外腔用半导体激光管基本原理及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外腔用半导体激光器基本原理及应用
1. 外腔用半导体激光器的概念
早期普通FP腔结构的半导体激光管腔长一般在800μm—1500μm, 后反射面的反射率接近全反射,出射端面的反射率一般在百分之几十以内。由于谐振腔的精细度不够高,而自由光谱范围又很宽,造成普通FP腔半导体激光器的线宽比较宽,甚至会出现多模运转,所以通常不能直接用在原子分子精密光谱,光频标,冷原子操控,原子干涉仪等研究领域。后续出现了DFB/DBR等激光器,因为内置光栅的原因,线宽得到了一定的压窄,可以达到2MHz甚至更小,基本可以应用到上述领域中。但随着对研究精度的提高,MHz级别的线宽已经不能满足更高要求的实验需求了,于是通过在激光管外再增加一些光反馈元件,使得激光管的后反射面和光反馈元件之间形成一个外腔,这样的激光器称为外腔半导体激光器(ECDL)。由于外腔对激光器的模式选择作用,可以大幅度压窄半导体激光器的线宽到KHz级别,同时通过外腔光学元件的调谐作用,使得激光波长可以精确调谐。由于外腔半导体激光器具有易于调谐、谱线宽度窄、维护简单等特点,成为精密光谱研究中一个重要的工具。当然外腔用半导体激光器也有结构稳定性和紧凑度不如DFB激光器的情况,但更窄的线宽以及更高的功率依然是它的最大优势所在。
两种典型的外腔半导体激光管结构(Littrow结构和Littman结构)
2. 外腔用半导体激光管的线宽压窄原理
设入射光的波长为λ0 ,为了使1级光形成外腔反射,必须满足以下方程组:
从激光管出来的光谱范围较大,波长成分较多,但只有满足第一个方程的波长成分才会发生一级闪耀反射回去,同时腔长必须满足第二个方程,反射回去的光才能形成谐振放大。零级出射光里的波长成分主要是一级反射光的波长,其它波长成分因为没有放大过程会大幅衰减,表现出来的光谱特性就是极窄的线宽。
3. 主要应用
外腔用半导体激光器因为它极窄的线宽和较高的光功率,在冷原子,原子分子精密光谱研究领域具有广泛的用途,目前主要应用在原子冷却,光频标,原子干涉仪,激光陀螺,高精度原子钟和光钟。
⎪⎩⎪⎨⎧==0002sin 2λλθq L d