结构的稳定性

结构的稳定性
结构的稳定性

结构的稳定性=试验+探究+引导+应用

肥城市第六高级中学朱淑芳 2011年7月19日13:18推荐设为资源

技术试验是技术的一种重要思想方法。学生在试验中经历的不仅仅是动手操作,还有技术设计、技术试验的评价等动脑的活动。通过试验法的教学,学生学会进行技术试验的方法,体验技术试验的思想,学会用试验去解决实际问题。

《结构与稳定性》这节,在介绍了稳定性的概念,然后就给出了影响结构稳定性的几个要素。这节课的关键所在是如何让学生分析出影响结构稳定性的几个要素,最好的方法就是通过试验进行处理。根据本校实际和条件,我在教学中针对本节设计了几个试验,具体如下。

分组情况:每班分6组,每组8人左右

试验场地:教室

试验内容:

一、“坐地→扎马步→站立→单腿站立”试验

源自成语:坐如钟站如松。。

试验目的:让学生了解什么是结构的稳定性,将模糊的概念系统化,上升到科学的程度

这个试验不分组,找四个学生到讲台上给大家演示各种姿势,要求保持不动:坐地、扎马步、站立、单腿站立。在这个过程中,单腿站立的学生可能一会的功夫就支撑不住了,左摇右晃,就被淘汰。下一步,请第五个学生上来给他们施加同样的外力,请同学们总结分析不同的结构姿势对试验效果的影响有什么不同?为什么会出现这样的情况?针对不稳定的结构姿势,请提出有效的提高其稳定性的方法?

试验效果:学生很愿意做游戏,并在其中体会了快乐,也总结学会了知识。

二、“扑克牌”试验

小组试验。

试验目的:探究分析结构稳定性与支撑面大小之间的关系,分析支撑面是不是底面积?

每组发几张扑克牌。①要求使牌稳定的站立在桌面上。一张扑克牌想让它立在桌面上几乎是不可能的,但如果把它对折后就能够立在桌面上了。②分析能够使牌站立的折叠的角度范围大约是怎样的?③牌的稳定程度与底面积、支撑面有什么关系?④联系比较生活中常见的折叠式屏风,简单分析其原理。

试验效果:这个试验现象是生活中常见的,只是未与结构的稳定性联系起来,此时加以引导,学生很容易得出结论。而且很容易分清支撑面和底面积的不同之处。

三、“砖头”试验、“摄像机三脚架”试验

小组试验。

试验目的:探究分析结构稳定性与重心高低的关系。

⑴试验很简单,竖立的一块砖头和半块砖头,探究分析①拉倒哪个结构用的力大?②晃动桌子,哪个结构容易歪倒?③投掷石块,哪个容易被砸倒?……从不同的角度验证一块砖头的稳定性不如半块砖头的强。④把一块砖头横放或平铺在桌面上,分析稳定性发生了什么变化?为什么?⑤联系高跷和不倒翁,分析踩高跷时怎样站稳?分析不倒翁为什么不倒?

⑵三脚架,学生也是很熟悉的,每个腿都能灵活的调节高低。让学生观察,在其他两个腿长度不变的情况下,不断地缩短第三条腿,开始三脚架还能站稳,慢慢倾斜终于倒掉。设问:①观察底面积或支撑面有没有发生变化?②三脚架为什么会歪倒?③联系比萨斜塔,分析其会不会倒掉?什么时候倒?

试验效果:经过这个试验的分析,学生不仅总结出重心高低影响了结构稳定性,同时,也知道重心位置和支撑面之间的关系,也想到了增强结构稳定的方法,达到学以致用。

四、“相框”试验

小组试验

试验目的:探究结构稳定性与形状有关。

在模型制作中,学生作了很多简易的相框架,多数是多边形的,现在可以拿出来,继续利用。以前的作品拿到手里,大家马上发现一个问题,就是这个结构虽然做好了,但是稳定性不一定好。让学生分析探究,不稳定的原因和怎样才能增强相框的稳定性?三角形是自然界最稳定的结构是不容置疑的。引申:分析联系生活中的人字梯,为什么那么稳定?撤掉拉杆后,会发生什么情况?

试验效果:学生有几何知识作基础,经过动手改进,加深了印象,深刻的了解了三角形在自然界中的普遍应用。

希望大家提出改进意见,谢谢!

结构失稳和整体稳定性分析

结构失稳和整体稳定性分析 失稳破坏是一种突然破坏,人们没有办法发觉及采取补救措施,所以其导致的结果往往比较严重。正因为此,在实际工程中不允许结构发生失稳破坏。 导致结构失稳破坏的原因是薄膜应力,也就是轴向力或面内力。所以在壳体结构、细长柱等结构体系中具有发生失稳破坏的因素和可能性。这也就是为什么在网壳结构的设计过程中稳定性分析如此被重视的原因。 下面根据本人多年来的研究及工程计算经验,谈谈个人对整体稳定性分析的一点看法,也算做一个小结。 1稳定性分析的层次 在对某个结构进行稳定性分析,实际上应该包括两个层次。(一)是单根构件的稳定性分析。比如一根柱子、网壳结构的一根杆件、一个格构柱(桅杆)等。单根构件的稳定通常可以根据规范提供的公式进行设计。不过对于由多根构件组成的格构柱等子结构,还是需要做试验及有限元分析。(二)是整个结构的稳定分析。比如整个网壳结构、混凝土壳结构等结构整体的稳定性分析。整体稳定性分析目前只能根据有限元计算来实现。 2整体稳定性分析的内容 通常,稳定性分析包括两个部分:Buckling分析和非线性“荷载-位移”全过程跟踪分析。 (1)Buckling分析 Buckling分析是一种理论解,是从纯理论的角度衡量一个理想结构的稳定承载力及对应的失稳模态。目前几乎所有的有限元软件都可以实现这个功能。Buckling分析不需要复杂的计算过程,所以比较省时省力,可以在理论上对结构的稳定承载力进行初期的预测。但是由于Buckling分析得到的是非保守结果,偏于不安全,所以一般不能直接应用于实际工程。 但是Buckling又是整体稳定性分析中不可缺少的一步,因为一方面Buckling 可以初步预测结构的稳定承载力,为后期非线性稳定分析施加的荷载提供依据;另一方面Buckling分析可以得到结构的屈曲模态,为后期非线性稳定分析提供结构初始几何缺陷分布。 另外本人认为通过Buckling分析还可以进一步校核单根构件截面设计的合理性。通过Buckling分析得到的屈曲模态,我们可以看出结构可能发生的失稳破坏是整体屈曲还是局部屈曲。如果是局部屈曲,那么为什么会发生局部屈曲?局部屈曲的荷载因子是否可以接受?是否是由于局部杆件截面设计不合理所导致?这些问题希望能引起大家的注意。 (2)非线性稳定分析 前文已经讲过,Buckling分析是一种理论解。但是由于加工误差、安装误差、温度应力、焊接应力等因素的存在,现实中的结构多少都会存在一些初始缺陷,其稳定承载力与理论解肯定存在一定的差别。另外,由于Buckling分析是线性的,所以它不可以考虑构件的材料非线性,所以如果在发生屈曲之前部分构件进入塑性状态,那么Buckling也是无法模拟的。所以必须利用非线性有限元理论对结构进行考虑初始几何缺陷、材料弹塑性等实际因素的稳定性分析。 目前应用较多的是利用弧长法对结构进行“荷载-位移”全过程跟踪技术,来达到计算结构整体稳定承载力的目的。

