一次函数反比例函数及二次函数

合集下载

正比例函数、反比例函数、一次函数、二次函数

正比例函数、反比例函数、一次函数、二次函数

正比例函数、反比例函数、一次函数、二次函数【教学目标】1.通过具体实例,了解简单的分段函数,并能简单应用;2.整理初中已学过的函数正比例函数、反比例函数、一次函数、二次函数,特别是二次函数;3.学会运用函数图象理解和研究函数的性质。

【教学重点】基础知识整理【教学难点】题型分类解析【教学方法】引导学生自主学习法教学过程:【知识回顾】1.正比例函数的定义是:;图象是:2.反比例函数的定义是:;图象是:3.一次函数的定义: ;图象是:4.二次函数解析式的三种形式:①一般式、②两根式、③顶点式5.二次函数的图象和性质,通常抓住以下三方面:①对称轴②单调性、③最值 .【基础练习】1.函数y=x2+bx+c(x≥0)是单调函数的充要条件是f x=x2+bx+c对任意实数t都有f(2+t)=f(2-t ),则f(1)、f(2)、2.若函数()f(4)的大小关系是:3.关于x的不等式-mx2-8mx-21>0的解为:-7<x<-1则m的值为f x的顶点为(4,0),且过点(0,2),则4.二次函数()f(x)= .5.两个不同函数()f x =x 2+ax+1和g(x)=x 2+x+a (a 为常数)定义域都为R ,若()f x 与g(x)的值域相同,则a= . 6.函数()f x =2x 2-mx+3当x∈(-∞,-1)时是减函数,当x∈(-1,+∞)时是增函数,则f(2)= . 7.实系数方程20(0)ax bx c a ++=≠两实根异号的充要条件是 ,有两正根的充要条件是 ;有两负根的充要条件是 .8.已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点(2,4),A B -(如图),则能使12y y >成立的x 的取值范围是_______.参考答案: 1. b≥ 02. f(2)<f(1)<f(4) 3. 34. 2)4(81-x5. 5-或16. 197. ;000;02121⎪⎩⎪⎨⎧>>+≥∆<x x x x ac ;0002121⎪⎩⎪⎨⎧><+≥∆x x x x(A (第8题)8. x<-2 ,x>8【典型例题】1.正比例函数、反比例函数、一次函数的图象、性质、应用 例1.已知正比例函数(21)y m x =-的图象上两点11(,)A x y 、22(,)B x y ,当12x x <时,有12y y >,那么m 的取值范围是_______. 答案:12m <例2.(1)已知函数)0()(<+=a xax x f ,请写出它的单调区间,你能画出它的简图吗?(2)请画出函数)0()(>+=a xax x f 的图象,并写出它的单调区间. 答案:(1)在)0,(-∞、),0(+∞上为增函数(2)),[],,(+∞--∞a a 增函数;],0(),0,[a a -减函数2.求二次函数的解析式例1.分别求满足下列条件的二次函数的解析式:①过点(0,2),(1,-1),(-2,20) ②过点(-1,0),(-4,0),(2,-36)③图象的顶点是(1,2)-,且经过原点答案:①2522+-=x x y ;②81022---=x x y ;③x x y 422--=例2.已知二次函数f(x)满足f(2)= -1,f(-1)= -1且f(x)的最大值是8,试确定此二次函数.思维分析:恰当选择二次函数的解析式法一:利用一般式设f(x)=ax 2+bx+c(a ≠0),由题意得:⎪⎪⎩⎪⎪⎨⎧=--=+--=++84411242a bac c b a c b a 解得:⎪⎩⎪⎨⎧==-=744c b a ∴f(x)= - 4x 2+4x+7法二:利用顶点式∵f(2)= f(-1) ∴对称轴212)1(2=-+=x 又最大值是8 ∴可设)0(8)21()(2<+-=a x a x f ,由f(2)= -1可得a= - 47448)21(4)(22++-=+--=∴x x x x f法三:由已知f(x)+1=0的两根为x 1=2,x 2=-1,故可设f(x)+1=a(x-2)(x+1)即f(x)=ax 2-ax-2a-1,又84)12(482max=---=aa a a y 即得a= - 4或a=0(舍)∴f(x)= - 4x 2+4x+7例3.已知二次函数f(x)=ax 2+bx+c 满足下列条件:(1)图象过原点,(2)f(-x+2002)=f(x -2000),(3)方程f(x)=x 有重根; 试确定此二次函数. 解:由(1)得:c=0,由(2)对称轴1220002002=-++-=x x x 可确定12=-ab, 由(3) f(x)=x 即ax 2+(b-1)x+c=0有重根 .2110)1(:))1(0(02-==∴=-==∆a b b c 从而得由x x x f +-=∴221)(3.二次函数在给定区间上的最值问题 例1.(1)已知f(x)=-x 2+2x+6, x∈[2,3],求f(x)的最大(小)值;(2)已知f(x)=-x 2+5x+6, x∈[2,3],求f(x)的最大(小)值. 答案:(1)大6,小3;(2)大449,小12;例2.已知f(x)=-x 2+ax+6, x∈[2,3],求f(x)的最大值答案:⎪⎪⎩⎪⎪⎨⎧>-≤≤+<+=).6(,33);64(,424);4(,22)(2maxa a a a a a x f例3.已知y=f(x)=x 2-2x+3,当x ∈[t,t+1]时,求函数的最大值和最小值. 答案:32,2,12min 2max +-=+=>t t y t y t 时2,2,121min 2max =+=≤<y t y t 时 2,32,210min 2max =+-=≤<y t t y t 时2,32,02min 2max +=+-=≤t y t t y t 时例4.已知函数f(x)= -x 2+2ax+1-a 在0≤x ≤1时有最大值2,求a 的值. 思维分析:一般配方后结合二次函数图象对字母参数分类讨论 解:f(x)= -(x-a)2+a 2-a+1(0≤x ≤1),对称轴x=a 10 a<0时,121)0()(max -=∴=-==a a f x f20 0≤a≤1时)(25121)()(2max舍得±==+-==aaaafxf30 a>1时,22)1()(max=∴===aafxf综上所述:a= - 1或a=24.一元二次方程根的分布的讨论例1.已知关于x的二次方程x2+2mx+2m+1=0(1)若方程有两根,一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.(2)若方程两根在区间(0,1)内,求m的范围.思维分析:一般需从三个方面考虑①判别式Δ②区间端点函数值的正负③对称轴abx2-=与区间相对位置.解:设f(x)=x2+2mx+2m+1(1)由题意画出示意图216556)1(2)1(12)0(-<<-⇒⎪⎩⎪⎨⎧>+>=-<+=⇔mmffmf(2)2121100)1(0)0(0-≤<-⇒⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆⇔m m f f例2.方程k x x =-232在(-1,1)上有实根,求k 的取值范围. 分析:宜采用函数思想,求)11(23)(2<<--=x x x x f 的值域.答案:)25,169[-∈k5.函数应用题:例.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租的车将会增加一辆,租出的车每辆需要维护费150元,未租的车每辆每月需要维护费50元, (1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少时,租赁公司的月收益最大?最大月收益是多少?思维分析:应用问题的数学建模,识模—建模—解模—验模 解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为125030003600=-∴租出100-12=88辆。

