金属的焊接性能
金属材料的焊接性能汇总
金属材料的焊接性能(2014.2.27)摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。
关键词:碳当量;焊接性;焊接工艺参数;焊接接头1 前言随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。
2 金属材料的焊接性能2.1 金属材料焊接性的定义及其影响因素2.1.1 金属材料焊接性的定义金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。
一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。
工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。
它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。
所以金属材料的工艺焊接性与焊接过程密切相关。
使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。
使用性能取决于焊接结构的工作条件和设计上提出的技术要求。
通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。
例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。
从理论上,凡是在熔化状态下相互能形成固熔体或共晶的两种金属或合金,原则上都可以实现焊接,即具有所谓原则焊接性,又叫物理焊接性,然而,这种原则焊接性仅仅为材料实现焊接提供依据,并不等于该材料用任何焊接方法,都能获得满足使用性能要求的优质焊接接头。
金属材料的焊接性
普通低合金结构钢:
σs<400MPa ω(C)<0.4% 低强度普通低合金结构钢: 16Mn、09Mn2Si 焊接性良好。 高强度普通低合金结构钢: σs>400MPa ω(C)<0.4%~0.5%
15MnVN、18MnMoNb、14MnMoV 焊接性较差。
焊前预热(150~250 ℃ ),焊后缓冷;选用低氢型焊条; 焊件开坡口,且采用细焊条、小电流、多层焊。
3. 高碳钢的焊接
高碳钢:C>0.60% 问题
ω(C)>0.60%
焊接性差。
焊缝区易产生热裂纹 热影响区易产生冷裂纹
措施 与中碳钢类似,采用较高的温度的焊前预热 (250~350 ℃ ),焊后缓冷。
避免选用高碳钢作为焊接结构件。
焊补
合金结构钢的焊接
合金结构钢 机械制造用结构钢 (调质钢、渗碳钢) 普通低合金结构钢 (压力容器、锅炉、桥梁、
氩弧焊、气焊、钎焊、碳弧焊。
2. 冷焊法
焊前不预热或低温预热(400 ℃)的焊补方法。 ①钢芯铸铁焊条: 适用于非加工表面的焊补 ②石墨化铸铁焊条: 适用于较大灰口铸铁件的焊补 焊缝性能与母材基本相同,具有良好的加工性 焊条
③铜基铸铁焊条: 主要用于一般铸铁件的焊补
抗裂性好,可进行机械加工。 ④镍基铸铁焊条: 主要用于重要件加工表面的焊补 具有良好的抗裂性与加工性 ⑤高钒铸铁焊条: 主要用于一般铸铁件的焊补 可进行机械加工、塑性和抗裂较好。
焊接性
3)焊件化学成分
4)工艺参数
3. 焊接性的评定方法
1)实验法
2)碳当量估算法 C — 影响最显著 — 基本元素
其它元素 — 折合成碳的相当含量对焊接性的影响
常用金属材料的焊接性
常用金属材料的焊接性焊接是指将两个或多个金属材料通过加热或施加压力等方式连接在一起的工艺。
常用的金属材料包括钢铁、铝、铜、镍、钛等。
这些金属材料在焊接时拥有不同的特性和焊接性能。
下面将针对常见金属材料的焊接性进行详细介绍。
1.钢铁焊接性钢铁是最常见的金属材料之一,其焊接性能较好。
在钢铁焊接中常用的方法包括电弧焊、气焊、激光焊等。
其中,电弧焊是最常见的焊接方法,在焊接钢铁时通常使用熔化电极和熔化极性相同的焊条。
钢铁的焊接性能取决于其成分、组织结构以及焊接方法等因素。
2.铝焊接性铝是一种常见的轻金属,其焊接性能较差。