结构稳定性的验算与控制

结构稳定性的验算与控制 结构稳定性的验算与控制 1 控制意义: 对结构稳定性的控制,避免建筑在地震时发生倾覆. 当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。 2 规范条文 规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。 规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件. 高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。 高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。计算时,质量偏心较大的裙楼与主楼可分开考虑。 3 计算方法及程序实现 重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由于侧移引起的附加效应。一般只考虑第(2)种,第(1)种对结构影响很小。 当结构侧移越来越大时,重力产生的福角效应( P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。 对于多层结构 P-Δ效应影响很小。 对于大多数高层结构, P-Δ效应影响将在5%~10%之间。 对于超高层结构, P-Δ效应影响将在10%以上。 所以在分析超高层结构时,应该考虑 P-Δ效应影响。 (P-Δ效应对高层建筑结构的影响规律:中间大两端小) 框架为剪切型变形,按每层的刚重比验算结构的整体稳定 剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定 整体抗倾覆的控制??基础底部零应力区控制 4 注意事项 1)结构的整体稳定的调整 当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。 当整体稳定不满足要求时,必须调整结构方案,减少结构的高宽比。 对一些特殊的工业建筑物,在没有特殊要求的情况下,也应满足整体稳定的要求。 2)结构大震下的稳定 第二阶段设计是结构的弹塑性变形验算,对地震下容易倒塌的结构和有特殊要求的结构,要求其薄弱部位的验算应满足大震不倒的位移限制,并采用相应的专门的抗震构造措施。 对于复杂和超限高层结构宜进行第二阶段的设计。 第二阶段的弹塑性变形分析,宜同时考虑结构的P-Δ效应。

高中通用技术必修2__“1.2探究结构---结构的强度和稳定性”

《技术与设计2》第一章第三节《结构的强度和稳定性》教学设计 《结构的强度和稳定性》教学设计 一、教材分析: 本节是“地质出版社”出版的教材《技术与设计2》中第一章第三节《结构的强度和稳定性》。共需2课时完成。本课为第1课时的学习。该章的总体设计思路是:认识结构——探析结构——设计结构——欣赏结构。“结构”与“设计”是该章的两个核心概念,结构的强度和稳定性则是结构设计中需要考虑的重要因素之一,是对结构及受力认识的基础上作进一步深入的学习。 二、教学目标: 知识与技能: 1、理解内力、强度、应力的概念,能进行简单的应力计算,掌握应力和强度的关系。 2、通过实验,明确强度与材料、强度与物体的形状及连接方式的关系。培养学生合作交流能力,对身边事物的观察能力。 3、理解稳定性的概念,及影响稳定性的因素。 过程与方法:通过观察生活和技术实验等方法使学生懂得应用相关的理论知识。 情感态度价值观:让学生亲身体验注重交流,通过分析讨论得到结论,培养学生的观察分析能力,合作交流能力。 三、教学重点与难点: 重点:影响结构强度和稳定性的主要因素。 难点:应力的计算,强度与应力的关系,结构设计需要在容许应力范围之内。 四、学情分析: 总体来说学生对通用技术这门课程比较感兴趣。他们的思维、生活经验已有一定基础,并在前面章节的学习中已经初步掌握了结构的一些相关知识,在此基础上帮助学生从其生活世界中选择通俗感兴趣的主题和内容,对结构问题进行进一步探讨,上升到理论的高度。 五、教学策略:

本课采用在教学中充分利用实验、讨论、小组合作的教学方法。多举生活中的案例,进行师生互动探讨,帮助学生加深对知识的理解。 六、教学安排 1课时 七、教学过程: (一)复习回顾,导入新课 教师引导学生回顾结构的概念,指出事物的性质:强度和稳定性 (二)知识构建 1、强度 对于结构变形,只给以“结实”“不结实”来评说是不够准确的,而对于结构的受力与变形应该有更科学的描述。通常,物体结构抵抗变形的能力,都以强度来表示,我们用应力来衡量强度。 (1)内力:外力使构件发生变形的同时,构件的内部分子之间随之产生一种抵抗变形的抵抗力,称为内力。 (2)应力:作用在单位面积上的内力。 【学生活动一】 (3)拓展:探讨强度和应力的关系 示例:粗绳和细绳,两种相比粗绳更结实,牢固,换句话说是抗拉强度更大。绳子所受拉力一定,即构件受到的外力一定,而粗的横截面积大,所以应力小,此时变形小,而抗变形的能力大,即强度大。 结论:应力小,强度大应力大,强度小 【学生活动二】 (4)结合课本分小组探究影响结构强度的因素,同时完成26页问题,答在学案上。 结构的强度,一般取决于它对张力和压力两方面的反应能力,具体取决于以下因素: 形状、材料(不同的材料有承受不同应力极限的能力) 材料的连接方式(不同的连接方式,受力传递方式和效果不一样) 师生探讨:如何改进物体结构的强度?

