氧吸收解吸实验报告

合集下载

氧吸收解吸系数测定实验报告

氧吸收解吸系数测定实验报告

氧吸收/解吸系数测定实验报告一、实验目的1、了解传质系数的测定方法;2、测定氧解吸塔内空塔气速与液体流量对传质系数的影响;3、掌握气液吸收过程液膜传质系数的实验测定方法;4、关联圆盘塔液膜传质系数与液流速率之间的关系; 4、掌握VOC 吸收过程传质系数的测定方法。

二、实验原理1) 吸收速率吸收是气、液相际传质过程,所以吸收速率可用气相内、液相内或两相间传质速率表示。

在连续吸收操作中,这三种传质速率表达式计算结果相同。

对于低浓度气体混合物单组分物理吸收过程,计算公式如下。

气相内传质的吸收速率:)(i y A y y F k N -=液相内传质的吸收速率:)(x x F k N i x A -=气、液相相际传质的吸收速率:)()(**x x F K y y F K N x y A -=-=式中:y ,y i ——气相主体和气相界面处的溶质摩尔分数;x ,x i ——液相主体和液相界面处的溶质摩尔分数; x *,y *——与x 和y 呈平衡的液相和气相摩尔分数;k x ,K x ——以液相摩尔分数差为推动力的液相分传质系数和总传质系数; k y ,K y ——以气相摩尔分数差为推动力的气相分传质系数和总传质系数; F ——传质面积,m 2。

对于难溶气体的吸收过程,称为液膜控制,常用液相摩尔分数差和液相传质系数表达吸收速率式。

对于易溶气体的吸收过程,称为气膜控制,常用气相摩尔分数差和气相传质系数表达吸收速率式。

本实验为一解吸过程,将空气和富氧水接触,因富氧水中氧浓度高于同空气处于平衡的水中氧浓度,富氧水中的氧向空气中扩散。

解吸是吸收的逆过程,传质方向与吸收相反,其原理和计算方法与吸收类似。

但是传质速率方程中的气相推动力要从吸收时的(y -y *)改为解吸时的(y *-y ),液相推动力要从吸收时的(x *-x )改为解吸时的(x -x *)。

2) 吸收系数和传质单元高度吸收系数和传质单元高度是反映吸收过程传质动力学特性的参数,是吸收塔设计计算的必需数据。

氧解吸实验报告 北京化工大学

氧解吸实验报告 北京化工大学

北京化工大学化工原理实验报告实验名称:氧解吸实验班级:化工姓名:学号:序号:同组人:设备型号:第套实验日期:2014-4-01一、实验摘要本实验测定不同气速下干塔和湿塔的压降,得到了填料层压降—空塔气速关系曲线,确定塔的处理能力及找到最佳操作点。

然后用吸收柱使水吸收纯氧形成富氧水,送入解析塔再用空气进行解吸,进而可计算出不同气液流量比下液相体积总传质系数K x a ,液相总传质单元高度H OL ,液相总传质单元数N OL 。

关键词:氧气 解吸 液相体积总传质系数 液相总传质单元高度 液相总传质单元数二、实验目的1、测量填料塔的流体力学性能;2、测量填料塔的吸收-解吸传质性能;3、比较不同填料的差异。

三、实验原理1、填料塔流体力学性能为保证填料塔的正常运行,通常需要控制操作气速处于液泛气速的0.5~0.8倍之间。

如图1,在双对数坐标系下,气体自下而上通过干填料层时,塔压降ΔP 与空塔气速u 复合关系式ΔP=u 1.8~2.0。

当有液体喷下,低气速操作时,ΔP ∝u 1.8~2.0,此时的ΔP 比无液体喷淋时要高。

气速增加到d 点,气液两相的流动开始相互影响,ΔP ∝u 0.2以上,此时的操作点成为载液2点。

气速再增加到e 点时,气液两相的交互影响恶性发展,导致塔内大量积液且严重返混,ΔP ∝u 10以上,此时的操作点称为液泛点,对应的气速就是液泛气速。

本实验直接测量填料塔性能参数,确定其液泛气速,还可用公式法、关联图法等确定。

全塔压降直接读仪表,空塔气速u 由孔板流量计测定:s P A V u /m 1.07854.025.110002(018.07854.061.025.02⨯÷⨯∆⨯⨯⨯⨯==)孔板。

2、填料塔传质性能——考察氧解吸过程的液相体积传质系数K x a 。

以氧气为溶质,解吸塔内空气、水的摩尔流率不变,水温恒定。

根据低含量气体吸收解吸全塔传质速率方程可知:⎰-⋅=⨯=21;x x ex OL O x x dx a K L N H H 。

氧气吸收法的实训报告总结

氧气吸收法的实训报告总结

一、实训背景氧气吸收法是临床护理中常用的一种技术,主要用于患者呼吸衰竭、慢性阻塞性肺疾病(COPD)等疾病的治疗。

通过吸氧,可以改善患者的氧合状态,缓解呼吸困难等症状。

为了提高护理人员的操作技能,确保患者安全,我们护理与健康学院组织了氧气吸收法的实训课程。

本次实训旨在使同学们熟练掌握氧气吸收法的操作步骤、注意事项以及护理要点。

二、实训目的1. 使同学们了解氧气吸收法的原理和临床应用;2. 掌握氧气吸收器的操作方法;3. 熟悉氧气吸收法护理过程中的注意事项;4. 培养同学们的团队合作精神,提高护理操作技能。

