一次函数的图像教学设计
【2024版】《一次函数的图象第2课时》示范公开课教学设计【北师大版八年级数学上册】
可编辑修改精选全文完整版第四章 一次函数4. 3 一次函数的图像第 2 课时 教学设计 函数是初中数学中非常重要的内容,是刻画和研究现实世界变化规律的重要模型.本节课是在学生明确一次函数图象是一条直线的基础上进行的,主要是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.与其它版本教材相比,北师大版更注重借助感性材料,让学生在具体操作中获得有关一次函数图象的变化规律,从而使学生对一次函数有了从“数”到“形” 、从“形”到“数”两方面的理解,从而展开了一个“数形结合”的新天地.作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用.并为今后继续学习一次函数图象的应用以一次函数与二元一次方程的关系打下基础. 起着承上启下的作用.1.在认识一次函数图象的基础上,掌握一次函数图象及其简单性质. 2. 经历对一次函数图象变化规律的探究过程,在知识的探究过程中,增强学生数形结合的意识,渗透分类讨论的思想;培养学生的观察能力、识图能力以及语言表达能力.3. 在一次函数图象及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;在合作与交流活动中发展学生的合作意识和团队精神,获得成功的体验.【教学重点】 一次函数与正比例函数的概念以及图像的理解.【教学难点】k 、b 的取值与一次函数图象位置的关系.◆教材分析◆教学目标 ◆教学重难点 ◆学生每人准备好草稿纸、铅笔、直尺;教师准备课件,图片.一、复习回顾内容:在前面,我们已经学会了绘制正比例函数图象,明确了正比例函数图像的有关性质,那么一次函数图象中又蕴含着什么规律,这节课我们就来研究一次函数图象的性质.首先,我们来复习一下上节课所学习的知识.复习提问:1. 什么叫一次函数?从解析式上看,一次函数与正比例函数有什么关系?2. 正比例函数的图象是什么?是怎样得到的?3. 正比例函数有哪些性质?是怎样得到这些性质的?目的:学生回顾上节课学习的内容,为进一步研究一次函数的图象和性质做好铺垫.在上节课的探究中我们得到正比例函数图象是过原点的一条直线.本节课主要内容是对一次函数y kx b =+中常数k 、b 对图象的影响进行探究.说明:学生通过知识回顾,再次明确正比例函数图象的一些特征,为学习本节课在知识上作好准备.二、合作交流,探究新知(一)一次函数的图像的画法在上一课的学习中,我们学会了正比例函数图象的画法,分为三个步骤.◆课前准备◆◆教学过程①列表②描点③连线那么你能用同样的方法画出一次函数的图象吗?例1:画出一次函数y=-2x+1的图象总结归纳一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过,0).这两点画直线就可以了一般过(0,b)和(1,k+b)或(-bk一次函数y=kx+b的图象也称为直线y=kx+b.做一做用你认为最简单的方法画出下列函数的图象:(1)y=-2x-1;(2)y=0.5x+1活动:请大家用描点法在同一坐标系内画出一次函数y = x + 2,y = x - 2的图象.思考:观察它们的图象有什么特点?把一次函数y=x+2,y=x-2的图象与y=x比较,发现:1. 这三个函数的图象形状都是,并且倾斜程度______.2. 函数y=x的图象经过原点,函数y=x+2的图象与y 轴交于点,3. 即它可以看作由直线y = x 向平移个单位长度而得到函数y=x-2的图象与y 轴交于点,即它可以看作由直线y= x 向____平移____个单位长度而得到.比较三个函数的解析式,相同,它们的图象的位置关系是.要点归纳一次函数y = kx + b(k ≠ 0)的图象经过点(0,b),可以由正比例函数y = kx 的图象平移个单位长度得到. 当b>0时,向平移;当b<0时,向平移).(二)正比例函数图像的性质画一画1 在同一坐标系中作出下列函数的图象.x(1)y=13x-1(2)y=13x+1(3)y=13思考:k,b的值跟图象有什么关系?画一画2 在同一坐标系中作出下列函数的图象.x(1)y=-13x+1(2)y=-13x-1(3)y=-13思考:k,b的值跟图象有什么关系?一次函数性质:在一次函数y = kx + b 中,当k > 0 时,y 的值随着x 值的增大而增大;当k < 0 时,y 的值随着x 值的增大而减小.思考根据一次函数的图象判断k,b 的正负,并说出直线经过的象限:议一议:(1)观察图象,它们分别分布在哪些象限.(2)观察每组三个函数的图象,随着x值的变化,y的值在怎样变化?(3)从以上观察中,你发现了什么规律?归纳出一次函数图象的特点:=+中在一次函数y kx bk>时,y随x的增大而增大,当b>0时,直线必过一、二、三象限;当0当b<0时,直线必过一、三、四象限;k<时,y随x的增大而减小,当b>0时,直线必过一、二、四象限;当0当b<0时,直线必过二、三、四象限.目的:归纳出一次函数图象中系数k,b对函数图象的影响.说明:本节课主要是结合一次函数的图象,探究一次函数的简单性质,教学内容较多,为更好地突出教学重点,提高课堂教学效率,建议在上一节课的家庭作业中,要求学生绘制上述两组函数图象在作业本上.本节课首先请学生展示作出的函数图象,师生、生生互评,再让学生结合自己绘制的函数图象来探究一次函数的性质.通过问题串的精心设计,引导学生对k,b两个常数进行分类讨论,探索出k、b值的变化对图象的影响和变化规律.在此过程中渗透分类讨论的思想方法,培养学生数形结合的意识.学生拿出课前已经做好的函数图象.通过师生互动、生生互动进行批改,互评.让学生再次巩固了已学知识,调动了学生学习的自主意识.在此基础上学生进行观察并分小组对一次函=+中k,b的几何意义作了初步的探索.本环节通过独立思考和小组讨论,培养学数y kx b生的识图能力、探究能力和合作能力.初步感受到了一次函数的图象及函数的性质由常数k、b决定.三、运用新知例2 P1(x1,y1),P2(x2,y2)是一次函数y = -0.5x + 3图象上的两点,下列判断中,正确的是( )A. y1>y2C. 当x1<x2时,y1<y2B. y1<y2D. 当x1<x2时,y1>y2例3 已知一次函数y=(1-2m)x+m-1 , 求满足下列条件的m的值:(1)函数值y随x 的增大而增大;(2)函数图象与y 轴的负半轴相交;(3)函数的图象过第二、三、四象限;四、巩固新知1. 一次函数y = x - 2 的大致图象为()2. 下列函数中,y 的值随 x 值的增大而增大的函数是( )A . y =-2xB . y =-2x +1C . y =x -2D . y =-x -23. 直线 y = 3x -2可由直线 y = 3x 向 平移 单位得到.4. 直线y = x + 2 可由直线 y = x - 1向 平移 单位得到.5. 点A (-1,y 1),B (3,y 2)是直线 y = kx +b (k < 0) 上的两点,则 y 1 - y 2 0(填“>”或“<”)6. 已知一次函数y =(3m -8)x +1-m 图象与 y 轴交点在 x 轴下方,且 y 随 x 的增大而减小,其中 m 为整数,求 m 的值 .五、归纳小结内容:本节课我们结合一次函数的图象对一次函数的一些简单性质进行了探讨,通过这节课,我们学习了以下内容:1.一次函数y kx b =+中,当0k >时,y 的值随x 的增大而增大,图象经过一、三象限;当0k <时,y 的值随x 的增大而减小,图象经过二、四象限.2.同一平面内,不重合的两条直线1l :111y k x b =+与2l :222y k x b =+当12k k =时,12l l ;当12k k ≠时,1l 与2l 相交.用到了以下的数学思想和基本方法:1.本节课中用到的数学思想:数形结合、分类讨论.2.本节课中用到的基本方法:通过观察、操作、猜想、推理、类比、归纳等过程获取数学知识.目的:引导学生自己小结本节课的知识要点及数学思想、方法,教师再补充完善,使知识系统化.说明:学生畅所欲言,相互进行补充,能用自己的话进行归纳总结.略.◆教学反思。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
为了巩固所学知识,我会安排一些课堂练习。这些练习将包括基础题、提高题和应用题,以适应不同学生的学习需求。我会要求学生在规定时间内完成练习,并在完成后进行小组内或全班性的交流。
我会挑选一些典型的错误或难题进行讲解,帮助学生澄清疑惑,并强调解题过程中的关键步骤和注意事项。通过这些练习,学生能够将理论知识与实践相结合,提高解题能力。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
一、教学目标
(一)知识与技能
本节课主要让学生掌握一次函数的图象与性质。通过学习,学生应能够:
1.理解一次函数的定义,并能用数学符号表示一次函数。
2.学会通过描点法绘制一次函数的图象,并能够识别图象的基本特征。
3.掌握一次函数的性质,包括斜率k的正负对图象的影响,以及截距b的几何意义。
4.探究题:请同学们思考以下问题,下节课分享你们的发现:
(1)一次函数的图象是一条直线,那么斜率k和截距b对这条直线的位置有什么影响?