【结构稳定理论概念问题(考试)】

结构稳定理论基本概念 态。 2. 什么是结构的第一类稳定问题(分支点失稳),什么是结构的第二类稳定问题(极值点失稳)?两者最明显的区别是什么? 第一类稳定问题:失稳前后平衡形式发生.. 变化的失稳现象。 第二类稳定问题:失稳前后变形形式不发生... 变化的失稳现象。 划分:按照结构或构件在失稳前后变形形式是否发生质变。 特征:第一类稳定-结构在失稳前后的变形产生了性质上的改变,即原来的平衡形式不稳定后,可能出现与原来平衡形式有本质区别的新平衡形式,这种改变是突然性的。 第二类稳定-结构在失稳前后变形的性质不变,只是原来的变形大大发展直到破坏,不会出现新的变形形式。 3. 判断结构平衡的稳定性准则有哪些? 静力准则、能量准则、动力准则 4. 什么是静力准则? 处于平衡的结构体系,收到微小扰动力后, 若在体系上产生正恢复力,当扰动除去后结构恢复到原来的平衡位置,则平衡是稳定.. 的; 若产生负恢复力,则平衡是不稳定... 的; 若不产生任何作用力,则体系处于中性.. 平衡,处于中性平衡状态的荷载即临界荷载。 (静力法只能求解临界荷载,不能判断结构平衡状态的稳定性) 5. 什么是能量准则? 当0>?p E ,则总势能是增加的(p E 为最小值),说明初始平衡位置是稳定.. 的; 当0

稳固结构的探析----结构的稳定性分析

稳固结构的探析----结构的稳定性分析 一、教学目标: 本节课是稳固结构的探析专题的第一节课。《技术课程标准》与稳固结构的探析内容对应的内容标准为:(1)能通过技术试验分析影响结构稳定性和强度的因素(2)理解结构与功能的关系。由于将该专题拆分为三节课来组织教学,本节课的教学的重点放在了解影响结构稳定性的因素。对影响结构的强度因素和结构与功能的关系安排在后面两节课完成。 因此,本节课的具体教学目标为:(1)了解什么是结构的稳定状态。(2)理解影响结构的稳定性有三个主要因素。(3)能够对常见简单结构设计进行正确分析,对稳定不合理结构提出改进意见。具体分解为知识与技能、过程与方法、情感态度与价值观的三维目标为: 知识与技能:(1)了解什么是结构的稳定状态。 (2)理解影响结构的稳定性有三个主要因素。 (3)能够对常见简单结构设计进行正确分析,对稳定不合理结构提出 改进意见。 过程与方法:(1)通过对比技术试验,提高进行简单技术试验的实践能力。 情感态度价值观: (1)在合作技术试验,交流讨论过程中增强合作交流的意识。 (2)过结构稳定性讨论,增强技术安全的意识。 二、教学内容分析: 教材分析: “技术与设计2”模块包含“结构与设计”、“流程与设计”、“系统与设计”、“控制与设计”四个主题,“稳固结构的探析”是“结构与设计”主题的第二节内容,是“结构与设计”主题的核心部分。“结构的稳定性分析”又是“稳固结构的探析”专题中的第一课时内容,是“结构的稳定性分析”,“结构的强度分析”和“结构的功能分析”三个连续环节的第一环。 本节课教材内容分为三个部分:(1)什么是结构的稳定性。(2)影响结构稳定性的三个主要因素。(3)常见结构的稳定性分析。 对于结构的稳定,学生此前是有一定的生活感性认识的。看到被大风刮倒的物品,就认识到这些物品的稳定性是有问题的。但这样的认识仅仅停留在感性层面上,没有上升到理性认识高度。为了引出结构的稳定性这个重要的概念,老师可以根据教材内容,提供

围挡结构抗稳定性计算(自用版)

1、围挡结构形式.............................................. -..1- 2、荷载计算.................................................. -.1 - 3、建立模型.................................................. -.2 - 4、稳定性计算................................................ -.3 -

1、围挡结构形式 围挡采用钢结构立柱,镀锌板厚度为0.6mm高度4米,下座为80cm (长)x 60cm (宽)x 80cm (深)的混凝土基础,围挡每3m设一型钢立柱,主结构柱设置混凝土基础埋入地面,结构形式详见下。 围挡结构图 2、荷载计算 围挡结构自重对围挡抗倾覆是有利荷载,围挡抗倾覆稳定性计算中不予考虑。 风荷载作用下围挡容易产生倾覆矢稳,按最不利情况考虑,风向为水平、垂直于围挡方向时风力最大。 风荷载计算:根据《建筑结构荷载规范》(GB50009-2001可以查得北京地区10年一遇基本风压为0.3KN/ nt 按照《建筑结构荷载规范》(GB50009-2001围护结构风压 池二C S W D 式中:

W k —风荷载标准值(KN k m) 、z—高度Z处的阵风系数 需一局部风压体型系数 J s —风压高度变化系数 、 , 2 W0 —基本风压(取0.3KN/m) 查表得.=2.3 , * =0.8-(-1.0) =1.8 , ? 1=0.74。 W k =.—訂服=2.3 1.8 0.74 0.3=0.92(kN/m2) 每个立柱的附属面积为12 m2,则局部风压体型系数可取 1.8 X 0.8=1.44。 则最终风压标准值为W=0.736 KN/m 2 3、建立模型 荷载传递:水平风荷载彩钢板型钢立柱主结构柱埋入基础部分支撑地面。 受力结构主要为钢立柱,对整个围挡抗倾覆稳定的关键点在于结构柱本身的抗弯拉和抗剪强度。其次,埋入土体里的基础能够从土体里获得的弯矩抗力值也是决定围挡整体稳定的关键因素。 故需验算项目为(1)立柱抗剪强度;(2)立柱抗弯强度; (3)基础嵌固部位抗弯强度。 下座80cm (长)X 60cm (宽)X 80cm (深)的混凝土基础自身具

