大,自感电动势与原电压反向,当交流电减小时,镇流器上的自感电动势阻碍原电流的减小,自感电动势与原电压同向,可见镇流器的自感电动势总是阻碍电流的变化,镇流器起降压、限流的作用.四、课程小结1、自感现象●自感:由于线圈本身的电流发生变化而产生的电磁感应现象.●自感电动势:由于自感现象而产生的电动势.●自感电动势对电流的作用:电流增加时,感应电动势阻碍电流的增加;电流减小时,感应电动势阻碍电流的减小.2、自感系数●物理意义:描述线圈本身特性的物理量,简称自感或电感.●影响因素:线圈的形状、长短、匝数、有无铁芯.线圈越粗、越长,匝数越多,其自感系数就越大;有铁芯时线圈的自感系数比没铁芯时大得多.●单位:亨利,简称亨,符号是H.常用的较小单位有mH和μH.1H=103mH1H=106μH一、自感现象的四个要点和三个状态要点一:电感线圈产生感应电动势的原因是通过线圈本身的电流变化引起穿过自身的磁通量变化。
教科版高中物理选修3-2全册课件
![教科版高中物理选修3-2全册课件](https://img.taocdn.com/s3/m/620ba5a9a6c30c2259019ec5.png)
实验操作 导体棒静止 导体棒平行 磁感线运动 导体棒切割 磁感线运动
实验现象(有无电流)
分析论证
_无__
_闭__合___ 电 路 的 _一__部__分__
导体在磁场中做
_无__
_切__割__磁__感__线__ 运 动 时 ,
电路中有感应电流产 _有__
生
2.探究通过闭合回路的磁场变化时是否产生感应电流(实验图如 图所示)
C [设闭合线框在位置 1 时的磁通量为 Φ1,在位置 2 时的磁通 量为 Φ2,直线电流产生的磁场在位置 1 处比在位置 2 处要强,故 Φ1>Φ2.
将闭合线框从位置 1 平移到位置 2,磁感线是从闭合线框的同一 面穿过的,所以 ΔΦ1=|Φ2-Φ1|=Φ1-Φ2;将闭合线框从位置 1 绕 cd 边翻转到位置 2,磁感线分别从闭合线框的正反两面穿过,所以 ΔΦ2=|(-Φ2)-Φ1|=Φ1+Φ2(以原来穿过的方向为正方向,则后来从 另一面穿过的方向为负方向).故正确选项为 C.]
自主预习 探新知
一、电磁感应的发现 1.丹麦物理学家 奥斯特 发现载流导体能使小磁针转动,这种 作用称为电流的磁效应,揭示了电 现象与磁现象之间存在密切联系. 2.英国物理学家 法拉第 发现了电磁感应现象,即“磁生电” 现象,他把这种现象命名为 电磁感应 .产生的电流叫作 感应电流 .
二、感应电流产生的条件 1.探究导体棒在磁场中运动是否产生感应电流(实验图如图所 示)
合作探究 攻重难
磁通量的理解与计算
1.匀强磁场中磁通量的计算 (1)B 与 S 垂直时,Φ=BS. (2)B 与 S 不垂直时,Φ=B⊥S,B⊥为 B 垂直于线圈平面的分量.如 图甲所示,Φ=B⊥S=(Bsin θ)·S.也可以 Φ=BS⊥,S⊥为线圈在垂直于 磁场方向上的投影面积,如图乙所示,Φ=BS⊥=BScos θ.
2014版高中物理 3-2磁感应强度课件 新人教版选修3-1
![2014版高中物理 3-2磁感应强度课件 新人教版选修3-1](https://img.taocdn.com/s3/m/2dad72dd80eb6294dd886cc8.png)
存在一种由电或磁产生的物质,它无所不在,是像以太那样的连 续介质,起到传达电力、磁力的媒介作用.法拉第把它们称为电 场、磁场.电作用或磁作用正是通过电场或磁场来传递的.法拉 第类比于流体力学,提出场是由力的线或力的管子所组成的,正 是这些力线、力管把不同的电荷、磁体或电流连接在一起.他用 一张撒上了铁粉的纸,下面用磁棒轻轻颤动,这些铁粉就清楚地 呈现出磁场的力线.法拉第认为这些力线、力管具有实在的物理 意义,于是他用力线和磁力线的几何图形来形象地表示电场和磁
【答案】 0.1 T
正确理解比值定义法 F 1.定义 B=IL是比值定义法,这种定义物理量的方法其实质 就是一种测量方法,被测量点的磁感应强度与测量方法无关. Δv F 2.定义 a= 、E= q 也是比值定义法,被测量的物理量也 Δt 与测量方法无关,不是由定义式中的两个物理量决定的.
