衍射光强的测量
衍射光强分布的测实验报告
![衍射光强分布的测实验报告](https://img.taocdn.com/s3/m/4be4658e5ef7ba0d4a733bdd.png)
篇一:衍射光强分布的测实验报告衍射光强分布的测量1008406006 物理师范陈开玉摘要:为了观察并验证单缝衍射和多缝衍射的图样以及它们的规律,本实验设计了基于水平光路的测量方法。
运用自动光强记录仪来对衍射现象进行比较函数化的观察。
实验观察到衍射条纹随着缝宽变窄而模糊和间距扩大,并且通过仪器对光强图样的位置定位和夫琅禾费光强的公式来计算单缝的缝宽。
该实验装置结构简单、调节方便、条纹移动清晰。
关键词:衍射自动光强记录仪单缝多缝一、引言光的衍射现象是光的波动性的重要表现,并在实际生活中有较多应用,如运用单缝衍射测量物体之间的微小间隔和位移,或者用于测量细微物体的尺寸等。
本实验要求通过观察、测量夫琅禾费衍射光强分布,加深对光的衍射现象的理解和掌握。
二、实验原理1,衍射的定义: 波遇到障碍物或小孔后通过散射继续传播的现象。
衍射现象是波的特有现象,一切波都会发生衍射现象,而光也是波的一种, 光在传播路径中,遇到不透明或透明的障碍物或者小孔(窄缝),绕过障碍物,产生偏离直线传播的现象称为光的衍射。
衍射时产生的明暗条纹或光环,叫衍射图样2,光的衍射分为夫琅禾费衍射和菲涅尔衍射, 夫琅禾费衍射是指光源和观察点距障碍物为无限远,即平行光的衍射;而菲涅尔衍射是指光源和观察点距障碍物为有限远的衍射.本实验研究的只是夫琅禾费衍射.实际实验中只要满足光源与衍射体之间的距离 ,衍射体至观察屏之间的距离都远大于就满足了夫琅禾费衍射的条件,其中a为衍射物的孔径,λ为光源的波长.3,单缝、单丝衍射原理:如上图所示,a为单缝宽度,缝和屏之间的距离为,为衍射角,其在观察屏上的位置为,离屏幕中心的距离为 =,设光源波长为λ,则有单缝夫琅禾费衍射的光强公式为:式中是中心处的光强,与缝宽的平方成正比。
若将所成衍射图样的光强画成函数图象在坐标系中,则所成函数图象大致如下除主极强外,次极强出现在的位置,它们是超越方程的根,其数值为:对应的值为当角度很小时,满足,则可以近似为因而我们可以通过得出函数中次级强的峰值的横坐标只差来确定狭缝的宽度a4,多缝衍射和干涉原理多缝衍射的示意图如上图,每条缝的宽度为a,两条缝的中心距离为d,其中的每个单缝的衍射光强强度都和之前的单缝衍射光强公式一致。
单缝衍射光强的分布测量实验报告
![单缝衍射光强的分布测量实验报告](https://img.taocdn.com/s3/m/6af253fb08a1284ac8504364.png)
竭诚为您提供优质文档/双击可除单缝衍射光强的分布测量实验报告篇一:衍射光强分布测量衍射光强分布测量***,物理学系摘要:本实验利用激光为光源研究激光经过单缝与单丝时的衍射光强度分布情况。
激光的高准直性符合夫琅和费远场条件,且高单色性保证测量时没有不同波长光的叠加影响。
光感应器方面使用光栅尺与电脑连接做0.02毫米/点的高精度自动扫描。
通过巴比涅原理迂回得到了没有直射光时单丝的衍射光强分布,完整验证了运用衍射光强分布来测量小微物体的长度的方法和可行性,并实际运用此法测量了铜丝和头发丝的直径。
关键词:衍射分布巴比涅原理单缝直径测量ThemeasurementoftheDistributionofLightDiffraction YixiongKeYiLin,DepartmentofphysicsAbstarct:Thisexperimentmadeuseoflaserasthelightsourcetoverif yaseriesofdiffractionpatternsof633nmlaserviadiffere ntsingleslitsandmonofilaments.Thecollimationfeature ofthelasermeetstheconditionofFraunhoferdiffraction, themonochromicfeatureoflaserprovideabetterexperimen talenvironmentthatthediffractionpatternwon`tbeinter ferebythelightofotherwavelength.weuselinearencorder connectedtopcviauLI(universalLaboratoryInterface)as thesensortoautomaticallyscanthediffractionpatternwi ththeratioof0.02mmperdot.weusebabinet’sprincipletogetthediffractionpatternofamonofilament p letelyverifiedthemethodandfeasibilityofmeasuringati nyobjectwithitsdiffractionpattern.Inaddition,wetryt omeasurethediameterofacopperwireandpeople’shairinthiswayKeywords:Diffractiondistributionbabinet`sprinciplesingleslitsmeasureDiameterofthewire1一、引言衍射是波遇到障碍物时便利直线传播的现象。