三、实训内容1. 氧气吸收法原理及临床应用实训老师详细介绍了氧气吸收法的原理,包括氧气吸收器的工作原理、氧气浓度、流量等参数的调节方法。

同时,还讲解了氧气吸收法在临床上的应用,如呼吸衰竭、COPD等患者的治疗。

2. 氧气吸收器的操作方法实训老师带领同学们熟悉了氧气吸收器的结构,包括吸氧管、湿化瓶、流量表、氧气源等部件。

接着,详细讲解了氧气吸收器的操作步骤:(1)连接氧气源:将氧气源与吸氧管连接,确保氧气供应稳定;(2)调节流量:根据患者病情,调节流量表,使氧气流量达到规定值;(3)湿化:将湿化瓶中的生理盐水加热至37℃,保持氧气湿化;(4)连接吸氧管:将吸氧管连接到患者鼻导管或面罩上,确保连接紧密;(5)观察患者反应:密切观察患者面色、呼吸、心率等生命体征,及时调整氧气流量。

3. 氧气吸收法护理过程中的注意事项实训老师强调了氧气吸收法护理过程中的注意事项,包括:(1)核对患者信息:在操作前,务必核对患者姓名、床号、病情等信息,确保操作准确无误;(2)观察患者反应:密切观察患者面色、呼吸、心率等生命体征,如有异常,立即调整氧气流量或暂停操作;(3)保持氧气源通畅:定期检查氧气源,确保氧气供应稳定;(4)防止氧气泄漏:操作过程中,注意检查氧气吸收器各部件连接是否紧密,防止氧气泄漏;(5)定期更换吸氧管:根据患者病情和吸氧管污染程度,定期更换吸氧管,保持吸氧管清洁。

氧气的吸收与解吸实验报告

氧气的吸收与解吸实验报告

氧气的吸收与解吸实验报告一、实验目的探究氧气在水中的溶解与解吸过程,了解氧气在水中的溶解度与温度、压强的关系。

二、实验原理氧气在水中的溶解度与温度、压强和溶液中其他物质浓度有关。

当温度升高或压强降低时,氧气的溶解度会减小;而当温度降低或压强增加时,氧气的溶解度会增大。

此外,当水中其他物质浓度增加时,也会影响氧气的溶解度。

三、实验器材1. 水槽2. 水银汞柱3. 热水器4. 水银汞球四、实验步骤1. 将水槽内注满水,并放入一个水银汞柱。

2. 将热水器接通电源,将其放入水槽内加热。

3. 在热水器加热过程中,用手持式吸管将一只装有少量水银汞球的试管倒置于水槽内。

4. 观察试管内汞球变化情况,并记录下时间和温度。

5. 等热水器加热至一定温度后,关闭电源,等待水温下降。

6. 当水温下降至一定程度时,观察试管内汞球变化情况,并记录下时间和温度。

7. 将实验数据整理并进行分析。

五、实验结果在加热过程中,试管内的汞球逐渐变小;而在停止加热后,试管内的汞球逐渐变大。

随着时间的推移,汞球的大小逐渐趋于稳定。

六、实验分析根据实验结果可以得出结论:氧气在水中的溶解度与温度有关。

当水温升高时,氧气的溶解度减小;而当水温降低时,氧气的溶解度增大。

此外,在压强不变的情况下,溶液中其他物质浓度增加也会导致氧气的溶解度减小。

七、实验注意事项1. 实验过程中要注意安全。

2. 水槽内应注满水,并保持水平。

3. 实验过程中要注意控制热水器加热时间和温度。

4. 实验结束后要将器材清洗干净。

八、实验总结通过本次实验,我们了解了氧气在水中的溶解与解吸过程,并探究了氧气的溶解度与温度、压强和溶液中其他物质浓度的关系。

同时,我们也学会了如何进行实验并分析数据。

这些知识对我们深入理解化学原理和应用化学具有重要意义。

长江大学 氧吸收与解吸综合实验 实验报告

长江大学 氧吸收与解吸综合实验 实验报告
,确定填料塔在某液体喷淋量下的液泛气速。
(3)掌握总传质系数 的测定方法并分析影响因素。
(4)学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方
法。
(5)研究流体的流动对传质阻力的影响、吸收剂用量对传质系数的影响
和传质系数的影响和传质阻力较小侧流体的流量变化对吸收过程的影响,学会吸收过程的调节。
39883.677
5.265E-06
1.404E-05
5.416E-06
4.0593
4.79
101.64
39883.677
5.265E-06
1.254E-05
5.321E-06
4.8692
4.01
101.67
39873.870
5.266E-06
1.268E-05
5.523E-06
3.3620
3.98
0.1643
3
19
1.42
0.68
22.55
9.82
25506.22
0.2380
4
20
1.57
0.73
22.94
9.49
96144.75
0.1706
计算;
以第一组数据为例:
系统总压强:
相平衡常数:
六、思考题
i.为什么易溶气体的吸收和解吸属于气膜控制过程,难溶气体的吸收和
解吸属于液膜控制过程?
答:对于易溶气体而言,主要的阻力来自溶质从气相到气液界面扩散的阻力,从气液界面到溶液的过程所受到的阻力相对来说很小,所以在吸收过程显示为气膜控制过程;而对于难溶气体,吸收时受到的主要阻力是在气液界面到液相的过程中产生,而在气相到气液界面的阻力相对来说很小,所以其吸收的过程显示为液膜控制过程。

化工原理氧解吸实验报告

化工原理氧解吸实验报告

化工原理氧解吸实验报告
实验目的:
1.观察氧解吸的现象;
2.探究氧解吸速率与氧化剂浓度、温度、催化剂等因素的关系;
3.熟悉实验操作和实验仪器的使用。

实验原理:
氧解吸是指在一定温度和压力下,将溶解在液体中的氧气以气泡的形式分离出来的现象。

氧解吸反应的速率与氧化剂浓度、温度、催化剂等因素密切相关。

实验步骤:
1.将实验装置依次连接好,并将水槽中的水加热至80℃;
2.在试管中加入适量的含氧化剂的溶液,并加入催化剂;
3.将试管放入水槽中,注意控制试管的深度,以使试管中溶液面高于水槽水面;
4.打开气源,调节气流量,观察氧解吸的现象,并记录时间和气泡产生的数量;
5.改变实验条件(如氧化剂浓度、温度、催化剂种类或浓度等),重复步骤4,记录实验数据。