【备课资源】(教师用书独具) “场”概念的提出 万有引力、静电作用力都遵从距离的反比平方关系,从牛顿 开始就认为引力作用是瞬时作用,不需要什么媒介来传递,这就 是超距作用的观点.这种观点在电学和磁学的研究中又得到了进 一步的强化,像富兰克林、库仑、安培这样有名的科学家对此都 深信不疑.奥斯特关于电流的磁效应具有横向性质的发现,是对 力的旧概念——力在沿着两个相互作用物体的连线上的一次强有 力的冲击,更有甚者,法拉第具有不同寻常的想象力:为了对电、
(2) 电 流 元 : 很 短 的 一 段 通 电 导 线 中 的
电流I
与
导线长度L
的乘积.
(3)大小:一个电流元垂直放入磁场中的某点,电流元受到的
磁场力 与该 电流元
F 的比值,B=IL.
N (4)单位:特斯拉,简称特,符号是 T,1 T=1 . A· m
(完整版)高中物理选修3-2知识点总结
![(完整版)高中物理选修3-2知识点总结](https://img.taocdn.com/s3/m/fd58e617bceb19e8b9f6ba25.png)
高中物理选修3-2知识点总结第一章 电磁感应1.两个人物:a.法拉第:磁生电b.奥期特:电生磁2.产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b②产生感应电动势的那部分导体相当于电源。
③电源内部的电流从负极流向正极。
3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容:b.表达式:t n E ∆∆⋅=φ (2).计算感应电动势的公式 ①求平均值:t n E ∆∆⋅=φ_②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω221BL E =④闭合电路殴姆定律:)r (R I E +=感5.感应电流的计算: 平均电流:tr R r R E I ∆+∆=+=)(_φ 瞬时电流:rR BLVr R E I +=+=6.安培力计算: (1)平均值:tBLqt r )(R BL L I B F∆=∆+∆==φ__(2). 瞬时值:rR VL B BIL F +==227.通过的电荷量:rR q tI +∆=-=∆⋅φ注意:求电荷量只能用平均值,而不能用瞬时值。
8.互感:由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。
这种现象叫互感。
9.自感现象:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。
(2)决定因素:线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。
另外, 有铁心的线圈的自感系数比没有铁心时要大得多。
(3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微亨(μH )。
10.涡流及其应用(1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。
高中物理教科版选修32课件:第一章 第1、2节 电磁感应的发现 感应电流产生的条件
![高中物理教科版选修32课件:第一章 第1、2节 电磁感应的发现 感应电流产生的条件](https://img.taocdn.com/s3/m/b31f5908f90f76c660371ac0.png)
(1)在闭合电路中是否产生感应电流,取决于穿过电路的 磁通量是否发生变化,而不是取决于电路有无磁通量。
(2)闭合电路的部分导体做切割磁感线运 动是引起电路磁通量变化的具体形式之一。但 闭合电路的部分导体做切割磁感线运动时,不 一定总会引起闭合电路的磁通量变化。如图所示,矩形线框 abcd 在范围足够大的匀强磁场中在垂直磁场的平面内向右平 动,虽然 ad、bc 边都切割磁感线,但穿过线框的磁通量没有 变化,因而没有产生感应电流。
(5)只要闭合电路内有磁通量,闭合电路中就有感应电流产生。(×)
(6)线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没
有感应电流产生。
(√)
2.合作探究——议一议 (1)很多科学家致力于磁与电的关系的探索,为什么他们在磁生电的
研究中没有成功? 提示:很多科学家在实验中没有注意磁场的变化、导体与磁场 之间的相对运动等环节,只想把导体放入磁场中来获得电流, 这实际上违反了能量转化和守恒定律。 (2)怎样理解“电生磁”? 提示:电流周围存在磁场是无条件的,无论电流是恒定不变的, 还是变化的,只要有电流,它的周围就一定有磁场。
(3)S 内有不同方向的磁场时,应先分别计算不同方向磁场 的磁通量,然后规定从某个面穿入的磁通量为正,从该面穿出 的磁通量为负,最后求代数和。
(4)有多匝线圈时,因为穿过线圈的磁感线的条数不受匝数 影响,故磁通量的计算也与匝数无关。
