Eclipse中煤层气模拟实例

合集下载

利用CMG-GEM组分模拟器模拟煤层气开采教程(一)-final

利用CMG-GEM组分模拟器模拟煤层气开采教程(一)-final

CMG—GEM组分模拟器模拟煤层气开采教程加拿大计算机模拟软件集团(CMG)教程1:采用BUILDER CBM快速向导建立煤层气开采模型下面的教程将讲解如何利用Builder和GEM来一步步建立煤层气数值模拟模型:一、打开BUILDER1.在Launcher上的相应图标上双击鼠标打开BUILDER。

2.选择:GEM模拟器,SI国际单位,DUALPOR,和Gilman and Kazemi的形状因子,开始日期为2005年1月1日。

3.单击两次OK。

二、输入输出控制部分(Input / Output Control Section)1.在树状图中单击I/O Control图1:树状视图中I/O Control标签2.双击Titles And Case ID,然后输入“CBM1”,单击OK。

3.双击Run Time Dimensioning。

4.在“Undocumented Dimensioned Variables”下输入如下数据来重新标出矩阵存储值,并单击OK。

MDLU = 1000000, MDALP = 600000, MDDD = 600005.双击Restart,并选中“Enable restart writing”。

6.单击图标,并在日期“Date 2005-01-01”处单击OK。

7.按OK返回。

注:在树状视图中,除I/O Control和Numerical外,其他部分都有一个红色X或者黄色警报符号。

表示这些部分的基础数据还没有输入。

三、油藏描述部分(Reservoir Description Section)1.单击File菜单(屏幕左上方),然后单击Open Map File…。

2.选择Map Type – Atlas Boundary format (.bna)和X,Y轴的单位为m。

3.单击Browse按钮,选择顶部构造地图文件“Cbm_top.bna”。

4.单击OK,屏幕中将显示顶部构造图。

第十章 煤层气地质研究中的数值模拟技术

第十章  煤层气地质研究中的数值模拟技术

第十章煤层气数值模拟技术与方法数值模拟技术在煤层气勘探开发中应用较广。

煤层气储层模拟是进行产量预测、地面开发前景评价和生产工艺优选等的重要手段;煤层气地史演化数值模拟则主要用于定量研究煤层气的生成、逸散和赋存的演化规律。

此外,数值模拟技术还被广泛应用于煤层气储层研究和储量计算等方面。

第一节煤层气储层模拟技术一、概述煤层气储层模拟(reservoir simulation)又称为产能模拟(coalbed methane production modeling),无论是在常规油气还是在煤层气勘探开发过程中,通常都需要进行这项工作。

储层模拟是将地质、岩石物性和生产作业集于一体的过程,在此过程中使用的工具就是储层模拟软件。

储层模拟实际上是在生产井的部分参数已知的条件下,解算描述储层中流体流动的一系列方程,通过历史匹配,对井的产油量、产气量和产水量等参数及其变化规律进行预测的工作。

预测的时间可在几个月、几年甚至几十年。

产能参数是选择开采工艺、开采设备的重要依据,同时,还可根据产能参数,对生产井的经济价值进行评价。

随着煤层气开发试验的相继实施和实践经验的积累,科技工作者对煤层气的生气、储集和运移规律有了更深入的理解,同时,也意识到需要有一个有效的工具,来进行生产井气、水产量数据的历史拟合,以便获取更为客观的煤层气储层参数,预测煤层气井的长期生产动态和产量。

同时为井网布置、完井方案、生产工作制度、气藏动态管理,煤层气开发方案等提供科学依据。

正是在这种背景下,煤储层数值模拟研究工作,在继续围绕煤矿瓦斯研究的同时,借鉴油气藏数值模拟理论、技术和方法,扩展到地面煤层气资源勘探、开发领域。

1981年,由美国天然气研究所(GRI)主持,美国钢铁公司(US Steel)和宾州大学等承担了煤层气产量模拟器与数学模型开发项目(Development of Coal Gas Production Simulators and Mathematical Models for Well Test Strategies)。

第九章 煤层气数值模拟

第九章 煤层气数值模拟
式中: Cp=孔隙压缩系数 Cm=基质收缩压缩系数。
dCi
§9.5 数模技术的发展
煤层气开发 理论与技术
地质模型的发展
煤层气储层的渗透率模型也由单一渗透率模型(裂 隙渗透率)发展成双重渗透率(裂隙渗透率和基质 孔隙渗透率);渗透率模型还加进了应力敏感模型。
2015/11/1
中国石油大学(北京)煤层气研究中心
2015/11/1
12
§9.3 数学模型
煤层气开发 理论与技术
数学模型
扩散模型-Fick定律
式中:qm 为煤基质中甲烷扩散量,m3/day; D 为扩散系数,m2/day; 为形状因子,m-2; g 为甲烷的密度,t/m3;
Vm 为煤基质块的体积,m3; C(t) 为煤基质中甲烷的平均浓度,m3/t; C(P) 为基质-割理边界上的平衡甲烷浓度,m3/t。q
VL = 188 – 471 ft3/t G6-12, 样1305T PL = 258 psia
VL = 228 ft3/t
G6-12, 样1309T VL = 390 ft3/t
PL = 1601 psia
PL = 576 psia PL = 258 psia
目标井的估算值
VL = 257 ft3/t
《煤层气开发与开采》
煤层气开发 理论与技术
第一章 绪论
第二章 煤层气储层特征
第三章 煤层气钻井技术与工程设计 第四章 煤层气工程管理与质量控制 第五章 煤层气测井 第六章 煤层气钻井
第七章 煤层气增产技术
第八章 煤层气排采控制理论与工艺技术 第九章 煤层气数值模拟
煤层气开发 理论与技术
第九章 煤层气数值模拟
§9.1 概 述
煤层气开发 理论与技术

第二十九期:利用CMG-GEM组分模拟器模拟页岩气开采-final

第二十九期:利用CMG-GEM组分模拟器模拟页岩气开采-final

一、通过BUILDER创建页岩气“SHALE GAS”模型1.1 打开BUILDER启动Builder(在CMG Launcher中双击BUILDER 图标)。

1.1.1 选择以下选项:•GEM模拟器,FIELD单位,DUALPERM,Gilman and Kazemi 形状因子。

•开始日期2000-01-01。

1.1.2 点击两次OK。

1.2 创建油藏描述数据1.2.1 在树状图点击Reservoir标签,然后点击按钮,并选择Create Grid 和 Cartesian...。

1.2.2 输入以下内容:在网格对话框中输入I方向为55,J方向为55,K方向为10,在I方向对话框中输入55*50,用作指定一个常数,表示I方向上所有55个网格长度均为50ft,在J方向对话框中输入55*50,表示J方向上所有55个网格长度均为50ft。

选择OK。

1.2.3 在最左边菜单点击(指针模式)按钮。

1.2.4 屏幕顶部中间的Specify Property和Calculate Property按钮现在应是可选的,点击Specify Property,并输入以下值(注意:单位会被自动应用):layer 1Grid Top – 950 ft forGrid Thicknes – 30 ft for all layersMatrix Porosity – 0.03for whole gridFracture Porosity – 0.001for whole gridMatrix Permeability I, J and K – 0.0001 for whole gridFracture Permeability I, J and K – 2E-5 for the whole grid (假定裂缝传导率为 0.001md.ft,那么有效的渗透率将为0.001md.ft/50ft)。

Fracture Spacing I and J direction – 50 ft and 0 ft for K direction whole grid。

煤层气数值模拟

煤层气数值模拟

煤层气藏数值模拟By gulfmoon79@精准石油论坛目录1. 煤层气藏开发生产特点2. 煤层气流动机理3. 煤层气藏几个重要参数3.1 孔隙度3.2 煤层渗透率3.3 变煤层渗透率3.4 相对渗透率曲线3.5 煤层厚度3.6 煤层气连通性3.7 煤层气含量3.8 煤吸附能力4. 模拟煤层气藏4.1 变黑油模型4.2 单孔介质模型4.3 双孔介质模型4.4 多孔介质模型4.5 黑油模型4.6 组分模型前言煤层气藏与常规气藏的最主要区别在于煤层气是以吸附状态吸附在煤基质微孔隙的表面,在生产过程中,当气藏压力下降到临界解析压力,煤层气从煤基质解析出来,通过煤基质扩散到煤裂缝,然后从煤裂缝流入到生产井。

