2012年山东省青岛市中考数学试题(word版含答案)

合集下载

2012年全国各地中考数学解析汇编(题目版)1、 有理数

2012年全国各地中考数学解析汇编(题目版)1、 有理数

2012年全国各地中考数学解析汇编1 有理数1.1 正数和负数1.(2012浙江丽水3分,1题)如果零上2℃记作+2℃,那么零下3℃记作( )A.-3℃B.-2℃C.+3℃D.+2℃2.(2012山东德州中考,9,4,)-1, 0, 0.2,71 , 3 中正数一共有 个. 3.(2012安徽,1,4分)下面的数中,与-3的和为0的是 ( ) A.3 B.-3 C.31 D.31- 4.(2012山东泰安,1,3分)下列各数比-3小的数是( )A. 0B. 1C.-4D.-15.(2012浙江省衢州,1,3分)下列四个数中,最小的数是( )A.2B.-2C.0D. 21- 6.(2012重庆,1,4分)在一3,一1,0,2这四个数中,最小的数是( )A .一3B .一1 C.0 D.27.(2012贵州贵阳,1,3分)下列整数中,小于-3的整数是( )A.-4B.-2C.2D.38.(2012年广西玉林市,13,3)既不是正数也不是负数的数是 .9.(2012湖北武汉,1,3分)在2.5,-2.5,0,3这四个数中,最小的数是【 】A .2.5.B .-2.5.C .0.D .3.10.(2012河南,1,3分)下列各数中,最小的是(A )-2 (B)-0.1 (C)0 (D)|-1|11. (2012河北省1,2分)1、下列各数中,为负数的是( )A .0B .-2C .1D .21 12.(2012年吉林省,第1题、2分)在四个数0,-2,-1,2中,最小的数是(A )0. (B )-2. (C) -1 . (D)2.13. (2012陕西 1,3分)如果零上5 ℃记作+5 ℃,那么零下7 ℃可记作()A .-7 ℃B .+7 ℃C .+12 ℃D .-12 ℃14.(2012浙江丽水3分,1题)如果零上2℃记作+2℃,那么零下3℃记作( )A.-3℃B.-2℃C.+3℃D.+2℃15. (2012南京市,1,2)下列四个书中,是负数的是( )A.|-2|B.(-2)2C.-2D. 2)2(-16. (2012浙江省衢州,1,3分)下列四个数中,最小的数是( )A.2B.-2C.0D. 21- 17. (2012重庆,1,4分)在一3,一1,0,2这四个数中,最小的数是( )A .一3B .一1 C.0 D.21.2 数轴1.(2012江苏泰州市,10,3分)如图,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P’,则点P’表示的数是: .2. (2012山东莱芜, 1,3分)如图,在数轴上点M 表示的数可能是A . 1.5B .-1.5C .-2.4D .2.41.3 相反数、绝对值与倒数1.(2012贵州铜仁,1,4分)-2的相反数是( ) A. 21 B. -21 C. -2 D. 22. (2012福州,1,4分,)3的相反数是( )A .-3 B.13 C.3 D. 13- 3.(2012湖北随州,1,3分)-2012的相反数是( ) A .12012- B .12012 C .-2012 D .20124. (2012浙江省义乌市,1,3分) -2的相反数是( )A .2B .-2C .D . 5.(2012四川内江,1,3分)-6的相反数为 A .6 B .16 C .-16 D .-66.(2012四川成都,1,3分)3-的绝对值是( )21-21A .3B .3-C .13D .13- 7.(2012四川省资阳市,1,3分)2-的相反数是A .2B .12-C .2-D .128.(2012年四川省德阳市,1,3)实数3-的相反数是 A.3 B.31 C.31- D.2- 9. (2012浙江省绍兴,1,3分)3的相反数是( )A.3B.-3C. 31D. 31- 10.(2012浙江省湖州市,1,3分)-2的绝对值是( ) A.2 B.-2 C.21 D.±2 11.(2012湖南益阳,1,4分)2-的绝对值等于( )A .2B .2-C .12D .12- 12.(2012广州市,1, 3分)实数3的倒数是( ) A.-13 B. 13C.-3D.3 13. (2012连云港,1,3分)-3的绝对值是 A.3 B.-3 C. 13 D.13- 14. (2012浙江丽水,3,3分)如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A.-4B.-2C.0D.415.(2012江苏盐城,1,3分)-2的倒数是A .-2B .2C .12D .-1216.(2012山东省临沂市,1,3分)61-的倒数是( ) A.6 B. -6 C.61 D.61- 17.(2012江苏泰州市,9,3分)3的相反数是 .18.(2012湖南湘潭,9,3分)2-的倒数是 .19.(2012贵州铜仁,11,4分)2012-=_________;20. (2012福州,1,4分)3的相反数是( )A .-3 B.13 C.3 D. 13- 21.(2012浙江省湖州市,1,3分)-2的绝对值是( ) A.2 B.-2 C.21 D.±2 22.(2012广州市,1, 3分)实数3的倒数是( ) A.-13 B. 13C.-3D.3 23. (2012浙江丽水3分,3题)如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( ) A.-4 B.-2 C.0 D.424.(2012山东省临沂市,1,3分)61-的倒数是( ) A.6 B. -6 C.61 D.61- 25. (2012湖南娄底,1,3分)2012的倒数是A .20121 B. -20121 C. 2012 D. -2012 26. (2012北京,1,4) 9-的相反数是A .19-B .19C .9-D .927. (2012江西,1,3分)1-的绝对值是( ) .A. 1B. 0C. 1-D. 1±28. (2012四川攀枝花,1,3分)3-的倒数是( )A. 3-B. 31C. 3D. 31- 29. (2012湖北襄阳,1,3分)一个数的绝对值等于3,这个数是 A .3 B .-3 C .±3D .13 30.(2011江苏省无锡市,1,3′)-2的相反数是( )A .2 B. -2 C.12 D. 12- 31. (2012江苏苏州,1,3分)2的相反数是( )A .-2B .2C .-12D .1232. (2012北海,1,3分)-16的绝对值是( )A .-16 B .16 C .-6D .6 33. (2012贵州六盘水,1,3分)-3的倒数是( )A .13- B .3- C .3 D .1334. ( 2012年四川省巴中市,1,3)- 34 的倒数是( )A. 34B. - 43C.43D.| - 34 |35.(2012湖南衡阳市,1,3)﹣3的绝对值是( )A .13 B .﹣3 C .3 D .13-36.(2012呼和浩特,1,3分)–2的倒数是A.2B. –2C. 12D. –12 37.(2012山东省青岛市,1,3)-2的绝对值是( ).A .-12B .-2C .12D . 238. (2012四川宜宾,1,3分)-3的倒数是( )A .31B.3C.-3D.-3139. (2012江苏省淮安市,1,3分)12的相反数是( )A .12-B .12 C .-2D .2 40.(2012四川达州,1,3分)-2的倒数是A 、2 B、-2 C 、21D 、21- 41. (2012云南省,1,3分) 5的相反数是A .15 B.-5 C.1-5 D.542. (2012珠海,1,3分)2的倒数是( )A .2B .-2C .21D .21-43.(2012山东日照,1,3分)-5的相反数是( )A.-5B.-51C.5D.5144.(2012·湖南省张家界市·1题·3分)-2012的相反数是( )A .-2012 B. 2012 C.20121- D.20121 45. (2012,湖北孝感,1,3分)-5的绝对值是( ) A .5 B .-5 C .15D .15- 46. 1.(2012广东汕头,1,3分)﹣5的绝对值是( )A .5B .﹣5C .15D .-1547. (2012湖北省恩施市,题号1分值 3)5的相反数是( )A .15 B .-5 C .±5 D .-1548.(2012·哈尔滨,题号1分值 3)一2的绝对值是( ).(A)一12 (B)12 (C)2 (D)-249.( 2012贵州遵义,,3分)﹣(﹣2)的值是( )A .﹣2B .2C .±2D .450.(2012呼和浩特,1,3分)–2的倒数是A.2B. –2C. 12D. –12 51. (2012广安中考试题第1题,3分)—8的相反数是( A )A .8B .-8C .81D .81- 52.(2012湖北咸宁,1,3分)-8的相反数是( ).A .-8B .8C .-18 D .1853.(2012深圳市 1 ,3分)-3的倒数是( )A . 3 B. -3 C . 13 D . -1354. (2012四川泸州,1,3分)-3的相反数是( ) A .-3 B.31 C.3 D.31- 55. (2012贵州黔西南州,1,4分)-114的倒数是( ).A .―54B .54C .―45 D.4556.(2012山东东营,1,3分)31-的相反数是 ( )A . 31B . -31C . 3D . -357. (2012江苏省淮安市,9,3分)|-3|= .58. 若92+-y x 与3--y x 互为相反数,则x+y=__▲__59.(2012河北省,13,3分)13、-5的相反数是______________.60. (2012湖北黄冈,9,3分)-13的倒数是__________.1.4 有理数的加减法1. (2012四川省南充市,1,3分) 计算:2-(-3)的结果是( )A .5B .1C .-1D .-52.(2012山东省聊城,1,3分)计算3231--的结果是( ) A. 31- B. 31C.-1D.13. (2012广东肇庆,1,3)计算 23+- 的结果是A .1B .1-C . 5D . 5-4. (2012广东肇庆,2,3)点M (2,1-)向上平移2个单位长度得到的点的坐标是A .(2,0)B .(2,1)C .(2,2)D .(2,3-)5. (2012安徽,1,4分)下面的数中,与-3的和为0的是 ( ) A.3 B.-3 C.31 D.31-6. (2012四川省南充市,1,3分) 计算:2-(-3)的结果是( )A .5B .1C .-1D .-57. (2012,黔东南州,1)计算-1-2等于( )A 、1B 、3C 、-1D 、-38. (2012山西,1,2分)计算:﹣2﹣5的结果是( )A .﹣7B . ﹣3C . 3D .79. (2012珠海,6,4分)计算1132-= .1.5 有理数的乘除法1. (2012浙江省绍兴,9,3分)在一条笔直的公路边,有一些树和灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离都是10m ,如图,第一棵树左边5m 处有一个路牌,则从此路牌起向右510m~500m 之间树与灯的排列顺序是( )2. (2012四川泸州,2,3分)计算(-2)×3的结果是( )A.-6B.6C.-5D.51.6 有理数的乘方1. (2012江苏苏州,11,3分)计算:23= .2. (2012年广西玉林市,1,3)计算:=22 A.1 B.2 C.4 D.83.(2012山东省滨州,1,3分)32- 等于( )A .6-B .6C .8-D .84. (2012浙江省嘉兴市,1,4分)0(2)-等于( )A.1B.2C.0 D -21.7有理数的混合运算1.8科学记数法1.(2012重庆,11,4分)据报道,2011年重庆主城区私家车拥有量近380000辆.将数380000用科学记数法表示为________2.(2012江苏泰州市,3,3分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为A.3.12×105 B.3.12×106 C.31.2×105 D .0.312×1073.(2012四川成都,5,3分)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )A .59.310⨯ 万元B .69.310⨯万元C .49310⨯万元D .60.9310⨯万元4. (2012浙江省衢州,2,3分)衢州市是国家优秀旅游城市,吸引了众多的海内外游客.据衢州市2011年国民经济和社会发展统计公报显示,全年旅游总收入达121.04亿元.将121.04亿元用科学记数法可表示为( )A.12.104×10 9元B. 12.104×10 10元C.1.2104×10 10元D. 1.2104×10 11元5.(2012山东省临沂市,2,3分)太阳的半径为696000千米,把这个数据用科学记数法表示为( )A.696×103千米.B. 69.6×104千米.C.6.96×105千米.D. 6.96×106千米.6. (2012贵州贵阳,2,3分)在5月份的助残活动中,盲聋哑学校收到社会捐款约110000元.将110000元用科学记数法表示为( )A .1.1×103 元 B. 1.1×104 元 C. 1.1×105 元 D. 1.1×106 元7.(2012年四川省德阳市,第2题、3分.)某厂2011年用于购买原材料的费用2350000元,实数2350000用科学记数法表示为A.51035.2⨯B. 5105.23⨯C. 510235.0⨯D. 61035.2⨯8. (2012连云港,3,3分)2011年度,连云港港口的吞吐量比上一年增加31 000 000吨,创年度增量的最高纪录,其中数据“31 000 000”用科学计数法可表示为A.3.1×107B. 3.1×106C. 31×106D. 0.31×1089.(2012山东泰安,4,3分)已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为( )A.42110-⨯千克B.62.110-⨯千克C. 52.110-⨯千克D. 42.110-⨯千克10. (2012福州,2,4分,)今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为( )A .448.910⨯ B.54.8910⨯ C. 44.8910⨯ D. 60.48910⨯11. ( 2012年浙江省宁波市,4,3)据宁波市统计局年报,去年我市人均生产总值为104485元,104485元用科学记数法表示为(A )1.04485×106 (B) 0.104485×106 (C) 1.04485×105 (D )10.4485×10412. (2012浙江省绍兴,3,3分)据科学家估计,地球的年龄大约是4600000000年,这个数用科学记数法表示为( )A.4.6×108B. 46×108C. 4.6×108D. 0.46×101013.(2012湖南益阳,9,4分)今年益阳市初中毕业生约为33000人,将这个数据用科学记数法可记为 .14.(2012四川省资阳市,11,3分)为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330000毫克/千瓦时,用科学记数法表示并保留三个有效数字为 毫克/千瓦时.15.(2012湖南湘潭,12,3分)5月4日下午,胡锦涛总书记在纪念中国共产主义青年团成立90周年大会上指出:希望广大青年坚持远大理想、坚持刻苦学习、坚持艰苦奋斗、坚持开拓创新、坚持高尚品行.我国现有约78000000名共青团员,用科学记数法表示为 名.16. (2012安徽,11,5分)2011年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________.17.(2012贵州铜仁,9,4分)从权威部门获悉,中国海洋面积是299.7万平方公里,约为陆地面积的三分之一, 299.7万平方公里用科学计数法表示为( )平方公里(保留两位有效数字)A .6103⨯B .7103.0⨯C .6100.3⨯D .61099.2⨯ 18. (2012江苏盐城,11,3分)中国共产党第十八次全国代表大会将于2012年10月15日至18日在北京召开,据统计截止2011年底,全国的共产党员人数已超过80300000,这个数据用科学记数法可表示为 .19.(2012湖北随州,2,3分)湿地旅游爱好者小明了解到鄂东南某市水资源总量为42.43亿立方米,其中42.43亿用科学记数法可表示为( )A .942.4310⨯B .84.24310⨯C .94.24310⨯D .80.424310⨯ 20.(2012北京,2,4分)首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯21.(2012湖北襄阳,3,3分)李阳同学在“百度”搜索引擎中输入“魅力襄阳”,能搜索到与之相关的结果个数约为236 000,这个数用科学记数法表示为A .2.36×103B .236×103C .2.36×105D .2.36×10622.(2012重庆,11,4分)据报道,2011年重庆主城区私家车拥有量近380000辆.将数380000用科学记数法表示为________23. (2012浙江省衢州,2,3分)衢州市是国家优秀旅游城市,吸引了众多的海内外游客.据衢州市2011年国民经济和社会发展统计公报显示,全年旅游总收入达121.04亿元.将121.04亿元用科学记数法可表示为( )A.12.104×10 9元B. 12.104×10 10元C.1.2104×10 10元D. 1.2104×10 11元 24. (2012山东省临沂市,2,3分)太阳的半径为696000千米,把这个数据用科学记数法表示为( )A.696×103千米.B. 69.6×104千米.C.6.96×105千米.D. 6.96×106千米.25. (2012福州,2,4分)今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为( )A .448.910⨯ B.54.8910⨯ C. 44.8910⨯ D. 60.48910⨯26. (2012安徽,11,5分)2011年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________.27. (2012浙江省嘉兴市,3,4分)南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为( )A. 0.35×810:B. 3.5×710C. 3.5×610D. 35×51028.2011年,我国汽车销量超过过了18 500 000辆,这个数据用科学记数法表示为________________辆。