2.求磁通量的变化的三种方法 方法一:当磁感应强度 B 不变,而磁感线穿过的有效面积 S 变化时,则穿过回路的磁通量的变化量 ΔΦ=Φt-Φ0=B·ΔS。 方法二:当磁感应强度 B 变化,而磁感线穿过的有效面积 S 不变时,则穿过回路的磁通量的变化量 ΔΦ=Φt-Φ0=ΔB·S。 方法三:若磁感应强度 B 和回路面积 S 同时变化,则穿过 回路的磁通量的变化量 ΔΦ=Φt-Φ0。 注意:此时,ΔΦ=Φt-Φ0≠ΔB·ΔS。
高中物理选修3-2第一章知识点详解版
![高中物理选修3-2第一章知识点详解版](https://img.taocdn.com/s3/m/1be160abdd88d0d233d46a4c.png)
第一章电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
二、产生感应电流的条件1、产生感应电流的条件:闭合电路中磁通量发生变化。
2、产生感应电流的方法.(1)磁铁运动。
(2)闭合电路一部分运动。
(3)磁场强度B变化或有效面积S变化。
注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。
不管是动生电流还是感生电流,我们都统称为“感应电流”。
3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不一定切割,切割不一定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
4、分析是否产生感应电流的思路方法.(1)判断是否产生感应电流,关键是抓住两个条件:①回路是闭合导体回路。
②穿过闭合回路的磁通量发生变化。
注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。
(2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况:①穿过闭合回路的磁场的磁感应强度B发生变化。
②闭合回路的面积S发生变化。
③磁感应强度B和面积S的夹角发生变化。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。
②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。
(2)楞次定律的因果关系:闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。
人教版高中物理选修3-2课件
![人教版高中物理选修3-2课件](https://img.taocdn.com/s3/m/5d762398ec3a87c24028c49c.png)
电磁感应
第一节 划时代的发现
自主学习--奥斯特梦圆“电生磁”
(1)是什么信念激励奥斯特寻找电与磁的联系的?在 这之前,科学研究领域存在怎样的历史背景? (2)奥斯特的研究是一帆风顺的吗?奥斯特面对失败 是怎样做的? (3)奥斯特发现电流磁效应的过程是怎样的?用学过 的知识如何解释? (4)电流磁效应的发现有何意义?谈谈自己的感受。
进一步地思考和探索:
铁芯
铁芯和线圈A是产生这一效应的必要条 件吗?
1831年11月24日,法拉第向皇家学会提 交了一个报告,把这种现象定名为电磁感应, 产生的电流叫做感应电流。“磁生电”是一 种在变化、运动的过程中才能出现的效应。 五种类型可以引起感应电流:变化的电 流、变化的磁场、运动的恒定电流、运动的 磁铁、在磁场中运动的导体。 有规律吗?
问题: “闭合电路的一部分导体切割磁感 线”是不是产生感应电流的必要条 件呢?
若:产生感应电流的必要条件是“闭合电 对运动。 即:磁场和导体相对静止的话,导体 就不切割磁感线,导体中就没有感 应电流产生。
是这样吗?
实验设计:
1、实验目的:使用不切割磁感线的方法产生 感应电流 2、实验器材:电源、电键、电流表、滑动变 阻器、大线圈、小线圈、导线
三品:创造性的思维 为什么以往的实验都失败了?
法拉第敢于突破,终于有了划时代的发现!
1831年10月28日 法拉第的创新:
圆盘发电机,首先向 人类揭开了机械能转化 为电能的序幕。
法拉第提出了“电场”、“磁场”和“力 线”的概念。暗示了电磁波存在的可能性, 并预言了光可能是一种电磁振动的传播 。
结论:产生感应电流的原因可能与磁场的 变化有关,与导体是否切割磁感线无关
小结:
高中物理选修32第一章全章课件201202192114431
![高中物理选修32第一章全章课件201202192114431](https://img.taocdn.com/s3/m/8c732a1eed630b1c59eeb5ce.png)
【例3】如图,匀强磁场的磁感应强度为B,方向竖直向下。在 磁场中有一个边长为L的正方形刚性金属框。ab边质量为m,其 他三边的质量不计。金属框的总电阻为R,cd边上装有固定的水 平轴。现在将金属框从水平位置由静止释放。不计一切摩擦。金 属框经t时间恰好通过竖直位置a′b′cd。若在此t时间内,金属框中 产生的焦耳热为Q,求ab边通过最低位置时受到的安培力。
电源
G
法拉第寻找10年的”磁生电”终于发现
“磁生电”的重要思想----
“磁生电”是一种在变化或运动的过 程中才能产生的效应.