实验结果:
根据实验数据,我们可以绘制氧解吸速率与不同因素的关系曲线。

实验讨论:
1.氧化剂浓度对氧解吸速率的影响:当氧化剂浓度增加时,氧解吸速
率也会增加;
2.温度对氧解吸速率的影响:随着温度的升高,氧解吸速率也会增加;
3.催化剂对氧解吸速率的影响:催化剂可以提高氧解吸速率,不同催
化剂的效果可能不同;
4.实验操作的注意事项:试管放入水槽时,应使试管内的溶液高于水
槽水面,以防水被吸入试管;
实验结论:
通过本实验,我们观察了氧解吸的现象,并探究了氧解吸速率与氧化
剂浓度、温度、催化剂等因素的关系。

实验结果表明,氧解吸速率随着氧
化剂浓度和温度的增加而增加,催化剂可以提高氧解吸速率。

这些结果对
于理解氧解吸反应的机制,以及实际应用中的氧解吸过程具有重要的意义。

氧解吸实验报告

氧解吸实验报告

氧解吸实验报告1氧解吸实验报告一、实验简介氧解吸实验是一种用于研究材料在高温、高压条件下的吸氧性能的实验。

该实验通过测量不同条件下的吸氧量、吸氧速率等参数,评估材料的抗氧化性能和使用寿命。

本报告所提供的实验数据仅为本实验室的实验结果,不代表其他实验室或实际使用环境下的结果。

二、实验原理氧解吸实验主要基于材料的氧化还原反应。

在高温、高压条件下,材料表面的氧化膜逐渐形成。

当材料表面存在还原性气体(如氢气)时,氧化膜与还原性气体发生还原反应,产生金属和氧化物。

通过测量不同条件下的还原速率、还原量等参数,可以评估材料的抗氧化性能和使用寿命。

三、实验步骤1.样品准备选取待测试材料,制成标准样品。

将样品表面进行抛光处理,确保表面平整、光滑,无划痕、气孔等缺陷。

2.实验装置准备使用高压炉作为实验装置,确保炉内气氛可控,且能够保持高温、高压环境。

同时,需要配备气流量控制系统、压力控制系统、温度传感器等辅助设备。

3.实验过程将样品放入高压炉中,通入一定量的氧气,使样品表面形成一层氧化膜。

然后,通入一定量的还原性气体(如氢气),观察样品表面的氧化膜变化情况。

在一定时间间隔内,记录样品的重量变化(即还原量),同时测量炉内气氛中的氧气和还原性气体的浓度变化。

四、实验数据分析1.还原速率分析通过测量不同时间间隔内的还原量,可以计算出还原速率。

还原速率越快,说明材料的抗氧化性能越差。

可以通过控制不同的实验条件(如温度、压力、气体浓度等),观察这些条件对还原速率的影响。

2.氧化膜厚度分析在实验过程中,可以通过测量氧化膜的厚度变化,评估氧化膜的生长情况。

通过对不同条件下的氧化膜厚度进行分析,可以得出材料在高温、高压条件下的氧化动力学行为。

3.形貌分析通过观察实验前后的样品表面形貌,可以了解材料在高温、高压条件下的氧化行为和还原反应过程。

利用扫描电子显微镜(SEM)等设备对样品表面进行形貌分析,可以进一步了解氧化膜的形貌特征和结构变化。

氧吸收解吸系数测定实验报告

氧吸收解吸系数测定实验报告

氧吸收解吸系数测定实验报告
实验名称:氧吸收解吸系数测定实验
实验日期:2020年8月20日
实验目的:
1.了解氧吸收解吸系数;
2.掌握氧吸收解吸系数的测定方法。

实验原理:
氧吸收解吸系数是指物质在固定的状态下,在指定压力、温度下,某物质从气体和液体之间依次扩散的速度,它表示在一定时间内物质从某一相扩散到另一相内所达到的最高吸收量。

实验材料:
1.精制空气;
2.普通空气;
3.实验水槽;
4.湿布;
5.温度检测管;
6.压力表;
7.解吸装置;
实验过程:
1.将水槽中的湿布放入实验管;
2.在实验管内测量温度,调节温度到预定温度;
3.在实验管内调节压力,调节压力到预定压力;
4.调节精制空气流量到预定流量;
5.调节普通空气流量到预定流量;
6.实验时间内,将空气经过湿布,调节解吸装置,将气体收集到容器中;
7.重复以上步骤,测试不同温度和压力下的氧吸收解吸系数;
实验结果:
温度压力收集量氧吸收解吸系数
20℃ 0.2MPa 0.43g/L 0.07
20℃ 0.5MPa 1.2g/L 0.20
20℃ 0.8MPa 2.15g/L 0.35
30℃ 0.2MPa 0.51g/L 0.09
30℃ 0.5MPa 1.54g/L 0.25
30℃ 0.8MPa 2.67g/L 0.45
实验结论:
根据实验结果可以得出:随着温度和压力的增加,氧吸收解吸系数呈现增加趋势,表明氧吸收解吸的效率随着温度和压力的增加而提升。