一次函数二次函数反比例函数的增区间

一次函数二次函数反比例函数的增区间
电阻与长度关系
在电路中,电阻和导体长度之间呈反比例关系,反比例函 数可以描述这种关系,其中增区间表示电阻随长度增加而 减小。
化学反应速率
在化学中,某些化学反应的速率与反应物浓度之间呈反比 例关系,反比例函数可以描述这种关系,其中增区间表示 反应速率随浓度增加而减小。
07
总结与展望
各类函数增区间总结回顾
复合函数
对于复合函数,其单调性取决于内外层函数的单调性以及它们之间的组合方式。通过分析内外层函数的性质 ,可以判断复合函数的单调性并求解相关问题。
THANKS
拓展到其他类型函数研究
三角函数
三角函数具有周期性和对称性等特点,其单调性也随之变化。例如,正弦函数和余弦函数在特定区间内具有 单调性,但在整个定义域内则呈现周期性变化。
指数函数和对数函数
指数函数和对数函数分别具有在定义域内单调递增或单调递减的特性。这些特性使得它们在处理实际问题时 具有广泛的应用价值。
$(0, +infty)$。
极限思想与反比例函数关系
当$x$趋近于$0^+$时,如果$k > 0$,则$y = frac{k}{x}$趋近于正无穷 ;如果$k < 0$,则$y = frac{k}{x}$趋近于负无穷。
当$x$趋近于$0^-$时,如果$k > 0$,则$y = frac{k}{x}$趋近于负无穷 ;如果$k < 0$,则$y = frac{k}{x}$趋近于正无穷。
描点
在平面直角坐标系中,以选取的$x$值 为横坐标,对应的$y$值为纵坐标,描 出各个点。
连线
用平滑的曲线连接各点,即可得到一次 函数的图像。
二次函数图像绘制步骤
确定函数表达式
$y = ax^2 + bx + c$,其中$a$、$b$和 $c$为常数,且$a neq 0$。

一次函数,二次函数,反比例函数性质总结

一次函数,二次函数,反比例函数性质总结

一次函数、二次函数、反比例函数性质总结1.一次函数一次函数)0(≠+=k b kx y ,当0=x 时,得到的y 的值也即b 叫做图象与坐标轴的纵截距,当0=y 时,得到的x 的值,叫做图象与坐标轴的横截距。

(1)当0=b 时,一次函数的解析式变为)0(≠=k kx y ,也称为正比例函数,此函数图象恒过原点)0,0(O ,且横,纵截距都为0。

且0>k 时,函数图象过一、三象限,0>k 时,图象过二、四象限。

② k (≠a )+∞(1)当0,0==c b 时,函数的解析式变为)0(2≠=a ax y ,则 ①0>a 时 ②0<a 时(2)b a ,决定二次函数的对称轴与开口方向②0,0,0=<>c b a 时③ 0,0,0=><c b a 时 ④ 0,0,0=<<c b a 时(3)c a ,决定开口方向与与y 轴的截距①0,0,0=>>b c a 时 ②a③0,0,0=>b c a 时 ④0,0,0=<<b c a 时y yOxx yOOyyOxxxxy y OOx xOOy(3)对于一般的二次函数,c b a ,,共同来决定其函数图像与性质,故通常采用配方的方法 )0(2≠++=a c bx ax y c aba b x a b x a c x a b x a +-++=++=))2()2(()(2222 c a b a b x a +-+=]4)2[(222=c a b a b x a +-+4)2(22 =ab ac a b x a 44)2(22-++ 我们称abx 2-=为二次函数的对称轴,坐标)44,2(2a b ac a b --为二次函数的顶点坐标,此时我们也称其解析式为二次函数的顶点式,并可设其解析式为)0()(2≠+-=a k h x a y 。