结构的稳定性

结构的稳定性 一、教学目标: (一)知识与技能: 1、理解稳定和结构稳定性的概念。 2、掌握影响结构稳定性的因素。 3、能运用影响结构稳定性的因素判断结构的稳定性,并能对如何增加结构稳定性提出自己的看法。 (二)过程与方法:通过技术试验及试验分析、小组讨论等方法引导学生综合运用相关的理论知识,提高学生的知识迁移能力。 (三)情感态度价值观:让学生体验实验过程、通过分析讨论得到结论,培养学生的观察分析能力,注重小组之间的交流,培养合作交流能力,鼓励学生表达自己的认识和判断形成实事求是的科学态度,增强学生的主动参与意识。 二、教学重点与难点: (一)教学重点:通过技术试验分析影响结构稳定主要因素。 (二)教学难点:1、影响结构稳定性的主要因素。 2、利用影响结构稳定性的主要因素对简单结构进行稳定性分析。 三、教学方法: 讲授法、PPT演示法、技术试验法、分析讨论、自主探究法、观察发现法、案例分析法等。 四、教学准备: 本节课的教学在技术多媒体教室完成。通过试验,幻灯片呈现诸多的图片、实物,借以加深学生对本节知识的掌握。 多媒体课件、矿泉水瓶3个、剪刀三把、扑克牌若干张。 六、教学过程: (一)引入:图片展示倾斜的货车、被风刮倒的房屋、被风刮倒的广告牌。让学生思考:以上各例,有一个共同的特点,就是在受到外力的作用下,原有的平衡被打破,出现了倒了、歪了、翻了等力学非平衡现象,我们说以上结构的稳定性不好。那什么是结构的稳定性呢?以上各例,有一个共同的特点,就是在受到外力的作用下,原有的平衡被打破,出现了倒了、歪了、翻了等力学非平衡现象,我们说以上结构的稳定性不好。

那什么是结构的稳定性呢? (二)新课讲授 1,结构的稳定性 根据学生的回答结合引入环节的图片中的事物稳定特点引导学生得出稳定的概念:稳定指的不是状态绝对不变,而是指受扰后,允许状态有所波动,但当扰动消失后,能回到原平衡状态。不能回到原平衡状态,为不稳定。 2、结构稳定性的含义:结构具有阻碍翻倒或移动维持其原有平衡状态的特性,就是结构稳定性。 3、影响结构稳定性的因素 【探究一】一同学双脚并拢,一次站立,一次蹲下,用力去拉,哪种姿势更稳? 结论一: 结构或构件重心位置的高低影响结构的稳定性。 重心越低,稳定性越好;重心越高,稳定性越差。 【探究二】如何使鸡蛋稳定地竖直站立,提供的实验材料和工具有:鸡蛋、矿泉水瓶、剪刀。 你完成挑战了吗?你是利用什么原理使鸡蛋稳定地竖直站立的? 结论二:结构与地面接触所形成的支撑面的大小影响结构的稳定性。 结构与地面接触所形成的支撑面越大,结构越稳定。 解释:因为接触面积越大,重心的投影就 越容易落在里面,从而可以达到稳定。 注意:(支撑面≠接触面) 【探究三】用扑克牌堆积金字塔。你做到了吗? 为什么你所搭建的结构是稳定的? 结论:结构(构件)的形状影响结构的稳定性。三角形的结构稳定性较好 三)学以致用:1、如何增加一本课本的稳定性使它能够立起来? 2、落地扇为什么不易倾倒? 3、骑自行车时需要携带一箱书和一床被子,如何放置他们更科学? 4、照相机和摄像机的支架一般都采用三角架,采用这种支架有什么优点? 5、很多人认为用啤酒瓶可以用作地震警报,请同学们思考如何放置啤酒瓶才能提供有效的地震预警?(

51 PKPM计算关于结构稳定性的验算与控制

1.PKPM计算关于结构稳定性的验算与控制2011-9-19 20:10 阅读(458) 转自土木工程网,https://www.360docs.net/doc/642061148.html, A 控制意义: 对结构稳定性的控制,避免建筑在地震时发生倾覆. 当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。 B 规范条文 规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。 规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件. 高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。 高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。计算时,质量偏心较大的裙楼与主楼可分开考虑。 C 计算方法及程序实现 重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由于侧移引起的附加效应。一般只考虑第(2)种,第(1)种对结构影响很小。 当结构侧移越来越大时,重力产生的福角效应(P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。 在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。 对于多层结构P-Δ效应影响很小。 对于大多数高层结构,P-Δ效应影响将在5%~10%之间。 对于超高层结构,P-Δ效应影响将在10%以上。 所以在分析超高层结构时,应该考虑P-Δ效应影响。 (P-Δ效应对高层建筑结构的影响规律:中间大两端小) 框架为剪切型变形,按每层的刚重比验算结构的整体稳定 剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定 整体抗倾覆的控制??基础底部零应力区控制 D 注意事项 >>结构的整体稳定的调整 当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。

《结构的强度和稳定性》教学设计电子教案

《结构的强度和稳定性》教学设计

《技术与设计2》第一章第三节《结构的强度和稳定性》教学设计 《结构的强度和稳定性》教学设计 一、教材分析: 本节是“地质出版社”出版的教材《技术与设计2》中第一章第三节《结构的强度和稳定性》。共需2课时完成。本课为第1课时的学习。该章的总体设计思路是:认识结构——探析结构——设计结构——欣赏结构。“结构”与“设计”是该章的两个核心概念,结构的强度和稳定性则是结构设计中需要考虑的重要因素之一,是对结构及受力认识的基础上作进一步深入的学习。 二、教学目标: 知识与技能: 1、理解内力、强度、应力的概念,能进行简单的应力计算,掌握应力和强度的关系。 2、通过实验,明确强度与材料、强度与物体的形状及连接方式的关系。培养学生合作交流能力,对身边事物的观察能力。 3、理解稳定性的概念,及影响稳定性的因素。 过程与方法:通过观察生活和技术实验等方法使学生懂得应用相关的理论知识。 情感态度价值观:让学生亲身体验注重交流,通过分析讨论得到结论,培养学生的观察分析能力,合作交流能力。 三、教学重点与难点: 重点:影响结构强度和稳定性的主要因素。

难点:应力的计算,强度与应力的关系,结构设计需要在容许应力范围之内。 四、学情分析: 总体来说学生对通用技术这门课程比较感兴趣。他们的思维、生活经验已有一定基础,并在前面章节的学习中已经初步掌握了结构的一些相关知识,在此基础上帮助学生从其生活世界中选择通俗感兴趣的主题和内容,对结构问题进行进一步探讨,上升到理论的高度。 五、教学策略: 本课采用在教学中充分利用实验、讨论、小组合作的教学方法。多举生活中的案例,进行师生互动探讨,帮助学生加深对知识的理解。 六、教学安排 1课时 七、教学过程: (一)复习回顾,导入新课 教师引导学生回顾结构的概念,指出事物的性质:强度和稳定性 (二)知识构建 1、强度 对于结构变形,只给以“结实”“不结实”来评说是不够准确的,而对于结构的受力与变形应该有更科学的描述。通常,物体结构抵抗变形的能力,都以强度来表示,我们用应力来衡量强度。 (1)内力:外力使构件发生变形的同时,构件的内部分子之间随之产生一种抵抗变形的抵抗力,称为内力。