2012年山东省青岛市中考数学试题(word版含答案)

2012年山东省青岛市中考数学试题(word版含答案)

二○一二年山东省青岛市初级中学学业水平考试数学试题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1—8题为选择题,请将所选答案的标号填写在第8题后面给出表格的相应位置上;9—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题,请在试题给出的本题位置上做答.一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列各数中,相反数等于5的数是().A.-5B.5 C.-15D.152.如图所示的几何体的俯视图是().A.B.C.D.3.由四舍五入法得到的近似数8.8×103,下列说法中正确的是().A.精确到十分位,有2个有效数字 B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字 D.精确到千位,有4个有效数字4.下列图形中,中心对称图形有().A.1个B.2个C.3个D.4个5.某外贸公司要出口一批规格为150g的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是().A.本次的调查方式是抽样调查B.甲、乙两厂被抽取苹果的平均质量相同C.被抽取的这100个苹果的质量是本次调查的样本D.甲厂苹果的质量比乙厂苹果的质量波动大6.如图,在Rt△ABC中,∠C = 90°,∠B = 30°,BC = 4 cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是().A.相离B.相切C.相交D.相切或相交7.如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△''A B C,那么点A的对应点'A的坐标是().A.(-3,3)B.(3,-3)C.(-2,4)D.(1,4)8.函数y ax a=-与ayx=(a≠0)在同一直角坐标系中的图象可能是().第2题图第7题图BCA第6题图A .B .C .D .请将1—8各小题所选答案的标号填写在下表的相应位置上:9 .10.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °. 11.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可得方程 .12.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球.13.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是 cm 2.14.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.请将9—14各小题的答案填写在下表的相应位置上:三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.如图,有一块三角形材料(△ABC ),请你画出一个圆,使其与△ABC 的各边都相切.解:结论: 四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)OABC第10题图·…第14题图A BCE 'A 第13题图('B ) D AB C(1)解方程组:34194x y x y +=⎧⎨-=⎩; (2)化简:22142a a a +--. 解: 解:原式=17.(本小题满分6分)配餐公司为某学校提供A 、B 、C 三类午餐供师生选择,三类午餐每份的价格分别是:A 餐5元,B 餐6元,C 餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A 、B 、C 三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是 元;(2)配餐公司上周在该校销售B 餐每份的利润大约是 元; (3)请你计算配餐公司上周在该校销售午餐约盈利多少元? 解:(3) 18.(本小题满分6分)“五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.如果读者不愿意转转盘,那么可以直接获得10元的购书券.(1)写出转动一次转盘获得45元购书券的概率;(2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由. 解:(1)(2)以往销售量与平均每份利润之间的关系统计图该校上周购买情况统计表 第18题图19.(本小题满分6分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 337sin37tan37sin 48tan485410≈≈≈≈,,,解:20.(本小题满分8分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.解:(1)(2) 21.(本小题满分8分)第19题图已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF 是什么特殊四边形?并证明你的结论.证明:(1)(2)22.(本小题满分10分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:10500y x=-+.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)解:(1)(2)(3)A DB EF OC第21题图23.(本小题满分10分)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形....的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究. 我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着 个 正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案? 问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+ = ,整理得:238x y +=,我们可以找到惟一一组适合方程的正整数解为12x y =⎧⎨=⎩ .结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:结论2: . 上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3: .验证3:结论3:. 24.(本小题满分12分)已知:把Rt△ABC 和Rt△DEF 按如图(1)摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm ,BC = 6 cm ,EF = 9 cm .如图(2),△DEF 从图(1)的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?O(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.(图(3)供同学们做题使用)解:(1)(2)(3)真情提示:亲爱的同学,请认真检查,不要漏题哟!ADC F(E)图(1)图(2)AC图(3)(用圆珠笔或钢笔画图)二○一○年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分18分,共有6道小题,每小题3分)三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心;········ 2分确定半径;········ 3分正确画出圆并写出结论.········ 4分四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分)(1)34194x yx y+=⎧⎨-=⎩解:②×4得:4416x y-=,③①+③得:7x = 35,解得:x = 5.把x = 5代入②得,y = 1.∴原方程组的解为51xy=⎧⎨=⎩.········ 4分(2)解:原式 =()()21222aa a a-+--)()()()222222a aa a a a+=-+-+-()()()()()2222222a aa aaa a-+=+--=+-12a=+.········ 4分17.(本小题满分6分)解:(1)6元;········ 2分(2)3元;········ 4分(3)1.5×1000+3×1700+3×400 = 1500+5100+1200 = 7800(元).答:配餐公司上周在该校销售午餐约盈利7800元.········ 6分②①18.(本小题满分6分)解:(1)P(获得45元购书券)=112;········2分(2)12345302515121212⨯+⨯+⨯=(元).∵15元>10元,∴转转盘对读者更合算.········6分19.(本小题满分6分)解:设CD = x.在Rt△ACD中,tan37AD CD︒=,则34ADx =,∴34AD x=.在Rt△BCD中,tan48° = BD CD,则1110BDx=,∴1110BD x=. ……………………4分∵AD+BD = AB,∴31180 410x x+=.解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.………………… 6分20.(本小题满分8分)解:(1)设单独租用35座客车需x辆,由题意得:3555(1)45x x=--,解得:5x=.∴35355175x=⨯=(人).答:该校八年级参加社会实践活动的人数为175人.········3分(2)设租35座客车y辆,则租55座客车(4y-)辆,由题意得:3555(4)175320400(4)1500y yy y+-⎧⎨+-⎩≥≤,········6分解这个不等式组,得111244y≤≤.∵y取正整数,∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元.········ 8分21.(本小题满分8分)证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B = ∠D = 90°.∵AE = AF,∴Rt RtABE ADF△≌△.∴BE=DF.········ 4分(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA = ∠DCA = 45°,BC = DC.∵BE=DF,∴BC-BE = DC-DF. 即CE CF=.∴OE OF=.∵OM = OA,∴四边形AEMF是平行四边形.∵AE = AF,∴平行四边形AEMF是菱形.········ 8分22.(本小题满分10分)解:(1)由题意,得:w = (x-20)·y=(x-20)·(10500x-+)21070010000x x=-+-352bxa=-=.答:当销售单价定为35元时,每月可获得最大利润.········ 3分(2)由题意,得:210700100002000x x-+-=解这个方程得:x1 = 30,x2 = 40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元.A DB EFOC第21题图第19题图······6分(3)法一:∵10a=-<0,∴抛物线开口向下.∴当30≤x≤40时,w≥2000.∵x≤32,∴当30≤x≤32时,w≥2000.设成本为P(元),由题意,得:20(10500)P x=-+20010000x=-+∵200k=-<0,∴P随x的增大而减小.∴当x = 32时,P最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.·········10分23.(本小题满分10分)解:3个;········1分验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角.根据题意,可得方程:60120360a b+=.整理得:26a b+=,可以找到两组适合方程的正整数解为22ab=⎧⎨=⎩和41ab=⎧⎨=⎩.······3分结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.····5分猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?········6分验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角. 根据题意,可得方程:6090120360m n c++=,整理得:23412m n c++=,可以找到惟一一组适合方程的正整数解为121mnc=⎧⎪=⎨⎪=⎩. ········8分结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌. (说明:本题答案不惟一,符合要求即可.)·······10分24.(本小题满分12分)解:(1)∵点A在线段PQ的垂直平分线上,∴AP = AQ.∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°,∴∠EQC = 45°.∴∠DEF =∠EQC.∴CE = CQ.由题意知:CE = t,BP =2 t,∴CQ = t.∴AQ = 8-t.在Rt△ABC中,由勾股定理得:AB = 10 cm .则AP = 10-2 t.∴10-2 t = 8-t.解得:t = 2.答:当t = 2 s时,点A在线段PQ的垂直平分线上. ····· 4分(2)过P作PM BE⊥,交BE于M,∴90BMP∠=︒.在Rt△ABC和Rt△BPM中,sinAC PMBAB BP==,∴8210PMt= . ∴PM =85t.∵BC = 6 cm,CE = t,∴BE = 6-t.∴y = S△ABC-S△BPE =12BC AC⋅-12BE PM⋅=1682⨯⨯-()186t t25⨯-⨯=24242455t t-+ = ()2484355t-+.∵45a=>,∴抛物线开口向上.∴当t = 3时,y最小=845.答:当t = 3s时,四边形APEC的面积最小,最小面积为845cm2. ···· 8分(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上.过P作PN AC⊥,交AC于N,∴90ANP ACB PNQ∠=∠=∠=︒.∵PAN BAC∠=∠,∴△PAN ∽△BAC.图(2)法二:∵10a=-<0,∴抛物线开口向下.∴当30≤x≤40时,w≥2000.∵x≤32,∴30≤x≤32时,w≥2000.∵10500y x=-+,100k=-<,∴y随x的增大而减小.∴当x = 32时,y最小=180.∵当进价一定时,销售量越小,成本越小,∴201803600⨯=(元).∴PN AP AN BC AB AC==.∴1026108 PN t AN-==.∴665PN t=-,885AN t=-.∵NQ = AQ-AN,∴NQ = 8-t-(885t-) =35t.∵∠ACB = 90°,B、C(E)、F在同一条直线上,∴∠QCF = 90°,∠QCF = ∠PNQ.∵∠FQC = ∠PQN,∴△QCF∽△QNP .∴PN NQFC CQ=. ∴636559t tt t-=-.∵0t<<4.5∴663595tt-= -解得:t= 1.答:当t = 1s,点P、Q、F三点在同一条直线上. 12分第11 页共11 页。