氧解吸实验报告1

氧解吸实验报告1

氧解吸实验报告1一、实验目的:1、掌握氧解吸法气体吸附技术的原理和操作方法。

2、测定微孔材料的比表面积。

3、通过本实验,了解气体吸附实验技术的基本特点和原理,并学会分析和处理实验数据。

二、实验原理:当气体分子与固体表面接触时,分子势能发生变化,分子分散力弱化,发生与液体表面相同的吸引作用,这种作用叫做吸附作用。

气体吸附在固体表面上的化学、物理及其他性质的差异,可用不同的实验技术来检测和研究。

在常温常压下,氧气被准备好的样品吸收到孔内,被吸附到样品孔内。

此时氧气分子通过气态物理吸附作用,与表面发生偶极、磁偶极、色散等相互作用,根据吸附内能大小,实现吸附分为物理吸附和化学吸附两大类。

根据仪器所使用的吸附温度范围划分吸附分为低温吸附和高温吸附两大类。

低温吸附又称孔隙吸附,高温气相吸附。

孔隙吸附是指温度在77K以下时,在绝大多数低温吸附剂表面上的表现出的现象,常常用来研究吸附剂的孔结构。

孔隙吸附可分为毛细吸附和瞬间多分子层吸附。

而瞬间吸附比毛细吸附所需时间短,可以忽略不计,因此在实验上可用斯特瑞维尔方程来处理采用孔隙吸附法测气体和气体混合物吸附实验中所得的数据。

斯特瑞维尔方程式中,pi为相对饱和蒸气压,其值可由其他文献查得。

V为脱附柜体积的一半,即nitrogen gas纯氮体积,即可转换为具体的实验数据。

三、实验步骤:1、用微孔材料制备样品固体,称取0.10g±0.01g,摆于小特形脱附柜中,加热至50℃除去吸附在孔内的水分。

2、恢复脱附柜,根据实验计划记录实验条件,控制好实验过程中温度,时间等参数。

3、样品在液氮温下接触氮气使其充分吸收氮气,开动真空泵将孔内和柜内的氮气压降至一定值。

4、收集样品孔内气体脱附后的数据(在304kPa以上时收集脱附数据)。

5、依据实验条件计算氧气在样品中的比表面积。

4、实验结果:1、实验中计算得出氧气的比表面积为125.013m2/g。

本次实验中我们通过使用氧解吸法测定了Porous Materials的比表面积,我们掌握了氧剂吸附实验技术的基本特点和原理,并学会了分析和处理实验数据。

吸收(解吸)实验报告

吸收(解吸)实验报告

吸收(解吸)实验报告化工基础实验报告实验名称吸收(解吸)系数的测定班级化21 姓名张腾学号2012011864 成绩实验时间2014.5 同组成员张煜林努尔艾力·麦麦提一、实验目的1、了解吸收(解析)操作的基本流程和操作方法;2、测定氧解吸液相总体积传质系数K x a和液体流量的关系;3、测定筛板塔的板效率与液体流量和气体流量的关系。

二、实验原理吸收是工业上常用的操作。

在吸收过程中,气体混合物和吸收剂分别从塔底和塔顶进入塔内,气液两相在塔内实现逆流接触,使气体混合物中的溶质较完全地溶解在吸收剂中,于是塔顶获得较纯的惰性组分,从塔底得到溶质和吸收剂组成的溶液(通称富液)。

当溶质有回收价值或吸收剂价格较高时,把富液送入再生装置进行解吸,得到溶质或再生的吸收剂(通称贫液),吸收剂返回吸收塔循环使用。

吸收是气液相际传质过程,所以吸收速率可用气相内,液相内或者两相间的传质速率来表示。

在连续吸收操作中,这三种传质速率表达式计算结果相同。

对于低浓度吸收过程。

计算公式如下。

气相内传质的吸收速率:N A=k y(y?y i)F液相内传质的吸收速率:N A=k x(x i?x)F气、液两相相际传质的吸收速率:N A=K y F(y?y?)=K x F(x??x) 式中:y,y i—分别表是气相主体和气相界面处的溶质摩尔分率;x,x i—分别表示液相主体和液相界面处的溶质摩尔分率;x?,y?—分别为与y和x呈平衡的液相和气相摩尔分率;k x,K x—分别为以液相摩尔分率差为推动力的液相传质分系数和传质总系数;k y,K y—分别为以气相摩尔分率差为推动力的气相传质分系数和传质总系数;F—传质面积,m2。

对于难溶溶质的吸收,常用液相摩尔分率差和液相传质系数表达的吸收速率式。

对于易溶气体的吸收,常用气相摩尔分率差和气相传质系数表达的吸收速率式。

本实验为一解析过程,是用空气与富氧水接触,因富氧水中氧的浓度高于同空气处于平衡的水中氧的浓度。

氧吸收与解吸试验

氧吸收与解吸试验

氧吸收与解吸实验实验日期:2011/4/8班级:*****姓名:**学号:********同组人: *** *** **实验装置:1号陶瓷拉西环摘要:填料塔是化工过程重要的单元,本实验在室温、常压下,通过分别测定干、湿填料层压降与空塔气速的数据,并作图分析得到两种情况下塔压降与空塔气速关系,从而熟悉填料塔的构造与操作、确定填料塔流体力学特性,进而得知填料塔的处理能力及性能高低。

同时,本实验通过对富氧水进行解吸,测定了解吸液相体积的总传质系数K x a,进而确定液相总传质单元高度H OL。

一、实验名称:氧吸收与解吸实验二、目的及任务:1.熟悉填料塔的构造与操作;2.观察填料塔流体力学状况,测定压降与气速的关系曲线;3.掌握总传质系数K x a的测定方法并分析影响因素;4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。

三、基本原理:本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作,该步实验中省略),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得到K x a=AL a·V b的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。

本实验手工采集数据,具有可操作性。

1.填料塔流体力学特性:气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。

在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa线)。

当有喷淋量时,在低气图1-1 填料层压降–空塔气速关系示意图速下(c 点以前)压降也正比于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc 段)。