若知道二次函数与x 轴的两个交点坐标,可设其解析式为)0)()((21≠--=a x x x x a y 。

九年级数学 一次函数、反比例函数及二次函数的图象和性质导学案 人教新课标版

九年级数学 一次函数、反比例函数及二次函数的图象和性质导学案 人教新课标版

山东省淄博市临淄区皇城镇第二中学九年级数学 一次函数、反比例函数及二次函数的图象和性质导学案 人教新课标版2、一次函数y=kx+b (k ≠0)的图象及性质① 会求一次函数与x 轴、y 轴的交点坐标,与x 轴交点(-kb,0),与y 轴的交点(0,b ) ② 会求一次函数与x 轴、y 轴围成的三角形的面积s=21 -kb b 二、反比例函数y=xk(k ≠0)的图象及性质1、y=xk (k ≠0)=k x 1,注意两种形式中x 的指数不同。

2、反比例函数的增减性一定要强调“在每一个象限内”(或者说当x >0和x <0时 3、双曲线上任意一点到x 轴和y 轴的距离与坐标轴围成的矩形面积= k 三、二次函数y=ax 2+bx+c(a ≠0)的图象1.二次函数y=ax 2,y=a(x-h)2,y=a(x-h)2+k ,y=ax 2+bx+c(各式中,a ≠0)的图象形 状相同,只是位置不同,它们的顶点坐标及对称轴如下表:(轴 x=0 x=当h>0时,y=a(x-h)2的图象可由抛物线y=ax 2向右平行移动h 个单位得到, 当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=ax 2向右平行移动h 个单位,再向上移动k 个单位,就可以得到y=a(x-h)2+k 的图象;当h>0,k<0时,将抛物线y=ax 2向右平行移动h 个单位,再向下移动|k|个单位可得到y=a(x-h)2+k 的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k 个单位可得到y=a(x-h)2+k 的图象; 当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k 的图象; 因此,研究抛物线 y=ax 2+bx+c(a ≠0)的图象,通过配方,将一般式化为y=a(x-h)2+k 的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.而2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=,顶点坐标是().3.抛物线y=ax2+bx+c(a≠0),若a>0,当x≤时,y随x的增大而减小;当x≥时,y随x的增大而增大.若a<0,当x≤时,y随x的增大而增大;当x≥时,y随x的增大而减小.4.抛物线y=ax2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x2-x1|=.当△=0.图象与x轴只有一个交点;这个交点的坐标是(,0)当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax2+bx+c的最值:如果a>0(a<0),则当x=时,y最小(大)值=.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0).。

初中一次函数-二次函数-反比例函数-圆知识整合

初中一次函数-二次函数-反比例函数-圆知识整合

一次函数(y=kx+b)1.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0, b)。

[1]2.当b=0时,一次函数变为正比例函数。

当然正比例函数为特殊的一次函数。

[1]3.对于正比例函数,y除以x的商是一定数(x≠0)。

对于反比例函数,x与y的积是一定数。

4.在两个一次函数表达式中:•当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;•当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;•当两个一次函数表达式中的k不相同,b也不相同时,则这两个一次函数的图像相交;•当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);•当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。

[1]5.直线y=kx+b的图象和性质与k、b的关系如下表所示:k>0,b>0经过第一、二、三象限k>0,b<0经过第一、三、四象限k>0,b=0经过第一、三象限【k>0时,图象从左到右上升,y随x的增大而增大】k<0b>0经过第一、二、四象限k<0,b<0经过第二、三、四象限K<0,b=0经过第二、四象限【k<0图象从左到右下降,y随x的增大而减小】一. 定义型例1.已知函数是一次函数,求其解析式。

解:由一次函数定义知,,,故一次函数的解析式为y=-6x+3。

注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。

如本例中应保证m-3≠0。

二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2,-1),求这个函数的解析式。

解: 一次函数的图像过点(2, -1),,即k=1。

故这个一次函数的解析式为y=x-3。

变式问法:已知一次函数y=kx-3,当x=2时,y=-1,求这个函数的解析式。

三. 两点型例3.已知某个一次函数的图像与x 轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。

综合题:一次函数二次函数反比例函数中考综合题复习

综合题:一次函数二次函数反比例函数中考综合题复习

第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。

2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。

直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。

正反比例函数和一次函数二次函数知识点汇总

正反比例函数和一次函数二次函数知识点汇总

正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。

这时,y 叫做x 的正比例函数。

2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线一次函数(1) 一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系.①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限正比例函数4、正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。