在”变化中”相联系 !
变化的磁场 变化的电流 运动的恒定电流 运动的磁铁 在磁场中运动的导体
电磁感应
感应电流
关于法拉第,过去说得多的:穷苦、顽强、 不为名利
现在:除此之外还有,甚至更重要的是―― (1)正确的指导思想(自然现象的相互联系) (2)抹去科学学家头上的光环,正确认识失败
(l)直导线AB段产生的感应电动势,并指明该段直导线中电流 的方向.
(2)此时圆环上发热损耗的电功率. 【分析】
直导线在磁场中做切割磁感线的运动,产生感应电动势。产 生感应电动势的这部分电路是电源。这部分电路端点的电压为路 端电压。根据电磁感应的规律可以确定感应电动势的大小和方向。
直导线与圆环组成闭合回路,其等效电路为图。
【分析】线框通过磁场的过程中,动能不变。根据能的转化和守 恒,重力对线框所做的功全部转化为线框中感应电流的电能,最 后又全部转化为焦耳热.所以,线框通过磁场过程中产生的焦耳 热为 Q=WG=mg*2h=2mgh.
【解答】2mgh。
【说明】本题也可以直接从焦耳热公式Q=I2Rt进行推算: 设线框以恒定速度v通过磁场,运动时间
(人教版)高中物理选修3-2全部课件
![(人教版)高中物理选修3-2全部课件](https://img.taocdn.com/s3/m/0082f8563d1ec5da50e2524de518964bcf84d2d8.png)
B变、S不变
的
四
种
B和S都变
情
况 B和S大小都不变,
但二者之间的夹角变
例:闭合电路的一部分导 体切割磁感线时 例:线圈与磁体之间发生 相对运动时 注意:此时可由ΔΦ=Φt -Φ0计算并判断磁通量是 否变化
例:线圈在磁场中转动时
2021/12/24
如图所示,将一个矩形线圈ABCD放入匀强磁场中,
若线圈平面平行于磁感线,则下列运动中,哪些在线圈中会产
(人教版)高中物理选修3-2全部
2021/12/24
1. 2.划时代的发现 探究感应电流的产生条件
2021/12/24
2021/12/24
学 基础导学
2021/12/24
一、划时代的发现
1.奥斯特梦圆“电生磁” 1820年,丹麦物理学家__奥__斯__特___发现了电流的磁效应. 2.法拉第心系“磁生电” 1831年,英国物理学家________发现了电磁感应现象.
2021/12/24
如图所示,a、b、c三个环水平套在条形磁铁外面,
其中a和b两环大小相同,c环最大,a环位于N极处,b和c两环
位于条形磁铁中部.则穿过三个环的磁通量的大小是( )
A.c环最大,a与b环相同
B.三个环相同
C.b环比c环大
D.a环与c环相同
2021/12/24
解析: 条形磁铁磁场的磁感线分布特点是: (1)外部磁感线两端密,中间疏; (2)磁铁内、外磁感线的条数相等.据以上两点知:a、b、 c三个环中磁场方向都向上.考虑到磁铁外部磁场的不同,a外 部磁场强于b外部磁场,故b环的磁通量大于a环的磁通量,外 部c的磁通量大于b的磁通量,内部磁通量相等,故合磁通量b 大于c.其中a、c两个环所在处磁感线的分布特点不同,所以穿 过两个环的磁通量不一定相同,C正确,A、B、D错. 答案: C
互感和自感— 人教版高中物理选修3-2课件
![互感和自感— 人教版高中物理选修3-2课件](https://img.taocdn.com/s3/m/e005717e0508763230121267.png)
自感系数
知道自感电动势的表达式 知道自感系数的单位 知道自感系数的决定因素 知道磁场能 知道磁场能的决定因素
自感电动势是感应电动势,它是由自身电流变化产生的,它和电流变化 有什么关系呢?