2012年中考数学样题参考答案.doc

2012年中考数学样题参考答案.doc

2012年中考数学样题参考答案选择题(每题3分,共30分)一、BADCD BADBA二、填空题(每题3分,共18分)11. 15; 12. 6; 13. (-4,3) 14.38; 15.53; 16. 4n ;三、解答题(每小题8分,共16分)17..解:原式21=····································································· 6分3=··················································································· 8分18. 解:原式=213(3)32(2)(2)a a a a a a a +---÷-++- ······················································ 2分 =213(2)(2)32(3)a a a a a a a +-+---+-· ··········································································· 3分 1233a a a a +-=--- ······························································································ 4分 =33a - ········································································································ 6分 a 取值时只要不取2,2-,3就可以. ······························································· 7分求值正确.原式 ····························································································· 9分四、解答题(每小题9分,共18分)19.(1)200 ······································································································· 2分 (2)补充图:扇形图中补充的 跳绳25% ························································· 3分 其它20% ······································································································ 4分 条形图中补充的高为50 ···················································································· 5分(3)54 ········································································································ 7分 (4)解:1860×40%=744(人)答:最喜欢“球类”活动的学生约有744人. ······················································ 9分 20.解:(1)根据题意可列表或树状图如下:第一次第二次12341 —— (1,2) (1,3) (1,4)2 (2,1) —— (2,3) (2,4)3 (3,1) (3,2) —— (3,4) 4(4,1)(4,2)(4,3)——·············································································· 5分···························································································· 5分从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23= ···················································································· 7分 (2)不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,∵2133≠,∴不公平. ····················································································· 9分五、解答证明题(每小题8分,共16分) 21.(1)证明:∵AD 平分∠BAC∴∠BAD=21∠BAC . (1,2) (1,3) (1,4) 2341 (1,1) (2,3) (2,4) 1342 (3,1) (3,2) (3,4) 1243 (4,1) (4,2) (4,3)1234 第一次摸球第二次摸球∵AE 平分∠BAF . ∴∠BAE=21∠BAF . 2分 ∵∠BAC+∠BAF=180°∴∠BAD+∠BAE=21 (∠BAC+∠BAF )= 21×180°=90° ∴∠DAE=90°.即DA ⊥AE . 4分 (2)AB=DE 5分 理由是:∵AB=AC ,AD 平分∠BAC . ∴AD ⊥BC ,即∠ADB=90°. ∵BE ⊥AE .∴∠AEB=90° 又∵∠DAE=90°(已证),∴四边形AEBD 是矩形.故AB=DE . 8分22、解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同. ··················································································· 2分(2)设返程中y 与x 之间的表达式为y kx b =+,则120 2.505.k b k b =+⎧⎨=+⎩,解之,得48240.k b =-⎧⎨=⎩,···················································································· 5分∴48240y x =-+.(2.55x x ≤≤)(评卷时,自变量的取值范围不作要求) ······ 6分 (3)当4x =时,汽车在返程中,48424048y ∴=-⨯+=.∴这辆汽车从甲地出发4h 时与甲地的距离为48km . ········································· 8分六、解答证明题(23小题10分,24小题12分,共22分) 23、证明:(1) 连结AC ,如图∵C 是弧BD 的中点∴∠BDC =∠DBC 1分 又∠BDC =∠BAC在三角形ABC 中,∠ACB =90°,CE ⊥AB ∴ ∠BCE=∠BAC∠BCE =∠DBC 3分 ∴ CF =BF 4分因此,CF =BF . (2)解法一:作CG ⊥AD 于点G , ∵C 是弧BD 的中点∴ ∠CAG =∠BAC , 即AC 是∠BAD 的角平分线.·············· 5分 ∴ CE =CG ,AE =AG 6分 在Rt △BCE 与Rt △DCG 中,CE =CG , CB =CD ∴Rt △BCE ≌Rt △DCG∴BE =DG 7分 ∴AE =AB -BE =AG =AD +DG 即 6-BE =2+DG∴2BE =4,即 BE =2 8分又 △BCE ∽△BAC∴ 212BC BEAB ==· 9分 32±=BC (舍去负值)∴32=BC 10分(2)解法二:∵AB 是⊙O 的直径,CE ⊥AB∴∠BEF=︒=∠90ADB , 5分 在Rt ADB △与Rt FEB △中,∵FBE ABD ∠=∠ ∴ADB △∽FEB △,则BFABEF AD =即BFEF 62=, ∴EF BF 3= 6分 又∵CF BF =, ∴EF CF 3= 利用勾股定理得:EF EF BF BE 2222=-= 7分又∵△EBC ∽△ECA 则CEBE AE CE =,即则BE AE CE ⋅=28分 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF 9分 ∴3222=+=CE BE BC 10分24.解:(1)解方程01682=+-x x ,得421==x x由实数m 是方程01682=+-x x 的一个实数根,得m=4 ∴点A ,C 的坐标分别是A (4,0)和C (0,4). 1分将A (4,0)和C (0,4)的坐标分别代人c bx x y ++-=221 得⎩⎨⎧==⇒⎩⎨⎧==++-414048c b c c b ∴抛物线的解析式为4212++-=x x y 3分 (2)由4212++-=x x y ,令y=0,得04212=++-x x ,解此方程得2,421-==x x∴点B 的坐标为B (2,0),故AB=6, S △ABC =21·AB ·CO=12 4分设AD=k (0≤k ≤6), ∵ED ∥BC ∴△ADE ∽△ABC ,从而36)6()(222k k AB AD S S ABC ADE ===∆∆ ∴32k S ADE=∆ (5分) 同理可知,3)6(2-=∆k S BDF6分∴S 四边形DECF =S △ABC -S △ADE -S △BDF=6)3(3243222+--=+-k k k (7分) 当且仅当k =3时,S 四边形DECF 有最大值为6,此时D (1,0) 8分 (3)存在满足条件的点N ,使得∠NOB=∠AMO ,设点N (y x ,) ∵若M 是⊙G 的优弧ACO 上的一个动点∴∠NOB=∠AMO=∠ACO=45° 9分 ①当点N 在x 轴上方时,tan45°=x y xy-=⇒=-1 又∵4212++-=x x y ∴4212++-x x 3220842±=⇒=--⇒-=x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (232,322--) 10分 ②当点N 在x 轴下方时,tan45°=x y xy=⇒=--1 又∵4212++-=x x y ∴22842122±=⇒=⇒=++-x x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (22,22--) 12分。

(完整版)青岛市历年中考数学23题汇总.docx

(完整版)青岛市历年中考数学23题汇总.docx

青岛市中考数学23 题汇编1.(07 年中考 )提出问题:如图①,在四边形 ABCD 中, P 是 AD 边上任意一点, PBC 与 ABC 和 DBC 的面积之间有什么关系? 探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手 :⑴当 AP1AD 时 (如图② ):2Q AP 1 AD, ABP 和 ABD 的高相等,2SABP1 S ABD .2Q PD AD AP1AD , CDP 和 图①CDA 的高相等,2S CDP 1 S CDA2图②S PBC S 四边形ABCDS ABPSCDPS 四边形ABCD1S ABD1S CDA22⑵ 当 AP1AD 时 , 探 求 S PBC 与 S ABC和S 四边形ABCD1S四边形 ABCDSDBC1 S 四边形 ABCD S ABC3221S DBC 1 S ABC22S DBC 之间的关系,写出求解过程;⑶当 AP 1AD 时, S PBC 与 S ABC 和 S DBC 之间的关系式为:__________________________ ;6⑷一般的,当 AP1AD (n 表示正整数 )时,探求 S PBC 与 SABC和S DBC之间的关系,写出求解过程;n问题解决:当 APmAD ( 0m1)时, S PBC 与 S ABC 和 S DBC 之间的关系式为 :__________________.nn2. (08 年中考 ):某学校共有18 个教学班,每班的学生数都是40 人 .了解学生余上网情况,学校打算做一次抽,如果要确保全校抽取出来的学生中至少有10 人在同一班,那么全校最少需要抽取多少名学生?建立模型:解决上面的“ ”,我先建立并研究下面从口袋中摸球的数学模型.在不透明的口袋中装有、黄、白三种色的小球各20 个 (除色外完全相同),要确保从口袋中随机摸出的小球至少有 10 个是同色的,最少需要摸出多少个小球?了找到解决的法,我可以把上述化,⑴我首先考最的情况:即要确保从口袋中摸出的小球至少有 2 个是同色的,最少需摸出多少个小球?假若从袋中随机摸出 3 个小球,它的色可能会出多种情况,其中最不利的情况就是它的色各不相同,那么只需再从袋中摸出 1 个小球就可确保至少有 2 个小球同色,即最少需摸出的小球的个数是: 1 3 4 (如①);⑵若要确保从口袋中摸出的小球至少有 3 个是同色的呢?我只需在⑴的基上,再从袋中摸出 3 个小球,就可确保至少有 3 个小球同色,即最少需摸出小球的个数是:13 2 7 (如②);⑶若要确保从口袋中摸出的小球至少有 4 个是同色的呢?我只需在⑵的基上,再从袋中摸出 3 个小球,就可以确保至少有 4 个小球同色,即最少需摸出小球的个数是:1 3 3 10(如③);⋯⋯⑽若要确保从口袋中摸出的小球至少有10 个是同色的呢?我只需在⑼的基上,再从袋中摸出 3 个小球,就可以确保至少有10 个小球同色,即最少需摸出小球的个数是:1 310 128 (如⑩).黄9 个黄黄9 个黄黄黄⋯黄黄黄黄白白白白白白白白白白或黄或白或黄或白或黄或白或黄或白①②③⑩模型拓展一:在不透明的口袋中装有、黄、白、、五种色的小球各20 个 ( 除色外完全相同) ,从袋中随机摸球:⑴若要确保摸出的小球至少有 2 个同色,最少需摸出小球的个数是___________________ ;⑵若要确保摸出的小球至少有10 个同色,最少需摸出小球的个数是___________________;⑶若要确保摸出的小球至少有n 个同色 (n<20) ,最少需摸出小球的个数是___________________.模型拓展二:在不透明的口袋中装有m 种色的小球各20 个 ( 除色外完全相同) ,从袋中随机摸球:⑴若要确保摸出的小球至少有 2 个同色,最少需摸出小球的个数是___________________ ;⑵若要确保摸出的小球至少有n 个同色 (n<20) ,最少需摸出小球的个数是___________________.解决:⑴ 把本中的“ ” 化一个从口袋中摸球的数学模型;⑵根据⑴中建立的数学模型,求出全校最少需要抽取多少名学生.3.(09 年中考 )我们在解决数学问题时,经常采用“转化”(或“化归” )的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如在学习一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.问题提出:如何把一个正方形分割成n( n9 )个小正方形?为解决上面问题,我们先来研究两种简单的“基本分割法”.基本分割法1:如图①,把一个正方形分割成 4 个小正方形,即在原来 1 个正方形的基础上增加了 3 个正方形 .基本分割法2:如图②,把一个正方形分割成 6 个小正方形,即在原来 1 个正方形的基础上增加了 5 个正方形 .图①图②图③图④图⑤图⑥问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n( n9 )个小正方形.⑴把一个正方形分割成9 个小正方形 .一种方法:如图③,把图①中的任意 1 个小正方形按“基本分割法2”进行分割,就可增加 5 个小正方形,从而分割成4+5=9( 个 )小正方形 .另一种方法:如图④,把图②中的任意 1 个小正方形按“基本分割法1”进行分割,就可增加 3 个小正方形,从而分割成 6+3=9( 个 )小正方形 .⑵把一个正方形分割成10 个小正方形 .方法:如图⑤,把图①中的任意 2 个小正方形按“基本分割法1”进行分割,就可增加3× 2 个小正方形,从而分割成 4+3× 2=10( 个 )小正方形 .⑶请你参照上述分割方法,把图⑥给出的正方形分割成11 个小正方形 ( 用钢笔或圆珠笔画出草图即可,不用说明分割方法 ).⑷把一个正方形分割成 n( n 9 )个小正方形 .方法:通过“基本分割法 1”“基本分割法 2”或其组合把一个正方形分割成9 个、 10 个、 11 个小正方形,再在此基础上每使用 1 次“基本分割法 1”,就可增加 3 个小正方形,从而把一个正方形分割成12 个、 13 个、 14 个小正方形,以此类推,即可把一个正方形分割成n( n 9)个小正方形 .从上面的方法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成 n( n 9 )个小正方形 .n( n 9 )个小正三角形 .类比应用:仿照上面的方法,我们可以把一个正三角形分割成⑴基本分割法 1:把一个正三角形分割成 4 个小正三角形(请你在图 a 中画出草图 ).⑵基本分割法 2:把一个正三角形分割成 6 个小正三角形(请你在图 b 中画出草图 ).⑶分别把图 c、图 d 和图 e 种的正三角形分割成9 个、 10个和 11 个小正三角形 (用钢笔或圆珠笔画出草图即可,不用说明分割方法 ).图 a图b⑷请你写出把一个正三角形分割成答:图 c图dn( n9 )个小正三角形的分割方法图 e(只写出分割方法,不用画图).4.(10 年中考 )问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形的镶嵌作为研究问题的切....入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着 4 个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着_______ 个正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决猜想 1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角 .验证 1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:8218090x8y 360 ,整理得:2x+3 y=8,我们可以找到唯一一组适合方程的正整数解为x 1. y 2结论 1:镶嵌平面时,在一个顶点周围围绕这 1 个正方形和 2 个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想 2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证 2:结论 2: ________________________________________________________________________________________________________________________________________________________________________.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其他可能的组合方案.问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想 3: _________________________________________________________________________________.验证 3:结论 3: ________________________________________________________________________________________________________________________________________________________________________. 5.(11 年中考 )问题提出我们在分析解决数学问题时,经常要比较两个数或代数式的大小 .解决问题的策略一般要进行一定的转化,其中“作差法”就是常用方法之一,所谓“作差法” :就是通过作差变形,利用差的符号来确定它们的大小,即要比较代数式 M 、N 的大小,只要作出它们的差 M N ,若 M N0,则 M N ;若 M N 0 ,则 MN ;若 M N 0 ,则 MN .问题解决如图①, 把边长为 a+b 的大正方形 (a ≠b )分割成两个边长分别是 a ,b 的小正方形以及两个矩形, 试比较两个小正方形的面积之和 M 与两个矩形面积之和 N 的大小 .由图可知, Ma2b 2, N 2ab ,abM N a 2 b 2 2abaaa 2b .Qa b ,bb2a 0 ,b a图①bM N .类比应用⑴已知小明和小亮购买同一种商品的平均价格分别为a b元 /千克,2ab元/ 千克,试比较小明和小亮所购商品的平均2a b价格的高低 (a , b 是正数,且 a ≠b ).解:类比应用⑵试比较图②、图③两个矩形的周长M 1 、N 1(b>c )的大小 .a+bb+3 cb+ca-c图②图③解:拓展应用小刚在超市里买了一些物品,用一个长方体的箱子“打包”,箱子的尺寸如图④ (0<c<a<b ),售货员分别按图⑤、图⑥、图⑦三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.cba 图④图⑤ 图⑥ 图⑦解:。