煤裂缝通常初始充满地层水,其中可能存在自由气,但一般不会超过储量的1%。

而常规气藏气体是以自由气状态储存在气藏孔隙,气体在孔隙间的流动是达西渗流。

煤层气藏数值模拟模型需要模拟煤层气从煤基质解析然后扩散到煤裂缝的流动机理,这是与常规模拟模型的主要不同。

常规模拟模型只描述流体在储层中的渗流,而煤层气模型需要描述煤层气从煤基质解析,煤层气扩散到煤裂缝,煤层气在煤裂缝间渗流以及从裂缝流入到生产井。

煤层气数值模拟模型可以采用单孔介质模型,双孔介质模型以及多孔介质模型。

对流体的描述可以采用黑油模型或组分模型。

单孔介质模型一个网格中的孔隙部分代表煤裂缝,非孔隙部分代表煤基质,煤层气从煤基质实时解析,与煤裂缝自由气达到瞬间平衡。

双重介质模型包括基质网格以及基质网格对应的裂缝网格。

模型基质网格描述煤层基质,基质网格提供气源,在开采过程中随着压力下降,气体从基质网格解析然后扩散流动到裂缝网格。

模型裂缝网格描述煤层裂缝,流体在煤层裂缝渗流,然后流入到生产井。

多孔介质模型可以将煤层基质划分为多个模型基质体系,然后模拟基质体系间的流动特征。

在实际工作中最常用的是双孔介质模型。

煤层气组分主要是甲烷,在我现在工作的煤层气藏,甲烷含量占98%以上,只含有很少量的氮气和二氧化碳。

《煤层气数值模拟技术应用研究》

《煤层气数值模拟技术应用研究》

《煤层气数值模拟技术应用研究》篇一一、引言煤层气(简称CBM)作为一种清洁、高效的能源,其开发和利用对于我国能源结构的调整和环境保护具有重要意义。

随着科技的进步,数值模拟技术在煤层气开发领域的应用越来越广泛。

本文旨在探讨煤层气数值模拟技术的应用研究,分析其现状及存在的问题,以期为煤层气的开发和利用提供新的思路和方法。

二、煤层气数值模拟技术概述煤层气数值模拟技术是一种基于计算机模拟技术,通过对煤层气的生成、运移、聚集和开采等过程进行数学描述和计算,以预测煤层气的分布、储量和开采效果的技术。

该技术具有高效、准确、全面等优点,已成为煤层气开发的重要手段。

三、煤层气数值模拟技术的应用研究1. 煤层气生成和运移模拟煤层气的生成和运移是煤层气开采的基础。

通过数值模拟技术,可以准确地描述煤层气的生成过程和运移规律,为煤层气的开采提供理论依据。

例如,通过建立煤层气的生成模型和运移模型,可以预测煤层气的生成量和运移方向,为制定开采方案提供依据。

2. 煤层气储量计算和分布预测煤层气的储量和分布是评价煤层气开发潜力的关键因素。

通过数值模拟技术,可以准确地计算煤层气的储量和预测其分布情况。

例如,利用地质统计学方法和数值模拟技术相结合,可以建立煤层气的三维地质模型和储量模型,为煤层气的开发和利用提供依据。

3. 煤层气开采过程模拟煤层气的开采过程涉及多个环节和因素。

通过数值模拟技术,可以准确地模拟煤层气的开采过程,包括钻井、完井、采收等环节。

通过模拟不同开采方案的效果,可以为制定最优的开采方案提供依据。

四、煤层气数值模拟技术的挑战与展望虽然煤层气数值模拟技术已经取得了显著的成果,但仍面临一些挑战和问题。

首先,煤层气的生成和运移受多种因素影响,如地质条件、温度、压力等,需要进一步研究和探索。

其次,数值模拟技术的准确性和可靠性有待提高,需要不断优化和改进。

此外,数值模拟技术的成本也需要进一步降低,以提高其在煤层气开发中的应用范围。

含氧煤层气液化HYSYS模拟及安全性分析

含氧煤层气液化HYSYS模拟及安全性分析

含氧煤层气液化HYSYS模拟及安全性分析付阳;李自力;崔淦【摘要】设计了一种混合制冷剂和氮节流共同制冷的含氧煤层气液化精馏工艺,模拟结果显示,该工艺可以较为彻底地去除氮气、氧气等,对x(CH4)为40%的煤层气进料,获得LNG产品纯度高达99.91%,甲烷回收率为97.12%,LNG生产能耗为0.94kW· h/m3 (STP).对该工艺进行了爆炸安全性分析,表明煤层气仅在精馏塔顶部有爆炸可能性.采用往精馏塔通入氮气降低塔内氧含量的方法来保证操作安全,并对通入氮气的流量和位置进行了优化.结果表明从精馏塔内气体中氧的物质的量分数大于8%的最下层塔板处通入与煤层气同流量的氮气,对氧气稀释效果最好,在保证高纯度LNG产品和甲烷回收率的同时,生产能耗升高30%.【期刊名称】《天然气化工》【年(卷),期】2015(040)006【总页数】6页(P75-79,82)【关键词】含氧煤层气;液化;精馏;爆炸极限;氮气稀释;模拟【作者】付阳;李自力;崔淦【作者单位】中国石油大学(华东)储运与建筑工程学院,山东青岛266580;中国石油大学(华东)储运与建筑工程学院,山东青岛266580;中国石油大学(华东)储运与建筑工程学院,山东青岛266580【正文语种】中文【中图分类】TQ028我国煤层气资源储量丰富,常规开采过程中会混入空气,导致煤层气中甲烷体积分数仅有20%~75%左右,俗称含氧煤层气[1]。

煤层气的开发利用难点和重点是脱除其中的氧气。

在目前的几种脱氧技术中,低温分离法在较为彻底的脱除煤层气中氧气的同时,还可以获得高纯度的LNG产品。

对于低浓度含氧煤层气,还需要增加精馏工艺对煤层气提纯,深冷精馏制备高纯度LNG工艺已成为目前研究的热点。

煤层气液化过程中由于氧的存在而导致气体可能具有爆炸危险性,因此采取措施保证液化流程的操作安全性尤为重要。

1 煤层气液化流程及模拟1.1 液化流程设计针对某一典型的煤层气气源,设计了一种含氧煤层气液化工艺。

多级水平井压裂注CO2开采页岩气影响因素分析

多级水平井压裂注CO2开采页岩气影响因素分析

多级水平井压裂注CO2开采页岩气影响因素分析郭玉杰;刘平礼;郭肖;贾春生;杨新划【摘要】水平井和多级压裂是开采页岩气等非常规油气资源的关键技术,根据微地震图,页岩中的水力压裂通常会产生非常复杂的裂缝网络,这就是所谓的"体积压裂".为了更好地模拟页岩气在复杂孔隙中的流动情况,以煤层气模块(Eclipse2011)为主要平台,采用LS-LR-DR方法,通过改变主裂缝周围的导流能力来模拟SRV.在上述模型的基础上,研究了注CO2开采页岩气的3个方案.结果表明,注CO2能够提高页岩气的采收率,注入量和注入时机在CO2注气开发中,存在最优值;同时,随着裂缝条数的增加,注CO2开采页岩气的采收率效果越不明显.【期刊名称】《油气藏评价与开发》【年(卷),期】2016(006)002【总页数】5页(P64-68)【关键词】数值模拟;页岩气;多级裂缝;CO2;采收率【作者】郭玉杰;刘平礼;郭肖;贾春生;杨新划【作者单位】西南石油大学油气藏地质与开发工程国家重点实验室,四川成都610500;西南石油大学油气藏地质与开发工程国家重点实验室,四川成都 610500;西南石油大学油气藏地质与开发工程国家重点实验室,四川成都 610500;西南石油大学油气藏地质与开发工程国家重点实验室,四川成都 610500;中国石油青海油田公司一号作业区,青海格尔木 816000【正文语种】中文【中图分类】TE357页岩气的开发已经在全世界得到了广泛的关注。