稳定性计算计算书

稳定性计算计算书 本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《建筑施工计算手册》(江正荣编著)等编制。 一、塔吊有荷载时稳定性验算 塔吊有荷载时,计算简图: 塔吊有荷载时,稳定安全系数可按下式验算: 式中K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15; G──塔吊自重力(包括配重,压重),G=310.00(kN); c──塔吊重心至旋转中心的距离,c=1.50(m); h o──塔吊重心至支承平面距离, h o=6.00(m); b──塔吊旋转中心至倾覆边缘的距离,b=2.50(m); Q──最大工作荷载,Q=60.00(kN); g──重力加速度(m/s2),取9.81; v──起升速度,v=0.50(m/s); t──制动时间,t=20.00(s);

a──塔吊旋转中心至悬挂物重心的水平距离,a=15.00(m); W1──作用在塔吊上的风力,W1=4.00(kN); W2──作用在荷载上的风力,W2=0.30(kN); P1──自W1作用线至倾覆点的垂直距离,P1=8.00(m); P2──自W2作用线至倾覆点的垂直距离,P2=2.50(m); h──吊杆端部至支承平面的垂直距离,h=30.00m(m); n──塔吊的旋转速度,n=0.60(r/min); H──吊杆端部到重物最低位置时的重心距离,H=28.00(m); α──塔吊的倾斜角(轨道或道路的坡度),α=2.00(度)。 经过计算得到K1=1.506; 由于K1≥1.15,所以当塔吊有荷载时,稳定安全系数满足要求! 二、塔吊无荷载时稳定性验算 塔吊无荷载时,计算简图: 塔吊无荷载时,稳定安全系数可按下式验算: 式中K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=310.00(kN); c1──G1至旋转中心的距离,c1=3.00(m); b──塔吊旋转中心至倾覆边缘的距离,b=2.00(m);

结构动力稳定性的分析方法与进展_何金龙

结构动力稳定性的分析方法与进展 何金龙1,法永生2 (1.卓特建筑设计有限公司,广东佛山528322;2.上海大学土木工程系,上海200074) 【摘 要】 就目前结构动力稳定性问题这一研究领域的若干基本问题,常用的处理方法,判别准则与实验研究方法以及目前取得的主要成果作了简要总结和综述,并且对结构动力稳定性分析与研究今后的发展方向进行了展望。 【关键词】 结构; 动力稳定性; 处理方法; 判别准则; 实验研究 【中图分类号】 T U311.2 【文献标识码】 A 根据结构承受荷载形式的不同,可以将结构稳定问题分为静力稳定和动力稳定两大类。动力载荷作用下结构的稳定性问题是一个动态问题,由于时间参数的引入,使问题变得极为复杂。对于结构动力稳定性的定义一直难以确切给出,这是因为结构自身动力特性具有复杂性使得其在数学意义上的定义很难予以准确表达[1]。长期以来,力学工作者致力于结构稳定性问题的研究,在发展了经典稳定性理论的同时也极大地推动了动力稳定理论研究的前进。如稳定性判定准则的建立、临界载荷的确定、初缺陷的影响或后分叉分析等。理论分析和实验研究逐渐增多,使得这门学科不仅在理论上形成了一个庞大而复杂的体系,而且具有重要的实用价值。可以说,现在的结构动力稳定性研究分析已经是结构动力学、有限元法、数值计算方法及程序设计等诸多学科相互交叉、有机结合的产物,属于现代工程结构研究领域中的一个重要分支。 1 结构动力稳定性的分类及主要的研究问题 结构动力稳定性就其承载的动力形式大致可以分为三类。 (1)结构在周期性荷载作用下的动力稳定性。在简谐荷载等周期性荷载作用下,当结构的自振频率与外载荷的强迫振动频率非常接近时,结构将产生强烈的共振现象;当结构的横向固有振动频率与外荷载的扰动频率之间的比值形成某种特定的关系时,结构将产生强烈的横向振动,即参数振动。对于这类问题,前苏联学者符华·鲍络金(Bolito n)在其著作《弹性体系的动力稳定》中给出了较全面的分析和论述。他们导出的区分稳定区和不稳定区的临界状态方程是一个周期性方程,即M athieu-Hill方程。在周期相同的解之间存在着不稳定区域,便把问题归结为确定微分方程具有周期解的条件,从而解决了稳定的判别问题。但是对于大变形的几何非线形结构,结构的刚度矩阵需要经过迭代,微分方程非常复杂,这些理论将难以成立。 (2)结构在冲击荷载作用下的动力稳定性。在这种情况下,结构的动力稳定性与冲击类型密切相关,而且首要问题在于合理、实用的判别准则,它不仅要在逻辑上站得住脚,又要在实际上可行,遗憾的是这个问题至今未能形成一致的看法。目前对结构承受瞬态冲击作用下的冲击稳定性的试验和理论研究主要集中在理想脉冲以及阶跃荷载下的动力稳定性。在脉冲荷载作用下发生的动力屈曲称为脉冲屈曲,已有的研究表明[2][3][4],脉冲屈曲是一类响应式屈曲或者动力发展型屈曲。阶跃荷载是一类具有恒定幅值和无限长持续时间的载荷形式。在试验或者实际当中,固体与固体之间的冲击引起的屈曲就可看作脉冲冲击。 (3)结构在随动荷载作用下的动力稳定性。所谓随动荷载是指随着时间的变化荷载的幅值保持不变而方向发生变化的作用力,它是非保守力。它的分析将极其复杂,目前还难以见到可借鉴的动力稳定性分析文献。因此,许多学者通常采用结构动力学响应分析常用的手段,将这类荷载作为确定性荷载进行分析。通过对结构的动力平衡路径全过程进行跟踪,根据结构的各参数在动力平衡路径中的变化特性,对结构的动力稳定性进行有效的判定[5]。 综上所述,目前国内外动力稳定性研究的现状大致为:对周期荷载下的参数动力稳定性问题、在冲击荷载作用下的冲击动力稳定性问题和阶跃荷载下的参数阶跃动力稳定性问题研究较多,并取得了满意的效果[6][7][8]。恒幅阶跃载荷及矩形脉冲载荷或其它冲击载荷作用下杆的动力稳定问题也有很多研究,并从不同的角度建立了一些稳定性判定准则。但冲击载荷作用下板的动力稳定问题还没有获得广泛和深入的研究。对于较为复杂的冲击荷载作用下结构的动力稳定性问题,目前的研究主要集中于理想脉冲载荷和阶跃载荷作用下结构的动力稳定问题。在这类问题的分析中,最常采用的屈曲准则有B-R准则、Simitses总势能原理和放大函数法。对非周期激振、参数激振和强迫激振耦合引起的动力稳定问题研究较少;对弹性基本构件和简单模型研究较多(如周期激励下的柱子、梁、拱及壳等已得到了成功的分析),对复杂工程结构研究较少。对于在地震、风荷载等任意动力荷载作用下的具有较强的几何非线性的结构的动力稳定性问题,国内外这方面的文献资料虽然最近几年也有一些,但距离真正地合理解决这类动力稳定性问题还有许多工作要做。 [收稿日期]2006-06-12 [作者简介]何金龙(1962~),男,工学学士,一级注册结构工程师,主要从事工业与民用建筑设计工作。 155  ·工程结构·  四川建筑 第27卷2期 2007.04