(2)如果两个一次函数的斜率相同,但截距不同,它们的图象会有什么关系?
作业要求:
1.请同学们认真完成作业,注意书写规范,保持作业整洁。
2.对于提高题和应用题,请同学们尽量用自己的语言描述解题过程,以加深对一次函数的理解。
(三)学生小组讨论,500字
在掌握了基本知识后,我会组织学生进行小组讨论。每个小组都会得到一个或几个实际问题,要求他们利用一次函数的知识来解决。例如,“一辆汽车以固定速度行驶,行驶时间和路程之间的关系是怎样的?请用一次函数来描述。”
在小组讨论过程中,我会鼓励学生积极参与,分享自己的想法,并倾听他人的意见。我会巡回指导,帮助解决学生在讨论中遇到的问题,确保每个学生都能理解和掌握一次函数的应用。
6.3一次函数的图像》教学设计-优秀教案
6.3一次函数的图像(1)班级姓名学号【学习目标】1. 了解画函数图象的一般步骤,能熟练地作出一次函数的图象知道一次函数的图象是一条直线。
2. 会选取两个适当的点画一次函数的图象。
会根据坐标判断所给的点是否在所给的图象上。
【重点难点】教学重点:掌握一次函数的图象的画法。
教学难点:会选取两个适当的点画一次函数图象。
【教学过程】一、温故知新:(1) 一次函数的定义:(2) 正比例函数的定义:(3) 函数有几种表达形式?(4) 函数图像的概念:把一个函数的自变量与对应的因变量的值作为点的坐标和坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像.那么一次函数的图象是怎样的?(导入新课)二、创设情境点燃一支香,感受它的长度随时间的变化而变化.观察上面的图片,说一说获得哪些信息?(设计意图:通过生活中的情景引入新课,提高学生的学习兴趣.)探究活动一1.将你的观察结果填在书中的表格内.2.如果用y (cm)表示香的长度、x(min)表示香燃烧的时间,你能写出y与x之间的函数表达式吗?3.操作:依次连接图片中香的顶端,你有什么发现?4.你能用平面直角坐标系,揭示图片中的信息吗?要求:学生在观察、思考的基础上填表,并与同学交流各时刻香的状态.点燃时间/分0 5 10 15 20香的长度/cm 16 12 8 4 0由图片知,点燃后香的长度越来越短,平均每分钟缩短0.8cm ,直至燃尽.所以y 与x 之间的函数表达式为y =16-0.8x (0≤x ≤20).依次连接图片的顶端,发现在一条直线上.(设计意图:通过连接图片中香的顶端,联系平面直角坐标系中的描点,引导学生初步思考一次函数的图像是否是一条直线,引导学生的探究意识,同时为学习图像的画法作必要的铺垫.)5.以x 轴表示点燃时间,以y 轴表示香的长度,建立直角坐标系,并分别描点(0,16)、 (5 ,12)、(10 ,8)、(15 ,4)、(20,0).问题:这5个点的坐标都满足y =16-0.8x 吗?这个一次函数的图像是什么?由此猜测… 要求:学生在学案上描点画图.学生讨论交流.(设计意图:将生活中的实际问题用数学的眼光,严谨的态度分析解决,引导学生利用适当的工具科学、合理地抓住其数学本质.)探究活动二按下列步骤,在平面直角坐标系中,画一次函数(1)y = -x 21(2)y = -x+3的图像 解:(1)列表1: 列表2:(2)描点:以表中各对x 、y 的值为点的坐标,在直角坐标系内描出相应的点. (3)连线:顺次连接描出的各点.x… -2 -1 0 1 2 … y=-x 21 ……x … -2 -1 0 1 2 … y =-x +3……议一议:(1)满足关系式的x ,y 所对应的点(x ,y )都在函数图象上吗?(2)函数的图象上的点(x ,y )都满足关系式吗?(3)画一次函数图像的一般步骤 (4)你能用更简便的方法作出它的图像吗?说说你的想法. (5)通常取哪两点比较方便? ①观察y=-x 21的图像可知:它的图像是一条 ,过坐标系中点 ,并经过点 , 它经过 象限.②观察y=-x+3的图像可知:它的图像是一条 ,与x 轴交于点 ,与y 轴交于点 , 它经过 象限.(设计意图:学生模仿上例,自己尝试画图,并与小组内的同学交流,对比,总结方法.学生经历画图的过程,感受画图的方法,引导学生经历作图的过程,思考每个步骤之间的联系,掌握利用描点法画出函数图像,关注其中的细节.)小结:①作一次函数图像的步骤:②由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定图像 上 的位置,再过这两点画直线即可.③一次函数y kx b =+(k 、b 为常数,且0k ≠)的图像是经过点(0, )和( ,0)的一条 .④作正比例函数y =kx (k ≠0)的图象时,一般找(0, )(1, )两点.(设计意图:学生结合自己的观察和动手实践的经验回答.根据基本事实,“两点确定一条直线”,画一次函数图像时,只要先确定这个图像上两个点的位置,再过这两点画直线就可以了.在巩固画图过程的基础上,引导学生思考如何简化作图的过程,培养学生勤学好思的良好习惯.)三、例题分析例 已知一次函数y=-3x+3:(1)画出一次函数的图象; (2)写出这个函数的图象与x 轴,y 轴的交点的坐标__________,___________;(3)若(2,a+3)在函数图象上,求a 的值. (4)判断点(71,42)是否在所画的图象上?(设计意图:学生利用总结的方法,画图实践.通过带入函数表达式结合观察图像做出判断.巩固画一次函数图像的技能.体会“数形结合”的思想方法.)四、课堂练习1.下列两点在函数y =-2x +3图像上的是 ( ).A .原点和点(1,1);B .点(1,1)和点(2,3);C .点(0,3)和点(1,1);D .点(0,3)和点(2,3). 要求:学生解答,互相交流方法.2. 在同一坐标系中(1)画出一次函数y =-2x 、y =-2x-2、y =-2x+2的图象 (2)如果(a ,4)在y =-2x +2的图象上,求a 的值。
北师大版八年级数学上册:4.3《一次函数的图象》教学设计
北师大版八年级数学上册:4.3《一次函数的图象》教学设计一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4.3节的内容,本节课主要让学生了解一次函数的图象特征,学会如何绘制一次函数的图象,并能够分析一次函数图象与系数的关系。
教材通过具体的例子引导学生探究一次函数图象的性质,为学生提供丰富的操作、思考、交流的活动机会,从而提高他们的数学素养。
二. 学情分析学生在七年级已经学习了直线、射线、线段等基础知识,对图形的性质有一定的了解。
但他们对一次函数图象的认识还比较模糊,需要通过具体的活动和实例来加深理解。
此外,学生需要进一步掌握如何利用函数图象解决实际问题,提高他们的应用能力。
三. 教学目标1.理解一次函数图象的性质,能够绘制一次函数的图象。
2.学会分析一次函数图象与系数的关系。
3.培养学生的观察能力、操作能力、思考能力及合作交流能力。
4.提高学生解决实际问题的能力。
四. 教学重难点1.一次函数图象的性质。
2.一次函数图象与系数的关系。
3.利用一次函数图象解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生探究一次函数图象的性质。
2.利用数形结合法,让学生直观地理解一次函数图象与系数的关系。
3.采用实例分析法,培养学生解决实际问题的能力。
4.小组讨论,提高学生的合作交流能力。
六. 教学准备1.准备相关的一次函数图象素材,用于引导学生观察和分析。
2.准备一次函数图象的软件工具,如GeoGebra等,让学生实际操作。
3.准备一些实际问题,让学生尝试解决。
七. 教学过程1.导入(5分钟)利用一个实际问题,如“某商店进行打折活动,原价100元的商品打8折后售价是多少?”引导学生思考如何用数学知识解决这个问题。
2.呈现(10分钟)呈现一次函数的图象,让学生观察并描述图象的性质。
引导学生发现一次函数图象是一条直线,且具有斜率和截距等特征。
3.操练(10分钟)让学生利用软件工具,如GeoGebra,自己绘制一次函数的图象,并观察图象与系数的关系。
一次函数的图像教学设计
⼀次函数的图像教学设计 在教学⼯作者开展教学活动前,很有必要精⼼设计⼀份教学设计,教学设计是教育技术的组成部分,它的功能在于运⽤系统⽅法设计教学过程,使之成为⼀种具有操作性的程序。
写教学设计需要注意哪些格式呢?以下是店铺帮⼤家整理的⼀次函数的图像教学设计,欢迎⼤家分享。
⼀次函数的图像教学设计1 ⼀、教材的地位和作⽤ 本节课主要是在学⽣学习了函数图象的基础上,通过动⼿操作接受⼀次函数图象是直线这⼀事实,在实践中体会“两点法”的简便,向学⽣渗透数形结合的数学思想,以使学⽣借助直观的图形,⽣动形象的变化来发现两个⼀次函数图象在直⾓坐标系中的位置关系。
培养学⽣主动学习、主动探索、合作学习的能⼒。
本节课为探索⼀次函数性质作准备。
(⼀)教学⽬标的确定 教学⽬标是教学的出发点和归宿。
因此,我根据新课标的知识、能⼒和德育⽬标的要求,以学⽣的认知点,⼼理特点和本课的特点来制定教学⽬标。
1、知识⽬标 (1)能⽤“两点法”画出⼀次函数的图象。
(2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。
