谐波齿轮减速器工作原理
谐波减速器原理
![谐波减速器原理](https://img.taocdn.com/s3/m/a405a29c29ea81c758f5f61fb7360b4c2e3f2a9b.png)
谐波减速器原理谐波减速器是一种新型的减速传动装置,它具有结构紧凑、传动比大、精度高、扭矩密度大等特点,因此在工业自动化领域得到了广泛的应用。
谐波减速器的原理是利用谐波振动的特性来实现减速传动,下面我们来详细介绍一下谐波减速器的原理。
谐波减速器由柔性轮、刚性轮和梅花轮组成。
柔性轮和刚性轮之间通过梅花轮连接,柔性轮和刚性轮之间的齿轮传动实现了减速作用。
柔性轮和刚性轮的齿数之比就是谐波减速器的传动比。
谐波减速器的原理是通过柔性轮和刚性轮之间的相对运动来实现减速传动。
当柔性轮和刚性轮之间存在相对运动时,由于柔性轮的弹性变形特性,会产生谐波振动。
谐波振动是一种特殊的振动形式,它具有频率高、振幅小的特点。
利用谐波振动的特性,谐波减速器可以实现高精度的减速传动。
谐波减速器的原理是利用柔性轮和刚性轮之间的相对运动产生的谐波振动来实现减速传动。
在实际应用中,通过控制柔性轮和刚性轮之间的相对运动,可以实现不同的传动比。
这使得谐波减速器具有了很大的灵活性,可以满足不同应用场合的需求。
谐波减速器的原理是利用谐波振动来实现减速传动,因此在设计和制造过程中需要考虑谐波振动的特性。
首先,需要对柔性轮和刚性轮的材料和结构进行合理设计,以确保在工作过程中能够产生稳定的谐波振动。
其次,需要对谐波减速器的传动比进行精确计算和控制,以满足实际应用的需求。
总的来说,谐波减速器是一种利用谐波振动来实现减速传动的新型传动装置,它具有结构紧凑、传动比大、精度高、扭矩密度大等特点。
谐波减速器的原理是利用柔性轮和刚性轮之间的相对运动产生的谐波振动来实现减速传动,通过合理设计和精确控制,可以满足不同应用场合的需求。
谐波减速器在工业自动化领域有着广泛的应用前景,将为工业生产带来更高效、更稳定的传动解决方案。
谐波传动减速器原理
![谐波传动减速器原理](https://img.taocdn.com/s3/m/a943c35e5e0e7cd184254b35eefdc8d376ee14ca.png)
谐波传动减速器原理
谐波传动减速器是一种基于谐波振动原理工作的精密减速装置。
它主要由柔性齿条、柔性齿轮、星轮、轴套和外壳等组成。
在谐波传动减速器中,谐波振动由外部驱动器引起。
驱动器通过柔性齿轮施加周期性外力,使之产生弯曲变形。
柔性齿条与柔性齿轮的齿数不同,由于弹性形变的特性,齿条和齿轮之间会发生相对位移。
当外力周期性施加于柔性齿轮上时,柔性齿条的齿数和位置会发生变化。
这种变化会导致星轮的旋转,同时将输出转矩传递给输出轴。
输出轴通过轴套连接到外壳上,从而实现减速效果。
谐波传动减速器的减速比取决于外驱动传动器与输出轴之间的齿数比。
通常情况下,谐波传动减速器可以实现较高的减速比,同时还具有大的扭矩输出。
此外,谐波传动减速器具有结构紧凑、响应快速和传动效率高等优点,广泛应用于机械领域。
总结起来,谐波传动减速器利用谐波振动原理实现减速效果,通过驱动器的作用使得柔性齿条和齿轮产生相对位移,从而实现输出轴的旋转和扭矩输出。
谐波减速器工作原理
![谐波减速器工作原理](https://img.taocdn.com/s3/m/f2a62bfe77a20029bd64783e0912a21614797f02.png)
谐波减速器工作原理
谐波减速器是一种用于使减速机的减速率更加精确的设备,它可以以高精度控制轴承的减速转矩,以及用于恒定功率的调节和控制。
谐波减速器具有优良的低速性能和低能耗,是液压机械和其他减速装置的理想附件。
谐波减速器的工作原理是利用电磁力在转子和定子之间产生涡流和涡流阻力,形成一个动静涡流耦合电机,从而实现减速作用。
电磁力涡流产生的涡流阻力会影响转子的转速,从而达到减速的作用。
谐波减速器的优点是可以变速、可调,可实现低速、高精度的减速控制,并且有良好的稳定性,可以有效地抑制高次谐波,避免结构振动的产生。
此外,谐波减速器还具有良好的可靠性和可控性。