随气速的增加,出现截点(图中c 点),持液量开始增大,压降-气速线向上弯,斜率变陡(图中cd 段)。

到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。

2. 传质实验:填料塔与板式塔气液两相接触情况不同。

在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。

氧气吸收与解吸

氧气吸收与解吸

氧气吸收与解吸氧气吸收与解吸一、实验目的及任务i.熟悉填料塔的构造与操作,认识不同填料塔的特性。

ii.观察填料塔流体力学状况,测定填料层压强降与操作气速的关系(△p/z~u),确定调料塔在某夜体喷淋量下的液泛气速。

iii.掌握总传质系数K x a,的测定方法并分析影响因素。

iv.研究流体的流动对传质阻力的影响、吸收剂用量对传质系数的影响和传质阻力较小侧流体的流量变化对吸收过程的影响,学会吸收过程的调节。

v.学会氧气钢瓶减压阀的操作,测氧仪的标定及使用。

二、基本原理本装置采用水作吸收剂,纯氧作吸收质,在吸收塔内并流吸收,形成富氧水后,送入解吸塔顶,再用空气进行逆流解吸,每个解吸塔均采用不同的填料。

实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得到K x a=AL a V b的关联式,同时对各种不同填料的传质效果及流体力学性能进行比较。

本实验引入了计算机在线数据采集技术,加快数据记录与处理的速度。

1.填料塔流体力学特性气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致,见图。

在双对数坐标系中△p/z对u作图得到一条斜率为1.8~2的直线(图中aa线)。

而有喷淋量时,在低气速时(c i点以前)压降也正比于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中b i c i段).随气速增加,出现载点(图中c i点),持液量开始增大。

图中不难看出载点的位置不是十分明确,说明气液两相流动的相互影响开始出现。

压降—气速线向上弯曲,斜率变陡(图中c i d i段)。

当气体增至液泛点(图中d i点,实验中可以目测出)后,气速稍有增加,压降边急剧上升,此时液相完全转为连续相,气相完全转为分散相,塔内液体反混和气体的液沫夹带现象严重,传质效果极差。

测定填料塔的压降和液泛气速是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择合适的气液负荷。

实验在各种喷淋量下,逐步增大气速,记录数据,直至出现液泛时为止。

氧解吸实验工作报告-北京化工大学

氧解吸实验工作报告-北京化工大学

北京化工大学化工原理实验报告实验名称:氧解吸实验班级:化工姓名:学号:序号:同组人:设备型号:第套实验日期:2014-4-01一、实验摘要本实验测定不同气速下干塔和湿塔的压降,得到了填料层压降—空塔气速关系曲线,确定塔的处理能力及找到最佳操作点。

然后用吸收柱使水吸收纯氧形成富氧水,送入解析塔再用空气进行解吸,进而可计算出不同气液流量比下液相体积总传质系数K x a ,液相总传质单元高度H OL ,液相总传质单元数N OL 。

关键词:氧气 解吸 液相体积总传质系数 液相总传质单元高度 液相总传质单元数二、实验目的1、测量填料塔的流体力学性能;2、测量填料塔的吸收-解吸传质性能;3、比较不同填料的差异。

三、实验原理1、填料塔流体力学性能为保证填料塔的正常运行,通常需要控制操作气速处于液泛气速的0.5~0.8倍之间。

如图1,在双对数坐标系下,气体自下而上通过干填料层时,塔压降ΔP 与空塔气速u 复合关系式ΔP=u 1.8~2.0。

当有液体喷下,低气速操作时,ΔP ∝u 1.8~2.0,此时的ΔP 比无液体喷淋时要高。

气速增加到d 点,气液两相的流动开始相互影响,ΔP ∝u 0.2以上,此时的操作点成为载液2点。

气速再增加到e 点时,气液两相的交互影响恶性发展,导致塔内大量积液且严重返混,ΔP ∝u 10以上,此时的操作点称为液泛点,对应的气速就是液泛气速。

本实验直接测量填料塔性能参数,确定其液泛气速,还可用公式法、关联图法等确定。

全塔压降直接读仪表,空塔气速u 由孔板流量计测定:s P A V u /m 1.07854.025.110002(018.07854.061.025.02⨯÷⨯∆⨯⨯⨯⨯==)孔板。

2、填料塔传质性能——考察氧解吸过程的液相体积传质系数K x a 。

以氧气为溶质,解吸塔内空气、水的摩尔流率不变,水温恒定。

根据低含量气体吸收解吸全塔传质速率方程可知:⎰-⋅=⨯=21;x x ex OL O x x dx a K L N H H 。

氧吸收解吸系数测定实验报告

氧吸收解吸系数测定实验报告

氧吸收/解吸系数测定实验报告一、实验目的1、了解传质系数的测定方法;2、测定氧解吸塔内空塔气速与液体流量对传质系数的影响;3、掌握气液吸收过程液膜传质系数的实验测定方法;4、关联圆盘塔液膜传质系数与液流速率之间的关系; 4、掌握VOC 吸收过程传质系数的测定方法。

二、实验原理1) 吸收速率吸收是气、液相际传质过程,所以吸收速率可用气相内、液相内或两相间传质速率表示。

在连续吸收操作中,这三种传质速率表达式计算结果相同。

对于低浓度气体混合物单组分物理吸收过程,计算公式如下。

气相内传质的吸收速率:)(i y A y y F k N -=液相内传质的吸收速率:)(x x F k N i x A -=气、液相相际传质的吸收速率:)()(**x x F K y y F K N x y A -=-=式中:y ,y i ——气相主体和气相界面处的溶质摩尔分数;x ,x i ——液相主体和液相界面处的溶质摩尔分数; x *,y *——与x 和y 呈平衡的液相和气相摩尔分数;k x ,K x ——以液相摩尔分数差为推动力的液相分传质系数和总传质系数; k y ,K y ——以气相摩尔分数差为推动力的气相分传质系数和总传质系数; F ——传质面积,m 2。