反比例函数(1)反比例函数 如果xky =(k 是常数,k ≠0),那么y 叫做x 的反比例函数. (2)反比例函数的图象反比例函数的图象是双曲线. (3)反比例函数的性质①当k >0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y 随x 的增大而减小. ②当k <0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y 随x 的增大而增大. ③反比例函数图象关于直线y =±x 对称,关于原点对称. (4)k 的两种求法①若点(x 0,y 0)在双曲线xky =上,则k =x 0y 0. ②k 的几何意义: 若双曲线x k y =上任一点A (x ,y ),AB ⊥x 轴于B ,则S △AOB ||||2121y x AB OB ⋅=⨯= .||21k =(5)正比例函数和反比例函数的交点问题 若正比例函数y =k 1x (k 1≠0),反比例函数)0(22=/=k x ky ,则当k 1k 2<0时,两函数图象无交点;当k 1k 2>0时,两函数图象有两个交点,坐标分别为).,(),,(21122112k k k kk k k k --由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的一元二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =)(0≠a 的顶点是原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系:①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. 5.抛物线c bx ax y ++=2的三要素:开口方向、对称轴、顶点.①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越小,抛物线的开口越大,a 越大,抛物线的开口越小。

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练函数及其图象1、坐标与象限定义1:我们把有顺序的两个数a与b所组成的数对,叫做有序数对,记作(a,b)。

定义2:平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴。

水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向。

两坐标轴的交点为平面直角坐标系的原点。

建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限。

2、函数与图象定义1:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量。

定义2:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

定义3:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

定义4:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。

这种式子叫做函数的解析式。

表示函数的方法:解析式法、列表法和图象法。

解析式法可以明显地表示对应规律;列表法直接给出部分函数值;图象法能直观地表示变化趋势。

画函数图象的方法——描点法:第1步,列表。

表中给出一些自变量的值及其对应的函数值;第2步,描点。

在直角坐标系中,以自变量的值为横坐标、相应的函数值为纵坐标,描出表格中数值对应的各点;第3步,连线。

按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来。

1、结合实例进一步体会用有序数对可以表示物体的位置。

2、理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。

一次函数反比例函数及二次函数课件

一次函数反比例函数及二次函数课件
2.求解与二次函数有关的不等式问题,可借助二次函数的 图象特征,分析不等关系成立的条件.
考点 2 含参数问题的讨论 师生互动 考向 1 区间固定对称轴动型 [例 1]已知函数 f(x)=x2+2ax+2,求 f(x)在[-5,5]上的最 大值与最小值. 解:f(x)=x2+2ax+2=(x+a)2+2-a2,x∈[-5,5],对称 轴为直线 x=-a. (1)当-a<-5,即 a>5 时,函数 f(x)在[-5,5]上单调递 增,如图 2-8-2(1), ∴f(x)max=f(5)=52+2a×5+2=27+10a,
根据图象知,A 选项 b=0 不对 ; B 选项,若 g(x)成立,则 a>0,b>0,- 2ba<0,此时 f(x)图 象不对;
C 选项,若 g(x)成立,则 a<0,b>0,- b >0,此时 f(x)图 2a
象不对;
D 选项显然是正确的,故选 D. 答案:D
2. 设 abc >0,二次函数 f(x) =ax2 +bx +c 的图象可能是 ()
∴f(10)-f(t)=12-t,即 t2-17t+72=0.
解得 t=8(舍去)或 t=9.∴t=9. 综上所述,存在常数 t=15-2 17或 t=8 或 t=9 满足条件.
【考法全练】 2.(多选题)一般地,若函数 f(x)的定义域为[a,b],值域为[ka, kb],则称[a,b]为 f(x)的“k 倍跟随区间”;特别地,若函数 f(x) 的定义域为[a,b],值域也为[a,b],则称[a,b]为 f(x)的“跟随
(2)二次函数在给定区间[m,n]上的最值求解,常见的有以 下四种情况:
①对称轴与区间
③定轴动区间,即对称轴是确定的,区间[m,n]不确定;

一次函数二次函数反比例函数的增区间

一次函数二次函数反比例函数的增区间

一次函数、二次函数和反比例函数是数学中常见的函数类型,它们在图像的增减性质上有着不同的特点。

本文将针对一次函数、二次函数和反比例函数的增区间进行详细分析和比较。

一、一次函数的增区间一次函数的一般形式为y=ax+b,其中a和b为常数且a不等于0。

一次函数的图像是一条直线,它具有以下特点:1. 如果a大于0,表示直线向上倾斜,那么函数的增区间为整个实数集(-∞,+∞);2. 如果a小于0,表示直线向下倾斜,那么函数的增区间为空集∅。

一次函数的增区间要么是整个实数集,要么是空集,取决于直线的斜率a的正负性。

二、二次函数的增区间二次函数的一般形式为y=ax²+bx+c,其中a、b和c为常数且a不等于0。

二次函数的图像是一条开口朝上或者朝下的抛物线,它具有以下特点:1. 如果a大于0,表示抛物线开口朝上,那么函数的增区间为实数集中与顶点的横坐标相等的点构成的单点集{x| x=x0}。

其中,顶点的横坐标x0=-b/2a;2. 如果a小于0,表示抛物线开口朝下,那么函数的增区间为整个实数集(-∞,+∞)。

二次函数的增区间要么是单点集,要么是整个实数集,取决于抛物线开口的方向和顶点的横坐标。

三、反比例函数的增区间反比例函数的一般形式为y=k/x,其中k为非零常数。

反比例函数的图像是一条对称于第一象限和第三象限的双曲线,它具有以下特点:1. 当k大于0时,函数的增区间为区间(0,+∞);2. 当k小于0时,函数的增区间为区间(-∞,0)。