其结构简单,安装和定位精度低,维护成本低,使用寿命长,并且能够节能减排,减少能源消耗。
总之,谐波减速器是一种具有良好动力性能和精度高的减速装置,它可以提高减速机的减速精度,延长使用寿命,同时可以有效地抑制高次谐波,避免结构振动的产生。
谐波减速器工作原理
![谐波减速器工作原理](https://img.taocdn.com/s3/m/e4bee65111a6f524ccbff121dd36a32d7375c7cf.png)
谐波减速器工作原理
谐波减速器是一种常用的机械传动装置,它通过利用弹性变形的原理将输入速度和输出速度之间的比例关系进行转换。
谐波减速器的工作原理如下:
1. 谐波发生器:谐波减速器的输入轴与谐波发生器相连,谐波发生器通常是一个内齿圈和一个柔性齿条组成的装置。
当输入轴旋转时,谐波发生器会产生谐波振动。
2. 谐波传动:谐波振动会通过内齿圈传递到输出轴,内齿圈上的前导齿和柔性齿条之间的啮合关系会引起传动的变形和滑移。
这样,谐波传动将输入轴的旋转运动转换成了输出轴的运动。
3. 减速效果:由于在谐波传动过程中存在变形和滑移,所以输出轴的转速会比输入轴的转速慢。
根据前导齿和柔性齿条的结构设计,可以实现不同的减速比。
谐波减速器具有结构简单、传动效率高、减速比大、可靠性强等优点,广泛应用于工业生产和机械设备中。
它适用于需要准确控制速度和力矩的场合,如机床、准确度要求高的机械装置等。
谐波齿轮工作原理
![谐波齿轮工作原理](https://img.taocdn.com/s3/m/09f4634cf08583d049649b6648d7c1c709a10b71.png)
谐波齿轮工作原理
谐波齿轮是一种新型的传动装置,它是由一个固定在一个圆柱形箱体中的两个对称排列的齿条和一个与齿条啮合的渐开线齿轮组成的。
每个齿都是一组渐开线齿轮,由齿条与谐波齿轮组成的齿廓啮合传动。
谐波齿轮是一种新型传动装置,它具有结构紧凑、传动比大、噪音低、体积小和承载能力大等特点。
它的结构和工作原理都很简单,但是它的工作原理却非常复杂,要想了解它的工作原理,还必须先了解它的结构。
在负载较重或工作环境比较恶劣时,谐波齿轮能正常工作,而普通齿轮不能工作。
在一般情况下,一个齿条和一个渐开线齿轮都处于啮合状态。
当负载较大时,齿轮轴受到较大弯曲应力,渐开线齿轮中产生较大变形量。
—— 1 —1 —。
谐波减速器 原理
![谐波减速器 原理](https://img.taocdn.com/s3/m/a759205c49d7c1c708a1284ac850ad02de800729.png)
谐波减速器的基本原理1. 引言谐波减速器是一种精密的机械装置,广泛应用于工业机械领域。
它通过利用谐波振动的特性,将高速旋转输入轴的动力转换为低速输出轴的动力,并且能够提供高扭矩输出。
本文将详细解释与谐波减速器原理相关的基本原理。
2. 谐波振动谐波振动是指在一个物体受到周期性外力作用时,产生与外力频率相同但振幅较小的振动。
这种振动可以通过在系统中引入弹性元件和质量不平衡来实现。
3. 谐波传递装置谐波传递装置是谐波减速器中最关键的部分,它由柔性齿轮、刚性齿轮和变形器构成。
3.1 柔性齿轮柔性齿轮是一种由弹性材料制成的齿轮,具有很好的柔度和耐磨性。
它通常由多个弹片组成,每个弹片都有两个端面和一组齿。
这些弹片通过螺栓连接在一起,形成一个整体。
3.2 刚性齿轮刚性齿轮是一种由硬材料制成的齿轮,具有较高的强度和耐磨性。
它通常由一个或多个齿轮组成,每个齿轮都有一组齿。
3.3 变形器变形器是谐波传递装置中的关键部分,它由柔性齿轮和刚性齿轮交替排列而成。
变形器的作用是将输入轴上的旋转运动转换为输出轴上的旋转运动,并且实现速度减小和扭矩增大。
4. 工作原理谐波减速器的工作原理可以分为三个步骤:振动、传递和输出。
4.1 振动当输入轴上施加一个周期性外力时,柔性齿轮会发生弯曲变形,并产生谐波振动。
这种振动会通过变形器传递到刚性齿轮上。
4.2 传递在传递过程中,柔性齿轮和刚性齿轮之间会发生摩擦,由于柔性齿轮的弹性,它们之间会产生一定的变形。