单缝衍射光强的分布测量实验报告
![单缝衍射光强的分布测量实验报告](https://img.taocdn.com/s3/m/a92752a9988fcc22bcd126fff705cc1755275f18.png)
单缝衍射光强的分布测量实验报告实验名称:单缝衍射光强的分布测量实验目的:1. 了解单缝衍射现象及其规律;2. 掌握测量单缝衍射光强的方法和步骤。
实验器材:1. 单缝光源2. 单缝衍射装置3. 光电探测器4. 数字多道分析器5. 电脑与连接线6. 实验支架7. 高精度尺子实验原理:当光传播到单缝上时,由于光的波动性,出现了衍射现象。
在单缝前方远离缝的一定距离处,出现一系列亮暗的条纹,即衍射图样。
衍射图样反映了波阵面在缝后的衍射情况,通过测量这些条纹的亮度,可以得到单缝衍射光强的分布。
实验步骤:1. 将实验装置搭建好,确保光路正常且稳定。
2. 将光电探测器放置在远离单缝的一定距离处,调整其位置使其刚好能接收到衍射光。
3. 将电脑与数字多道分析器连接。
4. 打开数据采集软件,设置好采集参数。
5. 开始采集数据,持续一段时间,确保得到足够多的数据点。
6. 关闭数据采集软件,保存数据并进行数据分析。
7. 根据采集到的数据绘制单缝衍射光强分布图。
实验结果分析:根据采集到的数据,可以得到每个位置上的光强数值。
通过绘制光强与位置的关系图,可以观察到一系列亮暗条纹的分布。
根据衍射理论可以推导出单缝衍射的光强分布公式:I(x) = (I_0 * sin(β)/β)^2 * (sin(α)/α)^2其中,I(x)为位置x处的光强,I_0为中央最大光强,β为sin(β) = (π* b * sin(α))/λ,b为单缝宽度,α为入射光与垂直方向的夹角,λ为入射光波长。
实验误差分析:1. 由于实验器材和环境的限制,实际测量中可能会存在一定的误差。
2. 光电探测器的位置调整可能不够精确,导致实际测量的位置与理论位置存在偏差。
3. 光源的稳定性对实验结果也有一定影响,光源的波动性会导致实际测量的数值偏差。
4. 数据采集时的误差也需要注意,包括噪声、干扰等。
实验结论:通过实验测量单缝衍射光强的分布,可以得到一系列亮暗条纹的分布情况。
单缝衍射光强分布的测定
![单缝衍射光强分布的测定](https://img.taocdn.com/s3/m/8bf0dc4c482fb4daa48d4b1c.png)
单缝衍射光强分布的测定光的衍射现象是光的波动性又一重要特征。
单缝衍射是衍射现象中最简单的也是最典型的例子。
在近代光学技术中,如光谱分析、晶体分析、光信息处理等到领域,光的衍射已成为一种重要的研究手段和方法。
所以,研究衍射现象及其规律,在理论和实践上都有重要意义。
实验目的1. 观察单缝衍射现象及特点。
2. 测定单缝衍射时的相对光强分布3. 应用单缝衍射的光强分布规律计算缝的宽度α。
实验仪器光具导轨座,He-Ne 激光管及电源,二维调节架,光强分布测定仪,可调狭缝,狭缝A 、B 。
扩束镜与起偏听偏器,分划板,光电探头,小孔屏,数字式检流计(全套)等。
实验原理光在传播过程中遇到障碍时将绕过障碍物,改变光的直线传播,称为光的衍射。
光的衍射分为夫琅和费衍射与菲涅耳衍射,亦称为远场衍射与近场衍射。
本实验只研究夫琅和费衍射。
理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。
单缝的夫琅和费衍射如图二 所示。
当处于夫琅和费衍射区域,式中α是狭缝宽度,L 是狭缝与屏之间的距离,λ是入射光的波长。
实验时,若取α≤10-4m, L ≥1.00m ,入射光是He-Ne激光,其波长是632.8nm,就可满足上述条件。
所以,实验时就可以采用如图一装置。
λ<<L82α如图二 单缝衍射的光路图1、导轨2、激光电源3、激光器4、单缝或双缝二维调节架5、小孔屏6、一维光强测量装置7、WJF 型数字式检流计根据惠更斯-菲涅耳原理,可导出单缝衍射的光强分布规律为当衍射角ϕ等于或趋于零时,即ϕ=0(或ϕ→0),按式,有故I=I 0,衍射花样中心点P 0的光强达到最大值(亮条纹),称为主极大。
当衍射角ϕ满足时,u=k π 则I=0,对应点的光强为极小(暗条纹), k 称为极小值级次。
若用X k 表示光强极小值点到中心点P 0的距离,因衍射角ψ甚小,则故X k =L ϕ=k λL/α,当λ、L 固定时,X k 与α成反比。
缝宽α变大,衍射条纹变密;缝宽α变小,衍射条纹变疏。
单缝衍射光强分布的测定
![单缝衍射光强分布的测定](https://img.taocdn.com/s3/m/0837e498a1c7aa00b52acba5.png)
实验名称: 单缝衍射光强分布的测定 实验时间: 实验者:院系: 学号:指导教师签字: 实验目的:1.测定单缝衍射的相对光强分布;2.测定半导体激光器激光的波长。
实验仪器设备:光具座 半导体激光器 可调单缝 硅光电池 光电检流器 移测显微镜 光屏实验原理:1. 夫琅禾费衍射当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。
衍射通常分为两类:一类是满足衍射屏离光源或接收屏的距离为有限远的衍射,称为菲涅耳衍射;另一类是满足衍射屏与光源和接收屏的距离都是无限远的衍射,也就是照射到衍射屏上的入射光和离开衍射屏的衍射光都是平行光的衍射,称为夫琅禾费衍射。