由于铝的氧化膜容易形成,这会降低焊接接头的强度和质量。
为了提高铝的焊接性能,可以采用预处理、焊接保护气体等方法。
常见的铝焊接方法有气焊、TIG焊等。
在气焊中需要使用钡剂等预处理剂来清除氧化膜,而TIG焊则可以通过惰性气体的保护来减少氧化膜的生成。
3.铜焊接性铜是一种良好的导电材料,其焊接性能较好。
常见的铜焊接方法有气焊、TIG焊、电弧焊等。
在铜焊接中,氧化膜的清除很重要,可以使用钝化剂等预处理剂来清除氧化膜。
TIG焊和电弧焊是常用的铜焊接方法,可以通过选择合适的焊接材料和控制焊接参数来获得理想的焊接接头。
4.镍焊接性镍是一种耐腐蚀性较好的金属材料,其焊接性能较好。
常见的镍焊接方法有电弧焊、TIG焊等。
镍焊接时,需要注意选择合适的焊接材料和适当的焊接参数来获得理想的焊接接头。
在镍焊接中,尤其需要注意焊接电缆和接地端之间的电气连接,以避免电弧腐蚀。
5.钛焊接性钛是一种重要的结构材料,其焊接性能较好。
常用的钛焊接方法有电弧焊、激光焊等。
在钛焊接中,需要注意选择合适的焊接材料和适当的焊接参数,以避免产生气泡和裂纹等缺陷。
此外,钛焊接还需要进行保护气体的控制,以避免氧化等不良影响。
综上所述,常用金属材料的焊接性能因成分、组织结构以及焊接方法等因素的不同而有所差异。
了解和掌握这些材料的焊接性能对于实际应用和工程设计具有重要意义,能够确保焊接接头的质量和可靠性。
金属的焊接性
金属的焊接性一、金属焊接性1.概念:金属焊接性就是金属是否能适应焊接加工而形成完整的、具备一定使用性能的焊接接头的特性。
含义:一是金属在焊接加工中是否容易形成缺陷;二是焊成的接头在一定的使用条件下可靠运行的能力。
评价标准:如果某种金属采用简单的焊接工艺就可获得优质焊接接头并且具有良好的使用性能或满足技术条件的要求,就称其焊接性好;如果只有采用特殊的焊接工艺才能不出缺陷,或者焊接热过程会使接头热影响区性能显著变坏以至不能满足使用要求,则称其焊接性差。
2.影响焊接性的因素1)材料因素材料是指用于制造结构的金属材料及焊接所消耗的材料。
前者称为母材或基本金属,即被焊金属。
后者称为焊接材料包括焊条、焊丝、焊剂、保护气体等。
材料因素包括化学成分、冶炼轧制状态、热处理状态、组织状态和力学性能等。
其中化学成分(包括杂质的分布与含量)是主要的影响因素。
碳对钢的焊接性影响最大。
含碳量越高,焊接热影响区的淬硬倾向越大,焊接裂纹的敏感性越大。
也就是说,含碳量越高焊接性越差。
除碳外钢中的一些杂质如氧、硫、磷、氢、氮以及合金钢中常用的合金元素锰、铬、钴、铜、硅、钼、钛、铌、钒、硼等都不同程度地增加了钢的淬硬倾向使焊接性变差。
若焊接材料选择不当或成分不合格,焊接时也会出现裂纹、气孔等缺陷,甚至会使接头的强度、塑性、耐蚀性等使用性能变差。
2)设计因素设计因素是指焊接结构在使用中的安全性不但受到材料的影响而且在很大程度上还受到结构形式的影响。
例如结构刚度过大或过小,断面突然变化,焊接接头的缺口效应,过大的焊缝体积以及过于密集的焊缝数量,都会不同程度地引起应力集中,造成多向应力状态而使结构或焊接接头脆断敏感性增加。
3)工艺因素工艺因素包括施焊方法(如手工焊、埋弧焊、气体保护焊等)、焊接工艺(包括焊接规范参数、焊接材料、预热、后热、装配焊接顺序)和焊后热处理等。
在结构材料和焊接材料选择正确、结构设计合理的情况下工艺因素是对结构焊接质量起决定性作用的因素。
11-1金属的焊接性
工艺措施对防止焊接接头的缺陷也起到重要作用 焊前预热、焊后缓冷和消氢处理对防止热影响区的 淬硬变脆降低焊接应力防止裂纹是比较有效的措施。 构件类型方面: 焊接构件的结构设计会影响应力状态,从而影响焊接性。 接头处于刚度较小的状态,能自由收缩。可防止裂纹 注意避免缺口、截面突变、焊缝余高过大、交叉焊缝 不必增大焊件厚度和焊缝体积,否则产生多向应力。 使用条件方面: 高温工作时,易产生蠕变。 低温工作或冲击载荷时,容易发生脆性破坏。 在腐蚀介质下工作时,接头要求具有耐腐蚀性。
常用金属材料的焊接