由法拉第电磁感应定律可知感应电动势
而磁通量与磁感应强度B成正比,又因为在电流磁场中任意一点的磁感 应强度与电流成正比,所以穿过线圈的磁通量与电流成正比,则
互感: 当一个线圈中电流变化,在另一个线圈中产生感应电动势的现象,称为互感。
互感现象中产生的感应电动势,称为互感电动势。
如图,断开或闭合开关瞬间,CD中会有感应电流吗?这是互感吗?
互感现象不仅发生于绕在同一铁芯上的两个线圈 之间,且可发生于任何两个相互靠近的电路之间
利用互感现象可以把能量从一个线圈传递到另一个线圈 因此在电工技术和电子技术中有广泛的应用 如:变压器
①当 灭当
时,会闪一下,再逐渐熄 时,不会闪,逐渐熄灭
②原来的 和 哪一个大,要由L 的直流电阻 与A的电阻 的大 小来决定
通电或断电瞬间,除线圈外,电路的其它部分是否存在自感现象?
当电路中的电流发生变化时,电路中每一个组成部分,甚至连导线,都 会产生自感电动势去阻碍电流的变化,只不过是线圈中产生的自感电动 势比较大,其它部分产生的自感电动势非常小而已
章
Part Two
要点解析
节
在法拉第的实验中两个线圈并没有用导线连接,当一个线圈中的电流 变化时,在另一个线圈中为什么会产生感应电动势呢?
滑动变阻器P滑动时:线圈2中是否有感应电流?
线圈 处在线圈 的磁场中
P滑动
线圈 的磁场变化
线圈 的磁通量变化
产生感应电流
产生感应电动势
互感
(完整版)高中物理选修3-2知识点清单(非常详细)
![(完整版)高中物理选修3-2知识点清单(非常详细)](https://img.taocdn.com/s3/m/f210741f700abb68a982fbf3.png)
(完整版)高中物理必修3-2知识点清单(非常详细)第一章 电磁感应第二章 楞次定律和自感现象一、磁通量1.定义:在磁感应强度为B 的匀强磁场中,与磁场方向垂直的面积S 和B 的乘积. 2.公式:Φ=B ·S .3.单位:1 Wb =1_T ·m 2.4.标矢性:磁通量是标量,但有正、负. 二、电磁感应 1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象. 2.产生感应电流的条件(1)电路闭合;(2)磁通量变化. 3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断 1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化. (2)适用情况:所有的电磁感应现象. 2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.3.楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”; (2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”四、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,n 为线圈匝数.3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv .(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Blv sin_θ. 五、自感与涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流. (1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.考点一 公式E =n ΔΦ/Δt 的应用 1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 引起时,则E =n S ΔB Δt ;当ΔΦ仅由S 引起时,则E =n B ΔSΔt.2.磁通量的变化率ΔΦΔt是Φ-t 图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点二 公式E =Blv 的应用 1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B 、l 、v 三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E =Blv sin θ,θ为B 与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Bl v .若v 为瞬时速度,则E 为相应的瞬时感应电动势.3.有效性公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度.例如,求下图中MN 两点间的电动势时,有效长度分别为甲图:l=cd sin β.乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.六、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦΔt . (2)路端电压:U =IR =ER +r·R .二、电磁感应中的图象问题 1.图象类型(1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象.