2、能⼒⽬标 (1)通过操作、观察,培养学⽣动⼿和归纳的能⼒。
(2)结合具体情境向学⽣渗透数形结合的数学思想。
3、情感⽬标 (1)通过动⼿操作,观察探索⼀次函数的特征,体验数学研究和发现的过程,逐步培养学⽣在教学活动中的主动探索的意识和合作交流的习惯。
(2)让学⽣通过直观感知、动⼿操作去经历、体会规律形成的过程。
(⼆)教学重点、难点 ⽤“两点法”画出⼀次函数的图象是研究⼀次函数的性质的基础,是本节课的重点。
直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点。
关键是通过学⽣的直观感知、动⼿操作、合作交流归纳其规律。
⼆、学情分析 1、由⽤描点法画函数的图象的认识,学⽣能接受⼀次函数的图象是直线,结合“两点确定⼀条直线”,学⽣能画出⼀次函数图象。
一次函数图像教学设计
一次函数的图像【教学目标】【教学重点】能熟练地作出一次函数的图象,理解一次函数的解析式与图象之间的对应关系.【教学难点】理解一次函数的解析式与图象之间的对应关系,即坐标满足一次函数解析式的点在直线上,图像上的点的坐标满足一次函数解析式.【课时安排】一课时【教学设计】知识链接一、填空1.在一个变化过程中,我们称数值____________的量为变量;在一个变化过程中,我们称数值____________的量为常量.2.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每一个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是_________,y是x的________.如果当x=a时y=b,那么b•叫做当自变量的值为a时的___________.3.把一个函数的自变量x与对应的因变量y的值分别作为点的______和______,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的______.4.作函数图象的一般步骤为______,______,______;一次函数的图象是一条______.5.直线y=3-x与x轴的交点坐标为______,与y轴的交点坐标为______.6.分别说出满足下列条件的一次函数的图象过哪几个象限?(1)k>0 b>0 (2)k>0 b<0 (3)k<0 b>0 (4)k<0 b<0〖设计说明〗认真观察和思考,发现千变万化的数学规律;是学好数学的关键.为了描述千变万化的世界中的变化中的数量关系,总结得出一个重要的工具——函数.数形结合是一种重要的数学思想.二、预习思考1.设置故事情节:小兔子输掉了比赛,非常不服气,于是就邀请乌龟进行第二次比赛,为了证明自己的实力,兔子决定让乌龟先跑200米(如下图).(到底谁会赢?让学生带着问题进入本节课的学习)起点〖答案〗兔子先到2.在同一直角坐标系中画出下列函数图象,并归纳y=kx+b(k、b是常数,k≠0)中b对函数图象的影响.(1)y=x-1 y=x y=x+1(2)y=-2x+1 y=-2x y=-2x-1〖设计说明〗引导学生解决如何从函数的图象中解读函数图象信息,体会学好一次函数的重要性,认识到数形结合的重要性.教学过程一、导入新课我们在前面学习了函数意义,并掌握了函数关系式的确立.但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映.例如用图像血流量与时间的关系.有的能用关系式表示,例如表示汽车余油量与时间的关系.即使对于能列式表示的函数关系,如果也能画图表示则会使函数关系更清晰.我们这节课就来解决如何画函数图象的问题及解读函数图象信息.〖设计说明〗初二学生性格开朗活泼,对新鲜事物特别敏感,且较易接受,因此,教学过程中创设的这一问题情境较生动活泼,来源于学生的生活,学生有深切的体会,能激发学生学习数学的兴趣,对提高学生的数学素养和数学意识也是十分有意义的.二、探索新知把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.假设在代数表达式y=2x中,自变量x取1时,对应的因变量y=2,则我们可在直角坐标系内描出表示(1,2)的点,再给x的另一个值,对应又一个y,又可知道直角坐标系内描出另一个点,所有这些点组成的图形叫该函数y=2x的图象,由此看来,函数图象是满足函数表达式的所有点的集合.请同学们作出y=2x的图象,探索一下,能得出什么结论?〖设计说明〗y=2x是正比例函数,正比例函数是一次函数的特例.通过正比例函数的图像来探索一次函数的图像及性质.3、合作探究探究1. ①在同一坐标系内作出正比例函数y=x,y=x,y=3x,y=-2x的图象.观察所画图象,直线y=x,y=x,y=3x中,哪一个与x轴正方向所成的锐角最大?哪一个与x轴正方向所成的锐角最小?一次函数y=kx+b的图象有何的特点?拓展:问题1:画直线y=-x与y=-x+6的图象,观察直线的增减性与直线y=-x相同吗?问题2:从问题1中,你得到启发了吗?k的符号对一次函数y=kx+b的增减性有什么影响?问题3:k相同时两条直线有怎样的位置关系?掌握一次函数图像的简单画法,为后面的教学做准备(设计说明:通过活动,熟悉一次函数图象画法.经历观察发现图象的规律,并根据它归纳总结出关于数值大小的性质.体会数形结合的探究方法在数学中的重要性,进而认识理解一次函数图象特征与解析式联系.)探究2.如何由函数的图象得到函数的图象?一次函数的图象是什么形状,由直线可经过怎样的变换得到直线?(设计说明:学生讨论函数与图象的关系并发表自己的看法.教师利用《几何画板》进行演示.师生一起总结得到:(1)一次函数的图象是一条直线;(2)由直线平移个单位长度得到直线(当时,向上平移;当时,向下平移).引导学生通过比较解析式,发现两个解析式仅在常数项上有区别,其他部分完全相同,因此,对于自变量的任一值,这两个函数相应的值总差同一个常数.这反映在图象上,就是在横坐标相同的情况下,两个函数图象上对应的纵坐标总差同一个值,即将正比例函数的图象经过向上或向下的平移得到相应的一次函数的图象.由此,引导学生从“数”的角度认识一次函数图象,进而在理解正比例函数图象的基础上来认识一般的一次函数的图象.)探究3.在同一直角坐标系中画出以下函数的图象,,,;观察上面四个一次函数的图象,探究一次函数中k的正负对函数图象有什么影响,并在此基础上表述函数的性质.(设计说明:在本次活动中教师应重点关注:(1)学生在用两点法画图时是否能选择合适的点;(2)学生是否注意到一次函数的性质与有关,且与正比例函数的性质相同;(3)学生从“数”与“形”两个方面去理解和掌握一次函数的性质.通过动手实践,巩固两点法画图的方法,让学生通过观察直观地得到一次函数的随的变化而变化的情况以及的正负对函数图象的影响,培养学生观察分析的能力和从图象中获取信息的能力.通过类比正比例函数的性质,加深对一次函数的随的变化而变化的情况的理解.让学生经历画图——类比——归纳的数学活动过程.)四.课后提升一、课后练习题:1.已知直线y= —x,下列说法错误的是()A 比例系数为-1/2B 图像不在一、三象限C 图像必经过(-2 ,1)点D y随x增大而增大2.下列函数中,图像经过原点的为()A.y=5x+1 B.y=-5x-1 C.y=- D.y=3.若一次函数y=kx+b中,y随x的增大而减小,则()A.k<0,b<0 B.k<0,b>0 C.k<0,b≠0 D.k<0,b 为任意数4、画出函数y=-2x+2的图象,结合图象回答下列问题:(1)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(2)当x取何值时,y=0?(3)当x取何值时,y>0?5.画函数y=2x+4图象,用函数y=2x+4的图象,求(1)方程2x+4=0的解(2)当x为何值时,函数y=2x+4的值大于等于0;(3)当-2≤y≤6时,求x的取值范围、反馈:渗透数形结合思想,强化函数与方程等联系,感受数学知识整体性,积累解决问题策略,提高解决问题的能力.〖设计说明〗在学生充分理解的基础上,分析图象信息,解答有关问题.明确一次函数的图象是一条直线,因此在作图时,不需要列表,只要确定两点就可以了.文档已经阅读完毕,请返回上一页!。
一次函数的图象-教学设计
华东师大版17.3.2《一次函数的图象》教学设计一、内容和内容分析内容:华师大版八年级下册“17.3.2 一次函数的图象和性质”.本节教学内容属于“数与代数”知识领域中的函数部分,函数是刻画和研究现实世界变化规律的重要模型,是中学数学的重要内容之一,而一次函数是函数中最简单最基本的函数类型之一。
本节课是华东师大版教材中第17章第3节第2课时内容,通过前两节的学习,学生初步掌握了一次函数等相关概念,并且经历了列表、描点、连线画图象的过程,简单体会到数形结合的思想。
本节课是在此基础上,通过动手操作接受一次函数图象是直线这一事实,并在实践中体会“两点法”的简便性,同时向学生再次渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现k和b对一次函数图象的影响。