山东省青岛市中考数学卷及参考答案版

山东省青岛市中考数学卷及参考答案版

二○○八山东省青岛市初级中学学业水平考试数学试题(考试时间:120分钟;满分120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题,其中1—7题为选择题,请将所选答案的标号,写在第7题后面给出表格的相应位置上:8—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题请在试题给出的本题位置上做答.一、选择题(本题满分21分,共有7道小题,每小题3分)下列每小题都给出标号为A,B,C,D的四个结论,其中只有一个是正确的.每小题选对得分;不选,选错或选出的标号超过一个的不得分,请将1—7各小题所选答案的标号填写在第7小题后面表格的相应位置上.1.14-的相反数等于()A.14B.14-C.4D.4-2.下列图形中,轴对称图形的个数是()A.1 B.2 C.3 D.43.已知1Oe和2Oe的半径分别为3cm和2cm,圆心距124O O=cm,则两圆的位置关系是()A.相切B.内含C.外离D.相交4.某几何体的三种视图如右图所示,则该几何体可能是()A.圆锥体B.球体C.长方体D.圆柱体5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,L L,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个6.如果点11()A x y,和点22()B x y,是直线y kx b=-上的两点,且当12x x<时,12y y<,那么函数kyx=的图象大致是()主视图左视图俯视图yxOyxOyxOyxOD.7.如图,把图①中的ABC △经过一定的变换得到图②中的A B C '''△,如果图①中ABC △上点P 的坐标为()a b ,,那么这个点在图②中的对应点P '的坐标为( ) A .(23)a b --, B .(32)a b --,C .(32)a b ++,D .(23)a b ++,请将1—7各小题所选答案的标号填写在下表的相应位置上:题号 1 2 3 4 5 6 7 答案二、填空题(本题满分21分,共有7道小题,每小题3分)请将8—14各小题的答案填写在第14小题后面表格的相应位置上. 8.计算:0122-+= .9.化简:293x x -=- .10.如图,在矩形ABCD 中,对角线AC BD ,相交于点O ,若60AOB ∠=o ,4AB =cm ,则AC 的长为 cm .11.如图,AB 是O e 的直径,弦CD AB ⊥于E ,如果10AB =,8CD =,那么AE 的长为 .12.为了帮助四川地震灾区重建家园,某学校号召师生自愿捐款.第一次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数是多少?若设第一次捐款的人数为x ,则根据题意可列方程为 .测试项目测试成绩3 2 1 -1 O -2 -3 -3 -2 -1 1 2 3 x y 3 21 -1 O -2 -3-3 -2 -1 1 2 3 xy P A B C A ' B 'C ' P '13.某市广播电视局欲招聘播音员一名,对A B ,两名候选人进行了两项素质测试,两人的两项测试成绩如右表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么 (填A 或B )将被录用.14.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线()OE OF 长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为 cm .请将8—14各小题的答案填写在下表的相应位置上:题号 8 9 10 11 答案题号 12 13 14 答案三、作图题(本题满分6分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.如图,AB AC ,表示两条相交的公路,现要在BAC ∠的内部建一个物流中心.设计时要求该物流中心到两条公路的距离相等,且到公路交叉处A 点的距离为1000米.(1)若要以1:50000的比例尺画设计图,求物流中心到公路交叉处A 点的图上距离; (2)在图中画出物流中心的位置P .解:(1)四、解答题(本题满分72分,共有9道小题) 16.(本小题满分6分) 用配方法解一元二次方程:2220x x --=.A B面试 90 95 综合知识测试 85 80A FEO 第14题图A CB (2) 1cm17.(本小题满分6分)某市为调查学生的视力变化情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成折线统计图和扇形统计图如下:解答下列问题:(1)该市共抽取了多少名九年级学生?(2)若该市共有8万名九年级学生,请你估计该市九年级视力不良(4.9以下)的学生大约有多少人?(3)根据统计图提供的信息,谈谈自己的感想(不超过30字). 18.(本小题满分6分)小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?19.(本小题满分6分) 在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6o,最大夹角β为64.5o.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米?(结果保留两个有效数字)(参考数据:sin18.60.32=o,tan18.60.34=o,sin 64.50.90=o,tan 64.5 2.1=o)时间(年) 0被抽取学生视力在4.9以下 的人数变化情况统计图 A40% B30%C 20%D 10% A :4.9以下B :4.9-5.1C :5.1-5.2D :5.2以上 (每组数据只含最低值不含最高值)被抽取学生2008年的视 力分布情况统计图20.(本小题满分8分)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱? 21.(本小题满分8分) 已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE △≌△;(2)将DCE △绕点D 顺时针旋转90o得到DAE '△,判断四边形E BGD '是什么特殊四边形?并说明理由. 22.(本小题满分10分)某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图).(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额-总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?y (件)AB CDEF E 'G23.(本小题满分10分)实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生? 建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型: 在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球? 为了找到解决问题的办法,我们可把上述问题简单化:(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:134+=(如图①);(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1327+⨯=(如图②)(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:13310+⨯=(如图③): L L(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:13(101)28+⨯-=(如图⑩)模型拓展一:在不透明的口袋中装有红、黄、白、蓝、绿五种颜色的小球各20分(除颜色外完全相同),现从袋中随机摸球:(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是 ; (2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是 ; (3)若要确保摸出的小球至少有n 个同色(20n <),则最少需摸出小球的个数是 . 模型拓展二:在不透明口袋中装有m 种颜色的小球各20个(除颜色外完全相同),现从袋红黄 红 红或黄或白 图② 黄白白 红 黄 白红或黄或白 图①红红 红或黄或白 图③ 红白白白 黄 黄黄红 红红或黄或白图⑩ 红白白白 黄 黄黄 白 … M红 黄N9个 9个9个...中随机摸球:(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是 . (2)若要确保摸出的小球至少有n 个同色(20n <),则最少需摸出小球的个数是 . 问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型; (2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生. 24.(本小题满分12分) 已知:如图①,在Rt ACB △中,90C ∠=o,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥?(2)设AQP △的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB △的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ',那么是否存在某一时刻t ,使四边形PQP C '为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.图①P二○○八年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本题满分21分,共有7道小题,每小题3分)题号 1 2 3 4 5 6 7 答案 A B D D C B C 二、填空题(本题满分21分,共有7道小题,每小题3分)题号 89 10 11 答案 23x +38 2 题号 1213 14答案2020000256000=-xx B412三、作图题(本题满分6分) 15.解:(1)1000米=100000厘米,100000÷50000=2(厘米); ································································ 2′(2) 略. ························································································· 6′四、解答题(本题满分72分,共有9道小题) 16.(本小题满分6分)解: 222=-x x , 12122+=+-x x ,3)1(2=-x , ··························································· 3′ 31±=-x ,∴311+=x , 312-=x . ·········································································· 6′ 17.(本小题满分6分)解:(1)800÷40% = 2000(人); ···························································· 2′ (2)80000×40% = 32000(人); ································································· 4′ (3)合理即可. ···················································································· 6′ 18.(本小题满分6分)解:······························································································ 2′∴P (配成紫色)=92,P (配不成紫色)=97.∴小刚得分:92192=⨯,小明得分:97197=⨯,∵9792≠ , ∴ 游戏对双方不公平. ·········································· 4′ 修改规则的方法不惟一.(如改为:若配成紫色时小刚得7分,否则小明得2分.) ··································· 6′ 19.(本小题满分6分)解:设CD 为x ,在Rt △BCD 中,ο6.18==∠αBDC ,红 白 蓝红 (红,红) (红,白) (红,蓝) 黄 (黄,红) (黄,白) (黄,蓝) 蓝(蓝,红) (蓝,白) (蓝,蓝)∵CDBCBDC =∠tan , ∴x BDC CD BC 34.0tan =∠⋅=. ···································· 2′ 在Rt △ACD 中,ο5.64==∠βADC , ∵CDACADC =∠tan , ∴x ADC CD AC 1.2tan =∠⋅=. ····································· 4′ ∵BC AC AB -=,∴x x 34.01.22-=. ······································· 5′1.14x ≈.答:CD 长约为1.14米. ······································ 6′ 20.(本小题满分8分)解:(1)设A 种票x 张,则B 种票)15(x -张,根据题意得:152600120(15)5000x x x x -⎧⎪⎨⎪+-⎩≥,≤ ········································· 3′ 解得: 5≤x ≤320. ∴满足条件的x 为5或6. ∴共有两种购买方案:方案一:A 种票5张, B 种票10张,方案二:A 种票6张, B 种票9张. ······································ 6′ (2)方案一购票费用: 600×5+120×10=4200(元),方案二购票费用: 600×6+120×9=4680(元), ∵4200<4680,∴ 方案一更省钱. ········································ 8′21.(本小题满分8分)证明:(1) ∵四边形ABCD 是正方形,∴BC=CD ,∠BCD=90°. ∵∠BCD +∠DCE=180°, ∴∠BCD=∠DCE=90°. 又∵CG=CE ,∴△BCG ≌△DCE . ······································· 4′ (2)∵△DCE 绕D 顺时针旋转90︒得到△DAE ′,∴CE=AE ′.∵CE=CG ,∴CG=AE ′.∵四边形ABCD 是正方形,∴BE ′∥DG ,AB=CD .∴AB -AE ′ =CD -CG ,即BE ′ =DG .∴四边形DE ′ BG 是平行四边形. ································ 8′22.(本小题满分10分)解:(1)设b kx y x y +=的函数关系式为:与,∵函数图象经过点(60,400)和(70,300),∴⎩⎨⎧+=+=b k b k 7030060400, 解得⎩⎨⎧=-=100010b k . ∴100010+-=x y . ····································· 4′(2))100010)(50(+--=x x P500001500102-+-=x x P ······································ 6′ 自变量取值范围:50≤x ≤70. ··································· 7′ ∵752015002=--=-a b ,10-=a <0. ∴函数500001500102-+-=x x P 图象开口向下,对称轴是直线x=75.∵50≤x ≤70,此时y 随x 的增大而增大,∴当70=x 时,6000=最大值P . ······························· 10′23.(本小题满分10分)模型拓展一:(1)1+5=6 ·································· 1′(2)1+5×9=46 ··································· 2′(3)1+5(n -1) ·································· 3′模型拓展二:(1)1+m ·································· 4′(2)1+m (n -1) ································· 5′问题解决:(1)在不透明口袋中放入18种颜色的小球(小球除颜色外完全相同)各40个,现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?······················································································································ 8′(2)1+18×(10-1) =163 ······································································· 10′24.(本小题满分12分)解:(1)在Rt △ABC 中,522=+=AC BC AB ,由题意知:AP = 5-t ,AQ = 2t ,若PQ ∥BC ,则△APQ ∽△ABC , ∴=AC AQ ABAP , ∴5542t t -=, ∴710=t . ··············································· 3′ (2)过点P 作PH ⊥AC 于H . ∵△APH ∽△ABC , ∴=BC PH AB AP , ∴=3PH 55t -, ∴t PH 533-=, ∴t t t t PH AQ y 353)533(221212+-=-⨯⨯=⨯⨯=. ····································· 6′ (3)若PQ 把△ABC 周长平分,则AP+AQ=BP+BC+CQ .∴)24(32)5(t t t t -++=+-,解得:1=t .若PQ 把△ABC 面积平分, 则ABC APQ S S ∆∆=21, 即-253t +3t =3.∵ t =1代入上面方程不成立,∴不存在这一时刻t ,使线段PQ 把Rt △ACB 的周长和面积同时平分. ············· 9′(4)过点P 作PM ⊥AC 于M,PN ⊥BC 于N ,若四边形PQP ′ C 是菱形,那么PQ =PC .∵PM ⊥AC 于M ,∴QM=CM . 图① BBN∵PN ⊥BC 于N ,易知△PBN ∽△ABC . ∴ABBP AC PN =, ∴54t PN =, ∴54t PN =, ∴54t CM QM ==, ∴425454=++t t t , 解得:910=t . ∴当910=t 时,四边形PQP ′ C 是菱形. 此时37533=-=t PM , 9854==t CM , 在Rt △PMC 中,9505816494922=+=+=CM PM PC , ∴菱形PQP ′ C 边长为9505. 12′。

2013-2019年山东省青岛市中考数学试题汇编(含参考答案与解析)

2013-2019年山东省青岛市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2019年山东省青岛市中考数学试题汇编(含参考答案与解析)1、2013年山东省青岛市中考数学试题及参考答案与解析 (2)2、2014年山东省青岛市中考数学试题及参考答案与解析 (26)3、2015年山东省青岛市中考数学试题及参考答案与解析 (51)4、2016年山东省青岛市中考数学试题及参考答案与解析 (75)5、2017年山东省青岛市中考数学试题及参考答案与解析 (98)6、2018年山东省青岛市中考数学试题及参考答案与解析 (121)7、2019年山东省青岛市中考数学试题及参考答案与解析 (146)2013年山东省青岛市中考数学试题及参考答案与解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.﹣6的相反数是()A.﹣6 B.6 C.16D.162.下列四个图形中,是中心对称图形的是()A.B.C.D.3.如图所示的几何体的俯视图是()A.B.C.D.4.“十二五”以来,我国积极推进国家创新体系建设.国家统计局《2012年国民经济和社会发展统计公报》指出:截止2012年底,国内有效专利达8750000件,将8750000件用科学记数法表示为()件.A.8.75×104B.8.75×105C.8.75×106D.8.75×1075.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:现将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.556.已知矩形的面积为36cm2,相邻的两条边长分别为xcm和ycm,则y与x之间的函数图象大致是()A.B.C.D.7.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6 B.r=6 C.r>6 D.r≥68.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A .,2m n ⎛⎫ ⎪⎝⎭B .(m ,n )C .,2n m ⎛⎫ ⎪⎝⎭D .,22m n ⎛⎫ ⎪⎝⎭ 二、填空题(本题满分18分共有6道题,每小题3分)9.计算:12-+= .10.某校对甲、乙两名跳高运动员的近期调高成绩进行统计分析,结果如下:=1.69m ,=1.69m ,S 2甲=0.0006,S 2乙=0.00315,则这两名运动员中 的成绩更稳定.11.某企业2010年底缴税40万元,2012年底缴税48.4万元.设这两年该企业交税的年平均增长率为x ,根据题意,可得方程 .12.如图,一个正比例函数图象与一次函数y=﹣x+1的图象相交于点P ,则这个正比例函数的表达式是 .13.如图,AB 是⊙O 的直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是 .14.要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面是现成的.其他三个面必须用三刀切3次才能切出来.那么,要把一个正方体分割成27个小正方体,至少需用刀切 次;分割成64个小正方体,至少需要用刀切 次.三、作图题(本题满分4分)用圆规、直尺作图,不写做法,但要保留作图痕迹。

青岛市中考数学试题及答案(word解析版)

青岛市中考数学试题及答案(word解析版)