这种变形会导致刚性齿轮上的齿与柔性齿轮上的齿之间产生接触,从而实现能量传递。
4.3 输出在输出端,通过连续的振动和传递过程,输入轴上的旋转运动被转换为输出轴上的旋转运动,并且实现了速度减小和扭矩增大。
5. 特点与优势谐波减速器具有以下特点和优势:5.1 高精度谐波减速器采用了柔性齿轮和刚性齿轮交替排列的结构,能够提供高精度的传动效果。
其精度通常可以达到0.1弧分。
5.2 大扭矩由于谐波减速器采用了谐波振动的原理,可以实现高扭矩输出。
谐波减速器运行原理
![谐波减速器运行原理](https://img.taocdn.com/s3/m/17b6055826d3240c844769eae009581b6ad9bd50.png)
谐波减速器运行原理谐波减速器是一种精密的传动装置,广泛应用于各种工业领域。
其运行原理主要涉及柔性齿轮、刚轮和柔轮、柔轮的弹性变形、能量传递及回归原位等方面。
本文将逐一介绍这些原理。
1.柔性齿轮柔性齿轮是谐波减速器的重要组成部分,通常由弹性材料制成,具有一定的弯曲变形能力。
在减速器运行过程中,柔性齿轮的轮齿与刚轮的轮齿产生啮合和脱离,通过轮齿间的摩擦力实现动力传递。
2.刚轮和柔轮刚轮和柔轮是谐波减速器的另外两个关键元件。
刚轮通常由硬质材料制成,其轮齿形状与柔性齿轮的轮齿相匹配。
柔轮则由弹性材料制成,并在受到扭矩作用时产生弹性变形。
在减速器运行过程中,刚轮固定不动,柔轮则通过柔性齿轮的带动产生旋转运动。
由于柔轮的弹性变形,使得柔轮在受到扭矩作用时会发生形变,进而导致与刚轮的轮齿间产生啮合和脱离。
3.柔轮的弹性变形柔轮的弹性变形是谐波减速器的重要特性之一。
当柔轮受到扭矩作用时,其轮缘会发生弯曲变形,使得柔轮的半径逐渐减小。
这种变形导致柔轮的轮齿与刚轮的轮齿间的啮合点逐渐向轮齿根部移动。
柔轮的弹性变形不仅影响齿轮间的啮合位置,还对能量传递效率有重要影响。
在理想情况下,当柔轮完全发生弹性变形时,其与刚轮的啮合点将位于齿轮的中心线上,此时能量传递效率最高。
4.能量传递在谐波减速器中,能量传递主要通过柔性齿轮、刚轮和柔轮之间的相互作用实现。
当柔性齿轮带动柔轮转动时,柔性齿轮的轮齿与刚轮的轮齿产生啮合和脱离,通过摩擦力将动力传递给柔轮。
能量传递效率是谐波减速器的重要性能指标之一。
影响传递效率的因素主要有:齿轮材料的摩擦系数、齿轮的精度和表面粗糙度、润滑条件以及运行过程中的温度和载荷等。
5.回归原位在谐波减速器运行过程中,柔轮发生弹性变形后,其半径逐渐减小,使得齿轮间的啮合点逐渐向轮齿根部移动。
当扭矩反向时,柔轮发生反向弹性变形,其半径逐渐增大,齿轮间的啮合点逐渐向轮齿顶部移动。
这个过程就是回归原位的过程。
回归原位是谐波减速器的重要特性之一,它使得减速器能够适应正反两个方向的扭矩加载。
谐波齿轮原理
![谐波齿轮原理](https://img.taocdn.com/s3/m/1b6ed8c5cd22bcd126fff705cc17552707225e9f.png)
谐波齿轮原理
谐波齿轮是一种以谐波振动原理工作的齿轮机构。
它由内齿轮、柔性齿片和外齿轮组成。
内齿轮是一个大齿轮,具有一定的硬度和刚度,通常由金属材料制成。
外齿轮是一个小齿轮,由有弹性的材料制成。
柔性齿片则连接内齿轮和外齿轮,通常由橡胶或弹簧钢制成。
谐波齿轮的内齿轮和外齿轮的齿数之比通常为1:3。
当谐波齿轮工作时,内齿轮和外齿轮通过柔性齿片相互作用。
由于内齿轮和外齿轮的齿数之比,当内齿轮作旋转运动时,外齿轮的转动速度将是内齿轮的三倍。
柔性齿片的作用是将内齿轮的旋转运动转换为外齿轮的谐波振动。
柔性齿片会在内齿轮的驱动下弯曲,当内齿轮离开柔性齿片时,柔性齿片会回弹,将外齿轮带动向相反方向运动。
谐波齿轮具有紧凑结构、精密传动和高传动比的特点,在精密仪器、机械传动装置等领域得到广泛应用。
谐波减速器原理
![谐波减速器原理](https://img.taocdn.com/s3/m/516ca3dc9f3143323968011ca300a6c30c22f119.png)
谐波减速器原理