本节课内容为探索下节课一次函数的性质作准备。
同时它的研究方法具有一般性和代表性,为后面研究反比例函数和二次函数奠定了基础。
基于上述分析,确定本节教学本节教学重点如下:1.会熟练作出一次函数的图象;2.理解一次函数解析式中k,b的取值对函数图象的影响;二、目标和目标解析1.理解用描点画出一次函数的图象一般步骤,经历描点法画函数图象的全过程,巩固并掌握描点法画函数图象的一般方法,掌握一次函数图象形状,培养良好的动手操作能力.2.掌握一次函数图象及其特征,培养学生观察、比较、探究、分析、归纳、概括的能力,学会数形结合地研究函数问题的方法.3.进一步体会并理解数形结合思想.三、问题诊断分析1.教师教学可能存在的问题:(1)直接帮助学生用描点法画出一次函数图象,没有让学生亲身经历画图过程;(2)没有提前准备好网络画板用动态演示的方法让学生再次观察图象变化;(3)不能设计合理的探究方案,适当引导学生小组合作去观察、体会、归纳、概括出一次函数的图象特征;(4)过分强调知识的获得,忽略了数形结合数学思想方法的渗透.2.学生学习中可能出现的问题:(1)识图读图能力不强,不能发现并全面概括出函数的图象特征;(2)个别学生互助合作学习的热情和参与探索的积极性不高.鉴于上述分析,确定本节的教学难点是:通过设计合理有效的数学实验,激活学生的数学思维,引导观察、归纳函数的图象特征探讨k,b对一次函数图象的影响,渗透数形结合的数学思想方法.四、教学支持条件设计教学中,为使能较好地帮助学生深入理解一次函数的图象特征,利用网络画板的画图和动画功能,直观、形象地展现函数图象的变化规律,发现k,b对一次函数图象的影响、体会数形结合思想,激发学生参与的积极性,提高分析和解决问题的能力.五、教学过程设计导言上节课我们与一次函数初次相识,我们知道认识了一个新事物就更想再深入了解它的性质和应用,而函数图象正是能帮助我们了解函数方方面面性质的一个有力工具,所以今天我将带领大家一同来探讨一次函数的图象问题.活动一:导学诱思问题1一次函数的概念是什么?能否将黑板上有一次函数的卡片挑出来?问题2用描点法画图的一般步骤是什么?活动方式:教师提出问题,由学生口答之后,通过生生互评、师生共评,纠正出现的问题.设计目的:从提问复习入手,承接上一节课的内容,同时引出本节课的内容,既起到复习巩固的作用,又激发学生的学习兴趣,同时为本节课的学习奠定基础.活动二:自主探究问题1选一个你喜欢的一次函数,并用描点法画出该函数图象.问题2 观察你所画的一次函数图象是什么形状?问题3 几个点确定一条直线?有没有简单的一次函数图象的作图方法?活动方式:学生动手画图,自主探究,之后教师提问,学生回答.设计目的:让学生在动手作图的过程中从“形”的角度感知一次函数的图象的形状,发挥学生的主动性,锻炼学生动手操作能力,激发学生学习兴趣.活动三:合作探究提出问题:对于一次函数y=kx+b(k,b为常数,k≠0),常数k和b的取值分别对一次函数的图象有什么影响?活动方式:教师展示多个一次函数图象,师生共同观察,发现不同之处.设计目的:引导学生从“形”的角度观察多个一次函数图象的不同之处,同时从“数”的角度发现解析式的不同之处,由此提出问题.解决问题:设计数学实验.数学试验1:当b相同,k不同时 (第1,3,5组完成)合作要求:组长先确定一个b值,每位组员再各自确定一个k值,依次在同一个坐标纸中画出对应函数图象.数学试验2:当k相同,b不同时(第2,4,6组完成)合作要求:组长先确定一个k值,每位组员再各自确定一个b值,依次在同一个坐标纸中画出对应函数图象.规律总结:当b相同,k不同时,观察函数图象发现:相同点:与y轴交点相同,都为(0,b).不同点:直线的方向不同,倾斜程度不同.在直线y=k1x+b1与直线y=k2x+b2中,如果b1= b2,k1≠k2,那么这两条直线与y轴相交于同一个点.当k相同,b不同时,观察函数图象发现:相同点:直线的倾斜程度一样,直线相互平行.不同点:直线与y轴交点不同.在直线y=k1x+b1与直线y=k2x+b2中,如果k1 = k2,b1 ≠b2,那么这两条直线平行.活动方式:小组合作,先作图,再看图,总结结论,小组代表通过学生平板用“学生讲”的方式展示交流,随后教师借助平板网络画板进行动态演示.设计目的:让学生充分感受图形特点,找到规律,锻炼学生动手操作、观察、归纳、合作探究的能力,体会数学充满探究性和创造性,小组代表展示交流,培养学生的表现力和语言表达能力,教师动画演示,再次渗透“数形结合”思想.活动四:达标检测1.已知一次函数y=kx+b的图象与y=x的图象平行,那么它必过点()A.(-1 , 0)B.(2 , -1)C.(2 , 1)D.(0 , -1)2.已知点(k , b)在第四象限内,则一次函数y=-kx+b的图象大致是()A. B. C. D.3.在平面直角坐标系中,将直线l1:y=-2x-2平移后得到直线l2:y=-2x+4,则下列平移作法中,正确的是()A.将直线l1向上平移6个单位 B.将直线l1向上平移3个单位C.将直线l1向上平移2个单位 D.将直线l1向上平移4个单位4.一次函数y=x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.已知函数y=3x+3的图象与x轴交点的坐标是()A.(1 , 0) B.(-1 , 0) C.(0 , 1) D.(0 , -1)活动方式:学生利用平板,在线作答,完成后提交答案,教师根据后台数据精准讲解.设计目的:学生在前面学习的基础上进行练习,一方面对所学内容加以巩固,另一方面让学生将所学知识学会应用。
《一次函数的图象和性质》教学设计(优秀7篇)
《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。
能够用一次函数的知识解决实际问题。
过程与方法:掌握用待定系数法求函数解析式的一般方法。
情感态度与价值观:继续渗透数形结合的数学思想。
教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。
难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。
一次函数的图像教案
一次函数的图象教学设计(第一课时)一、教学设计思想本节课共两课时,第1课时本节交代了函数图象的概念和作图的一般步骤,目的是为后继学习反比例函数、二次函数的图像作必要的知识准备。
根据教学目标,结合学生心理特点,这节课采用在教师引导下,学生主动探索发现的教学方法.即教师创设问题情景,引导学生观察、比较、自学、思考并展开讨论,使学生作为学习主体参与知识发生、发展的全过程,体验揭示规律,发现真理的乐趣,从而产生巨大的内驱力,提高课堂教学效率,充分发挥教师主导作用和学生的主体作用.二、教学目标知识与技能1.总结作一次函数图像的一般步骤,能熟练作出一次函数图像.2.总结归纳出一次函数的性质———k>0或k<0时图像变化的情况.过程与方法经历作图过程,归纳总结作作函数图像的一般步骤,发展总结概括能力,培养数形结合的意识.情感态度与价值观加强新旧知识的联系,促进新的认知结构的建构.三、教学重点1.能熟练地作出一次函数的图象.2.归纳作函数图象的一般步骤.3.理解一次函数的代数表达式与图象之间的对应关系.四、教学难点理解一次函数的代数表达式与图象之间的对应关系.五、教学方法讲、议结合法.六、教具准备投影片两张:第一张:补充练习(§6.3.1 A );第二张:补充练习(§6.3.1 B).七、教学过程Ⅰ.导入新课[师]上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们来研究一下一次函数的图象及性质.Ⅱ.讲授新课 一、函数图象的概念[师]要研究一次函数的图象,首先应知道什么叫图象?把一个函数的自变量x 与对应的因变量y 的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph ). 假设在代数表达式y =2x 中,自变量x 取1时,对应的因变量y =2,则我们可在直角坐标系内或描出表示(1,2)的点,再给x 的另一个值,对应又一个y ,又可知直角坐标系内描出一个点,所有这些点组成的图形叫该函数y =2x 的图象.由此看来,函数图象是满足函数表达式的所有点的集合.那么应如何作函数的图象呢? 二、作一次函数的图象 [例1]作出一次函数y =21x +1的图象. [师]根据图象的定义,需要先找点.所以要先列表,找满足条件的点,再描点,连线. 解:列表x … -2 -1 0 1 2 …y =21x +1 021 123 2 …描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:把这些点依次连接起来,得到y =21x +1的图象如下,它是一条直线.[师]从刚才我们作图的情况来总结一下,作一次函数的图象有哪些步骤呢? [生]①列表;②描点;③连线. 三、做一做(1)作出一次函数y =-2x +5的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y =-2x +5.