目的与要求: ①掌握金属焊接性的含义、内容、影响因素。 ②掌握碳当量的含义、计算公式及评定方法。 重点: ①碳当量焊接性的含义、焊接性的评定方法及工艺的拟订。 ②掌握碳当量的含义、计算公式及评定方法。 难点: 焊接性能的影响因素及碳当量的计算公式和评定方法。
一、焊接性概念 金属的焊接性:指金属材料对焊接加工的适应性。也就是 说在一定的焊接工艺条件下,获得优质焊 接接头的难易程度。 内容:包括接合性能和使用性能。 接合性能:在一定的焊接工艺条件下,一定的金属形成 焊接缺陷的敏感性。 使用性能:在一定的焊接工艺条件下,一定的金属的焊 接接头对使用要求的适应性。
同时具有预期的使用性能。
焊接性细分 工艺焊接性——金属材料对各种焊接方法的适应能力。 金属材料本身、焊接热源、工艺措施。 使用焊接性——焊接接头满足技术条件中所规定的使用 性能的能力。
焊接性还可以分为:冶金焊接性和热焊接性。
二、焊接性影响因素 主要有四个方面:材料方面、焊接方法及工艺方面、 构件类型方面、使用条件方面。 材料方面: 母材和焊接材料(如:焊条、焊丝、焊剂、保护气体等)。 母材的性质起决定性影响 焊接材料起关键性作用 如母材与焊接材料匹配不当时,就会造成焊缝金属的化 学成分不合格,力学性能和其他使用性能降低。 焊接方法及工艺方面: 焊接方法对焊接性的影响主要在两个方面 焊接热源的特点 影响热循环 对熔池和接头的保护 影响焊接冶金过程
金属材料的焊接性
第三节 金属材料的焊接性1. 焊接性的概念—定焊接技术条件下,获得优质焊接接头的难易程度,即金属材料对焊接加工的适应性称为金属材料的焊接性。
2.焊接性的评价1) 碳当量法碳当量是把钢中的合金元素(包括碳)的含量,按其作用换算成碳的相对含量。
国际焊接学会推荐的碳当量(CE)公式为:%)++++++=10015)Cu ()Ni (5)V ()Mo ()Cr (6)Mn ()C ([CE ⨯ωωωωωωω 式中,ω(C)、ω(Mn)等-碳、锰等相应成分的质量分数(%)。
当CE<0.4%时,钢材的塑性良好,淬硬倾向不明显,焊接性良好。
在一般的焊接技术条件下,焊接接头不会产生裂纹,但对厚大件或在低温下焊接,应考虑预热;当CE 在0.4~0.6%时,钢材的塑性下降,淬硬倾向逐渐增加,焊接性较差。
焊前工件需适当预热,焊后注意缓冷,才能防止裂纹;当CE>0.6%时,钢材的塑性变差。
淬硬倾向和冷裂倾向大,焊接性更差。
工件必须预热到较高的温度,要采取减少焊接应力和防止开裂的技术措施,焊后还要进行适当的热处理。
2)冷裂纹敏感系数法 冷裂纹敏感系数的其计算式为:%++++++=100]60060]H [)B (510)V (15)Mo (60)Ni (20)Cu ()Mn ()Cr (30)Si ()C ([⨯++++h P W ωωωωωωωωω式中P W -冷裂纹敏感系数;h -板厚;[H]-100g 焊缝金属扩散氢的含量(mL)。
冷裂纹敏感系数越大,则产生冷裂纹的可能性越大,焊接性越差。
3.低碳钢的焊接低碳钢的CE 小于0.4%,塑性好,一般没有淬硬倾向,对焊接热过程不敏感,焊接性良好。
4.中、高碳钢的焊接中碳钢的CE 一般为0.4%~0.6%,随着CE 的增加,焊接性能逐渐变差。
高碳钢的CE 一般大于0.6%,焊接性能更差,这类钢的焊接—般只用于修补工作。
为了保证中、高碳钢焊件焊后不产生裂纹,并具有良好的力学性能,通常采取以下技术措施:1)焊前预热、焊后缓冷 焊前预热和焊后缓冷的主要目的是减小焊接前后的温差,降低冷却速度,减少焊接应力,从而防止焊接裂纹的产生。
各种材料的焊接性能
各种材料的焊接性能焊接是一种将两个或更多的材料连接在一起的工艺。
焊接性能是指材料在焊接过程中的抗热裂纹、焊接接头的强度、抗脆性、耐腐蚀性等方面的表现。
各种材料的焊接性能有相应的特点。
金属材料是最常见的焊接材料之一、常见的金属材料包括钢铁、铝合金、铜合金、镍合金等。
这些材料具有良好的可焊性,通过适当的焊接工艺和焊接材料的选择,可以得到较高的焊接接头强度。
其中,钢铁是最常见的焊接材料,焊接性能较好,可用多种焊接方法进行焊接,例如电弧焊、气体保护焊等。
铝合金和铜合金由于具有良好的导电性和导热性,在航空航天、汽车制造等领域得到广泛应用,这些材料的焊接性能对接头质量和工件整体性能影响较大。