## 一、谐波减速器概述
1. 谐波减速器是一种新型的电机传动装置,它结合了电动机和传统的谐波齿轮减速器的性能,将传统的减速器的齿轮组与电机的定子结合,利用电机转子的本质特性,通过制作精密的多槽定子来实现传动系统的精密减速。
2. 谐波减速器的结构和传统的齿轮减速器的结构类似,它也由定子、转子等部件组成,只不过转子多了一组谐波齿轮组。
同时,由于它把电机之间的磁链接耦合,并利用定子(螺旋耦合)达到模块间传输力,它还比传统的齿轮减速器有更强的耐热性能,可以把电机的温度低于一般的减速器。
## 二、谐波减速器的工作原理
1. 当谐波减速器的电机转子旋转时,谐波齿轮组与定子槽发生磁链接耦合,这样,就形成了螺旋接触,转子上的接触区域有多个,而定子上的接触区域只有一个,所以,谐波减速器可以提供高负荷,高力矩传输。
2. 谐波减速器电机转子在螺旋传递过程中,受磁链接耦合的作用,传动系统的动载荷受到有效的减轻,从而可以达到很高的精确度和平稳性,较大的负荷耐受能力,因此是电机精密减速的理想装置。
## 三、谐波减速器的优点
1. 谐波减速器体积小巧,性能优良,它采用螺旋接触技术,可以有效减少传动系统的动载荷,从而达到传动系统的精确度和平稳性。
2. 谐波减速器的耐热性能比传统的减速器更强,在极端温度下依然能保持很高的性能。
同时,谐波减速器在传输力矩时,减少了摩擦损失,可大大提高定子等部件的使用寿命,满足上位机对数据采集,高精度控制等要求。
3. 谐波减速器可高效传输大扭矩,噪声低,并且效率非常高,可将电机的温度低于一般的减速器,维护成本更低,综上所述,谐波减速器是一种新型的优质的传动装置,也是电机减速领域最令人兴奋的产品。
谐波减速器工作原理
![谐波减速器工作原理](https://img.taocdn.com/s3/m/9f4c646a2e60ddccda38376baf1ffc4ffe47e237.png)
谐波减速器工作原理
谐波减速器是一种高精度、高效率的减速装置,它通过谐波传动原理实现减速
效果。
谐波减速器由驱动轴、谐波发生器、柔性轮和输出轴组成,其工作原理如下:
1. 驱动轴传动。
当驱动轴开始旋转时,谐波发生器固定在驱动轴上的内齿圈开始旋转。
内齿圈
上的凸轮与柔性轮上的凹槽相互嵌合,使柔性轮开始旋转。
柔性轮上的凹槽数量通常比内齿圈上的凸轮数量多,这就导致柔性轮的旋转速度比内齿圈慢,从而实现了减速效果。
2. 谐波传动原理。
谐波减速器采用谐波传动原理,即通过柔性轮和内齿圈之间的嵌合来实现传动。
柔性轮的凹槽数量比内齿圈的凸轮数量多,这就导致柔性轮的旋转速度比内齿圈慢,从而实现减速效果。
同时,谐波传动还具有高精度、高刚性和低噪音的特点。
3. 输出轴传动。
当柔性轮开始旋转时,输出轴上的外齿圈也开始旋转。
外齿圈上的齿与输出轴
上的内齿圈相互嵌合,使输出轴开始旋转。
通过这样的传动方式,谐波减速器将驱动轴的高速旋转转换为输出轴的低速高扭矩旋转,实现了减速效果。
4. 工作原理总结。
综上所述,谐波减速器的工作原理是通过谐波传动原理,利用柔性轮和内齿圈
之间的嵌合来实现减速效果。
当驱动轴开始旋转时,内齿圈和柔性轮相互嵌合,使柔性轮开始旋转,进而带动输出轴实现减速传动。
谐波减速器以其高精度、高效率、低噪音等优点,被广泛应用于机械设备、工业自动化、机器人等领域。
其工作原理的深入理解,有助于我们更好地应用和维护谐波减速器,提高设备的使用效率和稳定性。
谐波减速器测试技术
![谐波减速器测试技术](https://img.taocdn.com/s3/m/405d940f842458fb770bf78a6529647d2728349b.png)
VS
3. 对测试过程中记录的数据进行分析和处理,得出谐波减速器在不同工况下的动态性能指标。
测试结果分析:通过对测试数据的分析,可以得出该型号谐波减速器在不同动态条件下的性能表现,如响应速度、稳定性、可靠性等是否满足设计要求,从而对其性能进行评估。
03
谐波减速器主要部件
02
01
谐波减速器是工业机器人中常用的减速器之一,用于实现机器人的精准运动。
工业机器人
谐波减速器可用于数控机床的进给系统和主轴系统中,提高机床的传动精度和平稳性。
数控机床