结构的稳定性(案例)

课题:结构的稳定性 一、教学目标: 1、知识目标:理解结构稳定性的概念,掌握影响结构稳定性的因素。 2、能力目标:能对物体的结构进行理论分析并通过技术试验分析影响结构稳定性的主要因素;能对结构提出合理化的设计,动手改造和革新物体的结构,培养学生的创新精神和实践能力。 3、情感目标:通过分析讨论、合作学习,培养学生的团结合作精神,主动参与意识,体验学习乐趣;培养学生观察――怀疑--试验--总结的研究思路;渗透安全教育、德育教育,培养学生实事求是、严谨负责的科学态度从而形成富有责任感的技术设计观。 二、教学重点、难点 1、重点:掌握影响结构稳定性的主要因素。 2、难点:利用所学知识分析实际案例,解决实际问题。 三、教学资源 一个不倒翁玩具、两个熟鸡蛋、三个矿泉水瓶、几本书、多媒体等 四、教法设计 开始采用激趣法,通过观察多媒体图片让同学思考为什么台风过后很多结构受到破坏比较严重,而有些结构基本没有损坏,从而引起学生对结构稳定性的兴趣。接下来结合生活事例,让学生主动观察或亲自动手试验,引导学生总结稳定性的概念,探究影响结构稳定性的两个主要因素。然后通过合作探究、能力拓展两个环节让学生把知识变为能力,让学生自己分析生活中的关于结构稳定性的实例,并动手改进结构的稳定性。 五、教学过程 (一)导入新课 【大屏幕展示台风过后城市的浪迹场面】 我国东南沿海地区经常有台风袭击,台风中心所到之处,一片狼藉,很多结构受到破坏,然而也有一部分结构基本完好,这说明,有的结构稳定性好,有的结构稳定性不好。 【学生观察归纳】 图片中哪些物品稳定性好,哪些物品稳定性不好? 【老师引出课题】 为什么有些结构容易翻倒而有些不容易反倒?结构的稳定性跟哪些因素有关?我们又如何提高结构的稳定性而避免给我们带来不必要的损失?这说明结构的稳定性设计在我们的生产生活中是非常重要的。这节课我们就来讨论这些问题。 (二)知识构建 知识一:稳定性的概念(通过老师的试验展示,学生归纳总结) 【老师出示不倒翁玩具并用手扳动】 学生通过观察、总结稳定性概念――结构的稳定性是指结构在外力的作用下,维持其平衡状态的能力。稳定指的不是状态的绝对不变,而是受到干扰后允许状态有所波动,但当扰动消失后能重新返回到原始的平衡状态,则为稳定。不能回到原有的平衡状态,则为不稳定。

《结构与稳定性》教案

《结构与稳定性》教案 教材分析:本节内容是苏教版《技术与设计2》章第二节稳固结构的探析第1课时的内容。教学内容为影响结构的稳定性的因素,主要包括重心位置的高低、与地面接触所形成的支撑面的大小、结构的形状等。本节内容有承上启下的作用,可以使学生对前面学习的结构的基本知识有更深的认识和巩固,也为下一节课时结构与强度和功能的学习,为后续的简单结构的设计和经典结构的欣赏学习做好铺垫,本课是在感性的认识基础上进一步探究结构的重要性质之一的稳定性,可使学生对如何构建一个稳定的结构有更深的认识,并最终为解决实际问题能设计出成功的结构奠定了良好的基础。 教学目标: 知识与技能:理解结构稳定性的含义。 过程与方法:通过试验,分析总结出影响结构稳定性的主要因素。 情感态度与价值观:激发学生结构探究兴趣和欲望,培养学生的思想和意识。 教学重点和难点: 重点:影响结构稳定的主要因素。 难点:1、影响结构稳定的主要因素在不同结构中的体

现。 能从影响结构稳定性的多个因素综合探讨典型结构的稳定性。 教学策略手段: 采用直观教学法。通过试验、举例、图片和实物展示,采用直观教学方法让学生亲身体会和感受,激发学生的学生的学习兴趣和促进对相关概念的理解。 采用探究式教学方法。通过纸板屏风的小实验,结合案例分析,激发学生探究热情,提高学生掌握相关知识的稳定性。 立足学生的直接经验和亲身经历。通过做中学,以学生的亲历情境、亲手操作、亲身体验为基础,学生自己能发现问题、提出问题、分析问题,并将所学知识应用于实际问题的解决。 学情学法: 通过节的学习,学生认识了常见的结构,会从力学的角度理解结构的概念,会简单的分析结构的受力,使得学生有了学习本课时的基础。学习本课可以使学生对结构特性有更深入的认识,并为后续的结构设计教学奠定基础。 因为教学内容以及概念的具体性,需要在课堂上通过对具体实例的探究,学生才会建立起比较稳定的结构与稳定性相关概念,也有利于提高学生的理解技术、运用技术的能力。