山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()D.A.﹣7 B.7C.﹣考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106B.6.09×104C.609×104D.60.9×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人B.2万人C.1.5万人D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看电视台早间新闻的约有15×=1.5万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含B.内切C.相交D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系.6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.B.﹣=2﹣=2D.﹣=2C.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4B.3C.4.5 D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,运用勾股定理BF2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=2+1.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是(1,0).考点:坐标与图形变化-旋转.专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54个小立方块.考点:由三视图判断几何体.分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图.分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法.分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是14天,众数是13天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数.分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式.分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用.分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC 的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.点评:本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.23.(10分)(•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:+++…+=1﹣,所以,+++…+=﹣.拓广应用:计算+++…+.考点:作图—应用与设计作图;规律型:图形的变化类.专题:规律型.分析:探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;解决问题:按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以(m﹣1)即可得解;拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.解答:解:探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续四等分,…,第n次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:+++…+,最后的空白部分的面积是,根据第n次分割图可得等式:+++…+=1﹣,两边同除以3,得+++…+=﹣;解决问题:+++…+=1﹣,+++…+=﹣;故答案为:+++…+=1﹣,﹣;拓广应用:+++…+,=1﹣+1﹣+1﹣+…+1﹣,=n﹣(+++…+),=n﹣(﹣),=n﹣+.点评:本题考查了应用与设计作图,图形的变化规律,读懂题目信息,理解分割的方法以及求和的方法是解题的关键.24.(12分)(•青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D 出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.考点:四边形综合题.分析:(1))由四边形ABCD是菱形,OA=AC,OB=BD.在Rt△AOB中,运用勾股定理求出AB=10.再由△DFQ∽△DCO.得出=.求出DF.由AP=DF.求出t.(2)过点C作CG⊥AB于点G,由S菱形ABCD=AB•CG=AC•BD,求出CG.据S梯=(AP+DF)•CG.S△EFD=EF•QD.得出y与t之间的函数关系式;形APFD(3)过点C作CG⊥AB于点G,由S菱形ABCD=AB•CG,求出CG,由S四边形APFE:S=17:40,求出t,再由△PBN∽△ABO,求得PN,BN,据线段关系求出EM,菱形ABCDPM再由勾股定理求出PE.解答:解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,OA=OC=AC=6,OB=OD=BD=8.在Rt△AOB中,AB==10.∵EF⊥BD,∴∠FQD=∠COD=90°.又∵∠FDQ=∠CDO,∴△DFQ∽△DCO.∴=.即=,∴DF=t.∵四边形APFD是平行四边形,∴AP=DF.即10﹣t=t,解这个方程,得t=.∴当t=s时,四边形APFD是平行四边形.(2)如图,过点C作CG⊥AB于点G,∵S菱形ABCD=AB•CG=AC•BD,即10•CG=×12×16,∴CG=.∴S梯形APFD=(AP+DF)•CG=(10﹣t+t)•=t+48.∵△DFQ∽△DCO,∴=.即=,∴QF=t.同理,EQ=t.∴EF=QF+EQ=t.∴S△EFD=EF•QD=×t×t=t2.∴y=(t+48)﹣t2=﹣t2+t+48.(3)如图,过点P作PM⊥EF于点M,PN⊥BD于点N,若S四边形APFE:S菱形ABCD=17:40,则﹣t2+t+48=×96,即5t2﹣8t﹣48=0,解这个方程,得t1=4,t2=﹣(舍去)过点P作PM⊥EF于点M,PN⊥BD于点N,当t=4时,∵△PBN∽△ABO,∴==,即==.∴PN=,BN=.∴EM=EQ﹣MQ==.PM=BD﹣BN﹣DQ==.在Rt△PME中,PE===(cm).点评:本题主要考查了四边形的综合知识,解题的关键是根据三角形相似比求出相关线段.。

2012年山东省实数中考数学题

2012年山东省实数中考数学题

2012年山东省实数中考数学题山东各市2012年中考数学试题分类解析汇编专题1:实数一、选择题1. (2012山东滨州3分)等于【】A.B.6C.D.8【答案】C。

【考点】有理数的乘方。

【分析】根据乘方的运算法则直接计算即可:。

故选C。

2. (2012山东德州3分)下列运算正确的是【】A.B.(﹣3)2=﹣9C.2﹣3=8D.20=0【答案】A。

【考点】算术平方根,有理数的乘方,负整数指数幂,零指数幂。

【分析】分别根据算术平方根、有理数的平方、负整数指数幂及0指数幂的运算法则进行计算即可:A、∵22=4,∴,故本选项正确;B、(﹣3)2=9,故本选项错误;C、,故本选项错误;D、20=1,故本选项错误。

故选A。

3. (2012山东东营3分)的相反数是【】A.B.C.3D.-3【答案】B。

【考点】绝对值,相反数。

【分析】先求的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是错1/3,所以的绝对值是1/3。

;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。

因此的相反数是。

故选B。

4. (2012山东菏泽3分)在算式的□中填上运算符号,使结果最大,这个运算符号是【】A.加号B.减号C.乘号D.除号【答案】D。

【考点】实数的运算,实数大小比较。

【分析】分别填上运算符号计算后比较大小:当填入加号时:,当填入减号时:;当填入乘号时:;当填入除号时:。

∵,∴这个运算符号是除号。

故选D。

5. (2012山东济南3分)-12的绝对值是【】A.12B.-12C.D.【答案】A。

【考点】绝对值。

【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点-12到原点的距离是12。

,所以-12的绝对值是12。

,故选A。

6. (2012山东济南3分)2012年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为【】A.1.28×103B.12.8×103C.1.28×104 D.0.128×105【答案】C。

青岛市中考数学试题及答案

青岛市中考数学试题及答案

青岛市中考数学试题及答案一、选择题1. 已知函数f(x) = 2x + 3,若f(a) = 9,求a的值。

A) 2B) 3C) 4D) 5答案: C) 42. 在平面直角坐标系中,A(1, 2)和B(5, 6)为两个点,那么∣AB∣的值为多少?A) √2B) √5C) 2√5D) 10答案:B) √53. 某球场的观众人数上升指数为5%,若某年观众人数为400人,那么到达初始人数的前一年观众人数为多少?A) 380B) 384C) 395D) 420答案: A) 3804. 若∣a-2∣=5,求a的值。

A) -3或7B) -7或3C) -3或3D) 7或-7答案: A) -3或75. 在一个正方形草坪中,小明在正方形的对角上任选两个点A和B,那么小明会发现,连线AB割开的两个部分与小明开始的位置形成的三角形面积之和等于多少?A) 1/4B) 1/3C) 1/2D) 3/4答案: C) 1/2二、填空题1. 已知一组数据为:6, 8, 11, 15, 20,计算这组数据的方差。

答案: 19.22. 若直角三角形的一条直角边长为3,斜边长度为5,求另一条直角边长。

答案: 43. 某书架上有20本书,其中12本是小说,其余为非小说类图书,小说类图书所占的百分比为多少?答案: 60%三、解答题1. 某班级男生人数是女生人数的4倍,班级总人数为500人,那么男生人数和女生人数分别是多少?答案:男生人数:400,女生人数:100解题思路:设女生人数为x,则男生人数为4x,根据题意,有x + 4x = 500,解得x = 100,男生人数为4 * 100 = 400。

2. 某商品原价是120元,现进行打折活动,打五折后售价为多少?答案: 60元解题思路:打五折相当于原价乘以0.5,所以售价为120 * 0.5 = 60元。

3. 现有一堆石头,每次从中取走一半,并再加1个石头,若一共取了5次后石头被取完,最初有多少个石头?答案: 31个石头解题思路:设最初有x个石头,根据题意,有x * (1/2)^5 = 1,解得x = 31。

2012年青岛中考数学试题(word)含答案

2012年青岛中考数学试题(word)含答案

山东省 2012 年青岛市中考数学试题
一、选择题(本题满分24分,共8小题,每小题3分)
1.-2的绝对值是【】
1 1 A B.-
2 C. D.2 222.下列图形中,既是轴对称图形,又是中心对称图形的是【】
A. B. C. D.
3.如图,正方体表面上画有一圈黑色线条,则它的左视图是【】
A. B. C. D.
4.已知⊙O1与⊙O2的半径分别为4和6,O1O2=2,则⊙O1与⊙O2的位置关系是【】A.内切 B.相交 C.外切 D.外离
5
则下列说明正确的是【】
A.学生成绩的极差是4 B.学生成绩的众数是5
C.学生成绩的中位数是80分 D.学生成绩的平均分是80分
6.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A1的坐标是【】
A.(6,1) B.(0,1) C.(0,-3) D.(6,-3) 7.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是【】
1 3 1 1 A. B. C. D.4432。

山东省青岛市中考数学试题word版及答案

山东省青岛市中考数学试题word版及答案

2011 年山东省青岛市中考数学试题一、选择题(本大题共8 小题,每题 3 分,满分24 分)1.-1的倒数是【】2A.-11C.- 2D.2 B.222.如图,空心圆柱的主视图是【】A .B.C.D.3.已知⊙O1与⊙O2的直径分别是4cm和 6cm,O1O2= 5cm,则两圆的地址关系是【A.外离B.外切C.订交D.内切4.以下汽车标志中,既是轴对称图形又是中心对称图形的是【】】5.某种鲸的体重约为1.36 ×105kg .关于这个近似数,以下说法正确的选项是【】A.精确到百分位,有 3 个有效数字B.精确到个位,有 6 个有效数字C.精确到千位,有 6 个有效数字D.精确到千位,有 3 个有效数字6.如图,若将直角坐标系中“鱼”的每个“极点”的横坐标保持不变,纵坐标分别变为原来的1】,则点 A的对应点的坐标是【2yA6y 34O32- 1x - 1- 5- 2 O2 5 x图 1图 2A. ( -4, 3)B. (4 , 3)C. ( - 2,6)D. ( - 2, 3) 7.如图 1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图 2 所示的一个圆锥,则圆锥的高为【】A.17cm B.4cm C.15cm D.3cmk8.已知一次函数y1= kx+b 与反比率函数y2=x在同素来角坐标系中的图象以下列图,则当 y1< y2时, x 的取值范围是【】A.x<- 1 或 0<x< 3B.-1<x<0或x>3C.- 1<x< 0D.x>3二、填空题(本大题共 6 小题,每题 3 分,满分18 分)9.已知甲、乙两支仪仗队各有10 名队员,这两支仪仗队队员身高的平均数都是 178cm,方差分别为0.6 和 1.2 ,则这两支仪仗队身高更整齐的O 是仪仗队.A B 10.如图,已知AB是⊙O的弦,半径OA= 6cm,∠AOB= 120o,则 AB=cm.11.某车间加工 120 个零件后,采用了新工艺,工效是原来的 1.5 倍,这样加工同样多的零件就少用 1 小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则依照题意可列方程为.12.生物工作者为了估计一片山林中雀鸟的数量,设计了以下方案:先捕捉100 只雀鸟,给它们做上标志后放回山林;一段时间后,再从中随机捕捉500 只,其中有标志的雀鸟有A A15 只.请你帮助工作人员估计这片山林中雀鸟的数量约为只.13.如图,将等腰直角△ABC沿BC方向平移获得△A B C.若BC= 32,B B1CC1111△ ABC与△ A1B1C1重叠部分面积为2,则BB1=.14.如图,以边长为 1 的正方形ABCD的边AB为对角线作第二C 个正方形 AEBO1,再以 BE为对角线作第三个正方形EFBO2,这样作下去, , ,则所作的第nO1B n 个正方形的面积S DO2=.F 三、作图题(本题满分12 分)A E 15.如图,已知线段 a 和 h.求作:△ ABC,使得 AB=AC, BC=a,且 BC边上的高 AD= h.要求:尺规作图,不写作法,保留作图印迹.ah四、解答题(本大题共9 小题,满分74 分)16. ( 每题 4 分,满分 8 分)(1) 解方程组:4x+ 3y= 5,(2)b+1b2+ bx-2y=4.化简:a2-4÷a+2.17. (6 分 ) 图 1 是某城市三月份 1 至 8 日的日最高气温随时间变化的折线统计图,小刚依照图 1 将数据统计整理后制成了图2.温度 /oC天数 / 天453432211O 1 2 3 4 5 6 78日期0 1 2 34温度/oC图 1图 2依照图中信息,解答以下问题:(1)将图 2 补充完满;(2) 这 8 天的日最高气温的中位数是oC;(3) 计算这 8 天的日最高气温的平均数.18. (6分)小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之差 ( 大数减小数 ) 大于或等于2,小明得 1 分,否则小亮得 1 分.你12认为游戏可否公正?若公正,请说明原由;若不公正,请你更正规则,43使游戏对双方公正.19. (6分 ) 某商场准备改进原有楼梯的安全性能,把倾斜角由原来的40o 减至35o.已知原5m,调整后的楼梯所占地面CD有多长?楼梯AB长为( 结果精确到0.1m .参照数据: sin40 o≈ 0.64 ,cos40 o≈ 0.77 ,sin35 o≈0.57 , tan35 o≈ 0.70)A35o40oC B D20.(8 分) 某企业为了改进污水办理条件,决定购买、AB 两种型号的污水办理设备共8 台,其中每台的 A 型 B 型价格、月办理污水量以下表:价格( 万元 / 台)86经估量,企业最多支出57 万元购买污水办理设月办理污水量 ( 吨 / 月)200180备,且要求设备月办理污水量不低于1490 吨.(1)企业有哪几种购买方案?(2)哪一种购买方案更省钱?21. (8 分 ) 在□ABCD中,E、F分别是AB、CD的中点,连接AF、 CE.(1)求证:△ BEC≌△ DFA;(2)连接 AC,当 CA= CB时,判断四边形 AECF是什么特别四边形?并证明你的结论.A DEFB C22. (10 分 ) 某商场经营某种品牌的童装,购进时的单价是60 元.依照市场检查,在一段时间内,销售单价是80 元时,销售量是200 件,而销售单价每降低 1 元,即可多售出20件.(1)写出销售量 y 件与销售单价 x 元之间的函数关系式;(2)写出销售该品牌童装获得的利润w元与销售单价 x 元之间的函数关系式;(3) 若童装厂规定该品牌童装销售单价不低于76 元,且商场要完成很多于240 件的销售任务,则商场销售该品牌童装获得的最大利润是多少?23. (10 分)问题提出我们在解析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行必然的转变,其中“作差法”就是常用的方法之一.所谓“作差法”:就是经过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、 N的大小,只要作出它们的差M- N,若 M- N>0,则 M> N;若 M- N=0,则 M= N;若 M- N<0,则M< N.问题解决如图 1,把边长为a+ b( a≠ b)的大正方形切割成两个边长分别是a、 b 的小正方形及两a b个矩形,试比较两个小正方形面积之和M与两个矩形面积之和解:由图可知:M= a2+ b2, N=2ab.∴M- N= a2+b2-2ab=( a- b)2.∵a≠ b,∴( a- b)2>0.∴M- N>0.∴M> N.种类应用a+ b(1) 已知小丽和小颖购买同一种商品的平均价格分别为2N的大小.a ab ba b图12ab元/ 千克和a+b元/ 千克( a、b是正数,且a≠b),试比较小丽和小颖所购买商品的平均价格的高低.(2)试比较图 2 和图 3 中两个矩形周长M1、N1的大小 ( b>c) .a+ bb+ cb+ 3ca- c图 2图3联系拓广小刚在商场里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图 4 所示( 其中b>a>c> 0) ,售货员分别可按图 5、图 6、图 7 三种方法进行捆绑,吻哪一种方法用绳最短?哪一种方法用绳最长?请说明原由.cba图 4图5图6图724. (12 分 ) 如图,在△ABC中,AB=AC= 10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿 AC的方向匀速运动,速度为2cm/s;同时直线 PQ由点 B 出发,沿 BA的方向匀A 速运动,速度为1cm/s ,运动过程中向来保持PQ∥ AC,直线 PQ交 AB于点 P、交 BC于点 Q、交 BD于点 F.连接 PM,设运动时间为t s(0<t <5).(1)当 t 为何值时,四边形 PQCM是平行四边形?(2)设四边形 PQCM的面积为 y cm2,求 y 与 t 之间的函数关系式;9PF(3)可否存在某一时辰 t ,使 S 四边形PQCM=16 S△ABC?若存在,求出B Qt的值;若不存在,说明原由;MDC(4) 连接,可否存在某一时辰t ,使点在线段的垂直平PC M PC分线上?若存在,求出此时t 的值;若不存在,说明原由.。