谐波减速器在航空航天领域也有广泛的应用,如用于飞机的起飞和降落系统、导弹的发射和制导系统等。
航空航天
01
02
动态测试方法
动态效率测试
测量谐波减速器在动态状态下的传动效率,即在输入一定功率时,输出功率与输入功率的比值。
动态误差测试
测量谐波减速器在动态状态下的传动误差,即输出转速与输入转速之间的差异。
动态扭矩测试
测量谐波减速器在动态状态下的扭矩性能,包括动态扭矩、峰值扭矩和谷值扭矩等。
综合评价谐波减速器的静态和动态性能,包括扭矩、效率、误差等多个方面。
案例一:某型号谐波减速器静态测试
案例二:某型号谐波减速器动态测试
通过对某型号谐波减速器进行动态测试,评估其在动态条件下的性能表现。
测试目的
振动测试仪、转速计、扭矩计等。
测试设备
测试步骤
案例二:某型号谐波减速器动态测试
2. 在不同转速和负载条件下,对谐波减速器进行启停、变速和制动等操作,记录各个参数的变化情况。
建立测试数据库
组织技术交流会议与培训活动,促进不同单位之间的技术合作与经验分享。
谐波齿轮减速器的构成及原理
![谐波齿轮减速器的构成及原理](https://img.taocdn.com/s3/m/f9af2b8a240c844768eaee26.png)
减速器是机器人等机械的重要部件,近年来,随着技术的不断发展,减速器也不断更迭,发生了不小的变化,例如近年出产的谐波减速器,相比以往的减速器产品就有更多的优势。
下面就给大家介绍一下该产品的构成及原理。
上世纪60年代,行星齿轮传动发展出一种新的传动形式-请波传动,随后第一台谐波减速器诞生制,主要由波发生器、钢轮和柔性轮三部分组成,其中柔性轮的齿数略小于钢轮的齿数,如上图。
谐波减速器基本的工作原理为:当波形发生器安装于柔性轮的内圆时,弹性部件的柔轮由于力的作用发生变形而成椭圆形状,在椭圆长轴处,两轮完全进入啮合状态,在短轴处完全脱开,短轴或长轴之间处于啮合和脱开的中间状态。
当波发生器开时转动时,柔轮在力的不间断作用下的发生变形,两轮轮齿在进入啮合到脱开的期间,两轮的工作状态在连续发生变化,导致错齿运动产生,实现运动传递。
该型减速器主要应用于传功精度高、安装空间小、轻载等场合,如轻型机器人或大型机器人的小臂、手部或手腕等部分。
以上就是由四川志方科技有限公司为大家提供的关于谐波齿轮减速器的基本信息,如果还想了解更多,或者你身边的减速器需要进行检测,急需一台专业的试验台,建议咨询专业的厂家。
四川志方科技有限公司是一家致力于非标自动化测试系统研发、生产、销售、售后服务为一体的高科技企业。
产品适用于航天、航空、军工、机械制造、科研、教学等多个领域。
谐波减速器的简介~
![谐波减速器的简介~](https://img.taocdn.com/s3/m/6b3c9542ad51f01dc281f1f3.png)
波发生器主动, 单级减速,结构 简单,传动比范 围较大,效率较 高,可用于中小 型减速器, i=75~500。
iHRG
ZG ZG ZR
3.波发生器固定—刚轮输出:
柔轮主动,单 级微小减速, 传动比准确, 适用于高精度 微调传动装置, i=1.002~1.015。
iRHG
ZG ZR
四、谐波发生器传动比的计算
Zb Zg Zg
实际上,运动是从波发生器输入的,减速器的传
动比为:
iHg
1 igH
Zg Zb Zg
五、柔轮、波发生器 常见的结构型式
1.柔轮常见的结构型式:
柔轮的结构型式与谐波传动的结构类型选择 有关。柔轮和输出轴的联结方式直接影响谐 波传动的稳定性和工作性能。
筒形底端联接式:
结构简单,联接方便,制造容易,刚性较大,应用较 普遍。
ZG ZR
2.变形:
波发生器的长度比未变形的柔轮内圆直径 大:当波发生器装入柔轮内圆时,迫使柔 轮产生弹性变形而呈椭圆状,使其长轴处 柔轮轮齿插入刚轮的轮齿槽内,成为完全 啮合状态;而其短轴处两轮轮齿完全不接 触,处于脱开状态。由啮合到脱开的过程
之间则处于啮出或啮入状态。
当波发生器连续转动时:迫使柔轮不断产 生变形,使两轮轮齿在进行啮入、啮合、 啮出、脱开的过程中不断改变各自的工作 状态,产生了所谓的错齿运动,从而实现 了主动波发生器与柔轮的运动传递。