镍合金具有优异的耐腐蚀性和高温强度,广泛用于航空发动机、核反应堆等领域,其焊接性能对材料的使用寿命和安全性有重要影响。
非金属材料如陶瓷、塑料、纤维等也有一定的焊接性能。
陶瓷一般以粘结剂形式焊接,焊接强度较低,常用于压电陶瓷和绝缘陶瓷制品的焊接。
塑料材料的焊接主要采用热焊和超声波焊接等方法,焊接强度较高,广泛应用于塑料管道、汽车内饰等领域。
纤维材料的焊接主要是指碳纤维、玻璃纤维等复合材料的焊接,一般采用粘合剂或热焊接的方法,焊接性能一般较好。
无机非金属材料如玻璃、石墨等的焊接性能较差。
玻璃的焊接需要采用特殊的焊接工艺,焊接接头强度低,且易发生热裂纹。
石墨材料是具有良好导电和导热性能的材料,但其本身结构特殊,焊接性能较差。
总体而言,各种材料的焊接性能受材料本身性质、焊接工艺和焊接材料等因素的影响。
为了获得良好的焊接性能,需根据具体材料的特点选择合适的焊接方法和焊接材料,并严格控制焊接工艺参数,以确保焊接接头的质量和性能。
金属材料的焊接性
金属材料的焊接性一、焊接性的概念焊接性是指金属材料对焊接加工的适应性。
主要指在一定焊接工艺条件下,获得优质焊接接头的难易程度。
它包括两个方面的内容,其一是接合性能:即在一定焊接工艺条件下,一定的金属形成焊接缺陷的敏感性;其二是指使用性能:即在一定焊接工艺条件下,一定金属的焊接接头对使用要求的适应性。
金属的焊接是一个复杂的物理和化学变化、反应的过程。
在焊接过程中焊接接头几乎出现所有的冶金现象,如熔化、结晶、蒸发、金属反应、熔渣与金属的反应、固态相变等;此外焊缝和热影响区各不同位置,由于加热、冷却、相变都是不均匀的。
这样就会造成很大的内应力和集中应力,甚至可以导致各种类型的裂纹或形成焊接接头的其它缺陷。
一般低碳钢焊接,不需要复杂的工艺措施就能获得良好的焊接质量,因而说低碳钢的焊接性良好。
但如果用同样的工艺焊接铸铁,则会出现裂纹、断裂等严重缺陷,得不到完好的焊接接头。
从这个意义上讲,铸铁的焊接性能差。
但是,在焊接铸铁时,如果使用适当的气焊丝和气焊熔剂(焊接材料)并采取相适应的焊接工艺,如高温预热、缓冷、锤击等工艺措施,就能获得满意的焊接接头。
由此可见,金属材料的焊接性不仅与母材本身的化学成分及性能有关,而且还与焊接材料、焊接工艺措施有关。
金属材料的焊接性包括接合、使用两方面的性能。
有时,完整的无缺陷的焊接接头并不一定具备满足要求的使用性能。
例如,镍钼不锈钢的焊接,比较容易获得接合性能良好的焊接接头,但如果焊接方法和工艺措旋不合适,则焊缝金属和焊接热影响区的抗腐蚀性就有可能达不到使用性能的要求,造成使用上的不合格。
总之,影响焊接性的因素包括:(一)母材、焊接材料母材和焊接材料(如气焊丝、气焊熔剂等),它们直接影响焊接性,所以正确选用母材是保证焊接性良好的重要基础。
(二)焊接工艺对同一母材采用不同的工艺方法和措施,所表现的焊接性就不同。
例如,钛合金对氧、氮、氢极为敏感,用气焊和手工电弧焊很难实现焊接,而用氩弧焊或等离子孤焊则可以取得满意的效果。
金属焊接性能影响因素
中碳钢的焊接
• 中碳钢含碳量较高,其焊接性比低碳钢差。 当CE接近下限(0.25%)时焊接性良好,随 着含碳量增加,其淬硬倾向随之增大,在 热影响区容易产生低塑性的马氏体组织。 当焊件刚性较大或焊接材料、工艺参数选 择不当时,容易产生冷裂纹。多层焊焊接 第一层焊缝时,由于母材熔合到焊缝中的 比例大,使其含碳量及硫、磷含量增高、 容易生产热裂纹。此外,碳含量高时,气 孔敏感性也增大。
• (3)刚性对接裂纹试验方法,这种方法主要用于测定焊缝区热裂纹和冷裂纹,也可测 定热影响区的冷裂纹,试件四周先用定位焊缝焊牢在刚度很大的底板上,试验时按实际 施工焊接参数施焊试验焊缝,主要用于焊条电弧焊,试件焊后室温下放置24h,先检查 焊缝表面,然后在切去试样磨片,检查有无裂纹,一般以裂与不裂为评定标准,每种条 件焊两块试件。
金属焊接性能影响因素