[生]列表x …-2 -1 0 1 2 …y=-2x+5 …9 7 5 3 1 …描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象如下:在图象上找点A(3,-1),B(4,-3)当x=3时,y=-2×3+5=-1.当x=4时,y=-2×4+5=-3.∴(3,-1),(4,-3)满足关系式y=-2x+5.四、议一议(1)满足关系式y=-2x+5的x、y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?[师]请大家分组讨论,然后回答.[生]满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上.(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5.[师]由此看来,满足函数关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y= -2x+5的图象上;反过来,一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5.所以,一次函数的代数表达式与图象是一一对应的.即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x,纵坐标y都满足一次函数的代数表达式.(3)[生]一次函数的图象是一条直线.[师]非常正确.一次函数的图象是一条直线.由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y =kx +b 的图象也称为直线y =kx +b .Ⅲ.课堂练习 分别作出一次函数y =31x 与y =-3x +9的图象. [师]根据刚才的讨论可知,我们在画一次函数的图象时,只要确定两个点就可以了. [生]作函数y =31x 的图象时,找点(3,1),(6,2)图象如下.作函数y =-3x +9的图象时,找点(1,6),(2,3) 图象如下:补充练习投影片(§6.3.1A )(1)作出一次函数y =-x +21的图象. (2)在所作的图象上取几个点,找出它们的坐标,并验证其是否都满足关系式y =-x +21. [生](1)作一次函数y =-x +21的图象时,取点(0, 21)和(1,-21),然后过这两点作直线即可.图象如下:(2)在图象上取点A (23,-1),B (-1,23) 当x =23时,y =-23+ 21=-1 当x =-1时,y =1+21=23∴A 、B 两点的坐标都满足关系式y =-x +21. 投影片(§6.3.1 B ) (1)作出一次函数y =4x +3的图象;(2)判断下列各对数是不是满足关系式y =4x +3,如果是,请验证一下以这些数对为坐标的点是否在你所作出的函数图象上. (0,3),(-1,-1),(21,5),(1,7),(-23,-3) [生]解:(1)作一次函数y =4x +3的图象时,找点(0,3),(1,7),然后过这两点作直线即可.图象如下:(2)当x =0时,y =4×0+3=3; 当x =-1时,y =4×(-1)+3=-1; 当x =21时,y =4×21+3=5; 当x =1时,y =4×1+3=7;当x =-23时,y =4×(-23)+3=-3. ∴每对数都满足关系式y =4x +3.由前面的议一议可知,以这些数对为坐标的点在所作的函数图象上. Ⅳ.课时小结本节课主要学习了以下内容: 1.函数图象的概念;2.作一次函数图象的步骤以及熟练地作出一次函数的图象,并能验证某些数对是否在函数图象上. 3.明确一次函数的图象是一条直线,因此在作一次函数的图象时,不需要列表,只要确定两点就可以了.Ⅴ.课后作业 习题6.3 Ⅵ.活动与探究1.已知函数y =(m -2)x 552+-m m+m -4,问当m 为何值时,它是一次函数?解:根据一次函数的定义,有⎩⎨⎧≠-=+-021552m m m 解得⎩⎨⎧≠==241m m m 或∴m =1或m =42.如果y +3与x +2成正比例,且x =3时,y =7. ①写出y 与x 之间的函数关系式; ②求当x =-1时,y 的值; ③求当y =0时,x 的值.分析:①y +3与x +2成正比例,就是y +3=k ·(x +2),根据x =3时,y =7,求k 的值,从而确定y 与x 之间的函数关系式.②把x =-1代入所求函数关系式,求出y 的值. ③把y =0代入函数关系式,求出x 的值. 解:①∵y +3与x +2成正比例 ∴y +3=k (x +2)把x =3,y =7代入得:7+3=k (3+2) ∴k =2,∴y =2x +1②把x =-1代入y =2x +1中,得y =-2+1=-1③把y =0代入y =2x +1中,得 0=2x +1,∴x =-21. 说明:若y 与x 成一次函数关系式,那么函数关系式要写成y =kx +b (k ≠0)的形式. 3.如果y =mx 82-m是正比例函数,而且对于它的每一组非零的对应值(x ,y )有xy <0,求m 的值.分析:按正比例函数y =kx (k ≠0)中对于k 及x 的指数的要求决定m 的值. 解:根据题意得,y =mx 82-m 是正比例函数,故有:m 2-8=1且m ≠0即m =3或m =-3又∵xy <0,∴x ,y 是异号. ∴m =xy<0 ∴m =3不合题意,舍去. ∴m =-3.常见错误:忽略m ≠0的要求,在解题过程不写这一条件. 4.已知y +b 与x +a (a ,b 是常数)成正比例. 求证:y 是x 的一次函数.分析:由y +b 与x +a 成正比例,设立解析式,分析此解析式为x 的一次函数. 解:∵y +b 与x +a 成正比例 ∴可设y +b =k (x +a )(k ≠0) 整理,得y =kx +ka -b =kx +(ka -b ) ∵k ,a ,b 都是常数. ∴ka -b 也是常数. 又∵k ≠0∴y 是x 的一次函数.常见错误:整理得到y =kx +ka -b 时不会把ka -b 看作一个整式.说明:在叙述函数的,一定要说清楚谁是谁的什么名称函数,否则容易发生混淆现象.如本题中,y +b 是x +a 的正比例这个说法是正确的,同时,y 是x 的一次函数的说法也是正确的.八、板书设计§6.3.1 一次函数的图象(一)一、函数图象的概念二、如何作一次函数的图象归纳步骤三、做一做(作一次函数的图象)四、议一议(函数y=-2x+5的图象与满足y=-2x+5的x,y所对应的点(x,y)之间的关系)五、课堂练习六、课时小节七、课后作业。
一次函数的图像1 -完整版公开课教学设计
一次函数的图像教学目标1.了解一次函数图像是一条直线,会用描点法画一次函数图像;2.掌握直线的截距的概念,并能根据解析式写出直线的截距;3.理解一次函数图像与x 轴、y 轴交点含义,并会求出交点坐标. 教学重点及难点1.画出一次函数图像,写出直线的截距;2.会求直线与坐标轴交点坐标. 教学用具准备三角板、ppt 课件、多媒体设备 教学过程设计 一、 情景引入 1.操作按照下列步骤画正比例函数y=12x 和一次函数y=12x+3的图像,并进行比较(2)描点:分别以所取x 的值和相应的函数值y 作为点的横坐标和纵坐标,描出这些坐标所对应的点.(3)连线:用光滑的曲线(包括直线)把描出的的这些点联结起来.(图略) 2.观察观察表格和图像,对于x 的每一个相同值,函数y=12x+3的对应值比函数y=12x 的对应值都大多少?说明 不论从表中或图像上都可以看出, 对于x 的每一个相同值, 函数y=12x+3的对应值比函数y=12x 的对应值都大3个单位.因此, 函数y=12x+3的图像是由函数y=12x 的图像向上平移3个单位得到的.3.思考我们知道,正比例函数是特殊的一次函数,而正比例函数的图像是一条直线,那么一次函数的图像是直线吗? 二、学习新课 1.概念辨析一般来说, 一次函数y=kx+b(其中k 、b 是常数,且k ≠0)的图像是一条直线. 一次函数y=kx+b 的图像也称为直线y=kx+b. 一次函数解析式y=kx+b 称为直线的表达式. 2.例题分析例1在平面直角坐标系xOy 中,画一次函数y=32x-2的图像.分析 因为两点确定一条直线,所以画一次函数的图像时,只要先描出直线上的两点,再过两点画直线就可以了. 解: 由y=32x-2可知,当x=0时,y=-2;当y=0时, x=3. 所以A(0,-2)、B(3,0)是函数y=32x-2的图像上的两点. 过点A 、B 画直线,则直线AB 就是函数y=32x-2的图像.(图略). 说明 (1)画直线y=kx+b 时,通常先描出直线与x 轴、y 轴的交点,如果直线与x 轴、y 轴的交点坐标不是整数,为了画图方便、准确, 通常是描出直线上的整数点.(2)本例讲述了求直线与坐标轴交点的方法,同时,为引出直线的截距概念作好铺垫.由点A 的横坐标x=0,可知点A 在y 轴上;由点B 的纵坐标y=0,可知点B 在x 轴上.又点A 、B 在直线y=32x-2上,所以点A 、B 是直线y=32x-2分别与y 轴、x 轴的交点. 3.概念辨析一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距. 