得益于先进的水平井和多级压裂技术,页岩气正逐渐成为一种经济的天然气。

然而,来自油田的数据和数值模拟的研究结果[1-4]表明:压裂之后的短短几年里,产能快速地下降,高产时期并不能维持很长一段时间。

为了保证裂缝的高导流能力,水力压裂通常会泵入大量的支撑剂,一般裂缝中产生的缝网裂缝(SRV),除了具有较宽缝宽的主裂缝之外,还产生了大量的次级裂缝,这些裂缝包括沟通的天然裂缝和没有被支撑剂填充的水力裂缝[5-6](Fisher.etl 2005)。

考虑煤层气藏地解压差的物质平衡储量计算方法

考虑煤层气藏地解压差的物质平衡储量计算方法

考虑煤层气藏地解压差的物质平衡储量计算方法胡素明;李相方;胡小虎;任维娜;孔冰;胥珍珍;孙晓辉;范坤【期刊名称】《煤田地质与勘探》【年(卷),期】2012(040)001【摘要】以往的煤层气藏物质平衡法未考虑地解压差问题,对此进行了改进,提出了新方法.首先对煤层的原始吸附气含量采用临界解吸压力(而非前人采用的原始地层压力)下的Langmuir方程进行表征;然后通过近似化和线性化处理,将基本物质平衡方程转化为视平均储层压力(P/Z)和累积产气量(GP)的直线方程.该直线在直角坐标系横坐标上的截距为原始地质储量,在纵坐标上的截距为视临界解吸压力(而非前人的视原始地层压力).运用该物质平衡法,计算Eclipse建立的一个煤层气藏模型的储量,发现误差仅为0.35%.这表明在参数准确的情况下,Langmuir体积和压力、原始割理孔隙度和某些时刻的平均地层压力等在数模中可准确获知,该方法是准确可靠的.【总页数】6页(P14-19)【作者】胡素明;李相方;胡小虎;任维娜;孔冰;胥珍珍;孙晓辉;范坤【作者单位】中国石油大学石油工程学院,北京102249;中国石油大学石油工程学院,北京102249;中国石化石油勘探开发研究院,北京100083;中国石油大学石油工程学院,北京102249;中国石油大学石油工程学院,北京102249;塔里木油田公司勘探开发研究院,新疆库尔勒841000;塔里木油田公司勘探开发研究院,新疆库尔勒841000;塔里木油田公司勘探开发研究院,新疆库尔勒841000【正文语种】中文【中图分类】TE33【相关文献】1.页岩凝析气藏物质平衡方程及储量计算方法 [J], 陈婷婷;喻高明;张艺钟2.欠饱和页岩气藏物质平衡方程及储量计算方法 [J], 赖令彬;潘婷婷;胡文瑞;宋新民;冉启全3.煤层气藏物质平衡方程式的推导及储量计算方法 [J], 薛成刚;曹文江;等4.浅析新的煤层气藏物质平衡方程对储量估算的影响 [J], 陈敏5.新的煤层气藏物质平衡方程及其储量计算方法 [J], 徐德权;张烈辉;刘启国因版权原因,仅展示原文概要,查看原文内容请购买。

斯伦贝谢Eclipse软件

斯伦贝谢Eclipse软件

ECLIPSE 2013.1 发布2013年7月18日:斯伦贝谢发布了ELCIPSE 2013.1版本描述:ECLIPSE系列软件体系为石油工业提供了最完整、最全面、最强大的数值模拟研究工具,涵盖各个类型油气藏的数值模拟,有效解决各领域复杂难题——从构造、地质、流体乃至开发方案,帮助您快速、精确、高效地预测储层生产动态!ECLIPSE系列软件体系支持全部类型油气藏模型的构建——黑油、组分、热采以及流线模型。

本版本升级了ELCIPSE黑油模拟器、组分模拟器和流线模拟器的部分功能。

化学驱提高采收率建模功能得到丰富,在ECLIPSE黑油模拟器中添加了模拟聚合物的选项,在ECLIPSE组分模拟器中添加了新的表面活性剂驱油模型。

与此同时,该版本秉承以往各版本,继续发展对Petrel油气藏工程研究平台集成工作流的支持。

本版本将与MEPO4.2绑定发放,用户可以从DVD中安装,也可以从网上下载。

MEPO是一款多重实现优化工具箱,帮助您提交、管理模拟数值模型。

油气藏工程师通过MEPO可以优化数值模拟工作流,实现工作流程半自动化。

MEPO最常用于辅助历史拟合、不确定性分析、敏感性分析以及油气田开发方案优化设计。

注释:ECLIPSE软件套装交互式前后处理程序仅支持Windows操作系统,目前我们仅提供重大Bug修复的售后服务。

我们向您推荐功能更为强大的Petrel油气藏工程研究平台作为ECLIPSE前后处理程序。

ECLIPSE软件包部分功能不支持Linux操作系统。

Eclipse Office, FloGrid, FloViz, Schedule模块仅支持Windows操作系统。

本版本的官方DVD中没有提供IBM ppc64专用模拟器,如果您需要,我们另行为您提供。

升级模块:ECLIPSE 2013.1模拟化学驱提高采收率技术•在ECLIPSE黑油模块扩展了聚合物选项,支持聚合物、冻胶高级建模,包括具有温度敏感性的聚合物。

Eclipse300组分模拟器

Eclipse300组分模拟器

Eclipse 300 组分模拟器ECLIPSE组分模拟器适用于凝析气藏、挥发性油藏、或注气等油藏开采过程。

主要功能及特点如下:• 全组份模型,除了要输入与组份有关的参数外,与黑油模型全兼容• 支持多个系列状态方程• 支持K-值方法和黑油处理• 温度和组份随深度变化• 象Eclipse100一样,具有处理复杂地质情况的能力• 有效地模拟裂缝油藏(双孔隙度/双渗透率),并考虑重力驱油和分子祢散效应• 全隐式、自适应(AIM)和IMPES解法• 功能齐全的生产控制功能• 交替地使用组份模型和黑油模型• 分区地定义PVT数据和岩石数据• 局部网格加密• 油藏局部区域的流动边界的重新定义(USEFLUX流动边界选项已与并行选项可以兼容)• 多底井• 近井地带的气体冷凝物的模拟• 煤层气的模拟• 含有多组分的水的模拟• 温度模型(不仅局限于注水井)• 并行计算• Open Eclipse开发工具Eclipse 热采模拟器ECLIPSE热采模拟器是组分模型的一个选项。

模拟包含油/气/水/三相的稠油热采过程。

考虑上下盖层的热损失,以及温度对相对渗透率的影响。

主要功能及特点如下:• 热水驱• 蒸汽吞吐和蒸汽驱• 单井及成对井蒸汽辅助重力驱• 注CO2、N2及轻烃混相驱• 预热,并可温度控制• 并行计算• 象黑油模型一样,具有处理复杂地质情况的能力• 有效地模拟裂缝油藏(双孔隙度/双渗透率)• 水平井,斜井和多底井的摩阻计算• 与气顶平衡• 蒸汽干度、温度、压力及持油率、持水率、持汽率沿井筒的分布变化• 重启动可以是黑油、组份或热采模型。