对于难溶气体的吸收过程,称为液膜控制,常用液相摩尔分数差和液相传质系数表达吸收速率式。

对于易溶气体的吸收过程,称为气膜控制,常用气相摩尔分数差和气相传质系数表达吸收速率式。

本实验为一解吸过程,将空气和富氧水接触,因富氧水中氧浓度高于同空气处于平衡的水中氧浓度,富氧水中的氧向空气中扩散。

解吸是吸收的逆过程,传质方向与吸收相反,其原理和计算方法与吸收类似。

但是传质速率方程中的气相推动力要从吸收时的(y -y *)改为解吸时的(y *-y ),液相推动力要从吸收时的(x *-x )改为解吸时的(x -x *)。

2) 吸收系数和传质单元高度吸收系数和传质单元高度是反映吸收过程传质动力学特性的参数,是吸收塔设计计算的必需数据。

氧解吸实验记录及数据处理结果

氧解吸实验记录及数据处理结果

氧解吸实验——数据记录及数据处理结果(数据源于化工10901班化工原理实验第12小组)一、水力学特性测试实验表1几点说明:1.F 列空气流量校正值V 2由下面的公式校正:122112T p T p V V = 式中的V 1为空气转子流量计在操作状态下的示值,其数字记录于B 列中,1T 和1p 为空气转子流量计在标定状态下空气的温度和压强(T 1=293K ;p 1=101.3kPa),2T 和2p 为操作状态下空气的温度和压强,其对应值分别记录于C 列和E 列,然后将C 列和E 列数值转化为绝对温度和绝对压强,结果分别列于D 列和F 列;2.全塔压降Δp 直接从压差计读出,其结果记录于H 列; 3.空塔气速u 由下式计算:3600785022⨯=D .V u式中的D 为塔径(D =0.1m),计算结果列于J 列;4.单位高度填料层压降Δp /z ,直接用H 列数据除以I 列数据即得,计算结果列于K 列; 5.以J 列数据为横坐标,K 列数据为纵坐标作双对数坐标图得如下结果:从图中可以看出:①干塔操作条件下,u ~z /p ∆之间表现出较好的对数线性关系,塔内不存在滞液量和气-液两相逆流的交互影响;②在同一操作气速下,随着喷淋量L 的增大,单位填料层压降z /p ∆显著增大,说明滞液量和气-液两相逆流的交互影响十分显著;③四条曲线没有出现明显的载点和泛点,这主要是载点本身并不明显,曲线是连续渐进变化的,而泛点可以看出其趋势,但因风机的风量较小,U 型压差计读数范围也不大,致使泛点出现之后的压降无法读出所致。

Δp /z (P a /m 填料)u (m/s)二、传质特性测试实验表2-1说明:绝表记表2-2说明:①M 列空气流量m 0由下式算出:RTpVMm0 式中的p 由表2-1中的G 列数据产生,V 由表2-1中的C 列数据产生,M 为空气分子量29,R 取8.314,T 取表2-1中的E 列数据;②N 列空气流率G 根据M 列数据由下式算出:2010785029..m M Ωm G ⨯⨯==③O 列和P 列数据分别根据J 列和K 列数据依下式求出:1813210321061611///x +⨯⨯=--ϖϖ;1813210321062622///x +⨯⨯=--ϖϖ④Q 列数据由下式生成:62510)56.207714.0105694.8(⨯++⨯-=-t t E kPa (式中的t 取水温20℃) ⑤R 列数据由Q 数据依下式得出:p E m /=(式中的p p ∆⨯+=5.03.101,p ∆为I 列数据)⑥S 列和T 列数据分别由下式求得:m y x /1e1=;m y x /2e2=(21.021==y y )⑦W 列数据依下式计算得出:)]/()ln[()()(e22e11e22e11m x x x x x x x x x -----=∆⑧X 列数据由下式计算:m21e OL 12x x x x x dxN x x ∆-=-=⎰⑨Y 列数据由下式计算: OLOL N HH =(式中的H 为填料层高度,本实验H = 0.8m ,N OL 为X 列数据)⑩Z 列数据由下式计算ΩH M L a K x OL w /ρ=(式中的L 为A 列数据,w ρ为水的密度,此处可取L /kg 1w =ρ,M 为水的分子量,M = 18kg / kmol ,Ω为塔截面积)数据回归利用表2中的C 列和Z 列数据作图有:K xa/(kmol·m-3·h-1)V2/(m3·h-1)K xa/(kmol·m-3·h-1)L / (L·h-1)图A 四种喷淋流量下VaKx~之间的对应关系图B 三种空气流量下LaK x~之间的对应关系说明:①从图中可以看出,三种喷淋流量下的总传质系数比较平缓,空气流量的变化没有导致氧解吸总传质系数明显的变化,这说明气提空气的流量的大小不是影响氧解吸的主要因素,倒是喷淋流量的改变导致aKx发生了显著地变化,说明此解吸主要由液膜所控制;②基于液膜控制,应重点寻找出LaKx~之间的对应关系,由于本实验喷淋量变化点取的太少,不便关联出LaK x~之间的对应关系式,这是本实验的一个疏忽。

氧吸收解吸实验报告

氧吸收解吸实验报告

氧吸收解吸实验报告实验目的本实验旨在研究氧气在水中的溶解和解吸过程,通过实验观察和数据分析,探讨氧气在水中溶解和解吸的影响因素。

实验原理氧气是水生生物生存和呼吸必不可少的物质,其在水中的溶解和解吸过程是生物呼吸的重要环节。

水中的溶解氧量受到多种因素的影响,如温度、压力、水的酸碱度、水流和生物代谢等。

在实验中,我们将通过控制这些因素来研究氧气的溶解和解吸规律。

实验材料和设备•氧气气瓶•氧气压力表•实验水槽•温度计•pH计•实验记录表格实验步骤1.准备实验设备:将实验水槽放置在实验台上,连接氧气气瓶和氧气压力表,确保氧气供应畅通。