结构型式主要有滚轮式、凸轮式、偏
心盘式和行星式。
波发生器种类图例(1):
凸轮式
滚轮式
偏心盘式
2.波发生器常见的结构型(2):
双滚轮式:
结构简单,制造方便,形成波峰容易,但 柔轮变形未被积极控制,承载能力较低,
谐波减速器原理及特点
![谐波减速器原理及特点](https://img.taocdn.com/s3/m/48ba023d6294dd88d1d26b3a.png)
谐波减速器原理及特点1. 概述1.1 产生及发展谐波齿轮传动技术是20世纪50年代末随着航天技术发展而发明的一种具有重大突破的新型传动技术,由美国人C. W.马瑟砖1955年提出专利,1960年在纽约展出实物。
谐波传动的发展是由军事和尖端技术开始的,以后逐渐扩展到民用和一般机械上。
这种传动较一般的齿轮传动具有运动精度高,回差小,传动比大,重量轻,体积小,承载能力大,并能在密闭空间和辐射介质的工况下正常工作等优点,因此美,俄,日等技术先进国家,对这方面地研制工作一直都很重视。
如美国就有国家航空管理局路易斯研究中心,空间技术试验室,USM公司,贝尔航空空间公司,麻省理工学院,通用电器公司等几十个大型公司和研究中心都从事过这方面的研究工作。
前苏联从60年代初期开始,也大力开展这方面的研制工作,如苏联机械研究所,莫斯科褒曼工业大学,列宁格勒光学精密机械研究所,全苏联减速器研究所等都大力开展谐波传动的研究工作。
他们对该领域进行了较系统,较深入的基础理论和试验研究,在谐波传动的类型,结构,应用等方面有较大的发展。
日本长谷齿轮株式会社等有关企业在谐波齿轮传动的研制和标准化、系列化等方面作出了很大贡献。
西欧一些国家除了在卫星,机器人,数控机床等领域采用谐波齿轮传动外,对谐波传动的基础理论也开始进行系统的研究。
谐波齿轮传动技术1970年引入日本,随之诞生了日本第一家整体运动控制的领军企业-日本Harmonic Drive SystemsInc.(简称HDSI)。
目前日本HDSI公司是国际领先的谐波减速器公司,其生产的Harmonic Drive谐波减速器,具有轻量、小型、传动效率高、减速范围广、精度高等特点,被广泛应用于各种传动系统中。
谐波传动技术于1961年由上海纺织科学研究院的孙伟工程师介绍入我国。
此后,我国也积极引进并研究发展该项技术,1983年成立了谐波传动研究室,1984年“谐波减速器标准系列产品”在北京通过鉴定,1993年制定了GB/T14118-1993谐波传动减速器标准,并在理论研究、试制和应用方面取得较大成绩,成为掌握该项技术的国家之一。
谐波齿轮减速器工作原理
![谐波齿轮减速器工作原理](https://img.taocdn.com/s3/m/28ecabadb9f67c1cfad6195f312b3169a451ea1c.png)
谐波齿轮减速器工作原理谐波齿轮减速器(Harmonic Drive)是一种新型的高精度、大扭矩、超薄型的减速器,广泛应用于机械设备中。
它采用了与传统的齿轮箱不同的原理和结构,使其在体积小、重量轻的同时具有优异的动态性能和稳定性。
本文将介绍谐波齿轮减速器的工作原理。
1. 基本结构谐波齿轮减速器由三个主要部分组成:柔轮(flexspline)、刚性齿轮(circular spline)和波发生器(wave generator)。
其中,柔轮是由特殊弹性材料制成,具有多个柔性齿,刚性齿轮是由刚性材料制成,而波发生器则是用来产生弯曲应力并形成谐波运动的。
2. 工作原理谐波齿轮减速器的工作原理是通过波发生器的弯曲来实现传动。
波发生器由两个轴向齿块组成,分别位于柔轮和刚性齿轮之间。
当波发生器转动时,由于其内部的齿块数量不同,会产生不同的行星运动。
其中一个齿块会贴合刚性齿轮的内齿,而另一个齿块则会与柔轮的外齿相连接,并通过柔轮将运动传递给输出轴。
3. 谐波珠与弹性材料的作用在谐波齿轮减速器中,谐波珠起到了关键的作用。
谐波珠位于波发生器的齿块与柔轮之间,可在齿块与柔轮之间产生高应力的碰撞区域。
当波发生器旋转时,柔轮的齿会受到谐波珠的压力而产生变形,从而使得柔轮产生弯曲。
在弯曲的过程中,谐波珠通过碰撞产生的能量转化为机械能,通过齿轮传递给输出轴。