ECLIPSE_2011_功能介绍

ECLIPSE_2011_功能介绍
ECLIPSE 100是全隐式、三维、三相、并带有凝析气藏选项的通用黑油模拟器。它是ECLIPSE软件家族 的核心模拟器,也是数值模拟领域的工业标准,适用于黑油、干气、挥发油、湿气等各类油气藏模拟:
复杂的网格系统,可模拟垂直、倾斜和旋转断层系统 直井、斜井、水平井、多分支井模拟 功能丰富的井、井组和油田生产控制功能 多种水体支持-解析水体、数值水体、网格水体等 灵活的分区设置与模拟 局部网格加密和粗化 储层压实 非邻点连接 流量边界 混相驱和非混相驱 煤层气 API追踪 双孔双渗模型 垂直平衡 井筒内窜流 数据一致性检查 提高采收率(聚合物、表面活性剂、溶剂、泡沫) 矿化度追踪 示踪剂追踪 分子扩散 饱和度表端点标定 初始平衡选择 井筒摩擦 气田操作 气体非达西流动 GI-拟组分 五点和九点格式 岩石弹性模型 方向和滞后相对渗透率 三维重力分离流动模拟 温度效应 多段井-高级井选项 用户自定义变量UDA,UDQ,UDT,自定义结果输出及灵活的开发方案设计
对于模拟过程中过高或者过低的产水量,你可以沿着流线追踪
到特定的注水井或水体,这使得生产历史拟合更加容易。
注采井组平衡和配产配注
局部网格加密和粗化
注水模拟的优化
裂缝油气藏
面积注水管理功能
数值、解析和等流量水体
井、井组和油田生产控制
完井井段串流和混合
初始化多种选择
直井、斜井和水平井
FrontSim软件高效的注水井网管理功能,支持对优化注水方案的研究,并提供自动配置功能使你能在一 次模拟计算中优化注采井网的分布。
流线模拟显示直观的井组关系 可视化流线模型能够识别未被注水井网波及的油藏区域,使得加密井的井位目标更加明确。利用FrontSim

斯伦贝谢-煤层气藏评价与开采技术新进展

斯伦贝谢-煤层气藏评价与开采技术新进展
在CBM开发方面,俄罗斯潜力 巨大却尚未发挥:根据资料来源的不 同,俄罗斯的CBM储量估计为17-80 万亿米3(600-2825万亿英尺3)。到 2009年初为止,俄罗斯总共才钻了几 口井,用以评估CBM的商业开采潜
力。然而,由于政治和市场因素的影 响,这一局面或许已经在发生变化。 俄罗斯西部开采出的天然气售往欧 洲。可以开发集中于西伯利亚中部的 CBM供俄罗斯中部的重工业使用,这 样就可将更多天然气售往西方。
3. 《已探明煤层气储量与产量》,美国能源部能源 信息管理局,/dnav/ng/ng_enr_ cbm_a_EPG0_r52_Bcf_a.htm(2009 年 3 月 1 日浏览)。
4. 有关煤层气更多的 信息,请 参见 :Ayoub J, Colson L,Hinkel J,Johnston D 和 Levine J“:Learning to Produce Coalbed Methane”,Oilfield Review,3 卷, 第 1 期(1991 年 1 月):27-40。
澳大利亚的煤层气产量仅次于 美国。澳大利亚从上世纪90年代中期 才开始小规模的煤层气商业开采,到 2008年,已开采出40亿米3,产量在前 一年基础上增加了39%[8]。
印度也拥有丰富的煤炭资源,而 且多数都适合煤层气开发。一些传统 开采方法无法触及的深层煤藏的CMB 也有待开发。1997年,印度政府制定 了煤层气开发政策,并划分了多个 勘探区块。印度的CBM商业开采始于 2007年[9]。
Andy Wray 美国科罗拉多州丹佛
《油田新技术》2009 年夏季刊 :21 卷,第 2 期。
©2009 斯伦贝谢版权所有。
在编写本文过程中得到以下人的帮助,谨表谢 意 :卡尔加里的 Drazenko Boskovic ;Tuscaloosa 阿 拉 巴 马 大 学 的 Peter Clark ;俄 克 拉 何 马 州 俄 克 拉何马城的 Rick Lewis,以及 Sugar Land 的 Kevin England,Doug Pipchuk,Prachur Sah,Steven Segal 和 Felix Soepyan。

ECLIPSE煤层气模拟基础关键词

ECLIPSE煤层气模拟基础关键词

5、INITIALIZATION 模型初始化,计算储量及油气水分布 EQUIL 水动力学平衡法定义初始条件
-- EQUIL中
第1项:测试参考深度 第2项:测试参考深度对应压力 第3项:油水界面深度
第4项:油水界面深度处毛管力
第5项:油气界面参度 第6项:油气界面深度处毛管力 在煤层气中,只有气水界面,所以可以把第3项与第5项设置为同一个值。 枚举法时候,应用如下两个关键词: PRESSURE 压力 SWAT 含水饱和度
4、SCAL相对渗透率曲线数据 SWFN 水相相对渗透率曲线
-- SWFN 中3列分别为 :
Sw 含水饱和度 、Krw 水相相对渗透率 、Pc气水毛管力 SGFN 气相相对渗透率曲线 -- SGFN 中3列分别为: Sg 含气饱和度、 Krg 气相相对渗透率、Pc气水毛管力 或者只用SGWFN 分别为,含气饱和度、气相渗透率、水相渗透率、气水毛管力 LANGMUIR 煤层气吸附表 --LANGMUIR中2列分别为裂缝压力、吸附气体浓度
ECLIPSE煤层气模拟应用培训 基础关键词
1、CASE DEFINATION 模型定义 选择BLACKOIL选项,进行常规油藏数值模拟
TITLE 定义模型名称
START 定义模拟开始时间 DIMENS 定义模型在X Y Z三个方向上网格数量,即网格维数 Grid Option 中选择Cartesian网格中Corner Point类型
SUMMARY 结果输出 FPR 全气田平均压力 FPRH 历史上全气田平均压力 FGPR 全气田平均日产量 FGPRH 历史上全气田平均日产量 FWPR 全气田平均日产量 FWPRH 历史上全气田平均日产量 WBHP 单井计算井底流压力 WBHPH 单井历史井底流压力 WGPR 单井平均日产量 WGPRH 历史上单井平均日产量 WWPR 单井平均日产量 WWPRH 历史上单井平均日产量 WMCTL 单井控制模式 RUNSUM 控制报表格式输出 SEPARATE 将结果单独输出到RSM文件中 DATE 时间按日月年格式输出 RPTONLY 只输出报告步数据

利用CMG-GEM组分模拟器模拟煤层气开采教程(二)

利用CMG-GEM组分模拟器模拟煤层气开采教程(二)

利⽤CMG-GEM组分模拟器模拟煤层⽓开采教程(⼆)利⽤CMG—GEM组分模拟器模拟煤层⽓开采教程(⼆)加拿⼤计算机模拟软件集团(CMG)教程2:矿场规模CBM模拟内容:(1)利⽤等温吸附线描述煤层含⽓量图(2)⽤户基于含⽓量输⼊煤层初始化数值(3)CMOST敏感性分析(4)CMOST辅助历史拟合可⽤数据:(1)Rescue格式的地质模型(2)测量不同井的等温线来表⽰三个主要煤层(3)主要煤层的含⽓量图⼀、打开BUILDER1.在Launcher中双击BUILDER图标打开BUILDER2.选择GEM模拟器,SI国际标准单位,DUALPOR,Gilman and Kazemi形状因⼦,开始⽇期2005-01-01。

3.单击OK两次。

⼆、输⼊输出控制部分(Input/Output Control Section)1.在树状图中单击I/O Control。

2.双击Titles And Case ID,输⼊“Multi Well CBM model”,按OK。

3.双击Restart,选择Enable restart writing,并使⽤REWIND 2。

4.单击,并在⽇期2005-01-01,点击两次OK。

三、油藏描述部分(Reservoir Description Section)1.打开⼀个RESCUE模型(rescue2009.bin)并导⼊⼀个地质⽹格及油藏属性,如下所⽰:2.将CMG关键字与rescue模型属性匹配,如下所⽰。