反比例函数的增区间取决于常数k的正负性,当k为正时增区间在正半轴,当k为负时增区间在负半轴。

总结:一次函数、二次函数和反比例函数的增区间分别与直线的斜率、抛物线开口的方向和对称轴的正负相关。

对于一次函数和二次函数而言,其增区间可以通过其一般形式中的参数a的正负性来确定,而对于反比例函数,其增区间可以通过函数的常数k的正负性来确定。

通过本文的分析和比较,读者可以更加清晰地理解一次函数、二次函数和反比例函数在增区间上的不同特点。

2015高考总复习数学(文)课件:3.3一次函数、反比例函数及二次函数

2015高考总复习数学(文)课件:3.3一次函数、反比例函数及二次函数
a2 1 2 y=-t-2 +4(a -a+2)在[-1,1]单调递增,
1 3 10 由 ymax=-2+4a=2,解得 a= 3 .
a (3)当2<-1,即 a<-2 时, 函数
a2 1 2 y=-t-2 +4(a -a+2)在[-1,1]单调递减,
5 1 由 ymax=-4a-2=2,得 a=-2(舍去). 10 综上可得,a 的值为 a=-2 或 a= 3 .
【方法与技巧】“区间固定对称轴动”以及“对称轴固定 区间动”是二次函数中分类讨论的最基本的两种题型,应引起 足够的重视.本例中的二次函数是区间 t∈[-1,1]固定,对称轴
a t= 在变化,因此要讨论对称轴相对于该区间的位置关系,即 2
a a a 分-1≤ ≤1, >1 及 <-1 三种情况讨论. 2 2 2
象与 x 轴两个交点的横坐标. 4.二次函数的图象及性质
对于二次函数
2 4 ac - b b f(x)=ax2+bx+c=ax+2a2+ 4a .
(1) 当 a>0 时 , f(x) 的 图 象 开 口 向 上 , 顶 点 坐 标 为
2 4 ac - b b - , 2a ,对称轴为直线 4 a
【互动探究】 2.(2012 年北京)已知 f(x)=m(x-2m)(x+m+3),g(x)=2x (-4,0) . -2.若∀x∈R,f(x)<0 或 g(x)<0,则 m 的取值范围是________
解析:首先看 g(x)=2x-2 没有参数,从 g(x)=2x-2 入手,
显然x<1时,g(x)<0,x≥1时,g(x)≥0,而对∀x∈R,f(x)<0
f(x)在区间 x∈[-3,-1]上单调递增,则 y∈[-11,3].

反比例函数一次函数二次函数性质及图像

反比例函数一次函数二次函数性质及图像
工程设计和优化
在工程学中,反比例函数、一次函数和二次函数可以用来描 述各种工程问题的数学模型,如结构优化、路径规划等。利 用这些函数的性质和图像,可以进行工程设计和优化,提高 工程质量和效率。
感谢您的观看
THANKS
顶点
二次函数的顶点坐标为 $left(frac{b}{2a}, c frac{b^2}{4a}right)$。
04
图像特征
01
02
03
04
形状
二次函数的图像是一条抛物线 。
位置
根据 $a$、$b$、$c$ 的取值 ,抛物线的位置会有所不同。
与坐标轴的交点
令 $y = 0$ 可求得与 $x$ 轴 的交点,令 $x = 0$ 可求得
05
函数图像比较
图像的平移与伸缩
平移
函数图像在平面直角坐标系中的位置可以通过平移来改变。对于一次函数和二次函数,图像可以沿x轴或y轴进 行平移,而对于反比例函数,图像可以沿原点进行平移。
伸缩
函数图像的形状可以通过伸缩来改变。对于一次函数,图像的伸缩表现为斜率的改变;对于二次函数,图像的 伸缩表现为开口大小或方向的改变;对于反比例函数,图像的伸缩表现为离原点的远近。
单调性
反比例函数
反比例函数的单调性取决于其定义域。在每个象限内,反比例函数都是单调的,但在整个 定义域内不是单调的。
一次函数
一次函数的单调性取决于其斜率。当斜率大于0时,函数在整个定义域内单调递增;当斜 率小于0时,函数在整个定义域内单调递减。
二次函数
二次函数的单调性取决于其二次项系数的正负和对称轴的位置。当二次项系数为正时,函 数在对称轴左侧单调递减,在对称轴右侧单调递增;当二次项系数为负时,函数在对称轴 左侧单调递增,在对称轴右侧单调递减。

一次函数反比例函数二次函数图像及性质

一次函数反比例函数二次函数图像及性质

02
反比例函数图像及性质
反比例函数定义与表达式
定义
反比例函数是一种特殊的函数, 其自变量和因变量的乘积为常数 ,且该常数不为零。
表达式
一般地,反比例函数可以表示为 y = k/x (k ≠ 0) 的形式,其中 k 是比例系数。
反比例函数图像特征
图像位置
反比例函数的图像分布在两个象 限内,当 k > 0 时,图像位于第 一、三象限;当 k < 0 时,图像
一次函数反比例函 数二次函数图像及 性质
汇报人:XXX 2024-01-28
目录
• 一次函数图像及性质 • 反比例函数图像及性质 • 二次函数图像及性质 • 函数图像变换规律探讨 • 函数性质应用举例
01
一次函数图像及性质
一次函数定义与表达式
定义
一次函数是函数中的一种,一般形如$y=kx+b$($k,b$是常数,$k≠0$), 其中$x$是自变量,$y$是因变量。
表达式
一次函数的标准形式为$y=kx+b$,其中$k$是斜率,表示$x$每增加一个单位 ,$y$增加$k$个单位;$b$是截距,表示当$x=0$时,$y$的值。
一次函数图像特征
1 2 3
直线形状
一次函数的图像是一条直线。
斜率决定倾斜程度
当$k>0$时,直线从左下方向右上方倾斜;当 $k<0$时,直线从左上方向右下方倾斜;当 $k=0$时,直线与$x$轴平行。
二次函数
图像沿x轴或y轴平移,开 口方向和宽度不变,顶点 位置发生变化。
伸缩变换规律
一次函数
01
通过改变斜率的大小,可以实现图像在x轴或y轴方向上的伸缩
变换。
反比例函数