4. 优点谐波齿轮减速器相对于传统的齿轮箱具有以下几个优点:4.1 高精度:谐波齿轮减速器的传动误差非常小,可以实现非常精确的位置控制。
4.2 大扭矩:谐波齿轮减速器采用双齿轮传动,能够提供大扭矩输出。
4.3 超薄型:谐波齿轮减速器结构紧凑,可节省安装空间。
4.4 高效率:谐波齿轮减速器由于采用了滚动摩擦传动,具有较高的传动效率。
5. 应用领域。
谐波减速器的原理简
![谐波减速器的原理简](https://img.taocdn.com/s3/m/1a835451571252d380eb6294dd88d0d233d43cf7.png)
谐波减速器的原理简谐波减速器是一种高精度、高刚度的传动装置,其原理主要包括谐波发生原理和传动原理两个方面。
1. 谐波发生原理:谐波减速器利用了弹性极的原理来实现传动,其中主要有以下几个部分:(1) 刚性传动:谐波减速器由刚性内齿轮和柔性外齿轮组成。
刚性内齿轮为实心的圆柱体,外齿圈上的齿与内齿轮的齿咬合,但它们之间并不存在伸缩变形,因此可以认为是刚性的传动。
(2) 弹性机构:谐波减速器中的弹性机构由弹性极与活动夹紧套组成,弹性极连接外齿圈和内齿轮,并起到传递力矩和变形的作用。
活动夹紧套用于实现弹性极的移动和固定。
(3) 变形原理:谐波减速器的变形原理主要是利用外齿圈和内齿轮之间的变形来实现传动。
当外齿圈受到力矩作用时,弹性极会产生相应的变形,在变形的过程中,外齿圈上的齿会与内齿轮的齿进行相对运动,从而实现传动。
2. 传动原理:谐波减速器的传动原理主要包括谐波波发生、传导和复原三个阶段:(1) 谐波波发生:在谐波减速器工作时,输入轴通过连接装置与外齿圈连接,并向其提供输入力矩。
外齿圈受到输入力矩的作用后,会在外齿圈上形成一系列谐波波,这些谐波波会被传递到内齿轮上。
(2) 谐波波传导:当谐波波从外齿圈传递到内齿轮时,它们会引起内齿轮上的齿与外齿圈上的齿进行咬合。
由于外齿圈和内齿轮之间存在相对位移,所以谐波波在变形过程中会使内齿轮上的齿产生相应的变形,从而实现传动。
(3) 谐波波复原:当内齿轮传动过程中发生变形后,经过内齿轮上齿与外齿圈上齿的咬合后,内齿轮上的齿会通过发生反向位移的方式进行复原,即与外齿圈上的齿分离。
这样,谐波波的传递过程就完成了。
总结起来,谐波减速器通过利用弹性极的变形和咬合齿轮之间的相对位移实现传动,其主要原理为刚性传动、弹性机构和变形原理。
其工作过程可分为谐波波发生、传导和复原三个阶段,通过谐波波的传递来实现力矩的转换和传递。
谐波减速器具有高精度、高刚度的特点,在机械制造、精密加工等领域都有广泛的应用前景。
简述谐波齿轮减速装置的工作原理
![简述谐波齿轮减速装置的工作原理](https://img.taocdn.com/s3/m/e9010e75f6ec4afe04a1b0717fd5360cba1a8dae.png)
简述谐波齿轮减速装置的工作原理谐波齿轮减速器是一种利用柔性齿轮传递动力和减速的装置,其工作原理基于谐波振动的特性。
谐波振动是一种周期性的振动,其频率是整数倍于基频的振动。
谐波齿轮减速器通过利用谐波振动的特性,在输入轴和输出轴之间传递动力和减速。
谐波齿轮减速器的主要组成部分包括输入轴、输出轴、柔性齿轮和波发生器。
输入轴通过柔性齿轮与波发生器相连,输出轴则通过另一组柔性齿轮与波发生器相连。
波发生器是谐波齿轮减速器的核心部件,它通过椭圆轮的变形和转动来产生谐波振动。
在工作过程中,输入轴的旋转运动会使波发生器发生椭圆轮的变形,从而产生谐波振动。
这种振动会传递给与之相连的柔性齿轮,使其发生弹性变形。
当输入轴继续旋转时,柔性齿轮上的齿会与固定齿轮相互啮合,从而传递动力和减速。
最后,输出轴通过柔性齿轮的变形和转动来输出动力和减速后的运动。
谐波齿轮减速器的工作原理可以简单归纳为以下几个步骤:1. 输入轴旋转:当输入轴开始旋转时,波发生器也会随之发生旋转。
2. 波发生器变形:波发生器内部的椭圆轮会因为输入轴的旋转而发生变形,产生谐波振动。
3. 柔性齿轮变形:谐波振动会传递给与波发生器相连的柔性齿轮,使其发生弹性变形。