【结构设计】浅析结构稳定性的验算要的目的

浅析结构稳定性的验算要的目的 A控制意义: 对结构稳定性的控制,避免建筑在地震时发生倾覆. 当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。 B规范条文 规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。 规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件. 高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。 高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。计算时,质量偏心较大的裙楼与主楼可分开考虑。 C计算方法及程序实现 重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由

于侧移引起的附加效应。一般只考虑第(2)种,第(1)种对结构影响很小。 当结构侧移越来越大时,重力产生的福角效应(P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。 在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。 对于多层结构P-Δ效应影响很小。 对于大多数高层结构,P-Δ效应影响将在5%~10%之间。 对于超高层结构,P-Δ效应影响将在10%以上。 所以在分析超高层结构时,应该考虑P-Δ效应影响。 (P-Δ效应对高层建筑结构的影响规律:中间大两端小) 框架为剪切型变形,按每层的刚重比验算结构的整体稳定 剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定整体抗倾覆的控制??基础底部零应力区控制 D注意事项 >>结构的整体稳定的调整 当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。 当整体稳定不满足要求时,必须调整结构方案,减少结构的

建筑知识-如何计算水工结构的强度、刚度和稳定性_1

如何计算水工结构的强度、刚度和稳定性 首先是结构的强度、刚度和稳定性。工程结构的主要功能是能够承载和传递载荷(载荷是指外力和其他导致结构或构件内力和变形的因素)。要转移负荷,首先要能承受负荷。能负重是什么意思?工程学有三个基本标准. 首先是结构的强度、刚度和稳定性。 工程结构的主要功能是能够承载和传递载荷(载荷是指外力和其他导致结构或构件内力和变形的因素)。要转移负荷,首先要能承受负荷。能负重是什么意思?工程上有三个基本标准。这三个基本标准是:强度、刚度、稳定性。 什么是强度? 强度是指一种材料或结构可以承受多大的载荷而不损坏。举个简单的例子,对一根棒施加一个力,当这个力达到一定程度时,它就会折断。钢筋在外力作用下受损时产生的最大应力为极限强度,也可称为破坏强度(有些材料在达到极限强度之前有屈服强度,此处不详述)。 什么是僵硬? 刚度是指材料或结构在受力时抵抗弹性变形的能力。建筑结构在使用中有变形极限的要求。如果变形过大,可能不会损坏,但实际上已经失去了使用功能。 但仍然存在结构失去结构功能的情况,这就是结构的稳定性。 什么是结构稳定性?

结构的稳定性是指结构在外部荷载作用下保持其原始平衡状态的能力。如果结构在外荷载作用下不能保持原来的平衡状态,称为“失稳”。比如建筑结构压杆的稳定性。抗滑稳定和抗倾稳定是水工建筑物中经常遇到的问题。比如一个重力坝,它的作用是挡水,有一种情况:它的材料被破坏或变形,这就是强度或刚度问题;但可能会出现内部的材料不一定损坏变形,而是被水平力推动或翻倒,无法再发挥挡水功能,造成巨大灾难的情况。这就是重力坝抗滑抗倾的稳定性。 本文主要讨论水工建筑物的稳定性计算。另外,如文章标题所示,本文只谈科普的性质,并未深入探讨。 二.水工建筑物抗滑抗倾稳定性综述 水工建筑物的抗滑稳定和抗倾稳定,如重力坝、闸室、泵站、挡土墙的稳定,基本上可以归结为一个简单的模型,如下图所示: 上图中,水平方向的合力p、垂直方向的合力w、顺时针方向的合成力矩m、逆时针方向的合成力矩m为顺时针方向。 规范给出的稳定安全系数计算公式为: 抗滑稳定安全系数KC=w/p,必须大于规范要求的值。 抗倾稳定性的安全系数k0= mv/ MH应大于规范要求的值。 这将在下面详细解释。 三、抗滑问题的力学解释 上述抗滑稳定安全系数的计算公式为KC= w/ p,即垂直方向合力与水平方向合力之比应大于一定值,必须大于1.0,而某些工程设计规范

结构稳定理论

结构稳定理论

—拉普森方法上加以改进的一种更利于求解收敛的迭代法,引入了一个附加的未知项一荷载因子λ,其迭代过程如图2-1所示。 图2-1 弧长法 非线性屈曲分析比线性屈曲分析更精确。主要步骤设置:(1)考虑几何非线性,激活大变形效应;(2)材料模型定义。材料非线性由材料屈服准则、流动准则、强化准则定义;(3)施加荷载;(4)求解设置。定义荷载步、子步数、平衡迭代数,定义收敛准则,指定程序终止选项。划分的子步数对屈服荷载的预测准确性有很大的影响,荷载增量不宜过大;(5)采用弧长法。不指定荷载步TIME 值,也不能使用线性搜索、时间步长预测、自适应下降和自动时间步长。可以减小初始半径和降低弧长半径的下限来克服收敛困难;(6)结果。观察结构屈曲变形和相对应力分布;得到结构上任意节点的荷载—变形曲线。 3 多层钢框架整体稳定性分析 6层钢框架,横向(Y)为3跨,柱间距为6m ,纵向(X)为6跨,柱间距为4m ,层高4m ,楼面活荷载标准值为2kN/m ,沿轴线方向的所有梁上施加均布的水平线荷载q 。 钢框架梁为H 形截面,截面尺寸为w f H B t t ???=350×200×20×10,柱

图3-1 Beam188单元 图3-2 Shell181单元 3.1.2网格划分、边界条件和加载 定义单元截面、材料性质,创建几何实体模型,有限元模型网格划分的优劣直接影响结构计算的准确性,本文对钢框架的梁柱网格进行了细划分。为了反映多层钢框架在实际应用中的受力状态,在框架柱脚节点约束了所有方向的自由度,即假定框架柱脚与地面为理想刚接。按照实际情况考虑混凝土楼板以及框架梁柱的重力荷载,楼面的活荷载作用,沿轴线方向所有梁上作用均布水平线荷载q,方向与Y轴的正方向一致。 有限元模型如图3-3所示。