考点一 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E =n ΔΦΔt或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的方向,电势逐渐升高. 考点二 电磁感应中的图象问题 1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算. 2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤 (1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者是E -t 图象、I -t 图象等; (2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.第三章 交变电流 传感器一、交变电流的产生和变化规律 1.交变电流大小和方向随时间做周期性变化的电流. 2.正弦交流电(1)产生:在匀强磁场里,线圈绕垂直于磁场方向的轴匀速转动. (2)中性面①定义:与磁场方向垂直的平面.②特点:线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零.线圈每经过中性面一次,电流的方向就改变一次.(3)图象:用以描述交变电流随时间变化的规律,如果线圈从中性面位置开始计时,其图象为正弦曲线.二、描述交变电流的物理量1.交变电流的周期和频率的关系:T =1f.2.峰值和有效值(1)峰值:交变电流的峰值是它能达到的最大值.(2)有效值:让交流与恒定电流分别通过大小相同的电阻,如果在交流的一个周期内它们产生的热量相等,则这个恒定电流I 、恒定电压U 就是这个交变电流的有效值.(3)正弦式交变电流的有效值与峰值之间的关系IU E 3.平均值:E =n ΔΦΔt=BL v .考点一 交变电流的变化规律1.正弦式交变电流的变化规律(线圈在中性面位置开始计时)图象2.(1)线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦΔt=0,e =0,i =0,电流方向将发生改变.(2)线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦΔt最大,e 最大,i 最大,电流方向不改变.3.解决交变电流图象问题的三点注意(1)只有当线圈从中性面位置开始计时,电流的瞬时值表达式才是正弦形式,其变化规律与线圈的形状及转动轴处于线圈平面内的位置无关.(2)注意峰值公式E m =nBS ω中的S 为有效面积. (3)在解决有关交变电流的图象问题时,应先把交变电流的图象与线圈的转动位置对应起来,再根据特殊位置求特征解.考点二 交流电有效值的求解 1.正弦式交流电有效值的求解 利用I =I m2,U =U m 2,E =E m2计算.2.非正弦式交流电有效值的求解交变电流的有效值是根据电流的热效应(电流通过电阻生热)进行定义的,所以进行有效值计算时,要紧扣电流通过电阻生热(或热功率)进行计算.注意“三同”:即“相同电阻”,“相同时间”内产生“相同热量”.计算时“相同时间”要取周期的整数倍,一般取一个周期.考点三 交变电流的“四值”的比较1.书写交变电流瞬时值表达式的基本思路(1)求出角速度ω,ω=2πT=2πf .(2)确定正弦交变电流的峰值,根据已知图象读出或由公式E m =nBS ω求出相应峰值. (3)明确线圈的初始位置,找出对应的函数关系式. ①线圈从中性面位置开始转动,则i -t 图象为正弦函数图象,函数式为i =I m sin ωt . ②线圈从垂直中性面位置开始转动,则i -t 图象为余弦函数图象,函数式为i =I m cos ωt三、变压器原理1.工作原理:电磁感应的互感现象. 2.理想变压器的基本关系式 (1)功率关系:P 入=P 出.(2)电压关系:U 1U 2=n 1n 2,若n 1>n 2,为降压变压器;若n 1<n 2,为升压变压器.(3)电流关系:只有一个副线圈时,I 1I 2=n 2n 1; 有多个副线圈时,U 1I 1=U 2I 2+U 3I 3+…+U n I n .四、远距离输电1.输电线路(如图所示)2.输送电流(1)I =P U. (2)I =U -U ′R.3.电压损失 (1)ΔU =U -U ′. (2)ΔU =IR . 4.功率损失 (1)ΔP =P -P ′.(2)ΔP =I 2R =⎝ ⎛⎭⎪⎫P U 2R =ΔU 2R .考点一 理想变压器原、副线圈关系的应用 1.基本关系(1)P 入=P 出,(有多个副线圈时,P 1=P 2+P 3+……)(2)U 1U 2=n 1n 2,有多个副线圈时,仍然成立.(3)I 1I 2=n 2n 1,电流与匝数成反比(只适合一个副线圈) n 1I 1=n 2I 2+n 3I 3+……(多个副线圈)(4)原、副线圈的每一匝的磁通量都相同,磁通量变化率也相同,频率也就相同. 2.制约关系(1)电压:副线圈电压U 2由原线圈电压U 1和匝数比决定. (2)功率:原线圈的输入功率P 1由副线圈的输出功率P 2决定. (3)电流:原线圈电流I 1由副线圈电流I 2和匝数比决定. 3.关于理想变压器的四点说明: (1)变压器不能改变直流电压.(2)变压器只能改变交变电流的电压和电流,不能改变交变电流的频率. (3)理想变压器本身不消耗能量.(4)理想变压器基本关系中的U 1、U 2、I 1、I 2均为有效值. 