4. 齿轮啮合:当柔性齿轮变形后,其上的齿会与固定齿轮相互啮合,传递动力和减速。
5. 输出轴运动:最后,柔性齿轮的变形和转动会使输出轴输出动力和减速后的运动。
谐波齿轮减速器的工作原理基于谐波振动的特性,利用柔性齿轮的变形和转动来传递动力和减速。
相比传统的齿轮传动装置,谐波齿轮减速器具有结构简单、体积小、传动精度高等优点。
因此,在一些需要精确控制和大扭矩输出的领域,如机床、机器人、航天器等,谐波齿轮减速器得到了广泛的应用。
谐波减速器原理
![谐波减速器原理](https://img.taocdn.com/s3/m/2d63077f0a4c2e3f5727a5e9856a561252d32197.png)
谐波减速器原理
谐波减速器是一种高精度、高传动比的速度减小装置。
其工作原理基于波波轮原理,通过引入谐波振动,将输入轴的旋转运动转变成输出轴的减速运动。
谐波减速器主要由输入轴、输出轴、波波轮和柔性齿轮组成。
输入轴将动力输入到波波轮上,导致波波轮振动。
波波轮由内部齿片和柔性齿轮组成,当波波轮振动时,内部齿片与柔性齿轮之间会产生挤压和滑动摩擦,从而实现输入轴与输出轴之间的减速传动。
具体来说,波波轮上的内部齿片称为波形发生器,它的齿数要比输入轴和输出轴上的齿数少。
当输入轴带动波波轮旋转时,波形发生器上的齿与柔性齿轮上的齿会发生摩擦,将输入轴的运动转换为波波轮的振动。
随着输入轴的旋转,波波轮会以一定的相位差和特定的形状振动,从而引起柔性齿轮上的弹性变形。
柔性齿轮上的齿数较多,与波形发生器的少齿相匹配,这就使得输出轴的旋转速度比输入轴减小。
谐波减速器通过控制波波轮和柔性齿轮的几何形状、齿数和应力分布等参数,实现不同的传动比。
同时,波波轮和柔性齿轮之间的挤压和滑动摩擦还能消除间隙和提高系统的刚度和精度。
总而言之,谐波减速器利用波波轮的振动和柔性齿轮的变形实现速度减小的传动,它具有结构简单、传动效率高和传动精度高等优点,在机械制造和自动化控制领域广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谐波齿轮减速器工作原理
谐波齿轮减速器是一种常用的机械传动装置,它采用了独特的工作原理,通过谐波效应实现高效的速度减小。
本文将详细介绍谐波齿轮减速器的工作原理。
一、谐波齿轮减速器的构造
谐波齿轮减速器主要由柔性轮、输出轴和输入轴组成。
其中,柔性轮由内外两层齿轮组成,它们之间有一定间隙,这样就形成了柔性。
输入轴由传动梁和活动插销组成,通过运动学性质与柔性轮相连。
输出轴连接到柔性轮的外滚筒上,负责输出转动力。
二、谐波齿轮减速器的工作原理
1. 输入转动
当输入轴开始转动时,传动梁和活动插销会向外移动,使得活动插销与内层柔性轮的齿轮嵌合,传递输入轴的转动力。
2. 谐波效应
内层柔性轮的齿轮齿数通常比外层柔性轮的齿轮齿数多一个。
当输入轴以一定的角度转动时,活动插销会导致内层柔性轮发生弹
性形变,这种变形以谐波的形式传递到外层柔性轮上。
谐波效应的出现使得速度比例不再是线性的,而是非线性的。
这样就实现了速度的减小。
3. 输出转动
谐波效应使得柔性轮的外层齿轮与输出轴的齿轮嵌合,将内层柔性轮的转动力传递到输出轴上,实现输出转动。
三、谐波齿轮减速器的特点
1. 大传动比
谐波齿轮减速器的传动比可以达到几十甚至上百,
这使得它在需要大速度减小的应用领域中起到了关键作用。
2. 紧凑结构
谐波齿轮减速器的特殊结构使得它非常紧凑,
相对于其他传动装置,节省了很大的空间。
这使得它在机械设计中具有一定的优势。
3. 平稳传动
谐波齿轮减速器传动过程中没有间隙和冲击,
实现了平稳的传动,减小了机械部件的磨损和噪音。
4. 高精度
谐波齿轮减速器具有较高的精度,
在需要精确定位和控制的应用中非常重要。
综上所述,谐波齿轮减速器采用谐波效应实现高效的速度减小,具有传动比大、结构紧凑、传动平稳和高精度等特点。
它在机械工
程领域中有着广泛的应用,尤其适用于对精度要求较高的机械传动
系统。
通过深入了解和研究谐波齿轮减速器的工作原理,可以更好
地应用于实际生产和设计中,为机械传动领域的发展做出贡献。