3.当展开Reservoir标签下的Array Properties时,会有⼀个红⾊叉号(),表明在这部分需要输⼊⼀些“必须的”内容。

4.单击Specify Property按键输⼊下⾯的油藏参数和值:Property Value for “Whole Grid”Porosity (Matrix ) 0.001Permeability I (Matrix) 0.001 mDPermeability J (Matrix) EQUALSIPermeability K (Matrix) EQUALSIPermeability J (Fracture ) EQUALSIPermeability K (Fracture) EQUALSI* 0.1Fracture Spacing I 0.05 mFracture Spacing J EQUALSI * 0.5Fracture Spacing K EQUALSI * 0.1Implicit Flag 3Implicit Flag – (Fracture) 35.按两次OK进⼊Calculate Property。

Petrel软件在煤层气开发中的应用(教程)

Petrel软件在煤层气开发中的应用(教程)
15 结束语
6
1 概述
2.1.2 编辑菜单(Edit)
Petrel 软件在 Windows 系统下使用的 3D 数字地质建模软件,尤其在油、气田开 发中使用广泛。Petrel 由 Schlumber 公司 1997 年问世,具有地球物理家、地质家(地质构 造学家)、钻井工程专家和储层评价专家共 享的软件操作平台,极大地提高工作效率。 Petrel 能够在一个文件中展现地质绘图的各 种图件和表格并进行储层评价,称一张图, Petrel 充分地体现了在地质工作的优越性。 目前(2012 年)国土资源部决定开展“数字盆 地三维可视化原型系统建设”,而目前煤层 气行业有待推广和建设数字建模在本领域 的应用。
2.3 进程表
进程列表是 Petrel 中可以被激活运行的 进程。
操作步骤 1、点击流程列表的某些流程,注意显 示窗口右边的工具栏如何变化, 工具栏上 的一个或两个按钮将发生变化。你也可以注 意到有些功能的名称是高亮显示的,说明那 个功能是被激活的。 2、双击一个功能可以看到那个功能的 对话框。浏览这个对话框的所有标签。查看 其他进程的对话框。
操作步骤 1. 点击输入标签。 2. 展开文件夹显示其内容。 3. 右键点击文件夹有效的选项,从选项 列表中选择设置,弹出一个窗口,可以设置 有关显示的多种参数。 4. 右键点击一个文件并选择设置,出现 这个文件有关信息。 5. 点 击 Petrel 资 源 管 理 器 下 面 的 Models 标签并浏览标签下的文件。右键点击 其他项目并试验点击其他选项。
后点击复制 按钮。
检查统计表:不论输入数据,建立新文 件或检查别人的其它项目,都应该检查重要 文件的统计表,避免出现那些意想不到的错 误。
操作步骤 1、在 Petrel 资源管理器的输入标签下, 选择其中一个 Surfaces 进入设置对话框(右 键点击文件选择设置)。 2、进入统计表单检查其范围及 Z 值的 性质(正或负)。 3、检查其它文件的统计表。 4、检查文件夹中的统计表,弄清楚提 供了什么信息。测试 well tops 文件夹。

《2024年煤层气数值模拟技术应用研究》范文

《2024年煤层气数值模拟技术应用研究》范文

《煤层气数值模拟技术应用研究》篇一一、引言随着科技进步,煤层气开采领域迎来了许多技术创新,其中,煤层气数值模拟技术尤为突出。

此技术不仅可以预测煤层气的赋存、运移及产出,同时也可用于制定科学、有效的开发策略。

本文将对煤层气数值模拟技术的理论基础、应用及挑战等方面进行深入研究,并以此提升我们对该领域更深层次的认识。

二、煤层气数值模拟技术理论基础煤层气数值模拟技术是一种综合应用了数学模型、物理原理以及计算机技术,以研究煤层气在煤层中的分布、运动及产出的过程的技术。

在数学上,这个复杂的过程往往以数学方程(如流体力学方程等)进行表达。

在实际的数值模拟中,技术人员通常运用大规模并行计算的算法进行运算和预测。

三、煤层气数值模拟技术的具体应用(一)勘探与资源评价利用煤层气数值模拟技术可以对煤炭开采的适宜性进行评价,也可以进行勘探井位的选取,帮助开发者提前掌握开采前景,确定出可行的资源开采策略。

在勘探与资源评价阶段,此技术能够有效避免风险和节约成本。

(二)采前储量计算与采后预测在煤层气开采前,通过数值模拟技术可以精确计算出储量,预测煤层气的分布和流动情况。

在采后阶段,该技术也可用于预测煤层气的剩余储量和产出情况,为后续的开采工作提供指导。

(三)开发方案设计在制定开发方案时,通过数值模拟技术可以模拟出不同开发策略下的煤层气产出情况,从而选择最优的开发方案。

此外,该技术还可以对开发过程中的各种参数进行优化,如井网布置、排采速度等。

四、煤层气数值模拟技术的挑战与前景尽管煤层气数值模拟技术已经取得了显著的进步,但仍面临一些挑战。

首先,该技术需要大量的数据支持,包括地质数据、生产数据等。

这些数据的准确性和完整性直接影响到模拟的准确性。

其次,该技术需要专业的技术人员进行操作和维护。

因此,需要加强人才的培养和引进。

此外,随着技术的发展和研究的深入,如何进一步提高模拟的精度和效率也是该领域需要解决的问题。

然而,随着计算机技术的不断发展和相关理论的完善,煤层气数值模拟技术的应用前景十分广阔。

201208-Eclipse煤层气数值模拟基本操作2

201208-Eclipse煤层气数值模拟基本操作2

Eclipse煤层气数值模拟基本操作2012年8月15日8:03:33ZKN本操作采用Eclipse 2008.1版本煤层气数模直井案例(从界面输入)新建项目首先,新建一个项目:打开Eclipse Office->选择File菜单->单击New Project…->输入文件名->保存。

Case Definition单击Data->在打开窗口选择Case Definition ->在打开窗口中输入:Simulator默认勾选BlackOil。

注:如果需要模拟CO2或N2注入,请选择Compositional模型。

在General标签页上输入:Title: CBM CASEsimulation Start Date: 2004-8-1Units type: MetricModel dimensions: 30*30*2在Reservoir标签页选择:Fractured Reservoir & Coal Bed Methane;Grid Type: Cartesian;Geometry Type: Block Centred在PVT标签页选择:Oil-Gas-Water Options:Water & Gas选择Apply->OK,关闭窗口。

Grid在Data Manager Module打开Grid->选择Subsection菜单->选择GRID Keywords->在打开窗口中输入:注:输入方法->点击工具栏按钮选择关键字->点击工具栏,输入值->点击Apply后点击关闭。

