浅谈初中数学的数学思想方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈初中数学的数学思想方法
作者:赵金玲
来源:《祖国·建设版》2013年第03期
数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识,而数学方法是以数学为工具进行科学研究的方法。数学思想与数学方法是数学知识中奠基性成分,是学生获得数学能力必不可少的。数学思想方法的训练,是把知识型教学转化为能力型教学的关键,是实话素质教育的重要组成部分。
1 初中数学思想方法教学的重要性
长期以来,传统的数学教学中,只注重知识的传授,却忽视知识形成过程听数学思想方法的现象非常普遍,它严重影响了学生的思维发展和能力培养。随着教育改革的不断深入,越来越多的教育工作者、特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴含的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识。事实上,单纯的知识教学,只显见于学生知识的积累,是会遗忘甚至于消失的,而方法的掌握,思想的形成,才能使学生受益终生,正所谓“授之以鱼,不如授之以渔”。不管他们将来从事什么职业和工作,数学思想方法,作为一种解决问题的思维策略,都将随时随地有意无意地发挥作用。
2 初中数学思想方法的主要内容
初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。
2.1对应的思想和方法:
在初一代数入门教学中,有代数式求值的计算值,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系……在进行此类教学设计时,应注意渗透对应的思想,这样既有助于培养学生用变化的观点看问题,有助于培养学生的函数观念。
2.2数形结合的思想和方法
数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难人微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。
①由数思形,数形结合,用形解决数的问题。
例如在《有理数及其运算》这一章教学中利用“数轴”这一图形,巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。实际上,对学生来说,也只有通过数形结合,才能较好地完成本章的学习任务。另外,第五章《一元一次方程》中列方程解应用题中画示意图,常常会给解决问题带来思路。第九章《生活中的数据》“统计图的选择”及“复习形统计图”,利用图形来展示数据,很直观明了。
2.3整体的思想和方法
整体思想就是考虑数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密联系着的量作为整体来处理的思想方法。整体思想在处理数学问题时,有广泛的应用。
2.4分类的思想和方法
教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使学生明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深刻、更具体,并且还能使学生掌握分数的要点方法:(1)分类是按一定的标准进行的,分类的标准不同,分类的结果也不相同;(2)要注意分类的结果既无遗漏,也不能交叉重复;(3)分类要逐级逐次地进行,不能越级化分,如不能把实数分为整数、分数和无理数。
2.5类比联想的思想和方法
数学教学设计在考虑某些问题时常根据事物问的相似点提出假设和猜想,从而把已知事物的属性类比推广到类似的新事物中去,促进发现新结论。如分式的各种运算法则就是与小学学过的分数的运算法则类比联想到的;再如由天平的平衡条件比得出等式的基本性质,这种方法体现了“法故而知新”和“以旧引新”的教学设计原则,这样的设计起点低,学生学起来更容易接受。教学中由于提供了思维发生的背景材料,既活跃了课堂气氛,又有利于在和谐、轻松的氛围中完成新知识的学习。
2.6逆向思维的方法
所谓逆向思维就是把问题倒过来或从问题的反面思考或逆用某些数学公式、法则解决问题。加强逆向思维的训练,可以培养学生思维的灵活性和发散性,使学生掌握的数学知识得到有效的迁移,如绝对值等于2的数有几个,平方得4的数是什么,立方得6的数是什么,是学习绝对值、有理数的乘方后的逆去用,还有分配律的逆用等。
3 初中数学思想方法的教学规律
数学思想方法蕴含于数学知识之中,又相对超脱于某一个具体化的数学知识之外。数学思想方法的教学比单纯的数学知识教学困难得多,因为数学思想方法是具体数学知识的本质和内在联系的反映,具有一定的抽象性和概括性,它强调的是一种意识和观念,对于初中学生来说,这个年龄段正是由形象思维向抽象的逻辑思维过渡的阶段,虽然初步具有了简单的逻辑思维能力,但是还缺乏主动性和能动性,因此,在数学教学中,必须注意数学思想方法和教学规律。