一次函数反比例函数二次函数解题技巧

一次函数反比例函数二次函数解题技巧

一次函数反比例函数二次函数解题技巧1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k?0) (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。

3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角)形。

取。

象。

交。

减4.正比例函数也是一次函数.5.当k相同,图像平行;当k不同,图像相交[编辑本段]一次函数的图像及性质1(作法与图形:通过如下,个步骤(1)列表[一般取两个点,根据两点确定一条直线];(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道,点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点) 2(性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k?0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3(函数不是数,它是指某一变量过程中两个变量之间的关系。

4(k,b与函数图像所在象限:y=kx时(既b等于0,y与x成正比)当k,0时,直线必通过一、三象限,y随x的增大而增大;当k,0时,直线必通过二、四象限,y随x的增大而减小。

y=kx+b时:当 k>0,b>0, 这时此函数的图象经过一,二,三象限。

当 k>0,b<0, 这时此函数的图象经过一,三,四象限。

当 k<0,b<0, 这时此函数的图象经过二,三,四象限。

当 k<0,b>0, 这时此函数的图象经过一,二,四象限。

当b,0时,直线必通过一、二象限;当b,0时,直线必通过三、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k,0时,直线只通过一、三象限;当k,0时,直线只通过二、四象限。

4、特殊位置关系当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K 值的乘积为-1)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:?(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)5.求两一次函数式图像交点坐标:解两函数式两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式得到y=y0 则(x0,y0)即为y1=k1x+b1 与 y2=k2x+b2交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0)k b+ + 在一、二、三象限+ - 在一、三、四象限- + 在一、二、四象限- - 在二、三、四象限8.若两条直线y1=k1x+b1?y2=k2x+b2,那么k1=k2,b1?b29.如两条直线y1=k1x+b1?y2=k2x+b2,那么k1×k2=-110.左移X则B+X,右移X则B-X11.上移Y则X项+Y,下移Y则X项-Y(有个规律.b项的值等于k乘于上移的单位在减去原来的b项。

一次函数反比例函数二次函数

一次函数反比例函数二次函数

函数函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数函数有三种表示形式:(1)列表法(2)图像法(3)解析式法一、一次函数与正比例函数:◆公式:y=kx+b (k,b为常数,且k≠0)当b =0时,y=kx+b 即为y=kx,所以正比例函数,是一次函数的特例.◆一次函数与正比例函数的图形与性质图像:正比例函数:经过原点的一条直线正比例函数(y=kx)一次函数(y=kx+b )性质:正比例函数:y=kx (k≠0)当k>0时, 经过一、三象限,即随着x的增大(或减小)y也增大(或减小);当k<0时, 经过二、四象限,即随着x的增大(或减小)y反而减小(或增大)。

一次函数:当k>0时,经过一、三象限,y随x的增大(或减小)而增大(或减小);当k<0时,经过二、四象限,y随x的增大(或减小)而减小(或增大). 二、反比例函数◆公式:(k为常数,k≠0)◆反比例函数的图像与性质反比例函数k的符号k>0 k<0图像性质①x的取值范围0x≠y的取值范围0y≠②当k>0时,图像在一、三①x的取值范围0x≠y的取值范围0y≠②当k<0时,图像在二、四象限,y随x的增大而增大三、二次函数◆ 公式:y=+bx+c(a,b,c 是常数a ≠0)二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

◆ 抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

◆ 二次函数解析式二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点(1)一般一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)两根当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