稳定性计算

稳定性计算 本计算主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《建筑施工计算手册》(江正荣编著)等编制。 一、塔吊有荷载时稳定性验算 塔吊有荷载时,计算简图: 塔吊有荷载时,稳定安全系数可按下式验算: 式中K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15; G──塔吊自重力(包括配重,压重),G=550.00(kN); c──塔吊重心至旋转中心的距离,c=1.50(m); h o──塔吊重心至支承平面距离, h o=60.00(m); b──塔吊旋转中心至倾覆边缘的距离,b=2.50(m); Q──最大工作荷载,Q=56.00(kN); g──重力加速度(m/s2),取9.81; v──起升速度,v=0.65(m/s); t──制动时间,t=20.00(s);

a──塔吊旋转中心至悬挂物重心的水平距离,a=30.00(m); W1──作用在塔吊上的风力,W1=4.00(kN); W2──作用在荷载上的风力,W2=0.30(kN); P1──自W1作用线至倾覆点的垂直距离,P1=40.50(m); P2──自W2作用线至倾覆点的垂直距离,P2=3.00(m); h──吊杆端部至支承平面的垂直距离,h=118.90m(m); n──塔吊的旋转速度,n=0.65(r/min); H──吊杆端部到重物最低位置时的重心距离,H=83.00(m); α──塔吊的倾斜角(轨道或道路的坡度),α=0.00(度)。 经过计算得到K1=1.256; 由于K1≥1.15,所以当塔吊有荷载时,稳定安全系数满足要求! 二、塔吊无荷载时稳定性验算 塔吊无荷载时,计算简图: 塔吊无荷载时,稳定安全系数可按下式验算: 式中K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=400.00(kN); c1──G1至旋转中心的距离,c1=3.00(m); b──塔吊旋转中心至倾覆边缘的距离,b=2.50(m);

结构稳定理论复习思考题

结构稳定理论复习思考题 1、平衡稳定性的三个基本准则是什么?根据这三个准则,求结构稳定临界荷载方法有哪些?求解临界荷载是在结 构原来的位图上求解还是在变形后位图上求解? 答:三个基本准则:静力准则、能量准则、动力准则。 求临界荷载方法:静力平衡法、能量方法、动力方法。 必须采用结构产生变形后的计算图形来建立平衡方程和其总势能表达式。P11 2、结构稳定问题有哪些类型? 答:稳定问题根据荷载-位移和荷载-变形曲线不同分为两类: 1)第一类稳定问题,具有平衡分枝点的稳定问题。 属于这类稳定问题的有:轴压杆的弯曲屈曲、轴压杆和压弯杆件的弯扭屈曲、在腹板平面内受荷的梁的侧扭屈曲以及在板平面内受轴压荷载和剪切荷载的薄板的弯曲屈曲等。 在临界荷载Pcr以前,属稳定平衡;在临界荷载Pcr以后,进入不平衡状态。 2)第二类稳定问题,无平衡分枝的稳定问题。 属于这类稳定问题的有:压弯杆件在弯矩作用平面内的稳定。 上升段是稳定的,下降段是不稳定的,转折点即不稳定平衡的临界状态,用极限荷载Pn表示。 3)跌越失稳 3、结构稳定问题与结构强度问题的有何区别? 答:1)强度问题,是指结构或单个构件在稳定平衡状态下由荷载所引起的最大应力(或内力)是否超过建筑材料的极限强度,因此是一个应力问题。 2)稳定问题,主要是要找出外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态,从而设法避免进入该状态,因此,它是一个变形问题。 3)强度问题可以采用一阶或二阶分析结构内力,而稳定问题必然是二阶分析,其外荷载与变形间呈非线性关系,叠加原理不能应用。 4、理想轴压杆小挠度理论和大挠度理论有哪些不同?根据你的理解,理想轴压杆大挠度理论最适合用于分析夏志 斌教授《结构稳定理论》书中P29图1-5中哪个阶段的轴压杆的力学行为? 答:从P/P E-δ/l关系曲线分析不同点: 1)大挠度理论,在P/P E>1,时,与小挠度理论的差别是能得到相应于屈曲后强度的曲线; 2)小挠度理论的分枝荷载代表了由稳定平衡到不稳定平衡的分枝点,而大挠度理论的分枝荷载则是由直线稳定平衡状态到曲线稳定平衡状态的分枝点。 3)大挠度理论,荷载较临界荷载略有增加,就将导致较大的挠度,在挠度很小的范围内,小挠度理论代替大挠度理论完全可行。 4)在弹性工作阶段,一般都可采用小挠度理论。 AB段?B-C? 5、初弯曲、初偏心以及残余应力对压杆稳定承载力有哪些影响? 答:1)初始缺陷(几何缺陷、荷载缺陷)将降低柱的承载能力,缺陷越大,荷载降低得越多。受荷初期,挠度增长较慢,当P P E时,挠度显著增加。欧拉荷载是实际压杆承载力的一个上限。 2)初弯曲和初偏心两个缺陷对柱子稳定性产生的影响相似,可以用其中一个缺陷来模拟两个缺陷都存在的实际压杆。 3)残余应力降低比例极限,使柱子提前出线弹塑性屈曲,并降低了临界荷载或临界应力。 6、结构稳定计算方法中能量方法是精确方法吗?为什么能量方法得出的结果往往是近似的? 答:是精确方法。P69 1)变形连续体是由无数个介质点所组成,基于能量方法的近似解法用有限个自由度的体系来代替。 2)预先假定的位移函数与真是的位移函数存在一定的误差,带来计算的近似性。 7、结构稳定分析有限元法与结构静力分析有限元法有哪些区别? 答:(1)稳定问题有限元法中轴向力对单元刚度有影响,而静力问题有限元则忽略轴向力对刚度的影响;(2)求pcr 时,在稳定问题有限元法中,初应力对其有影响,而在静力问题有限元中不考虑。稳定问题有限元法中的单元刚度矩阵由两部分组成(1)普通受弯杆单元的刚度矩阵,与杆件截面特性相关,与轴力P无关,(2)轴向荷载对刚度的影响当轴力P为压力时,将减小杆件的刚度,当为拉力时,将增加杆件的刚度,它与截面的特性无关,称为初应力刚度或几何刚度矩阵。静力问题有限元中的单元刚度只由第一部分组成,不受轴向荷载的影响。

相关文档
最新文档