金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结 构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优 良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接 性两个方面。
不会产生裂纹,但对厚大件或在低温下焊接,应考虑预热;< span=""> • CE在0.4~0.6%时,钢材的塑性下降,淬硬倾向逐渐增加,焊接性较差。焊前工件需适当预热,焊后注
意缓冷,才能防止裂纹;
• CE >0.6%时,钢材的塑性变差。淬硬倾向和冷裂倾向大,焊接性更差。工件必须预热到较高的温度, 要采取减少焊接应力和防止开裂的技术措施,焊后还要进行适当的热处理。
• 化学组成方面,其中影响最大的是碳元素,也就是说金属含碳量的多少决定了它的可焊性。钢中的其 他合金元素大部分也不利于焊接,但其影响程度一般都比碳小得多。钢中含碳量增加,淬硬倾向就增 大,塑性则下降,容易产生焊接裂纹。通常,把金属材料在焊接时产生裂纹的敏感性及焊接接头区力 学性能的变化作为评价材料可焊性的主要指标。所以含碳量越高,可焊性越差。含碳量小于0.25%的低 碳钢和低合金钢,塑性和冲击韧性优良,焊后的焊接接头塑性和冲击韧性也很好。焊接时不需要预热 和焊后热处理,焊接过程容易控制,因此具有良好的焊接性。
金属材料焊接性
金属材料焊接性金属材料的焊接性是指金属在焊接过程中的熔化和凝固特性,以及焊接接头的性能表现。
金属材料的焊接性对于焊接工艺和焊接质量有着重要的影响,因此深入了解金属材料的焊接性是非常必要的。
首先,金属材料的焊接性受到金属成分的影响。
不同种类的金属材料,其成分差异很大,这就导致了它们在焊接过程中的熔化温度、熔化范围、凝固行为等方面存在着差异。
例如,碳素钢、不锈钢、铝合金等金属材料的焊接性能都有所不同,需要根据其成分特点选择合适的焊接方法和工艺参数。
其次,金属材料的焊接性还受到晶粒结构和组织性能的影响。
晶粒的大小和形状、晶界的特性、金属的晶格缺陷等因素都会对金属材料的焊接性产生影响。
通常情况下,晶粒细小、均匀分布的金属材料具有较好的焊接性能,而晶粒粗大、不均匀分布的金属材料则会导致焊接接头的强度和韧性下降。
另外,金属材料的焊接性还受到热影响区的形成和性能变化的影响。
在焊接过程中,热输入会导致焊接接头周围的金属发生显著的组织和性能变化,形成热影响区。
热影响区的形成会导致金属材料的硬化、脆化、晶粒长大等现象,从而影响焊接接头的性能。
此外,金属材料的焊接性还受到应力和变形的影响。
在焊接过程中,由于热应力和冷却收缩引起的残余应力会导致焊接接头产生变形和裂纹,从而影响焊接接头的性能。
因此,在焊接过程中需要采取相应的措施,如预热、焊接顺序、后热处理等,以减小应力和变形对焊接接头性能的影响。
综上所述,金属材料的焊接性受到多种因素的影响,包括金属成分、晶粒结构、热影响区、应力和变形等。
了解金属材料的焊接性对于选择合适的焊接方法和工艺参数,保证焊接接头的质量具有重要意义。
因此,在实际的焊接生产中,需要根据金属材料的特性和焊接要求,合理选择焊接材料、焊接工艺和焊接控制措施,以确保焊接接头具有良好的性能表现。
常用金属材料的焊接性
当 CE=0.4~0.6%时, 塑性下降,淬硬及冷裂倾向明显, 焊接性较差。
焊前适当预热,焊后缓慢冷却。
当 CE>0.6%时, 塑性较差。 淬硬和冷裂倾向严重, 焊接性很差,
焊前需要高温预热, 焊接时要采取减少焊接应力和防止裂纹的工艺措施, 焊后需要进行适当热处理等。
3、碳钢的焊接性 (1)低碳钢的焊接:C<0.25%, 塑性好,无淬硬倾向,焊接性好,
无需任何工艺措施,适于各种方法。 (2)中碳钢的焊接: C=0.25-0.6%, 淬火钢,焊接性由良好→差。
焊缝及热影响区易产生气孔、裂纹。 工艺措施: ①焊前预热(150~250 ℃ ), 焊后缓冷并去应力回火。 ②焊件开坡口, 且采用细焊条、小电流、多层焊。 ③选用塑、韧性好的低氢型焊条, 提高焊缝塑性,防止裂纹。
(3)高碳钢的焊接: 含碳量高,导热性差,淬硬倾向大, 一般不用于制造焊接结构, 仅对损坏的机件进行焊补。 焊补时也要采取与中碳钢类似的工艺措施,以避免产生裂纹。