人教版九年级数学下册 反比例函数与一次函数、二次函数共存问题 讲义

人教版九年级数学下册 反比例函数与一次函数、二次函数共存问题 讲义

反比例函数与一次函数共存问题知识点一、反比例函数与一次函数相交解题技巧:求两个函数的交点——>联立两个函数;交点个数由Δ决定Δ>0,有2个交点Δ=0,有1个交点Δ<0,无交点例1、函数2yx=与1y x=-的图象的交点坐标是________例2、在同一直角坐标系下,直线y=x+1与双曲线1yx=的交点的个数为()A、0B、1个C、2个D、不能确定例3、如图,直线y=ax与双曲线kyx=的图象的一个交点坐标为(3,6),则它们另一个交点坐标是()A、(-6,-3)B、(-3,6)C、(-3,-6)D、(3,-6)例4、若一次函数1+=ax y 和反比例函数xky =的一个交点为(1,2),则另一个交点坐标为_________2、正比例函数y mx =和反比例函数ny x=的一个交点为(1,2),则另一个交点为( ) A 、(-1,-2) B 、(-2,-1) C 、(1,2) D 、(2,1)3、函数1k y x=与2y k x =(k 1、k 2均不为0)的图象交于A 、B 两点,若点A 的坐标是(2,3),则点B 的坐标是_______4、如图,函数y=-x 与函数1y x=-的图象相交于A 、B 两点,过A 、B 两点分别作y 轴的垂线,垂足分别为C 、D ,则四边形ACBD 的面积为( ) A 、2 B 、4 C 、6 D 、85、在同一直线坐标系中,若正比例函数y=k 1x 的图象与反比例函数2k y x=的图象没有公共点,则( ) A 、k 1+k 2<0 B 、k 1+k 2>0 C 、k 1k 2<0 D 、k 1k 2>06、函数y=-kx 与ky x=在同一坐标系内交点的个数有( ) A 、0个 B 、1个 C 、2个 D 、不确定7、如图直线2y x =+与双曲线3m y x-=在第二象限有两个交点,那么m 的取值范围为( ) A 、m>2 B 、2<m<3 C 、m<3 D 、m>3或m<28、若双曲线k y x=与抛物线223y x x =++的一个交点的横坐标为-1,则k 的值为( ) A 、-1 B 、1 C 、-2 D 、29、如图,在坐标系中,正比例函数y x =-的图象与反比例函数ky x=的图象交于A 、B 两点,根据图像写出k 的值为_____10、如图,直线132y x b =-+与双曲线1y x =交于A 、B 两点,则线段AB 长度的最小值是_______知识点二、反比例函数与一次函数共存解题技巧:1、反比例函数的图象是双曲线,一次函数的图象是直线2、反比例函数ky x=。

一次函数,二次函数,反比例函数性质总结

一次函数,二次函数,反比例函数性质总结

一次函数、二次函数、反比例函数性质总结1.一次函数一次函数一次函数)0(¹+=k b kx y ,当0=x 时,得到的y 的值也即b 叫做图象与坐标轴的纵截距,当0=y 时,得到的x 的值,叫做图象与坐标轴的横截距。

的值,叫做图象与坐标轴的横截距。

(1)当0=b 时,一次函数的解析式变为)0(¹=k kx y ,也称为正比例函数,此函数图象恒过原点)0,0(O ,且横,纵截距都为0。

且0>k 时,函数图象过一、三象限,0>k 时,图象过二、四象限。

时,图象过二、四象限。

①0>k ②0<k(2)当0¹b 时,)0(¹+=k b kx y 的图象及性质为的图象及性质为①0,0>>b k 时,时, ② 0,0<>b k 时 图象过一二,三图象过一二,三 图象过一、三、四图象过一、三、四象限象限 象限象限③0,0><b k 时,时, ④ 0,0<<b k 时,时,图象过一、二、四图象过一、二、四 图象过二、三、四图象过二、三、四象限象限 象限象限yxxy yy OOOO xxyOOy xx2.二次函数二次函数 二次函数的一般形式为)0(2¹++=a c bx ax y ,且a 决定开口方向和大小,当0>a 时,抛物线开口向上,有最小值,值域为),44[2+¥-ab ac 当0<a ,抛物线开口向下,有最大值,值域为]44,(2ab ac --¥。

(1)当0,0==c b 时,函数的解析式变为)0(2¹=a ax y ,则,则 ①0>a 时 ②0<a 时(2)b a ,决定二次函数的对称轴和开口方向决定二次函数的对称轴和开口方向①当0,0,0=>>c b a 时 ②0,0,0=<>c b a 时③ 0,0,0=><c b a 时 ④ 0,0,0=<<c b a 时(3)c a ,决定开口方向和与y 轴的截距轴的截距①0,0,0=>>b c a 时 ②0,0,0=<>b c a 时yyOxxxxyyOOyOxxOyO③0,0,0=><b c a 时 ④0,0,0=<<b c a 时(3)对于一般的二次函数,c b a ,,共同来决定其函数图像和性质,故通常采用配方的方法共同来决定其函数图像和性质,故通常采用配方的方法)0(2¹++=a c bx ax yc a b a b x a b x a c x a bx a +-++=++=))2()2(()(2222c a b a b x a +-+=]4)2[(222=c ab a b x a +-+4)2(22=ab ac a b x a 44)2(22-++我们称ab x 2-=为二次函数的对称轴,坐标)44,2(2a b ac a b--为二次函数的顶点坐标,此时我们也称其解析式为二次函数的顶点式,并可设其解析式为)0()(2¹+-=a k h x a y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲 一次函数、反比例函数及二次函数
考纲要求
考纲研读
1.会运用函数图象理解和研 一次函数、反比例函数及二次函数
究函数的性质.
是最简单、最基础的函数,尤其二
2.结合二次函数的图象,了 次函数是代数的基础,函数与方程、 解函数的零点与方程根的联 三角函数、导数、数列、不等式等最
系,判断一元二次方程根的 终都转化成二次函数或二次不等式解
②若 m=-12,则 m2=14,l≥14,S=x-21≤x≤l