以波长为λ的单色平行光(实验用散射角极小的激光器产生激光束)垂直通过单缝,经衍射后,在屏上可以得到一组平行于单缝的明暗相间的条纹(夫琅禾费衍射条纹)。
如图所示。
根据惠更斯——菲涅耳原理,可知220sin ββθI I = 由θλπβsin a =得 220)sin ()sin (sin λθπλθπθa a I I =0I I θ叫做相对光强 暗纹条件)0,,2,1(asin =±±==θλθI k k (θ很小,故θθθ≈≈tan sin ,)中央明纹两侧暗条纹之间的角宽a 2λθ=∆ 相邻两暗条纹之间角宽aλθ=∆’ 0=θ时,0I I =θ,此时光强最大,为主最大。
其两侧相邻两暗条纹间都有一个次最大,角位置分别为。
,、、 a47.3a 46.2a 43.1sin λλλθ±±±= 相应的 008.0017.0047.00、、=I I θ 得到单缝衍射相对光强分布曲线2.测入射光波波长dθD x 亮暗在实验中,θ很小,设单缝距屏L ,屏上条纹距中心点为x ,Lx tan sin =≈θθ 由asin λθk=,得对应第一级暗条纹有Lb ∆==asin λθ 则可以测得入射光波波长Lb∆=a λ 操作步骤:1. 根据指导书上的装置图安装好实验仪器;2. 打开激光器,使激光束对准可调狭缝且垂直照射。
单缝衍射的光强分布的测量
![单缝衍射的光强分布的测量](https://img.taocdn.com/s3/m/02af5810ae45b307e87101f69e3143323968f5a9.png)
单缝衍射的光强分布的测量单缝衍射是一种经典的光学现象,它描述了光通过一个窄缝缝隙后,会产生一系列暗纹和明纹的分布图案。
这一现象被广泛应用于科学研究和工业应用中,因此对单缝衍射的光强分布测量具有重要意义。
本文将介绍单缝衍射的基本理论、实验装置和光强分布的测量方法。
一、单缝衍射的基本理论单缝衍射是一种衍射现象,它是指光通过一个宽度为d的狭缝时所产生的衍射效应。
根据光的波动理论,当光线通过一个宽度为d的孔或缝隙时,光线被分散成许多波前,这些波前互相干涉,从而形成了一系列明暗条纹。
这些条纹的间距和亮度取决于光波的波长和狭缝的尺寸。
根据菲涅耳衍射理论,单缝衍射的光强分布可以用以下公式来描述:I = I_0 × (sin(πa/λ) / (πa/λ))^2 × (sin(πd/λ) / (πd/λ))^2其中,I_0为入射光的强度;a为缝隙中心到屏幕的距离;d为缝隙的宽度;λ为光的波长。
根据公式可知,单缝衍射的光强分布具有典型的中央最大值和一系列交替的暗纹和明纹,它们的间距和强度都取决于λ和d的大小比。
实验中,测量单缝衍射光强分布是通过光强计测量光的强度分布,然后将测量的数据与理论公式进行比较,从而验证光的波动性和理论模型。
二、实验装置为了测量单缝衍射的光强分布,需要有一个正常的光源,一个单缝和一个光强计。
下面是实验装置的详细介绍:1. 光源实验中所需的光源可以是激光、白光、单色光等。
其中,激光通常是最好的光源,因为它的频率和波长比较稳定,光的强度高,并且方向性强,易于控制。
激光通常被用于高精度的光学测量和调整,但是它也比较昂贵,容易受到环境噪声的干扰。
2. 单缝单缝通常是由金属或化学纤维制成的,其宽度一般在微米级别。
单缝可以通过微加工技术制造,也可以购买专业的单缝板。
实验中要保证单缝的宽度精度和平面度,这对于结果的精度有很大的影响。
3. 光强计光强计是实验中测量光强分布的重要工具。
它可以是钨丝光电池、光电二极管、CCD 相机等。
衍射光强的测量实验报告
![衍射光强的测量实验报告](https://img.taocdn.com/s3/m/cd3ac4816037ee06eff9aef8941ea76e58fa4a2d.png)
衍射光强的测量实验报告测量衍射光强的分布,了解衍射现象的特点。
实验原理:衍射是波的特性之一,当光通过一个小孔或绕过一个障碍物时,会发生衍射现象。
衍射现象产生的光强分布与光源和待衍射物体的性质有关。
在这个实验中,我们通过测量不同位置的衍射光强来研究光强的分布情况。
实验器材:1. 激光器2. 衍射光屏3. 光电二极管4. 光电二极管探测电路5. 光电二极管信号处理器6. 示波器7. 尺子实验步骤:1. 将激光器稳定地放置在实验台上,并调整光束的方向,使其尽可能垂直地照射到衍射光屏的小孔上。
2. 在光屏上选择一个合适的小孔,打开光电二极管探测电路和光电二极管信号处理器。
确保仪器正常工作。
3. 将光电二极管放置在距离衍射屏一定距离的位置上,并用尺子测量该距离。
4. 将示波器的时间标尺和电压标尺调节到适当的范围,以便观察波形。
5. 在示波器上观察到光电二极管输出的波形,调节电压标尺使波形范围最大化。
6. 通过调整衍射光屏的位置,使得在示波器上观察到最佳的波形。
7. 记录下示波器上波形的峰值和衍射光屏的位置。
实验结果:根据实验步骤得到了一系列的数据,包括光电二极管输出的波形峰值和衍射光屏的位置。
根据这些数据,我们可以绘制出衍射光强的分布图。
实验讨论:1. 根据实验结果,我们可以观察到衍射光强的分布是与衍射光屏的位置密切相关的。
当衍射光屏与光电二极管之间的距离增加时,衍射效应减弱,光强逐渐减小。
2. 实验中我们使用激光器作为光源,激光光线的单色性和平行性使得实验结果更加准确。
3. 在实验中需要调节光电二极管的位置和衍射光屏的位置来观察波形,这需要一定的技巧和耐心。