Properties中选择关键字Porosity: 0.00035X Permeability: 40Y Permeability: 40Z Permeability: 10Net to Gross Tickness Ratios: 1Geometry中选择关键字X Grid Block Sizes: 40Y Grid Block Sizes: 40Z Grid Block Sizes: 6Depths of Top Faces: 260Diffusivity中选择关键字Matrix-Fracture diffusivity multipliers: 1Dual Porosity中选择关键字No Dual Porosity Permeability Multiplier (选择即可,无需输入值)Dual Porosity Matrix-Fracture CouplingMatrix fracture coupling multiplier: 0.5Operational Keywords中选择关键字(默认项,无需操作)Simulator GRID File Type: 选择Extended grid file (.GRID File)关闭GRID窗口,保存所有数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ECLIPSE CBM TemplateWorkshopExercise 1 – Single-Well, Single Layer (3)Introduction (3)Exercise1 - Stages (3)Creating a template case in ECLIPSE Office (4)Model Definition (5)Reservoir Description (6)Wells (7)Production (8)Fluid Properties (10)Run and Results (10)Exercise 2 – Single-Well, Single Layer, Gas-Water (12)Introduction (12)Stages (12)Restoring a template model (13)Model Definition (13)Reservoir Description (13)Fluid Properties (14)Generating the Model (15)Running Simulation & Results (16)Sensitivity to Gridding Controls (17)Exercise 3 – Sensitivity to Reservoir Conditions (25)Introduction (25)Stages (25)Customizing Reports (26)Creating a New Project (26)Sensitivity to Initial Conditions (27)Sensitivity to Rock Properties (29)Sensitivity to Fluid Properties (32)Exercise 4 – Well Spacing Optimization (41)Introduction (41)Stages (41)Problem Description (42)Building a Quarter Five-Spot CBM template model (42)Comparing Pattern Recovery Factors (46)Creating Reports (47)Evaluating Net Present Value (49)Exercise 5 – Enhanced Production with Fractured wells and Horizontal Wells - Interference (53)Introduction (53)Stages (53)Single Vertical Well Model (54)Two Vertical Well Model (56)Hydraulic Fractured well (61)Horizontal Well (64)Exercise 6 – Optimizing Development in a Dipping Reservoir (66)Introduction (66)Stages (66)Building a 4-vertical well model (66)Sensitivity to Workovers Timing (68)Exercise 7 – Hydraulic Fractures and Zonal Isolation (71)Introduction (71)Stages (71)Creating a Single Coal Seam Model (72)Analyzing the Hydraulic Fracture Impact on Production (73)Creating a 3-Layer Sand-Shale-Coal Model (75)Analyzing the Impact of the Failed Zonal-Isolation on Production (76)Exercise 1 – Single-Well, Single LayerIntroductionThe objective of the following exercise is to familiarize the user with the main features and environment of the Coal Bed Methane template. The exercise demonstrates a step-by-step procedure on how to build and run simulation on a single-layer, single-well production scenario with dry gas as the only phase present. StagesCreating a template case in ECLIPSE Office (4)Model Definition (5)Reservoir Description (6)Layers Definition (6)Rock Properties Definition (6)Initial Conditions Definition (7)Wells (7)Production (8)Perforation Definition (8)Production Constraint Definition (9)Fluid Properties (10)PVT Correlations (10)Run and Results (10)Creating a template case in ECLIPSE Office1. In your Windows Explorer, create a new folder. Rename the folder CBM. Create another folderunder CBM and rename it Exercise1.2. From the ECLIPSE Simulation Software Launcher, start Office and select Exercise1 as the startupdirectory. The main ECLIPSE office window will pop up.3. As shown below, create a new project by selecting File | New Project…Give it the file name1well-1layer and click Open.4. This will create a parent project under which a number of children scenarios called cases can becreated. As shown below, we will create a CBM template case from this parent case. Right clickon the case 1well-1layer and select Add Template Case.5. In the Template model selection panel, select Coalbed Methane as the Template Model type, namethe case Dry-Gas and select Field Units as shown below.6. Click OK. The Coalbed Methane Modeling Tool general panel will pop up, as shown below:Model Definition1. Give a title name to the current case: Single-well Single-layer Dry Gas2. Define the general time framework controls:• Simulation start date: 1 Jan 2004• Simulation end date: 1 Dec 2004• Reporting frequency: 1 month3. Request that only dry gas be present in the run, under the Phases drop-down menu in the ModelParameters. Leave the other options unchecked for now.4. Click Apply.5. In the Workflow Column, select Reservoir Description to jump to the Reservoir Characterizationinput tab.Reservoir DescriptionLayers DefinitionThe model contains a single coal seam. We will now input the general dimensions of that layer.1. Name the layer Layer1 and its rock type Coal1.2. Set the top left and right faces to 1000 ft deep.3. Set the horizontal displacement to 0 ft. (This entry will be ignored here since the model containsonly one layer).4. Set the thickness to 30 ft.5. Set the length to 2000 ft6. Set the width to 800 ft7. Click Apply.The Layers table should look as shown below:8. Click on Next Page to jump to the Rock Properties input tab.Rock Properties DefinitionBy default, properties of the RESERVOIR rock show up in the Rock Properties tab. If properties for no other rock types are specified here, the template will assume RESERVOIR to be the default rock type used for the run.Another rock type (Coal1) was defined in the previous step; we will now characterize Coal1’s cleat system:1. Under RESERVOIR, add a new line for Coal1.2. Set the fracture porosity to 0.013. Set the horizontal permeability to 20 mD and the vertical permeability to 2 mD.4. Set the coal’s compressibility to 1e-6 psi-15. Click Apply.The Rock Properties table should now look as shown below:6. Click on Next Page to jump to the Initial Conditions input tab.Initial Conditions Definition1. Set the initial pressure to 300 psi at a reference datum depth of 1000 ft.2. Leave the Coal Gas Concentration space blank. This requests that the initial coal gas concentrationbe computed automatically from the Langmuir Isotherm gas desorption curve defined later in the exercise.3. Click Apply.We assume in this model the absence of aquifer and hydraulic fractures. The last two tabs may therefore be skipped. In the Workflow column, select Wells to jump to the well definition panel.WellsBy default, the Field space in the wells tab should show that one layer (Layer1) has been defined, but that there aren’t any wells declared yet. We will now add a new vertical well to the model.1. In the main Wells column, highlight and right-click on the Field space. Select Create Well.2. Name the new well V1. A new well branch will be added under Field.3. Highlight V1 and change the drilled hole diameter to 24 in. Click once on Insert Row to add a rowto the table where V1’s deviation will be specified.Since V1 is vertical, only two rows for the well’s top and bottom depths are required to fully describe the deviation. The deviation points areal coordinates and depths are referenced to the local normal coordinate system of origin (0,0,0) created at the layer definition stage.4. Give V1 respective X and Y positions of 500 ft, and a wellhead depth of 0 ft.5. Click Apply and Insert a new row.6. In the second row, set the depth to 1050 ft.7. Click Apply and check that the Measured Depth Field has been updated. The Wells tab shouldnow look as shown:8. In the main Template window, under the Workflow column, click on Generate Model. This willgenerate a 3D representation of the information input thus far, as shown below:9. In the Workflow column, select Production to jump to the Production and well work overdefinition panel.ProductionPerforation DefinitionIn the Production Field, highlight the well V1 branch and observe that no events currently exist. We willnow define two sets of events for the well V1: Events defining the well’s perforation intervals as well asevents characterizing the production constraints and limits of well V1.1. Check that well V1 has been highlighted, select Perforation V1 in the Available Events drop downlist and click on New Events to add a perforation.2. In the perforation panel, the default date of perfarion is SOS (Start Of Simulation), 1 Jan 2004 inthis case. Leave the date defaulted.3. Well V1 extends from 0 ft to 1050, but based on the definition of Layer1, only the sectionextending from 1000 ft to 1030 ft is exposed to the reservoir. Change the Start and Stop MDs to1000 ft and 1030 ft.4. Click OK and observe the addition of the event under existing events, as well as a detaileddescription of the selected event.Production Constraint Definition1. In the Available Events drop down list, select Production from V1 and click on New Events. TheProduction Well Schedule Data panel will pop up.2. Under the Well Controls tab, leave SOS as the start date for production. Change the Control Modeto Bottom Hole Pressure (BHP), and set the target to 20 psi.3. Jump to the Limits tab.4. Set the limit type to Gas Rate and set the limit to 1000 Mscf/d, and set the limit to 20 psi.5. Click on Add/Update.6. We assume here that there are no economic limits. Click OK and observe the addition of theproduction event in the list of existing events along with a detailed description.The Template panel should now