考点二 理想变压器的动态分析 1.匝数比不变的情况(如图所示)(1)U 1不变,根据U 1U 2=n 1n 2可以得出不论负载电阻R 如何变化,U 2不变.(2)当负载电阻发生变化时,I 2变化,根据I 1I 2=n 2n 1可以判断I 1的变化情况.(3)I 2变化引起P 2变化,根据P 1=P 2,可以判断P 1的变化. 2.负载电阻不变的情况(如图所示)(1)U 1不变,n 1n 2发生变化,U 2变化. (2)R 不变,U 2变化,I 2发生变化.(3)根据P 2=U 22R和P 1=P 2,可以判断P 2变化时,P 1发生变化,U 1不变时,I 1发生变化.3.变压器动态分析的思路流程考点三 关于远距离输电问题的分析 1.远距离输电的处理思路对高压输电问题,应按“发电机→升压变压器→远距离输电线→降压变压器→用电器”这样的顺序,或从“用电器”倒推到“发电机”一步一步进行分析.2.远距离高压输电的几个基本关系(以下图为例):(1)功率关系:P 1=P 2,P 3=P 4,P 2=P 损+P 3.(2)电压、电流关系:U 1U 2=n 1n 2=I 2I 1,U 3U 4=n 3n 4=I 4I 3U 2=ΔU +U 3,I 2=I 3=I 线.(3)输电电流:I 线=P 2U 2=P 3U 3=U 2-U 3R 线.(4)输电线上损耗的电功率:P 损=I 线ΔU =I 2线R 线=⎝ ⎛⎭⎪⎫P 2U 22R 线.3.解决远距离输电问题应注意下列几点(1)画出输电电路图.(2)注意升压变压器副线圈中的电流与降压变压器原线圈中的电流相等. (3)输电线长度等于距离的2倍.(4)计算线路功率损失一般用P 损=I 2R 线.。
粤教版高中物理选修3-2第一章1.1电磁感应现象1.2产生感应电流产生的条件
![粤教版高中物理选修3-2第一章1.1电磁感应现象1.2产生感应电流产生的条件](https://img.taocdn.com/s3/m/b1fbcb725e0e7cd184254b35eefdc8d377ee141e.png)
运动时,有感应电流产生
实验2:探究磁铁在线圈中运动是否产生感应电流
G
+
-
+
NS
N极插入
NS N极抽出
S极插入
S极抽出
实验操作 N极插入线圈 N极停在线圈中
N极从线圈中抽出
S极插入线圈 S极停在线圈中
S极从线圈中抽出
实验现象(有无电流)
有 无 有 有 无 有
分析论证
线圈中的磁场 变化 线圈中有感应电流; 线圈中的磁场 不变 线圈中无感应电流
形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa
和Φb大小关系为( A)
A.Φa>Φb
B.Φa<Φb
C.Φa=Φb
D.无法比较
穿过同一平面但方向相反的两条磁感线计算磁通 量时可以互相抵消。
1、电与磁有联系吗?19世纪20年代之前的“偏执”
二者显然肯 定是独立的,
无关的。
法物理学家库仑
法物理学家安培
26
2.判断磁通量如何变化并确定是否产生感应电流
φ减__小_
φ增__大__
φ增_大__
φ减__小_
φ_增_大___
φ减__小_
(1)(2)(3)(4)(5)(6)有感应电流产生
磁场 不变时,线圈
B中无感应电流
模型归类
①切割类
②变化类
条件分析
B不变,S变 Φ=BS
S不变,B变 Φ=BS
相对运动 Φ=BS 变! 磁场变化
结论
只要穿过闭合电路的磁通量发生 变化,闭合电路中就有感应电流。
感应电流产生的条件: 1.电路要闭合 2.穿过电路的磁通量发生变化
1.关于感应电流产生的条件,下列说法中正确的是 ( CD) A.只要闭合电路内有磁通量,闭合电路中就有感应电流产生 B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应 电流产生 C.线圈不闭合时,即使穿过线圈的磁通量发生变化,线圈中也 没有感应电流 D.只要穿过闭合电路的磁感线条数发生变化,闭合电路中就有 感应电流
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。
3、对“磁通量变化”需注意的两点.
(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
感应电流的效果总是要反抗(或阻碍)引起感应电流的原因
(1)就磁通量而言,感应电流的磁场总是阻碍原磁场磁通量的变化.(“增反减同”)
(2)就电流而言,感应电流的磁场阻碍原电流的变化,即原电流增大时,感应电流磁场方向与原电流磁场方向相反;原电流减小时,感应电流磁场方向与原电流磁场方向相同.(“增反减同”)
③“阻碍”不意味着“相反”.
在理解楞次定律时,不能把“阻碍”作用认为感应电流产生磁场的方向与原磁场的方向相反。事实上,它们可能同向,也可能反向。(“增反减同”)
(4)“阻碍”的作用.
楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在客服这种阻碍的过程中,其他形式的能转化成电能。
(5)“阻碍”的形式.
(2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况:
①穿过闭合回路的磁场的磁感应强度B发生变化。②闭合回路的面积S发生变化。
③磁感应强度B和面积S的夹角发生变化。
三、感应电流的方向
1、楞次定律.