4. 实验结果可以与理论计算进行对比,以验证实验的准确性和可靠性。
实验结论:通过实验我们得到了衍射光强的测量结果,并绘制了衍射光强的分布图。
实验结果与理论计算接近,证明了实验的准确性和可靠性。
本实验对于理解衍射现象的特点和光的波动性质具有重要意义。
实验改进:1. 可以尝试改变光电二极管和衍射光屏的位置关系,研究其对衍射光强分布的影响。
实验 衍射光强的定量研究与单缝的测量
![实验 衍射光强的定量研究与单缝的测量](https://img.taocdn.com/s3/m/9cce004233687e21af45a982.png)
实验 衍射光强的定量研究与单缝的测量【实验目的】1.掌握在光具座上组装、调整光路的实验技能;学习微机自动控制进行测量时相关参量的设定。
2.了解光强测量的一种方法,观察并定量测定衍射元件产生的光衍射图样;掌握一种单缝宽度的测量方法。
【实验原理】1.衍射光强分布谱光的衍射是人所共知的一种自然现象,光衍射的实验光路主要由光源、衍射元件和观察屏等三要素,在光具座或光学平台上组装而成。
根据三者间距离的大小,将光衍射效应大致分成两种典型的光衍射图样,一种是衍射元件与光源和观察屏都相距无穷远,产生这种类型的光衍射叫夫琅禾费衍射,另一种是上述三者间相距有限远,产生的光衍射叫做菲涅耳衍射。
由于激光光束平行度较佳,且三者间距离远大于元件的线度,故本实验着重研究更具有实际意义的夫琅禾费衍射。
根据光衍射理论分析,不同衍射元件产生的光衍射图样和光强分布是不同的。
在理想条件下,理论研究不同衍射元件产生的衍射效应,得到对应的夫琅禾费衍射光强计算公式为:⑴ 单缝夫琅禾费衍射光强理论计算公式λθπθsin ,sin 20a u u u I I =⎪⎭⎫ ⎝⎛=上式表示在衍射角θ时,观测点的光强I θ值与光波波长λ值和单缝宽度a 相关,[]2sin()/u u 被叫做单缝衍射因子,表征衍射光场内任一点相对强度(I 0/I θ)的大小。
若sin θ为横坐标,(I 0/I θ)为纵坐标,可得到单缝衍射光强分布谱(如图14-1)。
从图14-1可见,零衍射斑即主极大在中心,高级衍射斑即次极大,它们顺序出现在sin θ=±1.43a λ,±2.46a λ,±3.47aλ,…的位置,各级次极强的光强与入射光强比值分别是I 1/I 0≈4.7%,I 2/I 0≈1.7%,I 3/I 0≈0.08%,…。
此外,在单缝衍射光强分布谱上还有暗斑,依次出现在sin θ=±a λ,±2a λ,±3aλ,…的位置,分别称为±1、±2、±3、…级。
[精编]衍射光强分布的测实验报告
![[精编]衍射光强分布的测实验报告](https://img.taocdn.com/s3/m/fd6bd7ad112de2bd960590c69ec3d5bbfd0adaf1.png)
[精编]衍射光强分布的测实验报告衍射光强分布的测量实验报告一、实验目的本实验旨在通过测量衍射光强分布,深入理解光的衍射现象,掌握衍射光强分布的基本规律。
二、实验原理衍射是指波遇到障碍物时,在障碍物后面形成的现象。
当光通过狭缝或绕过障碍物时,会因衍射效应而产生光强分布的变化。
衍射光强分布受到多种因素的影响,如波长、孔径大小、观测距离等。
本实验将通过测量衍射光强分布,分析这些因素的影响。
三、实验步骤1.准备实验器材:激光器、狭缝、屏幕、尺子、笔记本等。
2.调整激光器,确保光束垂直照射到狭缝上。
3.将屏幕放置在狭缝后面,调整距离以观察衍射现象。
4.用尺子测量狭缝到屏幕的距离,记录数据。
5.用笔记本记录衍射光强分布情况。
6.改变狭缝大小,重复步骤2-5。
7.换用不同波长的激光,重复步骤2-5。
四、实验结果与数据分析1.数据记录:在实验过程中,记录不同条件下的衍射光强分布数据。
包括狭缝大小、波长、距离等参数。
2.数据处理:对记录的数据进行分析,计算出衍射光强分布的峰值位置和强度。
比较不同条件下的结果,观察变化规律。
3.数据对比:将实验结果与理论预测进行比较,分析误差产生的原因。
通过修正误差,进一步优化实验方案。
五、结论总结通过本次实验,我们观察到了光的衍射现象,并测量了衍射光强分布。
实验结果表明,衍射光强分布受到多种因素的影响,如狭缝大小、波长和观测距离等。
当改变这些因素时,衍射光强分布会发生相应的变化。
例如,随着狭缝宽度的增加,衍射条纹变得模糊;随着波长的增加,衍射条纹间距变大;随着观测距离的增加,衍射光强分布的峰值强度降低。
这些变化规律与理论预测相符合,说明我们的实验结果是可靠的。
通过本次实验,我们进一步深入理解了光的衍射现象,掌握了衍射光强分布的基本规律。
这有助于我们更好地理解光学现象,为实际应用提供指导。
同时,本次实验也锻炼了我们的动手能力和观察能力,提高了我们的实验技能和科学素养。
衍射光强的测量实验报告
![衍射光强的测量实验报告](https://img.taocdn.com/s3/m/cbc1125da66e58fafab069dc5022aaea998f412d.png)
衍射光强的测量实验报告实验目的本实验旨在通过衍射光强的测量,研究光的衍射现象,并了解衍射光强与光源、衍射屏、观察点位置等因素之间的关系。
实验器材•激光器•衍射屏•光强测量仪•三脚架•单缝衍射装置实验步骤1. 搭建实验装置首先,在实验室中选择适当位置搭建实验装置。
将激光器放置在台面上,并使用三脚架固定,确保激光器的位置稳定。
将衍射屏放置在激光器的前方,并调整其位置,使得光线能够通过单缝衍射装置。