look as shown below:7. In the main Template window, under the Workflow column, click on Generate Model. Observethe changes in the 3D Viewer:This shows how the rid is now refined around the perforated interval of well V1. We will see later in this tutorial the importance of grid refinements as well as how to control the refinement level.In the Workflow column, select Fluid Properties to jump to the fluid and coal’s sorption capacity definition panel.Fluid PropertiesPVT CorrelationsThere is only dry gas present in this case. The properties of gas, the pressure dependent viscosity and Formation Volume Factor (B g), are computed from a correlation.1. Set the temperature Layer1 to 100 F.2. Leave the specific gravity of gas set to 0.7 sg_Air.Coalbed Methane PropertiesThe parameters entered in is tab are used to derive the Langmuir Isotherm used to control the coal gas desorption from the coal face as a function of pressure.Additional parameters are used to control the diffusion of gas from matrix to the fracture system where it then flows into the well.Sensitivity of production profiles to these various parameters will be seen in later exercises.1. Leave the parameters defaulted for now.2. Click Apply.Run and Results1. Click on Run ECLIPSE.2. When the run is finished, click on View Results. Office will generate a set of profiles resultingfrom the simulation. Observe the gas production rate achieved:3. In the Template module, click on File | Save… and save the Dry-Gas.TPM file, which can later beused to restore the settings used in this template case.4. Close the Template module and Close ECLIPSE Office after saving the Office project.Exercise 2 – Single-Well, Single Layer, Gas-WaterIntroductionThe previous exercise assumed only dry gas was present in the reservoir. In most cases, coal cleats are initially filled with water and this water must first be produced for the coal gas to desorb in the matrix and flow to the fracture system. This production stage is often referred to as the dewatering stage.The objective of this exercise is to show examples of how the presence of initial water affects the gas production profile.StagesRestoring a template model (13)Model Definition (13)Reservoir Description (13)Initial Conditions Definition (14)Fluid Properties (14)Relative Permeability Definition (14)Quality-Checking the Fluid Properties (14)Generating the Model (15)Running Simulation & Results (16)Sensitivity to Gridding Controls (17)Cloning a Template Case (17)Areal Resolution (18)Comparing Cases Results (19)Vertical Resolution (22)Restoring a template model1. In your Windows Explorer, under the CBM folder created in the previous exercise, create a newfolder named Exercise2.2. From the ECLIPSE Simulation Software Launcher, start Office and select Exercise2 as the startupdirectory.3. As described in Exercise1, create a new project by selecting File | New Project…Name it 1well-1layer and click Open.4. We will now create a new CBM template case from this parent case. Right click on the case 1well-1layer and select Add Template Case.5. In the Template model selection panel, rather than rebuilding from scratch a new template model,we will import the model created in Exercise1. Select Coalbed Methane as the Template Modeltype, name the case Gas-Water, select Field Units and use the browser in the Start File field toselect Dry-Gas.TPM located in the Exercise1 directory, as shown below:6. Click OK to open up the CBM Template module. Observe that the model generated in Exercisehas been restored along with all of the parameters used to define the case.Model Definition1. Change the case title name to: Single-well Single-layer Gas-Water2. Leave the simulation time framework unchanged3. Under Model Parameters, change Phases from Dry Gas to Gas & Water.4. Click Apply.The reservoir description remains similar to that of Exercise1 but the addition of the water phase to the model requires additional information on the initial state of the reservoir, the rock’s relative permeability to water and gas as well as the water properties at reservoir conditions.We will now complete the model with the additional required input.Reservoir DescriptionInitial Conditions Definition1. In the Workflow column, click on Reservoir Description.2. Select the Initial Conditions tab.3. Observe that a new line has been added prompting the user to enter the Gas-Water Contact Depth.Set the contact to 1020 ft.4. Click ApplyFluid PropertiesRelative Permeability DefinitionThe model defined in Exercise1 featured a single-phase dry gas. The computation of the flow of gas was thus based on the absolute rock permeability defined in the Reservoir Description panel.Here, a second phase is present, introducing the concept of relative permeability.1. In the Workflow column, select Fluid Properties.2. Observe that a new Rel. Perm panel has been inserted. Select it. In the Rel. Perm panel, you willfind two tabs used to specify the coefficients and end points used to derive the shape of the relative permeability to gas and water. Leave these coefficients defaulted.Quality-Checking the Fluid PropertiesCorrelations are used to derive the gas viscosity and formation volume factor as well as the coal surface gas concentration as a function of pressure, and the relative permeabilities to gas and water as a function of water saturation.1. Select the Advanced tab.2. Click on Load Correlations.3. Click on Plot Data…The template will pop up a window with 2D line-plots of the curvesgenerated from the various correlations.4. In order to visualize other curves such as the Langmuir adsorption curve, simply click on theselected plot and drag it to the main panel.5. Close the window and go back to the Rel. Perm panel.6. In the Gas tab, change the Corey Gas Factor to 1.7. In the Water tab, change the Corey Water Factor to 1 and the water relative permeability atresidual gas saturation (K rw(S grw))to 1.8. Click Apply.9. In the Advanced panel, reload and plot the data from correlations. Check that the water and gasrelative permeabilities are now a linear function of saturation, as shown below:10. Close the graph window.Generating the Model1. In the Workflow column, click on Generate Model.2. In the 3D Viewer, zoom in the reservoir and note that a vertical refinement has been applied:Running Simulation & Results1. In the Workflow column, click on Run ECLIPSE.2. The Log Window will indicate you when the run is finished. When it is finished, click on ViewResults in the Workflow column. This will fire up the Results Viewer and load the simulationresults.3. Take some time to analyze the Field Gas and Water Production Rates and Totals, Gas Recoveryprofiles, etc…4. In the Results Viewer, click on the 3D View icon to load and display the grid recurrentproperties in the 3D Viewer.5. Using the top right-hand controls , animate the grid. Observe how theMatrix Pressure distribution changes through time.6. Using the Grid Property icon , change the displayed property from Matrix Pressure toFracture Water Saturation (FSWAT) and observe how water saturation decreases through time.Sensitivity to Gridding ControlsThe simulated response to reservoir changes is sensitive to the resolution of the grid used to model thereservoir. The gridding controls available in the Simulation Controls panel can be used to generate finer orcoarser cells, giving the flexibility to automatically refine the grid around phase contact and well workovers.Cloning a Template Case1. In ECLIPSE Office, highlight and right-click on the Gas-Water template case. Select Add CloneCase.2. Name the new case: Gas-Water-Fine-Grid. This will duplicate the Gas_Water model along with allof its settings.We will now keep all of the pre-defined settings unchanged apart from the gridding controls, which we will modify to refine the areal resolution of the reservoir grid.Areal Resolution1. In the Workflow column, select Simulation Controls.2. Keep options to grid to phase contact and well workovers checked.3. Decrease the maximum cell size in the X and Y directions to 50 ft.4. Click Apply and re-generate the model. Observe the resulting grid resolution in the 3D Viewer.We would like now to decrease the cell size growth factor controlling the logarithmic refinement applied around the well perforation.5. Decrease the X and Y Growth Factors to 1.2.6. Click Apply and re-generate the model. Observe the resulting grid resolution in the 3D Viewer.The grid should now look as shown below:7. In the Workflow column, click on Run ECLIPSE.Notice that the simulation run time has now significantly increased. This is due to the fact that ECLIPSE now needs to solve for changes in pressure and saturation over time in a much greater number of cells than in the previous model. In general, the user should find a balance between run times and solution accuracy. One way to analyze the accuracy of the results found in the Gas-Water case is to compare them with the results obtained from a higher resolution grid as the one created here.We will now compare the production profiles from Gas-Water with Gas-Water-Fine-Grid. Comparing Cases Results1. In the template, click on View