一般地,直线y=kx+b(k ≠0)与y 轴的交点坐标是(0,b).直线y=kx+b(k ≠0)的截距是b. 4.例题分析例2 写出下列直线的截距:(1)y=-4x-2; (2)y=8x ;(3)y=3x-a +1; (4)y=(a+2)x+4(a ≠-2). 解 (1)直线y=-4x-2的截距是-2. (2)直线y=8x 的截距是0. (3)直线y=3x-a +1的截距是-a +1. (4)直线y=(a +2)x+4(a≠-2)的截距是4.说明 本例是巩固对直线截距概念的理解, 直线的截距是由x=0,求得对应的y 值,同时,注意截距与距离的区别.例3 已知直线y=kx+b 经过A(-20,5)、B(10,20)两点,求: (1)k 、b 的值;(2)这条直线与坐标轴的交点的坐标.分析 直线经过点,即点在图像上,所以点的坐标满足直线解析式,根据条件,建立k 、b 的方程组,解方程组,就可求得k 、b 的值.解 (1)因为直线y=kx+b 经过点A(-20,5)、B(10,20),所以 ⎩⎨⎧=+=+20b 10k 5b 20k - 解得 k=21, b=15.(2)这条直线的表达式为 y=21x+15. 由y=21x+15,令y=0,得21x+15=0,解得x=-30;令x=0,得y=15.所以这条直线与x 轴的交点的坐标为(-30,0),与y 轴的交点的坐标为(0,15). 说明 本例进一步讲述了求直线与坐标轴交点的方法.强化重难点. 三、巩固练习1.(口答)说出下列直线的截距:(1)直线y=3x+2;(2)直线y=-2x-5;(3)直线y=3x+1-2. 2.在平面直角坐标系xOy 中,画出函数y=-32x+2的图像,并求这个图像与坐标轴的交点的坐标.3.已知直线经过点M(3,1),截距是-5,求这条直线的表达式.4.已知直线y=kx+b 经过点A(-1,2)和B(21,3),求这条直线的截距. 四、课堂小结(学生归纳,教师引导)1、一次函数y=kx+b (k ≠0)的图像是什么样的形状? 如何画一次函数的图像?2、什么叫直线的截距? 如何求直线的截距?3、用什么方法求直线解析式? 如何求直线与坐标轴交点的坐标? 五、作业布置 练习册习题20.2(1) 分层作业:已知直线y=mx+2与x 轴、y 轴的交点分别为A 、B,点O 为坐标原点,如果OA=21OB,求直线的表达式.解: 由y=mx+2,令y=0,得mx+2=0,解得x=-m 2,得点A 坐标(-m2,0);令x=0,得y=2.得点B 坐标为(0,2)所以OA=│-m2│, OB=2 由OA=21OB, 得│-m 2│=1, 所以m=±2所以直线的表达式为y=2x+2 或 y=-2x+2说明本题要求出直线的表达式,只要求出待定系数m的值即可,解决问题的关键是正确运用点的坐标表示线段的长度.本题谨防漏解.教学反思:对已知解析式求与坐标轴的交点,求与坐标轴围成的面积,学生掌握很好,但已知面积求解析式,经常不会考虑两种情况,忽略了坐标并不和距离是等同的。
北师大版数学八年级上册4.3一次函数的图像(第1课时)教学设计
4.导入新课:通过以上环节,自然地导入本节课的主题——一次函数的图像。
(二)讲授新知
在这一环节中,我将详细讲解一次函数的定义、图像特点及其增减性。
1.一次函数定义:讲解一次函数的一般形式y=kx+b(k≠0,k、b是常数),并解释k、b的含义。
4.培养学生运用描点法绘制一次函数图像的方法,培养学生数形结合的数学思想。
(三)情感态度与价值观
1.培养学生对数学的兴趣和爱好,激发学生的学习积极性,使学生树立学习数学的信心高学生对数学价值的认识。
3.通过一次函数图像的学习,培养学生勇于探索、善于发现的精神,增强学生的创新意识。
1.分组:将学生分成若干小组,确保每个小组成员在数学水平上具有一定的互补性。
2.讨论任务:让各小组讨论一次函数图像的绘制方法、增减性及其在实际问题中的应用。
3.交流分享:在各小组讨论的基础上,组织学生进行班级分享,互相学习、取长补短。
4.教师点评:对各小组的讨论成果进行点评,强调重点、难点,并解答学生在讨论过程中遇到的问题。
北师大版数学八年级上册4.3一次函数的图像(第1课时)教学设计
一、教学目标
(一)知识与技能
1.理解一次函数的定义,掌握一次函数的一般形式:y=kx+b(k≠0,k、b是常数),并能够识别实际问题中的一次函数关系。
2.能够通过描点法绘制一次函数的图像,了解一次函数图像的特点,即直线图形。
3.能够根据一次函数的图像,判断函数的增减性,理解当k>0时,函数图像呈现上升趋势;当k<0时,函数图像呈现下降趋势。
1.基础巩固题:
(1)请同学们回顾一次函数的定义,并用自己的话简要解释一次函数中k和b的含义。
《一次函数的图像及性质》教学设计 .docx
《一次函数的图像及性质》教学设计教学目标(一)知识与技能1、通过实际操作与探索,学生会利用两个合适的点画出一次函数图像2、通过数形结合,学生能根据图像和解析式y =kx +b(k ≠ 0),理解当k > 0 和k < 0 时图像的变化情况,从而理解一次函数的增减性。
(二)过程与方法通过观察图像、类比正比例函数性质概括一次函数性质的活动,发展数学感知和数学概括能力,体会数形结合的思想,发展几何直观思维。
(三)情感态度与价值观在画图过程中体验数与形的内在联系,通过一系列富有探究性的问题,培养学生的实践论证意识。
教学重难点:教学重点:利用数形结合的方法,通过画图观察探究,概括一次函数的性质,理解并掌握函数的增减性与自变量系数正负形的关系。
教学难点:以坐标为桥梁,探究函数图像特征和变量间的对应关系。
学生分析:通过正比例函数的学习,学生已经初步体会了函数的研究方法,具有数形结合的探究理念。
一次函数的解析式比正比例函数多了常数b ,所以可类比正比例函数的研究方法,由画图引入,引导学生观察概括函数图像的性质,再回归到解析式的特点,在理解的基础上,心中有图,脑中有式,而非仅停留在结论的记忆层次。
教学内容分析网课阶段,如何在平台上与学生无障碍沟通,实时掌握其学习动态是至关重要的。
一次函数是数学中最简单、最基本的函数之一,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。
本节课与正比例函数的图形和性质有着紧密的联系,学生已有探究基础,便可增加与生活实际的联系、学生互动的设计。
在教学中,通过设置环环相扣的问题,引导学生自主观察、探索,让他们在学习过程中体验、感悟函数思想和实际应用的联系,激发学生学习函数的信心和兴趣。
教学媒体应用教学过程一、创设情境,引入新课播放网络视频动画《疫情扩散中的函数问题》问题 1:在视频中出现的函数都是以什么样的形式体现出来的?问题 2:函数图像为何能反映疫情扩散情况?我们怎样“看图说话”?设计意图:当下,疫情是人们普遍关注的问题,由此引入可激发学生学习兴趣,让学生初步体会到数学建模思想。
《一次函数的图象和性质》教学设计优秀5篇
《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。
二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。
本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。
第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。
本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。
为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。
2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。
3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。
4.理解一次函数的代数表达式与图象之间的一一对应关系。
教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。
教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。
三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。
第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
人教版八年级数学下册19.2一次函数的图象和性质教学设计
-在实际问题中,学生可能难以识别一次函数关系,需要培养他们的观察能力和抽象思维能力。
(二)教学设想
1.利用互动式教学,强化学生对一次函数概念的理解。
-设计课堂提问,引导学生思考一次函数的定义和特征。
-通过小组讨论,让学生在交流中加深对一次函数图像和性质的理解。
1.回顾已学的线性方程和不等式,引导学生思考这些知识在一次函数学习中的作用。
-提问:“我们之前学习的线性方程和不等式与今天要学习的一次函数有什么联系?”