山东省青岛市中考数学试题word版,含答案.doc

山东省青岛市中考数学试题word版,含答案.doc

青岛市二○一四年初中学生学业考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第Ⅰ卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.7-的绝对值是( ).A .7-B .7C .17-D .172.下列四个图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .3.据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为( ).A .66.0910⨯B .46.0910⨯C .460910⨯D .560.910⨯4.在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻. 据此,估计该镇看中央电视台早间新闻的约有( ). A .2.5万人B .2万人C .1.5万人D .1万人5.已知⊙O 1与⊙O 2的半径分别是2和4,O 1O 2=5,则⊙O 1与⊙O 2的位置关系是( ).A .内含B .内切C .相交D .外切6.某工程队准备修建一条长1200m 的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路x m ,则根据题意可列方程为( ).A .120012002(120%)x x -=-B .120012002(120%)x x -=+C .120012002(120%)x x-=- D .120012002(120%)x x-=+7.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的A BFECDD ′C ′中点C ′上,若AB =6,BC =9,则BF 的长为( ). A .4 B .32 C .4.5D .58.函数ky x =与2=-+y kx k (0k ≠)在同一直角坐标系中的图象可能是( ).A .B .C .D .xOy xOy xOyxOy第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分) 9.计算:4055+= .10.某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g ).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:则这两台分装机中,分装的茶叶质量更稳定的是 (填“甲”或“乙”).11.如图,△ABC 的顶点都在方格线的交点(格点)上,如果将△ABC 绕C 点按逆时针方向旋转90°,那么点B 的对应点B ′的坐标是 .12.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A的度数是 °.13.如图,在等腰梯形ABCD 中,AD =2,∠BCD =60°,对角线AC 平分∠BCD , E ,F 分别是底边AD ,BC 的中点,连接EF .点P 是EF 上的任意一点,连接PA ,PB ,则PA +PB 的最小值为 . 14.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要 个小立方块.主视图 左视图 俯视图三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.已知:线段a ,∠α.求作:△ABC ,使AB =AC =a ,∠B =∠α.aα(第13题)ABEPDBCOAD(第12题)平均数(g )方差 甲分装机 200 16.23 乙分装机2005.84(第11题) O-4 -3 1 x-2 -1 2 3 4 yB 34 12C A四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)计算:2211x x y y -+÷; (2)解不等式组:35021x x ->⎧⎨->-⎩17.(本小题满分6分)空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.某市2013年每月空气质量良好以上天数统计图 某市2013年每月空气质量良好以上天数分布统计图根据以上信息解答下列问题: (1)该市2013年每月空气质量达到良好以上天数的中位数是_____天,众数是_____天; (2)求扇形统计图中扇形A 的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).18.(本小题满分6分)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19.(本小题满分6分)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l 1和l 2分别表示甲、1 2 3 4 5 6 7 8 9 10 11 1230 25 20 15 10 50 8 15 13 2113 912 13 1617 19 21 天数/天 , ① . ② (第18题) 红绿 绿绿 绿绿绿 黄黄黄 yA :20天以上B :10~20天C :小于10天ACB乙两人跑步的路程y (m)与甲跑步的时间x (s)之间的函数关系,其中l 1的关系式为y 1=8x ,问甲追上乙用了多长时间?20.(本小题满分8分)如图,小明想测山高和索道的长度.他在B 处仰望山顶A ,测得仰角∠B =31°,再往山的方向(水平方向)前进80m 至索道口C 处,沿索道方向仰望山顶,测得仰角∠ACE =39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC 的长(结果精确到0.1m ).(参考数据:tan31° ≈35,sin31° ≈12,tan39° ≈911,sin39° ≈711)21.(本小题满分8分)已知:如图,□ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E .(1)求证:△AOD ≌△EOC ;(2)连接AC ,DE ,当∠B =∠AEB = °时,四边形ACED 是正方形?请说明理由.22.(本小题满分10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价ADO(第21题)A(第20题)39°31°应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)23.(本小题满分10分) 数学问题:计算231111nm m mm ++++(其中m ,n 都是正整数,且m ≥2,n ≥1). 探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算2311112222n++++. 第1次分割,把正方形的面积二等分,其中阴影部分的面积为12; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为21122+;第3次分割,把上次分割图中空白部分的面积继续二等分,……;……第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为2311112222n ++++,最后空白部分的面积是12n. 根据第n 次分割图可得等式:2311112222n ++++=112n -. 探究二:计算2311113333n++++. 第1次分割,把正方形的面积三等分,其中阴影部分的面积为23; 第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为22233+; 第3次分割,把上次分割图中空白部分的面积继续三等分,……; ……第n 次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为2322223333n ++++,最后空白部分的面积是13n .1212212 1221231212212 312…12n12n…第1次分割第2次分割第3次分割第n 次分割23 23 223 23 223 323… 第1次分割第2次分割第3次分割第n 次分割根据第n 次分割图可得等式:2322223333n ++++=113n -, 两边同除以2, 得2311113333n ++++=11223n-⨯.探究三:计算2311114444n++++. (仿照上述方法,只画出第n 次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算231111nm m mm ++++. (只需画出第n 次分割图,在图上标注阴影部分面积,并完成以下填空) 根据第n 次分割图可得等式: , 所以,231111nm m mm ++++= .拓广应用:计算 2323515151515555n n ----++++ .24.(本小题满分12分)已知:如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC =12cm ,BD =16cm .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,直线EF 从点D 出发,沿DB 方向匀速运动,速度为1cm/s ,EF ⊥BD ,且与AD ,BD ,CD 分别交于点E ,Q ,F ;当直线EF 停止运动时,点P 也停止运动.连接PF ,设运动时间为t (s)(0<t<8).解答下列问题:(1)当t 为何值时,四边形APFD 是平行四边形?第n 次分割第n 次分割(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE∶S菱形ABCD=17∶40?若存在,求出t的值,并求出此时P,E 两点间的距离;若不存在,请说明理由.B D(第24题)青岛市二○一四年初中学生学业考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本题满分24分,共有8道小题,每小题3分)题 号 1 2 3 4 5 6 7 8 答 案BDACCDAB二、填空题(本题满分18分,共有6道小题,每小题3分 )9.221 10.乙 11.(1,0) 12.35 13.314.54三、作图题(本题满分4分)15.正确作图;········································· 3分 正确写出结论.········································· 4分四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分)(1)解:原式=2211x yy x -⋅+=2(1)(1)1x x yy x +-⋅+=1x y- . ·········································· 4分(2)35021x x ->⎧⎨->-⎩解:解不等式①,得①②x >53.解不等式②,得x <3. 所以,原不等式组的解集是53<x <3. ·········································· 4分17. (本小题满分6分) 解:(1)14,13.·········································· 2分(2)360°×212=60°, 答:扇形A 的圆心角的度数是60°. ·········································· 4分 (3)合理即可.·········································· 6分18. (本小题满分6分)解:(1)P (转动一次转盘获得购物券)=1020=12. ·········································· 2分(2)1362001005040202020⨯+⨯+⨯=(元) ∵40元>30元,∴选择转转盘对顾客更合算. ·········································· 6分19. (本小题满分6分) 解:设y 2=kx +b (k ≠0),根据题意,可得方程组解这个方程组,得 所以y 2=6x +10. 当y 1=y 2时,8x =6x +10, 解这个方程,得x =5. 答:甲追上乙用了5s .·········································· 6分20. (本小题满分8分) 解:(1)过点A 作A D ⊥BE 于D , 设山AD 的高度为x m ,在Rt △ABD 中,∠ADB =90°, tan31°=ADBD, ∴5=3tan3135AD x BD x =≈º.在Rt △ACD 中,∠ADC =90°,10=22=2+b k b⎧⎨⎩610k b =⎧⎨=⎩ A(第20题)39°31°tan39°=ADCD, ∴11=9tan39911AD x CD x =≈º.∵BC BD CD =- ∴ 5118039x x -=,解这个方程,得180x =.即山的高度为180米. ········································· 6分(2)在Rt △ACD 中,∠ADC =90°,sin39°=ADAC, ∴180282.97sin3911AD AC =≈≈º(米). 答:索道AC 长约为282.9米. . ········································· 8分21. (本小题满分8分)证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠D =∠OCE ,∠DAO =∠E . 又∵OC =OD , ∴△AOD ≌△EOC .········································· 4分(2)当∠B =∠AEB =45°时,四边形ACED 是正方形.∵△AOD ≌△EOC , ∴OA =OE . 又∵OC =OD ,∴四边形ACED 是平行四边形. ∵∠B =∠AEB =45°, ∴AB =AE ,∠BAE =90°. ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD . ∴∠COE =∠BAE =90°. ∴□ACED 是菱形. ∵AB =AE ,AB =CD , ∴AE =CD .∴菱形ACED 是正方形.········································· 8分(第21题)(第21题)22. (本小题满分10分)解:(1)y =(x -50)[50+5(100-x )]=(x -50)(-5x +550)=-5x 2+800x -27500 ∴y =-5x 2+800x -27500.········································· 4分(2)y =-5x 2+800x -27500=-5(x -80)2+4500 ∵a =-5<0, ∴抛物线开口向下.∵50≤x ≤100,对称轴是直线x =80, ∴当x =80时,y 最大值=4500.·········································· 6分(3)当y =4000时,-5(x -80)2+4500=4000,解这个方程,得x 1=70,x 2=90.∴当70≤x ≤90时,每天的销售利润不低于4000元. 由每天的总成本不超过7000元,得50(-5x +550)≤7000, 解这个不等式,得x ≥82.∴82≤x ≤90,∵50≤x ≤100,∴销售单价应该控制在82元至90元之间. ··································· 10分 23.(本小题满分10分)探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为34; 第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为23344+;第3次分割,把上次分割图中空白部分的面积继续四等分,……;……第n 次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为2333334444n ++++,最后的空白部分的面积是14n, 根据第n 次分割图可得等式:2333334444n ++++=114n -,两边同除以3, 得2311114444n ++++=11334n-⨯.········································· 4分解决问题: 231111n m m m m m m m m ----++++=11nm -,111(1)nm m m ---⨯. 34234…3n第n 次分割1n334第n 次分割nm1-m m21m m - 31m m - …1nm m-········································· 8分拓广应用:原式······································· 10分24.(本小题满分12分) 解:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,OA =OC =12AC =6,OB =OD =12BD =8. 在Rt △AOB 中,AB =2268+=10. ∵EF ⊥BD ,∴∠FQD =∠COD =90°. 又∵∠FDQ =∠CDO , ∴△DFQ ∽△DCO . ∴DF DC =QDOD . 即10DF =8t, ∴DF =54t . ∵四边形APFD 是平行四边形, ∴AP =DF . 即10-t =54t , 解这个方程,得t =409. 答:当t =409s 时,四边形APFD 是平行四边形. ········································· 4分(2)过点C 作C G ⊥AB 于点G ,∵S 菱形ABCD =AB ·CG =12AC ·BD , 即10·CG =12×12×16, ∴CG =485. 2323111111115555111155551144511411()445445nn n n nn n n n =-+-+-++-⎛⎫=-++++ ⎪⎝⎭⎛⎫=-- ⎪⨯⎝⎭-=-++⨯⨯或 ABFEPDOQ G (第24题)∴S 梯形APFD =12(AP +DF )·CG =12(10-t +54t )·485=65t +48. ∵△DFQ ∽△DCO ,∴QD OD =QFOC. 即8t =6QF , ∴QF =34t . 同理,EQ =34t . ∴EF =QF +EQ =32t . ∴S △EFD =12EF ·QD = 12×32t ×t =34t 2. ∴y =(65t +48)-34t 2=-34t 2+65t +48. ········································· 8分(3)若S 四边形APFE ∶S 菱形A BCD =17∶40,则-34t 2+65t +48=1740×96,即5t 2-8t -48=0,解这个方程,得t 1=4,t 2=-125(舍去)过点P 作PM ⊥EF 于点M ,PN ⊥BD 于点N , 当t =4时, ∵△PBN ∽△ABO , ∴PN AO =PB AB =BN BO ,即6PN =410=8BN. ∴PN =125,BN =165. ∴EM =EQ -MQ =1235-=35. PM =BD -BN -DQ =161645--=445. 在Rt △PME 中,PE 22PM EM +22344()()55+1945. ······································· 12分ABFEPDOQMN(第24题)。