Results to upload the Gas-Water-Fine case simulation results.2. In the Results Viewer, click on to bring up the 3D Grid simulation results and step throughtime to display the Matrix Pressure property on 01 Dec 2004.You may notice the slightly smoother pressure change away from the well than what was obtained in the previous case. The picture below shows a comparison between the two cases. Nevertheless, the comparison of the actual profile line plots must be done in order to find out whether simulation through the finer grid differ significantly from the ones obtained earlier in the exercise.3. Close the Results Viewer.4. In ECLIPSE Office, select Case | Compare from the menu list.5. In the Compare Cases panel, select Gas-Water and click on Plot.The Result Viewer will now super-impose the gas production rates from the coarse and fine grid models. View the pressure profile. Notice that there is very little deviation of the Gas-Water profiles from the Gas-Water-Fine-Grid profiles, indicating that the resolution used in the Gas-water-Fine-Grid case does not justify the resulting higher simulation run time.6. Following the steps previously described, clone the Gas-Water-Fine-Grid case in ECLIPSE Officeto create a case named Gas-Water-Normal-Grid.7. In the Simulation Controls panel, check the option Regular Grid. This allows the user to specifysettings to generate a uniform cell size grid.8. Set N x to 45, N y to 20 and N z to 10. Click Apply and generate the model.9.11. In ECLIPSE Office, select Case | Compare from the menu list.cases. Click on Plot.The Result Viewer will show how the simulated gas production profile obtained in the normal grid case starts deviating from the ones obtained with grids refined around the well bore. Generally, the early time simulation response will be a function of grid resolution near and around the wellbore.Vertical ResolutionWe have now seen the impact the choice of the grid horizontal resolution settings may have on the simulation results. Similarly, we will now analyze the importance of the vertical resolution.1. Close the CBM Template module.2. In ECLIPSE Office, highlight the Gas-Water template case. Using the steps described above,clone the Gas-Water case to create the case Gas-Water-Low-Vert-Res.3. Select the Simulation Controls. Uncheck the Grid to Phase Contact option.4. Change the maximum cell size in the Z direction to 15 ft.5. Generate the model. Unlike the Gas-Water case grid, which honored the Gas-Water contact, thiswill create a 2 15ft-vertical cell grid, as shown below.6. Run ECLIPSE.7. Compare the results between Gas-Water and Gas-Water-Low-Vertical-Res.The results clearly show the impact of a choosing a coarser vertical resolution to describe the model. The coarser resolution case shows a higher water production from the start. The bottom layer cell depths extend from 1015 ft down to 1030 ft, but the GWC was set at 1020ft and is therefore not honored by the grid. Water saturation, which should be 100% in the lower cells, is thus averaged in the coarse cells to reflect thepresence of gas between depths of 1015 ft and 1020 ft. As a result, the well mobile water the well sees in these depths range is produced from the very start of simulation.The following picture compares a cross-sectional view of the fracture water saturation on 1 Dec 2004, in cases Gas-Water-Low-Vert-Res (left) and Gas-Water (Right).8. Close the CBM Template module.9. In ECLIPSE Office, highlight the Gas-Water template case. Clone the Gas-Water case to createthe case Gas-Water-High-Vert-Res.10. Select the Simulation Controls. Make sure the option to Grid to Phase Contact has been checked.11. Change the Z Growth Factor to 1. Click Apply.12. Generate the model. Run ECLIPSE.13. Compare the results from Gas-Water and Gas-Water-High-Vert-Res. Is a higher vertical resolutionnecessary?14. Following the same approach as described in this exercise, investigate how coarse the model canbe possibly made.15. When you are finished, Save the Template model as shown in the previous exercise and close theCBM Template module.16. Exit ECLIPSE Office after saving your project.Exercise 3 – Sensitivity to Reservoir ConditionsIntroductionThe previous exercise consisted in building a 2-phase gas water CBM model and analyzing the impact of gridding controls on simulation results. Ideally, a grid should be fine enough to capture the main features of the reservoir, but coarse enough for simulations to complete within reasonable runtime.The objective of the following exercise is to study in the context of a gas-water coalbed methane problem the sensitivity of production profile to the main reservoir parameters and conditions.This exercise teaches how to create and clone template models as well as compare resulting profiles from different models.StagesCustomizing Reports (26)Changing ECLIPSE Office Settings (26)Creating a New Project (26)Sensitivity to Initial Conditions (27)Gas-Water Contact Depth (27)Initial Pressure (28)Sensitivity to Rock Properties (29)Fracture Porosity (29)Fracture Permeability (30)Isotropic (30)Vertical to Horizontal Anisotropic (31)Horizontal Anisotropic (31)Sensitivity to Fluid Properties (32)Reservoir Temperature (32)Relative permeability (34)Gas (34)Water (37)Coal Gas Properties (38)Langmuir Isotherm Parameters (38)Desorption Time (39)Customizing ReportsThe Graphics Run File (.GRF) called by ECLIPSE Office to display results from the CBM template module is the file COALBEDMETHANE.GRF written under .\ecl\2005a\Office\templates. However whenever simulation results are compared between two or more cases, as seen in this exercise, another.GRF file is used, one that by default only displays the Field Gas Production Rates and the Field Average Pressure.One may select the COALBEDMETHANE.GRF file to compare more plots than the two mentioned above.1. Highlight the Desor-Time CBM case in ECLIPSE Office.2. Select Case | Compare…3. Select LANG1 as the case to compare results of Desor-Time to.4. In the field next to Compare GRF, change the path to the complete path name where theCOALBEDMETHANE.GRF file was saved:D:\ecl\2004a\Office\templates\COALBEDMETHANE.GRF for example if ECLIPSE wasinstalled under D:\.5. Click on Plot. You should now see a complete set of line plots compared.Changing ECLIPSE Office SettingsBy default ECLIPSE Office is not configured to call the COALBEDMETHANE.GRF file in the Case | Compare… dialog. It is possible to change these settings.1. Save your project and close ECLIPSE Office.2. Open the CONFIG.ECL file located in the macros directory under the ECLIPSE installation folder(ecl by default).3. Make a search (Ctrl + F) on the word compare.4. Under SUBSECT CASECOMPARE, change the string$ECLARCH/$ECLVER/office/grf/compare.grf to$ECLARCH/$ECLVER/office/templates/COALBEDMETHANE.GRF.5. Save the changes.6. Fire up ECLIPSE Office, Open the project previously saved and highlight the case Desor-Time.7. Select Case | Compare…8. Notice how the Compare GRF field now automatically points to the correct GRF file.Creating a New Project7. In your Windows Explorer, under the CBM folder created in the previous exercise, create a newfolder named Exercise3.8. From the ECLIPSE Simulation Software Launcher, start Office and select Exercise3 as the startupdirectory.9. As described in Exercise1, create a new project by selecting File | New Project…Name it SENSand click Open.10. From this new project, create a template case named Base.11. Rebuild the model created in Exercise2. Alternatively, the settings from Exercise2 Gas-Watermodel may be imported. In order to achieve that, in the CBM Template module, select File | Open … and select the template start up file Gas-Water.TPM saved in the Exercise2 folder. Click Open.12. Browse the various panels to inspect the value of the various parameters imported.13. Run ECLIPSE.14. Close the CBM Template module. In ECLIPSE Office, save the project.We will now create a series of models from this base case. In each case, parameters used to characterize the reservoir rock, the reservoir initial conditions as well as correlations used to derive relative permeabilities to different phases and PVT tables will be varied to investigate the impact of such changes on the simulated reservoir response.Sensitivity to Initial ConditionsGas-Water Contact Depth1. In ECLIPSE Office, from the Base case, add a clone CBM case named GWC1.2. In the Reservoir Description panel, select the Initial Condtions.3. Change the Gas-Water Contact Depth from 1020 ft to 1010 ft. Click Apply.4. Generate the model.5. Run ECLIPSE.6. Close the CBM Template module.7. Repeat the previous steps to clone Base into case GWC2 and set the GWC above the top of thereservoir (say 900 ft) so that the cleat system is initially filled with water.8. Run ECLIPSE.9. In ECLIPSE Office, select Case | Compare…10. Ctrl-click to select Base and GWC1 to compare the results of GWC2 to.Observe the effect of varying the gas-water contact on the early gas production rate. As the gas-water contact is set to shallower depths, there is initially less gas in the fracture space and therefore less gas produced early on.。

相关文档
最新文档