2. 开启激光器打开激光器的电源,并调整激光器的参数,使得激光光束呈现稳定的形态。
确保激光器输出的光线垂直射向衍射屏,并通过单缝衍射装置产生衍射现象。
3. 测量衍射光强使用光强测量仪,将仪器置于观察点位置。
观察点位置可以根据实验需要进行调整。
确保光强测量仪的探测器垂直于衍射光线,并记录下该位置。
4. 测量不同条件下的衍射光强在保持观察点位置不变的情况下,依次改变激光器的参数、单缝衍射装置的大小等条件,记录下不同条件下的衍射光强。
5. 统计数据与分析将测量得到的衍射光强数据整理,并进行统计与分析。
根据不同条件下的衍射光强,可以探讨衍射现象与光源、衍射屏、观察点位置等因素之间的关系。
实验结果与讨论根据实验数据统计与分析,我们可以得出以下结论:1.光源强度对衍射光强有影响:在其他条件不变的情况下,增加激光器的输出功率,衍射光强也随之增加。
2.衍射屏的特性对衍射光强有影响:改变单缝衍射装置的大小,可以观察到衍射光强的变化。
较小的单缝衍射装置会导致更明显的衍射效应,从而衍射光强较大。
3.观察点位置对衍射光强有影响:改变观察点距离衍射屏的位置,可以观察到衍射光强的变化。
在某些特定位置,会出现衍射光强的最大或最小值。
通过以上实验结果与讨论,我们可以进一步认识到光的衍射现象,并深入了解光源、衍射屏、观察点位置等因素对衍射光强的影响,为相关领域的研究与应用提供了重要参考。
结论本实验通过测量衍射光强,研究了光的衍射现象,并分析了衍射光强与光源、衍射屏、观察点位置等因素之间的关系。
单缝衍射光强分布的测量实验数据
![单缝衍射光强分布的测量实验数据](https://img.taocdn.com/s3/m/ee7ac5f0dbef5ef7ba0d4a7302768e9951e76ebd.png)
单缝衍射光强分布的测量实验数据在一个阳光明媚的早晨,咱们的实验室里传来了一阵阵欢声笑语。
大家都聚在一起,准备进行一个有趣的实验,哦对,就是那个单缝衍射光强分布的测量实验。
光,真是个神奇的家伙,今天我们就要看看它是如何变戏法的。
你们知道,光从狭窄的缝隙里射出来,会出现那些五彩斑斓的条纹,简直像是在举办一场光的派对,谁能想到光也会玩“捉迷藏”呢?说到实验,大家伙儿的兴奋劲儿简直是扑面而来。
我们准备了一个简单的设备,拿出了一块屏幕,真的是普通的那种,像是家里用的老电视。
然后,找了一个小缝隙,嘿嘿,就是那样一个小小的地方。
咱们就要把激光笔对准那缝隙,激光的光束直直地射过去,结果可想而知,屏幕上就出现了一道道亮亮的条纹。
就像是光在跳舞一样,有节奏,有韵味,让人忍不住想跟着一起摇摆。
这个实验的乐趣,不仅仅在于看那些光条,还在于我们要量一量这些光强的分布。
你想啊,什么叫光强分布,就是看哪些地方亮得像白昼,哪些地方又暗得像摸黑走路。
为了能得到更准确的数据,大家准备了各种各样的工具,尺子、纸、笔,简直是武装到牙齿。
结果大家就像变成了小科学家,认真得不得了,心里那个激动啊,简直可以把天都要炸了。
我们开始一边照着屏幕,一边用尺子测量那些条纹的亮度。
你知道,条纹不只是在那儿摆着,亮的地方就像是被点亮的舞台,暗的地方就好像躲在角落里的小剧团,谁也不想去搭理。
每测量一次,大家就欢呼一声,像是在为自己的成果点赞,感觉这就是科学的魅力。
数据一个个记录下来,简直是一份光的盛宴。
而在记录的过程中,难免也会遇到一些小插曲。
有个同学因为太激动,手一抖,激光笔差点掉到地上。
那一瞬间,大家心都提到嗓子眼儿了,简直比看惊悚片还要紧张。
不过,谁让咱们的同学手脚麻利,一下就稳住了。
那一刻,大家大笑,气氛一下子又回到了轻松愉快的状态。
这个小插曲让我们明白,科学的路上总会有些小波折,但只要心态好,什么都能化险为夷。
接下来的时间,我们聚精会神地对着数据进行分析。
测量单缝衍射的光强分布
![测量单缝衍射的光强分布](https://img.taocdn.com/s3/m/e0c1db6f27d3240c8447efba.png)
2.从光强分布曲线量出中央明纹的半宽度X1。 代入公式a=Lλ/X1计算单缝的宽度。 λ=650nm(半导体激光器,较小那种) 或632.8nm(氦氖激光器)
数据表格:
数据处理-坐标纸上画图
思考题 1.2.3
测量:
记录衍射条纹的光强度(光电流I )和相应的位置坐标x
注意(以下要在实验报告避免空程差; 3、测量范围?包含一级暗纹就可以了; 4、选择合适的测量步距(既不要使数据太繁杂;又要保 证结果的可靠性较高;条纹不同位置的测量步距可能不一样)
实验数据处理
1.作出单缝衍射的光强分布曲线(坐标纸上)。在直 角坐标纸上,以横轴表示位置x ; 纵轴表示光强度
测量单缝衍射的光强分布
梁广兴
实验内容和步骤:
1. 在导轨上装好实验装置,目测粗调,使各光学元件同轴。 2. 激光器与单缝之间的距离以及单缝与探测器之间的距离 均调在50cm左右。 3. 将光屏置于探测器之前,调二维调节架,选择所需的单缝 宽度a ,观察光屏上的衍射条纹;调整出一个图象清晰、对称、 条纹宽度适当(约0.5cm-1cm)的中央明条纹来。 4.使用检流计前一般先调零;选择量程的原则是在读数较稳 定的前提下使读数尽可能大。 5.本实验仪器问题较多,具体参考实验桌上的说明。
衍射光强的测量实验报告
![衍射光强的测量实验报告](https://img.taocdn.com/s3/m/ad6b85c6b8d528ea81c758f5f61fb7360b4c2b33.png)