x2∈[0,l2]⊆-12,l,l2≤l,∴0≤l≤1,∴14≤l≤1;
③若 l=12,则 S=xm≤x≤12
,若
m>0,则
x2∈m2,14,
∵m2<m,显然不合题意;若 m≤0,∵m2≤12,∴- 22≤m≤ 22,
有- 22≤m≤0.- 22≤m≤0.
解析:令 t=sinx,则 t∈[-1,1]. ∴y=-t-a22+14(a2-a+2),对称轴为 t=a2, (1)当-1≤a2≤1,即-2≤a≤2 时, ymax=14(a2-a+2)=2,解得 a=-2 或 a=3(舍去).
“区间固定对称轴动”以及“对称轴固定区间 动”是二次函数中分类讨论的最基本的两种题型,应引起足够的 重视.本例中的二次函数是区间 t∈[-1,1]固定,对称轴 t=a2在变 化,因此要讨论对称轴相对于该区间的位置关系,即分-1≤a2≤1, a2>1 及a2<-1 三种情况讨论.
3.二次函数的解析式有三种形式 (1)一般式:___f_(_x_)=__a_x_2_+__b_x_+__c_(a_≠_0_)_____. (2)顶点式:__f_(_x_)=__a_(_x_-__h_)_2+__k_(_a_≠_0_)______,顶点__(_h_,__k_). (3)两根式___f(_x_)_=__a_(x_-__x_1_)_(x_-__x_2_)(_a_≠_0_)____,x1 ,x2 为二次函 数图象与 x 轴两个交点的横坐标. 4.二次函数的图象及其性质
(3)设 m>0,n<0 且 m+n>0,a>0 且 f(x)为偶函数,求证:F(m) +F(n)>0.
(3)∵f(x)Βιβλιοθήκη 偶函数,∴f(-x)=f(x),得 b=0.
而 a>0,∴f(x)=ax2+1 在[0,+∞)上为增函数.
由 F(x)=f-xfx
对于二次函数 f(x)=ax2+bx+c=ax+2ba2+4ac4-a b2. (1)当 a>0 时,f(x)的图象开口向上.顶点坐标为-2ba,4ac4-a b2. 对称轴为 x=-2ba.
1.若一次函数 y=kx+b 在(-∞,+∞)上是减函数,则点(k,
b)在直角坐标平面的( C ) A.上半平面
答案:D
考点3 二次函数的综合应用
例 3 : 设 函 数 f(x) = ax2 + bx + 1(a , b 为 实 数 ) , F(x) = fx x>0, -fx x<0.
(1)若 f(-1)=0 且对任意实数 x 均有 f(x)≥0 成立,求 F(x)的 表达式;
(2)在(1)的条件下,当 x∈[-3,3]时,g(x)=f(x)-kx 是单调函 数,求实数 k 的取值范围;
2
(4)f(x)=-12x2-x-1=-12(x+1)2-12, x∈[-4,0],当 x=-1 时,f(x)取最大值-12. 又 f(-4)=-5,f(0)=-1, 则 y∈-5,-12.
求二次函数在某个区间的最值,最容易出现的错 误就是直接代两头(将两端点代入),当然这样做,有时答案也对, 那是因为在该区间函数刚好单调,这纯属巧合.求二次函数在某 个区间的最值,应该配方,找到对称轴和顶点,结合图形求解.
5.函数 y=ax 和 y=bx在(0,+∞)上都是减函数,则 y=ax2 +bx+c 在(-∞,0)上的单调性为__单__调__递__增_.
考点1 二次函数的值域 例1:根据函数单调性求下列函数的值域. (1)f(x)=x2+4x-1,x∈[-4,-3]; (2)f(x)=-2x2-x+4,x∈[-3,-1]; (3)f(x)=2x2-4x-1,x∈(-1,3); (4)f(x)=-—1 x2-x-1,x∈[-4,0].
【互动探究】 1.若函数y=x2-2x+3在闭区间[0,m]上有最大值为3,最
小值为2,则m的取值范围是_____[_1_,2_].
解析:y=(x+1)2+2是以直线x=1为对称轴开口向上、其 最小值为2的抛物线,又∵f(0)=3,
结合图象易得,2≥m≥1,∴m的取值范围是[1,2].
考点2 含参数问题的讨论 例 2:已知函数 y=-sin2x+asinx-a4+12的最大值为 2,求 a 的值.
B.下半平面
C.左半平面
D.右半平面
2.函数 f(x)=2x2-6x+1 在区间[-1,1]上的最小值是( C)
A.-9
B.-72
C.-3
D.-1
3.已知:函数 f(x)=x2+4(1-a)x+1 在[1,+∞)上是增函数, 则 a 的取值范围是__a_≤__32__.
4.将抛物线 y=2(x+1)2-3 向右平移 1 个单位,再向上平移 2 个单位,所得抛物线为__y_=__2_x_2_-__1,其顶点坐标为__(_0_,__-__1.)
存在性及根的个数.
决,因此在备考时要予以重视.
1.一次函数 y=kx+b,当 k>0 时,在实数集 R 上是增函数. 当 k<0 时,在实数集 R 上是减函数.
2.反比例函数y=—kx 定义域为(-∞,0)∪(0,+∞),当k>0
时,在(-∞,0),(0,+∞)都是减函数,k<0 时,(-∞,0),(0, +∞)都是增函数.
【互动探究】
2.设非空集合 S={x|m≤x≤l}满足:当 x∈S 时,有 x2∈S.
给出如下三个命题:①若 m=1,则 S={1};②若 m=-12,则14
≤l≤1;③若 l=12,则- 22≤m≤0.其中正确命题的个数是( )
A.0
B.1
C.2
D.3
解析:①若 m=1,则 S={x|1≤x≤l},l≥1, x2∈[1,l2]⊆[1,l],l2≤l,∴0≤l≤1.∴l=1.S={1};
相关文档
最新文档