4、低合金结构钢的焊接性 普低钢的焊接性与低碳钢类似, 但σb↑→焊接性↓
低强度普低钢:σs<400MPa, CE <0.4%, 焊接性良好, 无需工艺措施。 如:16Mn、9Mn2。
(2)铸铁焊补方法 ①热焊法: 焊前将焊件整体或局部预热至600~700℃并施焊,焊后缓冷。 用于形状复杂,焊后需要机械加工的重要件。 如汽缸体、汽缸盖、机床导轨等。
5、铸铁的焊补 ②冷焊法:焊前不预热或低温预热(400 ℃)的焊补方法。用于易变形件焊补。 冷焊法主要依靠焊条来调整焊缝的化学成分,增强焊缝的石墨化能力, 以防止或减少白口和裂纹的产生:
常用金属材料的焊接性
1、焊接性概念
焊接方法、材料、焊接规范、结 构型式、预热及热处理等。
金属焊接性与焊接方法
金属焊接性与焊接方法
1.熔点合适:熔点较低的金属焊接性能更好,因为熔点过高会导致焊
接过程中易出现脆性断裂。
2.密度合适:焊接性能也与金属的密度有关,密度过大或过小的金属
在焊接过程中容易出现裂纹和气孔。
3.化学稳定性好:金属焊接过程中容易受到外界氧气、水分等环境的
影响,化学稳定性好的金属焊接性能更好。
4.冶金性能好:金属的冶金性能直接影响焊接性能,冶金性能好的金
属焊接性能也较好。
根据金属焊接性能的不同,可以采用不同的焊接方法。
下面介绍几种
常见的焊接方法:
1.电弧焊:电弧焊是利用电弧热的高温作用将金属熔化并连接在一起
的方法。
常见的电弧焊有手工电弧焊、气体保护电弧焊、埋弧焊等。
2.气体焊接:气体焊接是利用气体燃料产生的火焰对金属进行加热并
熔化的方法。
常见的气体焊接有氧吹焊、乙炔焊接等。
3.点焊:点焊是利用电阻加热原理将两个金属件按一定顺序压在一起,通过电流通过的方式加热并连接在一起的方法。
4.TIG焊:TIG焊是利用非消耗性钨极和保护气体进行的电弧焊接方法。
常用于焊接高质量的非铁金属,如钛、铬、镍等材料。
5.MIG/MAG焊:MIG焊和MAG焊是利用金属惰性气体或活性气体的保
护下,通过连续给丝焊条提供电弧热源的焊接方法。
此外,还有激光焊接、电阻焊接、摩擦焊接等多种焊接方法可供选择,根据具体需求选择合适的焊接方法。
总之,金属焊接性与焊接方法是金属加工领域中至关重要的一部分。
了解金属焊接性的特点,并选择合适的焊接方法,能够提高焊接效率和质量,为金属加工提供更多可能性。
各种材料的焊接性能
金属材料的焊接性能(1)焊接性能良好的钢材主要有:低碳钢(含碳量<);低合金钢(合金元素含量1~3、含碳量<);不锈钢(合金元素含量>3、含碳量<)。
(2)焊接性能一般的钢材主要有:中碳钢(合金元素含量<1、含碳量~);低合金钢(合金元素含量<3、含碳量<);不锈钢(合金元素含量13~25、含碳量£)(3)焊接性能较差的钢材主要有:中碳钢(合金元素含量<1、含碳量~);低合金钢(合金元素含量1~3、含碳量~);不锈钢(合金元素含量13、含碳量)。
(4)焊接性能不好的钢材主要有:中、高碳钢(合金元素含量<1、含碳量>);低合金钢(合金元素含量1~3、含碳量>);不锈钢(合金元素含量13、含碳量~)。
焊条和焊丝选择的基本要点如下:同类钢材焊接时选择焊条主要考虑以下几类因素:考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能;考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。
异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况:一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。
焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980-76)、焊条的性能和用途(GB 980~984-76)等有关国家标准。
###15CrMoR的换热器的热处理工艺***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理。