2012年全国各地中考数学解析汇编1 有理数

2012年全国各地中考数学解析汇编1 有理数

2012年全国各地中考数学解析汇编1 有理数1.1 正数和负数1.(2012浙江丽水3分,1题)如果零上2℃记作+2℃,那么零下3℃记作( )A.-3℃B.-2℃C.+3℃D.+2℃【解析】根据相反意义的量可知,零上2℃记作“+2℃”,则零下3℃记作“-3℃”,故选A.【答案】A【点评】本题考查相反意义的量.2.(2012山东德州中考,9,4,)-1, 0, 0.2,71 , 3 中正数一共有 个. 【解析】由题意知2,17,3是正数,共有三个. 【答案】3.【点评】有理数的分类方法有2种:①正有理数、0、负有理数;②整数和分数.3.(2012安徽,1,4分)下面的数中,与-3的和为0的是 ( ) A.3 B.-3 C.31 D.31- 【解析】根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A 符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3.【答案】A .【点评】本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.4.(2012山东泰安,1,3分)下列各数比-3小的数是( )A. 0B. 1C.-4D.-1【解析】根据正数大于0,0大于负数,两个负数绝对值大的反而小可得,比-3小的数是-4.【答案】C【点评】本题考查了实数大小的比较.要掌握实数大小的比较:正数大于0,负数小于0,正数大于负数;数轴上表示的两个数,右边的比左边的大.5.(2012浙江省衢州,1,3分)下列四个数中,最小的数是( )A.2B.-2C.0D. 21- 【解析】根据有理数比较大小的法则进行判断,有-2<12-<0<2. 【答案】B 【点评】本题考查了有理数大小的比较,①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6.(2012重庆,1,4分)在一3,一1,0,2这四个数中,最小的数是()A.一3 B.一1 C.0 D.2【解析】正数大于0,负数小于0,两个负数绝对值大的反而小。

2012年山东(烟台、菏泽、滨州、潍坊、临沂)中考数学真题及答案

2012年山东(烟台、菏泽、滨州、潍坊、临沂)中考数学真题及答案

使△ ABC∽△ ADE.
B
A
E
C
( 2)如图, OABC 是一张放在平面直角坐标系中的矩形纸片,
O 为原点,点 A 在 x 轴的正半轴
上,点 C 在 y 轴的正半轴上, OA 10, OC 8 .在 OC 边上取一点 D ,将纸片沿 AD 翻折,使
点 O 落在 BC 边上的点 E 处,求 D , E 两点的坐标;
(3)画一个三角形,使它的三个顶点为 P1,P2,P3,P4, P5 中的 3 个格点并且与 △ ABC 相
似 (要求:用尺规作图,保留痕迹,不写作法与证明
).
B A
P5 F C
D P1 P2 P3
P4
E
17. ( 1)如图,一次函数
y=
2 x
2 的图像分别与 x 轴、 y 轴交于点 A 、 B ,以线段 AB 为边
23
3 33
5
7
9
43
11
15 17
则 63 “分裂”出的奇数中,最大的奇数是 ________ .
19
1
三、解答题 (本大题共 7 个小题,共 72 分.)
15.( 1)先化简,再求代数式的值.
2 ( a1
a2 a
a2
) 1
a
,其中 a 1
( 1)012
tan60 .
( 2)我市某校为了创建书香校园, 去年购进一批图书 .经了解, 科普书的单价比文学书的单价多
18.(本题 10 分)如图,在边长为 1 的小正方形组成的网格中, △ABC 和 △DEF 的顶点都在格 点上, P1, P2, P3, P4, P5 是 △ DEF 边上的 5 个格点,请按要求完成下列各题:

2008-2012青岛市数学中考试题(真题,含答案)

2008-2012青岛市数学中考试题(真题,含答案)

青岛二○○八山东省青岛市初级中学学业水平考试数 学 试 题(考试时间:120分钟;满分120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题,其中1—7题为选择题,请将所选答案的标号,写在第7题后面给出表格的相应位置上:8—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题请在试题给出的本题位置上做答.一、选择题(本题满分21分,共有7道小题,每小题3分)下列每小题都给出标号为A ,B ,C ,D 的四个结论,其中只有一个是正确的.每小题选对得分;不选,选错或选出的标号超过一个的不得分,请将1—7各小题所选答案的标号填写在第7小题后面表格的相应位置上.1.14-的相反数等于( ) A .14 B .14- C .4D .4-2.下列图形中,轴对称图形的个数是( )A.1 B.2 C.3 D.43.已知1O 和2O 的半径分别为3cm 和2cm ,圆心距124O O =cm ,则两圆的位置关系是( )A .相切B .内含C .外离D .相交4.某几何体的三种视图如右图所示,则该几何体可能是( ) A .圆锥体 B .球体 C .长方体 D .圆柱体5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( ) A .18个 B .15个 C .12个 D .10个 6.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )7.如图,把图①中的ABC △经过一定的变换得到图②中的A B C '''△,如果图①中ABC △上点P 的坐标为()a b ,,那么这个点在图②中的对应点P '的坐标为( ) A .(23)a b --, B .(32)a b --,C .(32)a b ++,D .(23)a b ++,请将1—7各小题所选答案的标号填写在下表的相应位置上:题号 1 2 3 4 5 6 7 答案主视左视俯视y x O yx O y x O y x O A . B . C . D . 3 2 1 -1 O -2 -3 -3 -2 -1 1 2 3 x y 图① 3 2 1 -1 O -2 -3-3 -2 -1 1 2 3 xy图② P AB C A ' B ' C ' P '二、填空题(本题满分21分,共有7道小题,每小题3分)请将8—14各小题的答案填写在第14小题后面表格的相应位置上.8.计算:0122-+= .9.化简:293x x -=- . 10.如图,在矩形ABCD 中,对角线AC BD ,相交于点O ,若60AOB ∠=,4AB =cm ,则AC 的长为 cm .11.如图,AB 是O 的直径,弦CD AB ⊥于E ,如果10AB =,8CD =,那么AE 的长为 . 12.为了帮助四川地震灾区重建家园,某学校号召师生自愿捐款.第一次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数是多少?若设第一次捐款的人数为x ,则根据题意可列方程为 .13.某市广播电视局欲招聘播音员一名,对A B ,两名候选人进行了两项素质测试,两人的两项测试成绩如右表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么 (填A 或B )将被录用. 14.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线()OE OF 长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为 cm .请将8—14各小题的答案填写在下表的相应位置上:题号8 9 10 11 答案题号121314答案三、作图题(本题满分6分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.如图,AB AC ,表示两条相交的公路,现要在BAC ∠的内部建一个物流中心.设计时要求该物流中心到两条公路的距离相等,且到公路交叉处A 点的距离为1000米.(1)若要以1:50000的比例尺画设计图,求物流中心到公路交叉处A 点的图上距离; (2)在图中画出物流中心的位置P .解:(1)四、解答题(本题满分72分,共有9道小题) 16.(本小题满分6分) 用配方法解一元二次方程:2220x x --=. 17.(本小题满分6分)某市为调查学生的视力变化情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成折线统计图和扇形统计图如下:测试项目测试成绩A B 面试 90 95 综合知识测试 85 80 AFEO 第14题A CB (2) 1cm 人数时间(年)800 500 3000 2006 2007 2008 被抽取学生视力在4.9以下的人数变化情况统计图 A 40%B 30%C 20%D 10% A :4.9以下B :4.9-5.1C :5.1-5.2D :5.2以上 (每组数据只含最低值不含最高值)被抽取学生2008年的视 力分布情况统计图解答下列问题:(1)该市共抽取了多少名九年级学生?(2)若该市共有8万名九年级学生,请你估计该市九年级视力不良(4.9以下)的学生大约有多少人? (3)根据统计图提供的信息,谈谈自己的感想(不超过30字). 18.(本小题满分6分)小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?19.(本小题满分6分)在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米?(结果保留两个有效数字)(参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=)20.(本小题满分8分)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱? 21.(本小题满分8分)已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F . (1)求证:BCG DCE △≌△;(2)将DCE △绕点D 顺时针旋转90得到DAE '△, 判断四边形E BGD '是什么特殊四边形?并说明理由.22.(本小题满分10分)某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图). (1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额-总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?红 黄 蓝 红 白 蓝A D CB βD α 400 300y (件) A B C D EF E ' G23.(本小题满分10分)实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生? 建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型: 在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球? 为了找到解决问题的办法,我们可把上述问题简单化:(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球? 假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:134+=(如图①); (2)若要确保从口袋中摸出的小球至少有3个是同色的呢?我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1327+⨯=(如图②)(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:13310+⨯=(如图③):(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:13(101)28+⨯-=(如图⑩)模型拓展一:在不透明的口袋中装有红、黄、白、蓝、绿五种颜色的小球各20分(除颜色外完全相同),现从袋中随机摸球:(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是 ; (2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是 ; (3)若要确保摸出的小球至少有n 个同色(20n <),则最少需摸出小球的个数是 . 模型拓展二:在不透明口袋中装有m 种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球: (1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是 . (2)若要确保摸出的小球至少有n 个同色(20n <),则最少需摸出小球的个数是 . 问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型; (2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生. 24.(本小题满分12分) 已知:如图①,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题:(1)当t 为何值时,PQ BC ∥?(2)设AQP △的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB △的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ',那么是否存在某一时刻t ,使四边形PQP C'为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.红 黄 红 红或黄或图黄 白 白 红 黄 白 红或黄或图红 红 红或黄或图红 白 白 白 黄黄 黄 红 红 红或黄或图红 白 白 白 黄 黄 黄 白 … 红 黄999...A Q C PB 图A QC P B P '图二○○八年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤. 4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本题满分21分,共有7道小题,每小题3分)题号1 2 3 4 5 6 7 答案 A B D D C B C 二、填空题(本题满分21分,共有7道小题,每小题3分)题号 89 10 11 答案 23x +38 2 题号 1213 14答案2020000256000=-xx B412三、作图题(本题满分6分) 15.解:(1)1000米=100000厘米,100000÷50000=2(厘米); ···················································································· 2′(2) 略. ············································································································· 6′四、解答题(本题满分72分,共有9道小题) 16.(本小题满分6分)解: 222=-x x , 12122+=+-x x ,3)1(2=-x , (3)1±=-x ,∴311+=x , 312-=x .·····················································17.(本小题满分6分)解:(1)800÷40% = 2000(人); ··············································································· 2′ (2)80000×40% = 32000(人); ···················································································· 4′ (3)合理即可. ········································································································ 6′ 18.(本小题满分6分)解:················································································································· 2′∴P (配成紫色)=92,P (配不成紫色)=97.∴小刚得分:92192=⨯,小明得分:97197=⨯,∵9792≠ , ∴ 游戏对双方不公平. ···························································· 4′ 修改规则的方法不惟一.(如改为:若配成紫色时小刚得7分,否则小明得2分.) ······················································ 6′19.(本小题满分6分)解:设CD 为x ,在Rt △BCD 中, 6.18==∠αBDC , ∵CDBCBDC =∠tan , ∴x BDC CD BC 34.0tan =∠⋅=. ··················································· 2′在Rt △ACD 中,5.64==∠βADC ,红 白 蓝 红(红,红) (红,白) (红,蓝) 黄 (黄,红) (黄,白) (黄,蓝) 蓝(蓝,红)(蓝,白)(蓝,蓝)∵CDACADC =∠tan , ∴x ADC CD AC 1.2tan =∠⋅=. ··················································· 4′ ∵BC AC AB -=,∴x x 34.01.22-=. ······················································ 5′1.14x ≈.答:CD 长约为1.14米. ·························································· 6′20.(本小题满分8分)解:(1)设A 种票x 张,则B 种票)15(x -张,根据题意得:152600120(15)5000x x x x -⎧⎪⎨⎪+-⎩≥,≤ ······················································ 3′ 解得: 5≤x ≤320. ∴满足条件的x 为5或6. ∴共有两种购买方案:方案一:A 种票5张, B 种票10张,方案二:A 种票6张, B 种票9张. ·························································· 6′ (2)方案一购票费用: 600×5+120×10=4200(元),方案二购票费用: 600×6+120×9=4680(元), ∵4200<4680,∴ 方案一更省钱. ···························································· 8′21.(本小题满分8分) 证明:(1) ∵四边形ABCD 是正方形,∴BC=CD ,∠BCD=90°. ∵∠BCD +∠DCE=180°, ∴∠BCD=∠DCE=90°. 又∵CG=CE ,∴△BCG ≌△DCE . ··························································· 4′ (2)∵△DCE 绕D 顺时针旋转90︒得到△DAE ′,∴CE=AE ′. ∵CE=CG , ∴CG=AE ′.∵四边形ABCD 是正方形, ∴BE ′∥DG ,AB=CD . ∴AB -AE ′ =CD -CG , 即BE ′ =DG .∴四边形DE ′ BG 是平行四边形. ···················································· 8′22.(本小题满分10分)解:(1)设b kx y x y +=的函数关系式为:与,∵函数图象经过点(60,400)和(70,300),∴⎩⎨⎧+=+=bk bk 7030060400, 解得⎩⎨⎧=-=100010b k .∴100010+-=x y . ····················································· 4′ (2))100010)(50(+--=x x P500001500102-+-=x x P ···················································· 6′ 自变量取值范围:50≤x ≤70. ······················································· 7′∵752015002=--=-a b ,10-=a <0.∴函数500001500102-+-=x x P 图象开口向下,对称轴是直线x=75. ∵50≤x ≤70,此时y 随x 的增大而增大,∴当70=x 时,6000=最大值P . ··············································· 10′23.(本小题满分10分) 模型拓展一:(1)1+5=6 ······················································ 1′(2)1+5×9=46 ······················································· 2′ (3)1+5(n -1) ······················································ 3′模型拓展二:(1)1+m ····················································· 4′(2)1+m (n -1) ····················································· 5′问题解决:(1)在不透明口袋中放入18种颜色的小球(小球除颜色外完全相同)各40个,现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球? ····································· 8′(2)1+18×(10-1) =163 ··························································································· 10′ 24.(本小题满分12分) 解:(1)在Rt △ABC 中,522=+=ACBC AB ,由题意知:AP = 5-t ,AQ = 2t , 若PQ ∥BC ,则△APQ ∽△ABC ,∴=AC AQ AB AP, ∴5542t t -=, ∴710=t . ·································································· 3′(2)过点P 作PH ⊥AC 于H .∵△APH ∽△ABC , ∴=BC PH AB AP, ∴=3PH 55t-,∴t PH 533-=,∴t t t t PH AQ y 353)533(221212+-=-⨯⨯=⨯⨯=. ··············································· 6′ (3)若PQ 把△ABC 周长平分,则AP+AQ=BP+BC+CQ .∴)24(32)5(t t t t -++=+-, 解得:1=t .若PQ 把△ABC 面积平分,则ABC APQ S S ∆∆=21, 即-253t +3t =3. ∵ t =1代入上面方程不成立,∴不存在这一时刻t ,使线段PQ 把Rt △ACB 的周长和面积同时平分. ································· 9′ (4)过点P 作PM ⊥AC 于M,PN ⊥BC 于N ,若四边形PQP ′ C 是菱形,那么PQ =PC . ∵PM ⊥AC 于M ,∴QM=CM .∵PN ⊥BC 于N ,易知△PBN ∽△ABC . ∴ABBPAC PN =, ∴54t PN =, ∴54tPN =,∴54t CM QM ==, ∴425454=++t t t , 解得:910=t .∴当910=t 时,四边形PQP ′ C 是菱形.此时37533=-=t PM , 9854==t CM , 在Rt △PMC 中,9505816494922=+=+=CM PM PC , ∴菱形PQP ′ C 边长为9505. 12′图① B A QPCHP ′B A QPC图②MN二○○九年山东省青岛市初级中学学业水平考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1-8题为选择题.请将所选答案的标号填写在第8题后面给出表格的相应位置上;9-14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15-24题请在试题给出的本题位置上做答.一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1-8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.下列四个数中,其相反数是正整数的是( ) A .3B .13C .2-D .12-2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()3.在等边三角形、平行四边形、矩形、等腰梯形和圆中,既是轴对称图形又是中心对称图形的有() A .1种 B .2种 C .3种 D .4种4.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是( )A .12B .13 C .14 D .165.如图所示,数轴上点P 所表示的可能是( ) A .6 B .10 C .15 D .316.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ) A .0.4米 B .0.5米 C .0.8米 D .1米7.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应( ) A .不小于4.8Ω B .不大于4.8ΩC .不小于14ΩD .不大于14Ω8.一艘轮船从港口O 出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A 处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B 所在位置的坐标是( )A .(3035030)-,B .(3030350)-,C .(30330),D .(30303), 二、填空题(本题满分18分,共有6道小题,每小题3分)请将9-14各小题的答案填写在第14小题后面给出表格的相应位置上9.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个第2题A . B . C. D .1- 0 1 2 3 4 P 第5题图 O 第6题图 6 O R /Ω I /A8 第7题图O x y 第8题图 A月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为 公里.10.在第29届奥林匹克运动会上,青岛姑娘张娟娟为中国代表团夺得了历史上首枚奥运会射箭金牌,为祖国争得了荣誉.下表记录了她在备战奥运会期间的一次训练成绩(单位:环):序号1 2 3 4 5 6 7 8 9 10 11 12 成绩9 9 10 9 8 10 10 9 8 7 10 9 根据表中的数据可得:张娟娟这次训练成绩的中位数是 环,众数是 环. 11.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,42ACD ∠=°,则BAD ∠= °.12.某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为 . 13.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .14.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.为美化校园,学校准备在如图所示的三角形(ABC △)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛.解:结论:四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)化简:2211x x x x +-÷ (2)解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤17.(本小题满分6分)某中学为了解该校学生的课余活动情况,采用抽样调查的方式,从运动、娱乐、阅读和其他四个方面调查了若干名学生的兴趣爱好情况,并根据调查结果制作了如下两幅统计图.根据图中提供的信息解答下列问题:(1)补全人数统计图;(2)若该校共有1500名学生,请你估计该校在课余时间喜欢阅读的人数;(3)结合上述信息,谈谈你对该校学生课余活动的意见和建议(字数不超过30字).OD A C B 第11题 A B C 50 40 30 20 10 0运动 娱乐 阅读 其他 项目 40 25 15 人数统计图 人数/人 阅读 其他 娱乐运动 40% 分布统计图 A D C B C 'D ' B '第13题E B A 6cm 3cm 1cm 第14题18.(本小题满分6分)在“六·一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.19.(本小题满分6分)在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度. (参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)20.(本小题满分8分)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本) 21.(本小题满分8分)已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.22.(本小题满分10分) 某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示. (1)试确定b c 、的值; (2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?CG E D B A F 第19题红黄黄 绿 绿绿 绿 黄绿 第18题图A DG C B FE 第21题22y 2(元) x (月)1 2 3 4 5 6 7 8 9 10 第22题2218y x bx c=++O23.(本小题满分10分)我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题. 问题提出:如何把一个正方形分割成n (n ≥9)个小正方形? 为解决上面问题,我们先来研究两种简单的“基本分割法”.基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形. 基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n (n ≥9)个小正方形. (1)把一个正方形分割成9个小正方形.一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成459+=(个)小正方形.另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成639+=(个)小正方形.(2)把一个正方形分割成10个小正方形.方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加32⨯个小正方形,从而分割成43210+⨯=(个)小正方形.(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)把一个正方形分割成n (n ≥9)个小正方形. 方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n (n ≥9)个小正方形.从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n (n ≥9)个小正方形.类比应用:仿照上面的方法,我们可以把一个正三角形分割成n (n ≥9)个小正三角形. (1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a 中画出草图). (2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b 中画出草图).(3)分别把图c 、图d 和图e 中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)请你写出把一个正三角形分割成n (n ≥9)个小正三角形的分割方法(只写出分割方法,不用画图). 24.(本小题满分12分)如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题: (1)当t 为何值时,PE AB ∥? (2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由. (4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.AE DQPBFC图①图② 图③图④图⑤ 图⑥图a图b 图c 图d 图e。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 21 题图
(2)
(2)
(3)
第 5 页 共 11 页
得 分
评卷人
复核人 23. (本小题满分 10 分) 结论 2: . 上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部 分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案. 问题拓广 请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方 案,并写出验证过程. 猜想 3: . 验证 3:
7
真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!
1.请务必在指定位置填写座号,并将密封线内的项目填写清楚. 2.本试题共有 24 道题.其中 1—8 题为选择题,请将所选答案的标号填写在第 8 题后面给 出表格的相应位置上;9—14 题为填空题,请将做出的答案填写在第 14 题后面给出表格的相应 位置上;15—24 题,请在试题给出的本题位置上做答. 得 分 评卷人 复核人 一、选择题(本题满分 24 分,共有 8 道小题,每小题 3 分)
第 18 题图
1200 及 第 3 页 共 11 页 一周销售量(份) 1200 以上
得 分
评卷人
复核人 19. (本小题满分 6 分)
不超过 1500 元的预算,学校决定同时租用这两种客车共 4 辆(可以坐不满) .请你计算本次社 会实践活动所需车辆的租金. 解: (1)
小明家所在居民楼的对面有一座大厦 AB, AB= 80 米. 为测量这座居民楼与大厦之间的距离, 小明从自己家的窗户 C 处测得大厦顶部 A 的仰角为 37°,大厦底部 B 的俯角为 48°.求小明家 所在居民楼与大厦的距离 CD 的长度. (结果保留整数) A 3 3 7 11 o o o o (参考数据: sin 37 ,tan37 ,s in 48 ,tan48 ) 5 4 10 10 解: 37° C 48° D
二○一二年山东省青岛市初级中学学业水平考试
3.由四舍五入法得到的近似数 8.8×10 ,下列说法中正确的是( A.精确到十分位,有 2 个有效数字 C.精确到百位,有 2 个有效数字 4.下列图形中,中心对称图形有( ) .
3
) .
数 学 试 题
(考试时间:120 分钟;满分:120 分) 题号 得分 一 二 三 15 16 17 18 19 四 20 21 22 23 24
座号
B.精确到个位,有 2 个有效数字 D.精确到千位,有 4 个有效数字
合计 合计人 复核人 A.1 个 B.2 个 C.3 个 D.4 个 5.某外贸公司要出口一批规格为 150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹 果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了 50 个苹果称重,并将所得 数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是( ) . 平均 A.本次的调查方式是抽样调查 个数 质量(g) 质量的方差 B.甲、乙两厂被抽取苹果的平均质量相同 甲厂 50 150 2.6 C.被抽取的这 100 个苹果的质量是本次调查的样本 乙厂 50 150 3.1 D.甲厂苹果的质量比乙厂苹果的质量波动大 6.如图,在 Rt△ABC 中,∠C = 90°,∠B = 30°,BC = 4 cm,以点 C 为圆心,以 2 cm 的长 为半径作圆,则⊙C 与 AB 的位置关系是( ) . A.相离 B.相切 C.相交 D.相切或相交 y
2
13.把一张矩形纸片(矩形 ABCD)按如图方式折叠,使顶点 B 和点 D 重合,折痕为 EF.若 AB = B C
A'
A E 结论: D ( B' ) 四、解答题(本题满分 74 分,共有 9 道小题)