2.调节水槽温度:使用温度计测量实验水槽的温度,并根据实验要求调节水槽温度。

记录下水槽的初始温度。

3.调节水槽酸碱度:使用pH计测量实验水槽中水的酸碱度,并根据实验要求调节水槽的酸碱度。

记录下水槽的初始酸碱度。

4.开始实验:打开氧气气瓶,将氧气注入实验水槽中,观察氧气在水中的溶解过程。

记录下注氧气时的氧气压力和时间。

5.观察和记录:观察实验水槽中氧气的溶解情况,记录下水槽内溶解氧的浓度和溶解时间。

6.增加温度:根据实验要求,逐步增加水槽的温度,观察氧气的解吸现象。

记录下每次温度变化后的溶解氧浓度和解吸时间。

7.调节酸碱度:根据实验要求,逐步调节水槽的酸碱度,观察氧气的解吸现象。

记录下每次酸碱度变化后的溶解氧浓度和解吸时间。

8.数据处理与分析:根据实验记录的数据,绘制溶解氧浓度和解吸时间的曲线图,分析氧气在水中溶解和解吸的规律。

实验结果与讨论根据实验数据,我们可以观察到氧气在水中的溶解和解吸过程受到温度和酸碱度的影响。

首先,我们发现随着温度的升高,氧气在水中的溶解速度增加,溶解氧浓度也相应增加。

这是因为温度升高会增加氧气分子的热运动速度,加快氧气分子与水分子之间的碰撞频率和能量,从而促进氧气的溶解过程。

其次,我们观察到在酸性环境下,氧气的解吸速度明显增加。

这是因为酸性环境下水分子会与氧气分子发生化学反应,使氧气从水中解吸出来。

氧解吸实验报告北京化工大学

氧解吸实验报告北京化工大学

北京化工大学化工原理实验报告化工实验名称:班级: 姓名: 学号:序号:同组人:氧解吸实验设备型号: 实验日期:一、实验摘要本实验测定不同气速下干塔和湿塔的压降 ,得到了填料层压降一空塔气速关系曲线,确定塔的处理能力及找到最佳操作点。

然后用吸收柱使水吸收纯氧形成富氧水,送入解析 塔再用空气进行解吸,进而可计算出不同气液流量比下液相体积总传质系数K x a ,液相总传质单兀高度H OL ,液相总传质单元数 N OL 。

关键词:氧气解吸液相体积总传质系数液相总传质单元高度液相总传质单元数、实验目的1、 测量填料塔的流体力学性能 ;2、 测量填料塔的吸收-解吸传质性能;3、比较不同填料的差异三、实验原理1、填料塔流体力学性能为保证填料塔的正常运行,通常需要控制操作气速第套2014-4-01图1、塔压降一气速关系处于液泛气速的0.5~0.8倍之间。

如图1,在双对数坐标系下,气体自下而上通过干填料层 时,塔压降A P 与空塔气速u 复合关系式△PF 1"2.0。

当有液体喷下,低气速操作时,A P x u 1.8~2.0 ,此时的△P 比无液体喷淋时要高。

气速增加到d 点,气液两相的流动开始相互影 响,△P x u 0.2以上,此时的操作点成为载液 2点。

气速再增加到e 点时,气液两相的交互影 响恶性发展,导致塔内大量积液且严重返混 ‘△P ^u 10以上,此时的操作点称为液泛点,对 应的气速就是液泛气速。

本实验直接测量填料塔性能参数 ,确定其液泛气速,还可用公式法、关联图法等确 定。

全塔压降直接读仪表,空塔气速 u 由孔板流量计测定:v 0.61 0.7854 0.0182 (2 .P 孔板 1000-1.25)0.5 um / s 。

A -E —亨利系数,kPa ; t —水温度,C ; P 02 —吸收时取103kPa ,解吸时取20.9kPa 。

解吸 过程的平衡线和操作线都是直线,传质单元数可用对数平均推动力法计算N °L=x 2』x x 1:..lnx2~x2,e :-ln W2 ~W2e;为x —x ex1—x 1,e w ^ ~w 1,eL 0.0555 V 水0.7854 0.12 'H —填料高度,0.75m ; L —水摩尔流率,kmol m -2.h -1 ; V 水一水流量,L/h ; K x a —液相 体积传质系数,kmol .m -3.h -1; W 2 —富氧水质量浓度,mg/L ; W 1—贫氧水质量浓度,mg/L; W 2, e 、W 1, e —富氧水、贫氧水平衡含氧量,查表或实验测定,mg/L 。

氧吸收解析实验报告

氧吸收解析实验报告

一、实验目的1. 了解氧吸收解析操作的基本流程和操作方法;2. 测定氧吸收解析过程中气相和液相的传质系数;3. 分析影响氧吸收解析效率的因素;4. 掌握氧吸收解析设备的设计原理。

二、实验原理氧吸收解析是利用吸收剂对氧气的吸收和解吸特性,实现氧气与其他气体的分离。

在吸收过程中,氧气从气相转移到液相,使气相中的氧气浓度降低;在解析过程中,氧气从液相转移到气相,使液相中的氧气浓度降低。

本实验采用液相吸收法,以水为吸收剂,研究氧气在吸收和解吸过程中的传质系数。

三、实验材料与设备1. 实验材料:氧气、空气、水、NaOH溶液;2. 实验设备:气瓶、流量计、吸收塔、解析塔、温度计、压力计、搅拌器、记录仪。

四、实验步骤1. 吸收过程:(1)将氧气通入吸收塔,空气作为稀释剂;(2)调节流量计,控制氧气流量;(3)启动搅拌器,使水在吸收塔内循环;(4)记录吸收过程中氧气浓度、液相温度、压力等数据。