***15CrMoR焊接性能良好。
手工焊用E5515-B2(热307)焊条,焊前预热至200-250℃(小口径薄壁管可不预热),焊后650-700℃回火处理。
自动焊丝用H13CrMoA和焊剂250等。
###压力容器用钢的基本要求压力容器用钢的基本要求:较高的强度,良好的塑性、韧性、制造性能和与相容性。
金属材料的焊接性
第二节 碳钢的焊接
一、低碳钢的焊接 含碳量不大于0.25%,塑性好,一般没有淬硬倾向,
对焊接热过程不敏感,可焊性良好。焊这类钢时,不 需要采取特殊的工艺措施,通常在焊后也不需要进行 热处理(电渣焊除外)。 低碳钢工件用手工电弧焊时一般采用J422或J427焊条, 埋弧自动焊时一般用H08A或H08MnA+焊剂431。 二、中、高碳钢的焊接: 中碳钢:C:0.25~0.6。 (1)热影响区易产生淬硬组织和冷裂缝:
(2)板厚在3-10mm,焊缝短应用CO2焊,焊缝长应 用埋弧焊。
(3)板厚大于35mm,应用电渣焊。
3、焊接铝和铜合金时,应用氩弧焊。
4、焊接超薄材料、难熔金属或活泼金属时,应用 等离子弧焊、电子束焊或激光焊,也可采用超声波 焊。
5、焊接多层复合板时,应采用扩散焊或爆炸焊。
三、焊接接头工艺设计
1、焊缝的布置 (1)焊缝应尽可能分散。
(2)焊缝的位置应尽可能对称分布。
(3)焊缝应尽可能避开最大应力和应力集 中的位置。
(4)焊缝应尽量避开 (5)应便于焊接操作。
机械加工表面。
2、接头形式的选择与设计 (1)焊接碳钢和低合金钢的接头形式
2、接头形式的选择与设计 (1)焊接碳钢和低合金钢的接头形 式
铜及铜合金可用氩弧焊、气焊、氩弧焊、钎焊 等方法进行焊接。
采用氩弧焊是保证紫铜和青铜焊接质量的有效 方法。
气焊紫铜及青铜时应采用严格的中性焰。 黄铜的焊接,目前最常用的焊接方法仍是气焊, 一般用轻微的氧化焰,采用含硅的焊丝。
二、铝及铝合金的焊接 铝及铝合金的焊接也比较困难,其焊接特点是:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②焊接工艺 • 焊条电弧焊、埋弧自动焊、电渣焊、气体保护焊 • 应保证焊接接头与母材等强度 • 手工电弧焊,一般低碳钢结构,选用与母材等强度的酸性
焊条 • 压力容器等重要结构或结构复杂的厚板结构,选用与母材
等强度的碱性焊条 • 应用埋弧自动焊时,一般采用H08A或H08MnA焊丝配焊
剂431进行焊接
⑶ 奥氏体不锈钢与普通钢焊接
奥氏体不锈钢与普通钢焊接在装备制造很普遍
在非奥氏体钢一侧的坡口表面用比母材高1~2级的奥氏体不 锈钢焊条堆敷奥氏体过渡层,弥补Q235对过渡层主要合金元素 的稀释
然后焊满整个焊缝,使焊缝与母材OCr18Ni9Ti相近,达到耐 腐蚀要求
毗邻普通钢一侧熔合线的焊缝金属中,可形成和焊缝金属 成分不同的过渡层
陷部位更易出现裂纹
②热影响区的淬硬倾向
• 强度级别较低的低合金钢,含合金量较少,碳当量低,具 有良好的可焊性
• 随着强度级别的提高,碳及合金元素增加,热影响区的淬 硬倾向也越345(16Mn)
• Q345钢是老牌号12MnV、14MnNb、18Nb、16MnRE、16Mn 等多个钢种的替代
在过渡层中,普通钢稀释作用很强烈,铬、镍合金成分减 少,含碳量增加,过渡层将由奥氏体+马氏体组织区和马氏 体组织区组成
性能上,过渡层硬度高,可到HV500左右,脆性很大,可 能导致熔合线的破坏
⑵ 焊接材料的选择 焊缝中的含镍量对马氏体脆性层的宽度有重大的影响, 研 究及实践证明,脆性层宽度与焊缝中的含镍量成反比 焊接材料是18-8型钢时,脆性层宽度较大 选用奥氏体化能力较强的焊接材料25-13型钢或25-20型钢, 脆性层宽度显著缩小 使用镍基焊接材料时,脆性层会完全消失 焊接时,为了减小或防止脆性层,常选用奥氏体化能力较强 的焊接材料
注意:打底焊不能在复层或太靠近复层,否则合金元素掺入 而形成淬火组织,严重时出现横向裂纹
焊接装配以复层为基准,防止错边过大
采用涂保护涂料等方法尽量避免焊接过程中熔滴、焊渣等溅 落到复层坡口上,焊接过渡层时,为减少合金稀释率,在保证 焊透的条件下应尽可能用低线能量施焊