衍射光强的测量实验报告衍射光强的测量实验报告引言:衍射是光学中一种重要的现象,它是光波通过一个障碍物或通过两个间距较小的障碍物后产生的波的干涉现象。
衍射现象的研究对于了解光的性质和光的传播具有重要的意义。
本实验旨在通过测量衍射光强来研究衍射现象,并进一步探讨光的性质。
实验目的:1. 通过实验测量衍射光强,了解衍射现象。
2. 探究光的波动性质,验证光的波动理论。
实验仪器和材料:1. 激光器2. 衍射光栅3. 光电二极管4. 光强测量仪实验步骤:1. 将激光器调整至合适的角度,使其光线垂直射向衍射光栅。
2. 将光电二极管放置在合适的位置,使其能够接收到衍射光。
3. 使用光强测量仪测量不同位置的衍射光强,并记录下来。
4. 将光电二极管的位置移动,重复步骤3,直到测量完所有位置的衍射光强。
实验结果与分析:通过实验测量得到了不同位置的衍射光强数据,根据这些数据可以绘制出衍射光强的分布图。
分析图形可以发现,在衍射光栅的两侧,衍射光强呈现出明显的周期性变化。
这是由于光波在通过衍射光栅时发生了干涉,产生了明暗相间的衍射条纹。
进一步分析衍射光强的分布图可以发现,衍射光强的最大值出现在中央位置,而随着距离中央位置的增加,衍射光强逐渐减小。
这是由于光波在通过衍射光栅时,不同波面的光波相互干涉,导致一些波面的光波相互抵消,从而使得光强减小。
这一现象可以通过光的波动性质来解释,即光波的干涉现象。
实验结论:通过本实验的测量和分析,我们可以得出以下结论:1. 衍射现象是光波通过一个障碍物或通过两个间距较小的障碍物后产生的波的干涉现象。
2. 衍射光强呈现出明显的周期性变化,最大值出现在中央位置,随着距离中央位置的增加,衍射光强逐渐减小。
3. 这一现象可以通过光的波动性质来解释,即光波的干涉现象。
实验总结:本实验通过测量衍射光强来研究衍射现象,进一步验证了光的波动性质。
实验结果表明,光波在通过衍射光栅时会发生干涉现象,产生明暗相间的衍射条纹。
单缝衍射光强的分布测量实验报告
![单缝衍射光强的分布测量实验报告](https://img.taocdn.com/s3/m/41678d7354270722192e453610661ed9ad515597.png)
单缝衍射光强的分布测量实验报告一、实验目的1、观察单缝衍射现象,加深对光的波动性的理解。
2、测量单缝衍射的光强分布,验证衍射理论。
3、掌握光强测量的基本方法和数据处理技巧。
二、实验原理当一束平行光通过宽度为 a 的单缝时,会在屏幕上产生衍射条纹。
根据惠更斯菲涅尔原理,衍射光强分布可以用下式表示:\I = I_0 \left(\frac{\sin\beta}{\beta}\right)^2\其中,\(I_0\)是中央明纹中心的光强,\(\beta =\frac{\pi a \sin\theta}{\lambda}\),\(\theta\)是衍射角,\(\lambda\)是光波波长。
三、实验仪器1、半导体激光器2、单缝3、光强测量仪4、移动平台四、实验步骤1、仪器调整打开半导体激光器,调整其高度和方向,使激光束平行于实验台面,并通过单缝的中心。
将光强测量仪的探头放置在合适的位置,确保能够接收到衍射光。
2、测量光强分布移动光强测量仪的探头,从中央明纹中心开始,沿衍射方向逐点测量光强,并记录数据。
测量范围应包括中央明纹和若干级次的暗纹和明纹。
3、改变单缝宽度,重复测量更换不同宽度的单缝,重复上述测量步骤。
五、实验数据以下是在不同单缝宽度下测量得到的光强分布数据(单位:相对光强):|衍射角(度)|单缝宽度 a = 01mm |单缝宽度 a =02mm |单缝宽度 a = 03mm ||::|::|::|::||-15 | 002 | 0005 | 0002 ||-12 | 005 | 001 | 0005 ||-9 | 01 | 002 | 001 ||-6 | 02 | 005 | 002 ||-3 | 04 | 01 | 005 || 0 | 10 | 02 | 01 || 3 | 04 | 01 | 005 || 6 | 02 | 005 | 002 || 9 | 01 | 002 | 001 || 12 | 005 | 001 | 0005 || 15 | 002 | 0005 | 0002 |六、数据处理与分析1、绘制光强分布曲线以衍射角为横坐标,光强为纵坐标,分别绘制不同单缝宽度下的光强分布曲线。
单缝衍射光强分布的测定
![单缝衍射光强分布的测定](https://img.taocdn.com/s3/m/e03c41dd85868762caaedd3383c4bb4cf7ecb7ca.png)
A
C
长为 A0 的圆弧,圆弧两端的切线夹角为
2
a sin
A0
A
四、实验原理
由几何关系可知,圆弧的曲率半径为
R
A0
A0
A
圆弧对应的弦长(即合矢量大小)为
1
sin 2
A 2 R sin
A0
2
2
I A2
a sin
半导体激光器
可调单缝
➢5. 光电检流计;
半导体激光器 可调单缝
光具座
光屏
硅光电池
硅光电池
四、实验原理
本实验的单缝衍射近似于夫琅禾费衍射(即“远场衍射”)。由Huygens-Fresnel原理,在缝宽足够
小的情况下,单缝可看作由“同相”的子波波源组成。
中央明纹 P0 的光强 I0 由各个子波同相叠加后的振幅决定,
观察检流计示数变化;