2. 解析过程:(1)将吸收后的溶液通入解析塔,空气作为稀释剂;(2)调节流量计,控制氧气流量;(3)启动搅拌器,使溶液在解析塔内循环;(4)记录解析过程中氧气浓度、液相温度、压力等数据。

3. 数据处理:(1)计算气相和液相的传质系数;(2)分析影响氧吸收解析效率的因素;(3)绘制氧气浓度、温度、压力等参数与时间的关系曲线。

五、实验结果与分析1. 吸收过程:实验过程中,氧气浓度随时间逐渐降低,液相温度和压力变化不大。

根据实验数据,计算得到气相和液相的传质系数分别为0.05和0.02。

2. 解析过程:实验过程中,氧气浓度随时间逐渐升高,液相温度和压力变化不大。

根据实验数据,计算得到气相和液相的传质系数分别为0.03和0.01。

3. 影响氧吸收解析效率的因素:(1)温度:实验过程中,温度对氧吸收解析效率的影响较小;(2)压力:实验过程中,压力对氧吸收解析效率的影响较小;(3)搅拌速度:搅拌速度对氧吸收解析效率有较大影响,适当提高搅拌速度可以加快传质过程。

氧解吸实验报告

氧解吸实验报告

氧解吸实验报告化原实验报告实验题目:氧解吸实验班级:化工0907班姓名:学号:同组人:y 2x 2氧解吸实验一、实验目的1. 熟悉填料塔的构造与操作。

2. 观察填料塔流体力学状况,测定压降与气速的关系曲线。

3. 掌握液相体积总传质系数的测定方法并分析影响因素。

4. 学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。

二、实验原理本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数,并进行关联,得到的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。

本实验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。

1、填料塔流体力学特性气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。

在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2 的直线(图中aa 线)。

当有喷淋量时,在低气速下(c 点以前)压降也正比于气速的1.8~2 次幂,但大于同一气速下干填料的压降(图中bc 段)。

随气速的增加,出现载点(图1 中c 点),持液量开始增大,压降-气速线向上弯,斜率变陡(图中cd 段)。

到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。

2、传质实验填料塔与板式塔气液两相接触情况不同。

在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。

本实验是对富氧水进行解吸,如右图所示。

由于富氧水浓度很小,可认为气图2 富氧水解析实验液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。

整理得到相应的传质速率方式为:式中相关填料层高度的基本计算式为:式中,式中:GA—单位时间内氧的解吸量,[kmol/h];Kxa —总体积传质系数,[kmol/m3hΔx];VP—填料层体积,[m3]Δxm—液相对数平均浓度差;x1—液相进塔时的摩尔分率(塔顶);xe1—与出塔气相y1平衡的液相摩尔分率(塔顶);x2—液相出塔的摩尔分率(塔底);xe2—与进塔气相y2平衡的液相摩尔分率(塔底);Z —填料层高度,[m];Ω—塔截面积,[m2];L —解吸液流量,[kmol/h];HOL—以液相为推动力的传质单元高度,[m];NOL—以液相为推动力的传质单元数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氧吸收解吸实验报告
氧吸收解吸实验报告
引言:
氧气是地球上最重要的元素之一,对于维持生命活动至关重要。

人类和其他生
物通过呼吸将氧气吸入体内,然后将其与食物中的营养物质一起利用,产生能
量和二氧化碳。

为了更好地理解氧气在生物体内的吸收和解吸过程,我们进行
了一系列实验。

实验一:氧气吸收速率与温度的关系
我们首先研究了氧气吸收速率与温度之间的关系。

为此,我们准备了三个试管,分别装有20°C、30°C和40°C的水。

在每个试管中,我们加入了相同量的酵母
和蔗糖溶液。

然后,我们立即将一个试管放入恒温箱中,将另一个试管放在常
温下,将第三个试管放入冰水中。

结果显示,随着温度的升高,氧气吸收速率明显增加。

在40°C的试管中,氧气吸收速率最高,而在冰水中的试管中,氧气吸收速率最低。

这表明温度对氧气
吸收过程有显著影响,高温有利于氧气的吸收。

实验二:氧气解吸速率与压力的关系
为了研究氧气解吸速率与压力之间的关系,我们使用了一个封闭的容器,并在
其中放入了一定量的氧气和水。

然后,我们逐渐增加容器内的压力,观察氧气
解吸的速率。

结果显示,随着压力的增加,氧气解吸速率也随之增加。

当压力达到一定值时,氧气解吸速率开始饱和,不再随压力的增加而增加。

这说明压力对氧气解吸过
程有一定的影响,但并非线性关系。

实验三:氧气吸收速率与浓度的关系
为了探究氧气吸收速率与浓度的关系,我们分别准备了不同浓度的氧气溶液。

然后,我们将相同量的酵母和蔗糖溶液加入不同浓度的氧气溶液中,并观察氧气吸收的速率。

结果显示,随着氧气浓度的增加,氧气吸收速率也随之增加。

当氧气浓度达到一定值后,氧气吸收速率开始饱和,不再随浓度的增加而增加。

这表明氧气浓度对氧气吸收过程有一定的影响,但并非线性关系。

结论:
通过以上实验,我们可以得出以下结论:
1. 温度对氧气吸收速率有显著影响,高温有利于氧气的吸收。

2. 压力对氧气解吸速率有一定的影响,但并非线性关系。

3. 氧气浓度对氧气吸收速率有一定的影响,但并非线性关系。

这些实验结果为我们深入了解氧气在生物体内的吸收和解吸过程提供了重要的参考。

进一步研究这些影响因素的机制,有助于我们更好地理解生物体内的氧气交换过程,并为相关疾病的治疗提供理论基础。

相关文档
最新文档