②不锈钢复合钢板的焊接工艺
复层为0Cr18Ni9Ti,基层为Q235的复合钢板 焊接顺序:先焊基层1、2、3,清理焊根后选用奥氏体化能力 较强的焊接材料25-13型钢或25-20型钢焊第4层 (过渡层),最 后焊第5层(复层)
400、450、500、550、600、700、800MPa
⑴ 焊接性分析 ①热裂纹倾向 • 结晶裂纹问题并不突出 • 正常情况下焊接时不会产生结晶裂纹 • 如果母材成分不合格或存在严重偏析,使局部C, S含量
偏高时,Mn/S比可能达不到要求,产生结晶裂纹 • 低碳调质钢结晶裂纹敏感性较小 • 中碳调质钢结晶裂纹敏感性较大,尤其在弧坑及焊缝的凹
• 厚度大于50mm的低碳钢结构,焊接接头拘束度大 • 用大电流多层焊,焊后进行消除应力退火 • 环境温度低于0℃以下较大刚度结构,焊前预热
⑵中碳钢的焊接
①焊接性分析 • 含碳在0.25~0.6% • 含碳量增加,强度增加,塑性降低,变形能力变差,热扩
散能力低,线膨胀系数增大 • 实际生产,焊接中碳钢的铸钢件与锻件 • ⅰ热影响区易产生淬硬组织和冷裂纹
• 焊接性良好,常用的熔焊方法都可焊接,用的最广的是手 工电弧焊、埋弧自动焊、电渣焊、气体保护焊。
• 脆硬倾向比低碳钢稍大,尤其是较低温度下或厚壁结构
采用焊条电弧焊时一般都用抗裂性较好的碱性焊条,对锅 炉、受压容器等重要工件,厚度大于20mm时,焊后必须进 行退火消除应力
常用普通低合金结构刚的焊接材料、预热温度选用表
0.40 结506,结507 H 0.38 结556,结557 H08MnSi,H10Mn2
431
450 15MnVN
0.43
结556,结507 H08MnA 结606,结607 H10Mn2
431 350
500
18MnMoNb 14MnMoV
0.55 结607 0.50 结707
H08Mn2MoA
属于易淬火钢,冷裂缝 • ⅱ热裂缝倾向大 • 碳还使焊缝金属过热并使硫、磷等低熔点杂质的偏析加剧
• 由于中碳钢热扩散能力低,线膨胀系数增大 • 焊缝及过热区过热倾向大 • 焊接接头焊接应力增大 • 进一步热裂纹和冷裂纹的敏感性
②焊接工艺要点
• 焊前必须进行预热 • 减慢热影响区的冷却速度,避免产生淬硬组织 • 35号钢和45号钢的预热温度为150~250℃ • 低氢型焊条 • 焊缝与母材等强度时 • 根据钢材强度选用结506、结507或结606、结607焊条
强度等级 (MPa)
钢号
碳当量 手弧焊焊条 %
埋弧自动焊
焊丝
焊剂
300
09Mn2 09Mn2Si
0.36 结422,结423 H08 0.35 结426,结427 H08MnA
431
350 16Mn
0.39
结502,结507 H 结506,结507 H08MnA,H10Mn2
431
400
15MnV 15MnTi
金属的焊接性能
十二 金属的 焊接性能
4 金属的焊接性分析
4.1 碳素钢 4.2 低合金高强钢
4.3 低温用钢 4.4 低合金耐蚀钢 4.5 珠光体耐热钢 4.6 奥氏体不锈钢 4.7 有色金属及合金 4.8 奥氏体不锈钢与普通钢
4.1碳素钢的焊接
⑴ 低碳钢的焊接 ①焊接性分析
• 含碳量≤0.25% • 塑性好,变形能力强,热导率合适,对热过程不敏感 • 硫、磷杂质控制严,一般不会产生热裂纹; • 没有淬硬倾向,对冷裂纹也不敏感
250
H08Mn2MoVA
350
550
14MnMoVB
0.47
结607 结707
H08Mn2MoVA
250 350
预热温度
厚板 ≧ ≧ ≧ ≧
⑵ 不锈钢复合钢板
不锈钢复合钢板是较厚的普通钢与较薄的奥氏体不锈钢复合 轧制而成的双金属板
①坡口
常见V型,坡口开在基层一侧,普通钢基层的钝边尺寸p常取 2mm
• 用细焊条小电流,开坡口进行多层焊,防止母材过多的溶 入焊缝,同时减小焊接热影响区的宽度
• 一般采用手工电弧焊,焊后立即消除应力热处理 • 回火温度一般为 500~650℃.
• 厚件用电渣焊
4.2 低合金高强钢
• 含碳量低,强度高、塑性、韧性好 • 广泛用于制造压力容器、船舶等装备 • 中国低合金高强钢按其屈服强度可以分为九级300、350、