-通过回顾,让学生意识到一次函数是线性方程和不等式的图像表现形式。
2.创设生活情境,提出问题,引发学生思考。
-情境:“小明乘公交车去动物园,公交车的速度是恒定的,请问小明离动物园的距离是如何随时间变化的?”
三、教学重难点和教学设想
(一)教学重难点
1.重点:一次函数的定义、图像与性质的理解和应用。
-准确理解一次函数的标准形式,掌握斜率和截距的概念。
-学会绘制一次函数的图像,并能通过图像分析一次函数的性质。
-能够将一次函数的性质应用于解决实际问题。
2.难点:一次函数图像与性质之间的关系,以及将实际问题抽象为一次函数模型。
-提高学生的学习策略,培养他们的自主学习能力。
3.对学生在课堂上的表现给予评价,激发他们的学习积极性。
-肯定学生的努力,鼓励他们在今后的学习中继续进步。
五、作业布置
为了巩固学生对一次函数的理解和应用,我将布置以下作业:
1.基础知识巩固题:请学生完成教材第19.2节后的练习题1-5,包括绘制一次函数图像、计算斜率和截距等。这些题目旨在帮助学生巩固一次函数的基本概念和性质。
4.3.1一次函数的图像教学设计2023-2024学年北师大版八年级数学上册
2.拓展建议
-学生可以利用网络资源,如教育网站、数学论坛等,查找一次函数图像的相关资料,拓宽知识面。
-学生可以阅读一些数学书籍,如数学故事集、数学游戏book,以提高对一次函数图像的理解和兴趣。
教学反思
本节课是关于一次函数图像的教学,我尽力让学生们理解和掌握一次函数图像的性质和特点,以及如何绘制和分析一次函数图像。在教学过程中,我注意到了一些问题和需要改进的地方。
首先,我意识到学生们对于一次函数图像的实际应用还不够理解。虽然我通过举例和实际问题来解释一次函数图像的意义,但学生们对于如何将一次函数图像应用于解决实际问题还不够清晰。因此,我计划在今后的教学中,更多地引入实际问题,让学生们亲手操作,体验一次函数图像在解决实际问题中的应用。
-学生可以参加数学竞赛或数学俱乐部,与其他对数学感兴趣的学生交流和分享一次函数图像的学习经验和心得。
-学生可以尝试解决一些与一次函数图像相关的实际问题,如数据分析、优化问题等,提高解决实际问题的能力。
教学评价与反馈
1.课堂表现:观察学生在课堂上的参与程度、提问回答、互动交流等情况,评价学生在课堂上的学习态度和积极性。
-总结:老师对本节课的主要内容和知识点进行总结,强调一次函数图像的重要性和应用。
-拓展思考:老师提出一些拓展问题,引导学生思考一次函数图像在其他领域的应用,激发学生的创新思维和探索精神。
总用时:40分钟
教学过程设计要注重创新和实际学情,通过导入环节激发学生的学习兴趣,通过讲授新课使学生理解和掌握一次函数图像的性质和特点,通过巩固练习巩固学生的理解,通过课堂提问促进学生的思考和互动,通过总结与拓展对学生的学习进行巩固和拓展。
一次函数图像与性质教学设计(8篇)
一次函数图像与性质教学设计(8篇)第1篇:一次函数图像性质教学反思《一次函数的图象和性质》教学反思从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。
通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。
究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。
这样,教师才能灵活的把握课堂教学。
而现在,教师缺乏的正是这一点,还是为了教而教。
按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。
而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。
从这一角度讲,教师应在把握知识的基础上。
结合学生的表现,灵活多样的处理知识。
学生是学习的主体,学生活动是新教材的一大特点。
新教材在知识安排上,往往从实例引入,抽象出数学模型。
通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。
侧重于学生能力的培养,让学生知道学什么,如何学。
因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。
一是通过画函数图象理解一次函数图象的形状。
二是两点法画一次函数的图象。
三是探究一次函数的图象与 k、b 符号的关系。
在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。
值得老师们探讨。
为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。
如在活动一中,要求学生观察图象的形状,两条直线的位置关系。
在活动二中,强调两点法(直线与坐标轴的交点)画直线。
在活动三中,探究 k、b 符号与直线经过的象限与增减性的关系。
学生目标明确,操作性强,受到了较好的效果。
本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。
一次函数的图象数学教案
一次函数的图象数学教案
标题:一次函数的图象数学教案
一、教学目标
(这部分需要描述您希望学生通过这节课学习达到的目标)
二、教学重难点
(在这里列出本节课程的重点和难点)
三、教学过程
1. 导入新课
(在这里介绍如何引导学生进入新课程的学习)
2. 讲授新知
2.1 一次函数的定义
(在这里详细介绍一次函数的定义)
2.2 一次函数的图像
(这里详细解释一次函数图像的特点,并可能包括实例分析)
3. 实践操作
(设计一些练习或者实验让学生自己动手画出一次函数的图像,加深理解)
4. 总结与反馈
(总结本节课的内容,收集学生的反馈信息)
四、作业布置
(在这里为学生布置课后的作业,以巩固他们在课堂上学到的知识)
五、教学反思
(在这一部分,您可以对本次的教学效果进行反思,看看哪些地方做得好,哪些地方还需要改进)。
北师大版八年级数学上册《一次函数的图象》第1课时示范课教学设计
第四章一次函数3 一次函数的图象第1课时一、教学目标1.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线,能熟练画出正比例函数的图象.2.能根据正比例函数的图象和表达式y=kx(k≠0)理解k>0和k<0时,函数的图象特征与增减性,培养学生数形结合的意识和能力.3.理解正比例函数的代数表达式与图象之间的一一对应关系.4.掌握正比例函数的性质,并能灵活运用解答有关问题.二、教学重难点重点:能熟练画出正比例函数的图象.难点:理解函数的图象特征与增减性,掌握正比例函数的性质.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计(4)y=8x; (5)y=5x2-4x+1. (6)y=(x+1)2预设答案:(1)(2)(4)是一次函数.(1)(4)是正比例函数.问题3:若函数y=(6-3m)x+4n-4是一次函数,则m,n满足什么条件?若是正比例函数,则m,n应满足什么条件?预设答案:解:根据y=(6-3m)x+4n-4是一次函数得:6-3m≠0,则m≠2,n取任何实数;若是正比例函数,得6-3m≠0且4n-4=0,则m≠2,n=1.【思考】把摩天轮上一点的高度h(m)与旋转时间t (min)之间的函数关系通过下列图形表示:教师活动:如何定义这种图形?【探究】把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象.教师活动:这是摩天轮上一点的高度h与旋转时间t之间函数关系的图象.【例1】画出正比例函数y=2x的图象.解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=2x的图象,它是一条直线.