B F
第 13 题图
得 分
评卷人
复核人 16. (本小题满分 8 分,每题 4 分)
C
第 14 题图
得 分
评卷人
复核人 21. (本小题满分 8 分)
第 4 页 共 11 页
已知:如图,在正方形 ABCD 中,点 E、F 分别在 BC 和 CD 上,AE = AF. (1)求证:BE = DF; (2)连接 AC 交 EF 于点 O,延长 OC 至点 M,使 OM = OA,连接 EM、FM.判断四边形 AEMF 是什么特殊四边形?并证明你的结论. A D 证明: (1) F O B E C M
A 下列每小题都给出标号为 A、B、C、D 的四个结论,其中只有一个是正确的.每小题选对得 分;不选、选错或选出的标号超过一个的不得分.请将 1—8 各小题所选答案的标号填写在第 8 小题后面给出表格的相应位置上. 1.下列各数中,相反数等于 5 的数是( A.-5 B.5 ) . C B
第 6 题图ຫໍສະໝຸດ 第 1 页 共 11 页 Ox
O
x
O
x
O
x
14.如图,是用棋子摆成的图案,摆第 1 个图案需要 7 枚棋子,摆第 2 个图案需要 19 枚棋子, 摆第 3 个图案需要 37 枚棋子,按照这样的方式摆下去,则摆第 6 个图案需要 子,摆第 n 个图案需要 A. B. C. D. 枚棋子. 枚棋
请将 9—14 各小题的答案填写在下表的相应位置上: 题 号 案 号 案 评卷人 复核人 12 13 14 9 10 11
15.如图,有一块三角形材料(△ABC) ,请你画出一个圆,使其与△ABC 的各边都相切. 解: A
12.一个口袋中装有 10 个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中 黄球的个数,小明采用了如下的方法:每次先从口袋中摸出 10 个球,求出其中红球数与 10 的比值,再把球放回口袋中摇匀.不断重复上述过程 20 次,得到红球数与 10 的比值的平 均数为 0.4.根据上述数据,估计口袋中大约有 3 cm,BC = 5 cm,则重叠部分△DEF 的面积是 个黄球. cm .
得 分
9.化简: 48 3
B
10. 如图, 点 A、 B、 C 在⊙O 上, 若∠BAC = 24°, 则∠BOC =
11.某市为治理污水,需要铺设一段全长为 300 m 的污水排放管道. 铺设 120 m 后,为了尽量减少施工对城市交通所造成的影响,后 来每天的工效比原计划增加 20%,结果共用 30 天完成这一任务. 求原计划每天铺设管道的长度.如果设原计划每天铺设 xm 管道, 那么根据题意,可得方程 .
6 5 4 3 2 1 -5 -4 -3 -2 -1 O 1
A
B C
2 3 4 5 x
1 C.- 5
) .
1 D. 5
2.如图所示的几何体的俯视图是(
第 7 题图
A.
B.
C.
D.
第 2 题图
7.如图,△ABC 的顶点坐标分别为 A(4,6) 、B(5,2) 、C(2,1) ,如果将△ABC 绕点 C 按逆 时针方向旋转 90°,得到 △ A ' B ' C , 那 么 点 A 的 对 应 点 A ' 的 坐 标 是 ( ) . A. (-3,3) B. (3,-3) C. (-2,4) D. (1,4) a 8.函数 y ax a 与 y (a≠0)在同一直角坐标系中的图象可能是( ) . x y y y y
得 分
评卷人
复核人 22. (本小题满分 10 分)
某市政府大力扶持大学生创业. 李明在政府的扶持下投资销售一种进价为每件 20 元的护眼 台灯.销售过程中发现,每月销售量 y(件)与销售单价 x(元)之间的关系可近似的看作一次 函数: y 10 x 500 . (1)设李明每月获得利润为 w(元) ,当销售单价定为多少元时,每月可获得最大利 润? (2)如果李明想要每月获得 2000 元的利润,那么销售单价应定为多少元? (3)根据物价部门规定,这种护眼台灯的销售单价不得高于 32 元,如果李明想要每月获 得的利润不低于 2000 元,那么他每月的成本最少需要多少元? (成本=进价×销售量) 解: (1)
4 3.5 3 2.5 2 1.5 1 0.5 0 300~800 (不含 800) 800~1200 (不含 1200) B C 平均每份的利润(元) A
“五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被 平均分成 12 份) ,并规定:读者每购买 100 元的书,就可获得一次转动转盘的机会,如果转盘 停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以 分别获得 45 元、30 元、25 元的购书券,凭购书券可以在书城继 续购书.如果读者不愿意转转盘,那么可以直接获得 10 元的购书 绿 红 券. (1)写出转动一次转盘获得 45 元购书券的概率; 绿 绿 (2)转转盘和直接获得购书券,你认为哪种方式对读者更合 算?请说明理由. 黄 黄 解: (1) (2)
问题再现 现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习 “平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶 嵌问题.今天我们把正多边形 的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究. .... 我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌 平面,可以发现在一个顶点 O 周围围绕着 4 个正方形的内角. 试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着 个 正六边形的内角. 问题提出 如果我们要同时用两种不同的正多边形镶嵌平面, 可能设计出几种不同的组合 O 方案? 问题解决 猜想 1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌? 分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问 题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶 嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角. 验证 1: 在镶嵌平面时, 设围绕某一点有 x 个正方形和 y 个正八边形的内角可以拼成一个周 角.根据题意,可得方程: 8 2 180 90 x y 360 ,整理得: 2 x 3 y 8 , 8 x 1 我们可以找到惟一一组适合方程的正整数解为 . y 2 结论 1: 镶嵌平面时, 在一个顶点周围围绕着 1 个正方形和 2 个正八边形的内角可以拼成一 个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌. 猜想 2: 是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能, 请按 照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由. 验证 2:
相关文档
最新文档