6. 测量光强分布,从k = -3 ~ +3 级暗纹每隔 0.5 mm记录一个点的光电流;
7. 用米尺测出单缝至光电池的距离 L,重复宽 a,重复测量五次。
六、注意事项
1. 当中央明纹正对光电池进光狭缝时,如果检流计示数为“9999”,则读数
作者Pierre-Jean David (1788-1856)
*图片来自Wikipedia网站
二、实验目的
➢1. 测定单缝衍射的相对光强分布;
➢2. 测定半导体激光器激光的波长。
三、实验仪器
➢1. 光具座;
➢6. 移测显微镜;
➢2. 半导体激光器;
➢7. 光屏。
➢3. 可调单缝;
衍射光强分布的测量【精选】
![衍射光强分布的测量【精选】](https://img.taocdn.com/s3/m/b9f736cc6e1aff00bed5b9f3f90f76c661374cad.png)
单缝衍射的光强分布的测量【实验目的】1.观察单缝衍射现象,加深对衍射理论的理解;2.会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律;3.学会用衍射法测量微小量。
【实验仪器】半导体激光器,可调宽狭缝,硅光电池(光电探头),一维光强测量装置,WJF型数字检流计,小孔屏和WGZ--IIA导轨。
【实验原理】1.单缝衍射的光强分布当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。
如果障碍物的尺寸与波长相近,那么,这样的衍射现象就比较容易观察到。
单缝衍射[single-slit diffraction]有两种:一种是菲涅耳衍射[Fresnel diffraction],单缝距光源和接收屏[receiving screen]均为有限远[near field]或者说入射波和衍射波都是球面波;另一种是夫琅和费衍射[Fraunhofer diffraction],单缝距光源和接收屏均为无限远[far field]或相当于无限远,即入射波和衍射波都可看作是平面波。
在用散射角[scattering angle]极小的激光器(<0.002rad)产生激光束[laser beam],通过一条很细的狭缝(0.1~0.3mm宽),在狭缝后大于0.5m的地方放上观察屏,就可看到衍射条纹,它实际上就是夫琅和费衍射条纹,如图1所示。
当激光照射在单缝上时,根据惠更斯—菲涅耳原理[Huygens-Fresnel principle],单缝上每一点都可看成是向各个方向发射球面子波的新波源。
由于子波迭加的结果,在屏上可以得到一组平行于单缝的明暗相间的条纹。
激光的方向性机强,可视为平行光束;宽度为的单缝产生的夫琅和费衍射图样[pattern]其衍射光路图满足近似条件:产生暗条纹[dark fringes]的条件是(k =±1,±2,±3,…) (1)暗条纹的中心位置为(2)两相邻暗纹之间的中心是明纹中心[center of bright fringes];由理论计算可得,垂直入射于单缝平面的平行光经单缝衍射后光强分布[intensity distribution of light]的规律为(3)式中,是狭缝宽[width],是波长[wavelength],是单缝位置到光电池[photocelll]位置的距离,是从衍射条纹的中心位置到测量点之间的距离,其光强分布如图2所示。
衍射光强测量实验报告
![衍射光强测量实验报告](https://img.taocdn.com/s3/m/1a84f75c640e52ea551810a6f524ccbff021ca57.png)
衍射光强测量实验报告衍射光强测量实验报告引言:衍射是光学中的重要现象之一,它是光波在通过障碍物或通过物体边缘时发生的现象。
衍射现象的研究对于理解光的本质以及应用于光学器件的设计和优化具有重要意义。
本实验旨在通过测量衍射光强,探究光波的传播和衍射特性。
实验器材:1. 激光器:用于产生单色光源,保证实验的准确性和可重复性。
2. 衍射光栅:用于产生衍射现象,可调整衍射角度和衍射强度。
3. 光电二极管:用于测量衍射光强。
实验步骤:1. 将激光器对准衍射光栅,使光线垂直射入光栅表面。
2. 调整衍射光栅的角度,观察衍射现象。
记录不同角度下的衍射光强。
3. 将光电二极管放置在合适的位置,使其能够接收到衍射光。
连接光电二极管与电压表。
4. 通过调整光电二极管的位置,使其接收到最大的衍射光强。
记录此时的光电二极管位置和对应的电压值。
5. 重复步骤2-4,记录不同角度下的最大衍射光强和对应的电压值。
实验结果:通过实验测量,我们得到了不同角度下的衍射光强和对应的电压值。
根据实验数据,我们可以绘制出衍射光强与角度的关系曲线。
通过分析曲线,我们可以得出以下结论:1. 衍射光强随着角度的增加而减小,呈现出明显的衍射特性。
2. 在某一特定角度下,衍射光强达到最大值,这一角度对应着衍射光的主极大。
3. 在主极大两侧,还存在着次级极大和次级极小,其衍射光强随角度的变化呈现出周期性的变化。
讨论与分析:通过实验结果的分析,我们可以得出以下结论和思考:1. 衍射现象是光波的波动性质的体现,光波在通过障碍物或物体边缘时会发生衍射现象。
2. 衍射光强的测量可以用于研究光波的传播和衍射特性,对于光学器件的设计和优化具有重要意义。
3. 实验中的光电二极管起到了重要的作用,它能够将衍射光转化为电信号,并通过电压表进行测量。
4. 实验中的激光器和衍射光栅的选择和调整对实验结果的准确性和可重复性具有重要影响。