(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
四、法拉第电磁感应定律.
1、法拉第电磁感应定律.
(1)内容:电路中感应电动势的大小,跟穿过这一电路的磁通量变化率成正比。
(2)公式: (单匝线圈)或 (n匝线圈).
对表达式的理解:
①E∝ 。对于公式 ,k为比例常数,当E、ΔΦ、Δt均取国际单位时,k=1,所以有 。若线圈有n匝,且穿过每匝线圈的磁通量变化率相同,则相当于n个相同的电动势 串联,所以整个线圈中电动势为 (本式是确定感应电动势的普遍规律,适用于所有电路,此时电路不一定闭合).
感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。当由于原磁通量的增加引起感应电流时,感应电流的磁场方向与原磁场方向相反,其作用仅仅使原磁通量的增加变慢了,但磁通量仍在增加,不影响磁通量最终的增加量;当由于原磁通量的减少而引起感应电流时,感应电流的磁场方向与原磁场方向相同,其作用仅仅使原磁通量的减少变慢了,但磁通量仍在减少,不影响磁通量最终的减少量。即感应电流的磁场延缓了原磁通量的变化,而不能使原磁通量停止变化,该变化多少磁通量最后还是变化多少磁通量。
(2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
4、分析是否产生感应电流的思路方法.
(1)判断是否产生感应电流,关键是抓住两个条件:
①回路是闭合导体回路。
②穿过闭合回路的磁通量发生变化。
注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。
(3)就相对运动而言,由于相对运动导致的电磁感应现象,感应电流的效果阻碍相对运动.(“来拒去留”)
(4)就闭合电路的面积而言,电磁感应应致使回路面积有变化趋势时,则面积收缩或扩张是为了阻碍回路磁通量的变化.(“增缩减扩”)
(6)适用范围:一切电磁感应现象.
(7)研究对象:整个回路.
(8)使用楞次定律的步骤:
①明确(引起感应电流的)原磁场的方向.
②明确穿过闭合电路的磁通量(指合磁通量)是增加还是减少.
③根据楞次定律确定感应电流的磁场方向.
④利用安培定则确定感应电流的方向.
2、右手定则.
(1)内容:伸开右手,让拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,让磁感线垂直(或倾斜)从手心进入,拇指指向导体运动的方向,其余四指所指的方向就是感应电流的方向。
第一章 电磁感应 知识点总结
一、电磁感应现象
1、电磁感应现象与感应电流.
(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
二、产生感应电流的条件
1、产生感应电流的条件:闭合电路中磁通量发生变化。
2、产生感应电流的方法.
(1)磁铁运动。
(2)闭合电路一部分运动。
(3)“阻碍”的含义.
①“阻碍”可能是“反抗”,也可能是“补偿”.
当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。(“增反减同”)
②“阻碍”不等于“阻止”,而是“延缓”.
①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。
②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。
(2)楞次定律的因果关系:
闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。
3、“三定则”.
比较项目
右手定则
左手定则
安培定则
基本现象
部分导体切割磁感线
磁场对运动电荷、电流的作用力
运动电荷、电流产生磁场
作用
判断磁场B、速度v、感应电流I方向关系
判断磁场B、电流I、磁场力F方向
电流与其产生的磁场间的方向关系
图例
因果关系
因动而电
因电而动
电流→磁场
应用实例
发电机
电动机
电磁铁
【小技巧】:左手定则和右手定则很容易混淆,为了便于区分,把两个定则简单地总结为“通电受力用左手,运动生电用右手”。“力”的最后一笔“丿”方向向左,用左手;“电”的最后一笔“乚”方向向右,用右手。
(2)作用:判断感应电流的方向与磁感线方向、导体运动方向间的关系。
(3)用范围:导体切割磁感线。
(4)研究对象:回路中的一部分导体。
(5)右手定则与楞次定律的联系和区别.
①联系:右手定则可以看作是楞次定律在导体运动情况下的特殊运用,用右手定则和楞次定律判断感应电流的方向,结果是一致的。
②区别:右手定则只适用于导体切割磁感线的情况(产生的是“动生电流”),不适合导体不运动,磁场或者面积变化的情况,即当产生“感生电流时,不能用右手定则进行判断感应电流的方向。也就是说,楞次定律的适用范围更广,但是在导体切割磁感线的情况下用右手定则更容易判断。