画函数图象的步骤可以概况为三步:教师活动:这种画函数图象的方法叫做描点法.【做一做】画出正比例函数y=-3x的图象.列表:描点:连线:在所画的图象上任意取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-3x.教师活动:通过两个点(-1.5,4.5),(0.5,-1.5)得出结论:它们都满足关系y=-3x.正比例函数的表达式与图象是一一对应的.【议一议】(1) 满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x的图象上吗?预设答案:都在正比例函数y=-3x的图象上.(2) 正比例函数y=-3x的图象上的点(x,y)都满足关系式y=-3x吗?预设答案:都满足.(3) 正比例函数y=kx的图象有何特点?你是怎样理解的?预设答案:都经过原点.【探究】观察上述两组正比例函数图象,说一说正比例函数y=kx的图象有何特征?特征:正比例函数y=kx的图象是一条经过原点(0,0)的直线.因此,画正比例函数图象时,只要再确定一个点,过这点与原点画直线就可以了.不同点:函数y=2x的比例系数k>0,图象经过第一、三象限;函数y=-3x的比例系数k<0,图象经过第二、四象限.【归纳】教师活动:由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0)和点(1,k),连线即可.【做一做】在同一直角坐标系内画出正比例函数y=x,y=3x,12y x=-和y=-4x的图象.教师活动:这四个函数中,随着x的增大,y 的值分别如何变化?相应图象上的点的变化趋势如何?当k>0时,x增大时,y的值也增大;y随x的增大而增大.当k<0时,x增大时,y的值反而减小;y随x的增大而减小.【归纳】在正比例函数y=kx中:1. 当k>0时,y的值随着x值的增大而增大,相应图象上的点从左往右呈上升趋势;2. 当k<0时,y的值随着x值的增大而减小,相应图象上的点从左往右呈下降趋势.【想一想】正比例函数y=x和y=3x中,随着x值的增【典型例题】教师活动:教师提出问题,学生先独立思考,然后再小组交流探讨.教师板书一道例题书写过程,其余题目可由学生代表板书完成,最终教师展示答题过程.【例2】 在同一直角坐标系内画出正比例函数12y x =与13y x =-的图象,并指出随着x 值的增大,y 的值分别如何变化?解:画图:对于函数12y x =,y 的值随着x 值的增大而 增大;对于函数13y x =-,y 的值随着x 值的增大而减小.所以-6=4k,解得32k=-,所以32y x=-.当x=-4时,y=6,所以点(-4,6)在此正比例函数图象上.故选B.4.在正比例函数y=-3mx中,y随x的增大而增大,则点P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限答案:B.解析:因为y随x的增大而增大,所以-3m>0,所以m<0,所以点P(m,5)在第二象限.故选B.5.画出函数y=-2x的图象.解:列表,描点、连线,得到y=-2x的图象如图所示:6.已知正比例函数y=mx的图象经过点(m,9),且y的值随着x值的增大而减小,求m的值.解:因为正比例函数y=mx的图象经过点(m,9)所以9=m∙m,解得m=±3.又因为y的值随着x值的增大而减小,所以m<0,故m=-3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一次函数的图像》的教学设计
一、教材地位
一次函数的图像是形与数的完美结合,是解决一些实际问题的重要工具之一,学生在探索一次函数图像的过程中所获得的数学活动经验为今后进一步学习反比例函数的图像、二次函数的图像奠定良好的基础.
二、学情分析
1.学生年龄特征分析:初二学生的思维主要以经验型的抽象思维为主,但他们的思维是处在经验型抽象思维向理论型抽象思维发展的阶段.
2.学生认知方面分析:在前几节课的数学学习中,学生已经初步具备了直观感知图形图像的能力,具有一定的观察与概括能力,初步学会将“形”的图像与“数”的图像进行互化.
三、教学目标
1. 知识与技能目标:学生在探索学习一次函数y=kx+b(k≠0)图像的过程中理解一次函数y=kx+b(k≠0)的图像,并能探索出k和b相同或不同时,对图像的影响。
2. 能力目标:学生在探索一次函数y=kx+b(k≠0)图像的过程中,进一步提高自己的直观感知图形能力、“形”与“数”互化能力、合情推理能力.
3. 情感与态度目标:学生通过一次函数y=kx+b(k≠0)图像的学习,进一步感受数形结合的魅力,体验探索、发现的乐趣,增强参与意识与合作意识.
四、教学重难点
1. 重点:一次函数的图像的探索与归纳;
2. 难点:归纳表述一次函数的图像.
五、教法与学法
在教师问题的引导下,先让学生自主探索或小组合作学习、教师巡回点拨,收集学生反馈的信息,后进行班级交流,通过生生、师生互动生成.
六、教学过程
1 创设情景引发兴趣
观察图片:对内容是否熟悉?
设计意图:通过一段时间的学习,很多学生觉得函数很难,谈函数色变,挖掘函数背后的故事,引起学生的兴趣,更战胜恐惧心理。
2 学习目标掌控全局
[1]理解并能熟练作出一次函数和正比例函数的图象;
[2]探索并掌握k与b的取值,对直线位置的影响;
[3]培养数形结合的意识和能力。
设计意图:展示学习目标,初略大概,使学生做到心中有数,带着问题,开始学习。
3 以旧引新点明课题
⑴填空:一次函数的表示形式为;
⑵画函数图像的方法和步骤?
设计意图:选择一个学生凭借已有的认知基础能够解决并渗透分类思想的问题,作为以旧引新的背景材料,它既能达到温故的目的,又能为启下点明课
题服务,让学生了解了本课的学习内容,激发他们进一步学习的欲望. 2 问题引领 探索新知
在平面直角坐标系中画出函数 和y=2x+1的图象。
设计意图:由于有图象作支持,学生可以一目了然地实现对一次函数图
象进行探索,.并总结得到一般规律.再进行深入探索.
3 形数互化 拓展图像
1.一次函数y=kx+b (k ≠0)的图像是什么?
2.如何快速的画出一次函数的图像,为什么?
3.取哪两点可以快速的画一次函数的图像呢?理由是什么?
设计意图:将探索问题转化成由浅入深、从具体到抽象的问题串,不但
为不同层次的学生提供学习的空间,而且为生生、师生的有效互动提供丰富的资源.促使学生积淀合情推理的数学活动经验.
4 小试牛刀 展我风采
在同一个平面直角坐标系中画出下列函数的图象: 1.x y 21= 22
1+=x y
x y 2
1=
2. y=3x y=3x+2
设计意图:对于刚探索出“用两点画一次函数的图形”进行练习,巩固新知,同时进一步体会“用两点画一次函数的图形”的方便和快捷。
5 师生小组 合作探究
小组讨论:这些函数的图像有什么特点?
方法:通过观察、探讨和研究,
不同解析式的系数k 与b 相同或
不同时,函数图像之间有什么相
同和不同之处?
例:①直线 y=3x 和y=3x+2 的k 相同,b 不同; 图像:相同 不同
②直线 和 的 相同, 不同;
相同 ,不同
③你还有别的发现吗?
设计意图:先生生互动,探索出k 、b 对函数图像的影响,再师生互动,点拨概括重难点,引导学生观察方法、归纳方法,用有逻辑,有依据的数学语言,对函数图像进行分析,对比和归纳。
6 反馈检测
1.①直线y=4x-3经过点( ,0)、(0, );
②直线经过点( ,0)、(0, );
2.①你可以直接说出一次函数y=-2x 和y=-2x-4的图像之间的关系吗?
231+-=x y x
21=2+
②请在同一个平面直角坐标系中画出上面两个函数的图像,并验证你的结果是否正确。
3.①将直线y=3x 向下平移2个单位,得到直线 . ②将直线y=-x-5向上平移5个单位,得到直线 .
4.请直接说出下列直线间的关系
①y=-x+2与y=-x-1 ②
y=3x-2与 232-=x y。