结论:通过衍射光强测量实验,我们成功地观察和测量了光波的衍射现象,并得到了衍射光强与角度的关系。
衍射光强的测量
![衍射光强的测量](https://img.taocdn.com/s3/m/2e97c28325c52cc58ad6bed0.png)
衍射光强分布实验衍射和干涉一样,也是波动的重要特征之一。
波在传播过程中遇到障碍物时,能够绕过障碍物的边缘前进。
这种偏离直线传播的现象称为波的衍射现象。
波的衍射现象可以用惠更斯原理作定性说明,但不能解释光的衍射图样中光强的分布。
菲涅耳发展了惠更斯原理,为衍射理论奠定了基础。
菲涅耳假定:波在传播过程中,从同一波阵面上各点发出的子波,经传播而在空间相遇时,产生相干叠加。
这个发展了的惠更斯原理称为惠更斯-菲涅耳原理 (一)产生夫琅禾费衍射的各种光路夫琅禾费衍射的定义是:当光源S 和接收屏∑都距离衍射屏D 无限远(或相当于无限远)时,在接收屏处由光源及衍射屏产生的衍射为夫琅禾费衍射。
但是把S 和∑放在无限远,实验上是办不到的。
在实验中常常借助于正透镜来实现,实际接收夫琅和费衍射的装置有下列四种。
1.焦面接收装置(以单缝衍射为例来说明,下同)把点光源S 放在凸透镜L 1的前焦点上,在凸透镜L 2的后焦面上接收衍射场(图1)2.远场接收装置在满足远场条件下,狭缝前后也可以不用透镜,而获得夫琅禾费衍射图样。
远场条件是:①光源离狭缝很远,即λ42a R >>,其中R 为光源到狭缝的距离,a 为狭缝的宽度;②接收屏离狭缝足够远,即λ42a Z >>,Z 为狭缝与接收屏的距离。
(至于观察点P ,在λ42a Z >>的条件下,只要要求P 满足傍轴条件。
)图2为远场接收的光路,其中假定一束平行光垂直投射在衍射屏上。
如图1所示,从光源S 出发经透镜L 1形成的平行光束垂直照射到缝宽为a 的狭缝D 上,根据惠更斯-菲涅耳原理,狭缝上各点都可看成是发射子波的新波源,子波在L 2的后焦面上叠加形成一组明暗相间的条纹,中央条纹最亮亦最宽。
s(二)夫琅禾费衍射图样的规律 1.单缝的夫琅禾费衍射实验中以半导体激光器作光源。
由于激光束具有良好的方向性,平行度很高,因而可省去准直透镜L 1。
并且,若使观察屏远离狭缝,缝的宽度远远小于缝到屏的距离(即满足远场条件),则透镜L 2也可省略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衍射光强分布实验
衍射和干涉一样,也是波动的重要特征之一。
波在传播过程中遇到障碍物时,能够绕过障碍物的边缘前进。
这种偏离直线传播的现象称为波的衍射现象。
波的衍射现象可以用惠更斯原理作定性说明,但不能解释光的衍射图样中光强的分布。
菲涅耳发展了惠更斯原理,为衍射理论奠定了基础。
菲涅耳假定:波在传播过程中,从同一波阵面上各点发出的子波,经传播而在空间相遇时,产生相干叠加。
这个发展了的惠更斯原理称为惠更斯-菲涅耳原理 (一)产生夫琅禾费衍射的各种光路
夫琅禾费衍射的定义是:当光源S 和接收屏∑都距离衍射屏D 无限远(或相当于无限远)时,在接收屏处由光源及衍射屏产生的衍射为夫琅禾费衍射。
但是把S 和∑放在无限远,实验上是办不到的。
在实验中常常借助于正透镜来实现,实际接收夫琅和费衍射的装置有下列四种。
1.焦面接收装置(以单缝衍射为例来说明,下同)
把点光源S 放在凸透镜L 1的前焦点上,在凸透镜L 2的后焦面上接收衍射场(图1)
2.远场接收装置
在满足远场条件下,狭缝前后也可以不用透镜,而获得夫琅禾费衍射图样。
远场条件是:
①光源离狭缝很远,即λ42a R >>,其中R 为光源到狭缝的距离,a 为狭缝的宽度;②接收
屏离狭缝足够远,即λ42a Z >>,Z 为狭缝与接收屏的距离。
(至于观察点P ,在λ
42
a Z >>的
条件下,只要要求P 满足傍轴条件。
)图2为远场接收的光路,其中假定一束平行光垂直投射在衍射屏上。
如图1所示,从光源S 出发经透镜L 1形成的平行光束垂直照射到缝宽为a 的狭缝D 上,根据惠更斯-菲涅耳原理,狭缝上各点都可看成是发射子波的新波源,子波在L 2的后焦面上叠加形成一组明暗相间的条纹,中央条纹最亮亦最宽。
s
(二)夫琅禾费衍射图样的规律 1.单缝的夫琅禾费衍射
实验中以半导体激光器作光源。
由于激光束具有良好的方向性,平行度很高,因而可省去准直透镜L 1。
并且,若使观察屏远离狭缝,缝的宽度远远小于缝到屏的距离(即满足远场条件),则透镜L 2也可省略。
简化后的光路如图3所示。
实验证明,当Z 约等于100cm ,a 约等于8⨯10-3cm 时,便可以得到比较满意的衍射花样。
图3中,设屏幕上P 0(P 0位于光轴上)处是中央亮条纹的中心,其光强为I 0,屏幕上与光轴成θ角(θ在光轴上方为正,下方为负)的P θ处的光强为I θ,则理论计算得出:
2
20
sin β
β
θI I = (1)
其中 λ
θ
πβs i n a =
式中θ为衍射角,λ为单色光的波长,a 为狭缝宽度,由式(1)可以得到:
(1) 当0=β即(0=θ)时,0I I =θ,光强最大,称为中央主极大。
在其他条件不变
的情况下,此光强最大值I 0与狭缝宽度a 的平方成正比。
图
3
(2) 当πβk =时(k =±1, ±2, ±3),0,sin ==θλθI k a ,出现暗条纹。
在θ很小时,可以
用θ代替sin θ。
因此,暗纹出现在a
k λ
θ=
的方向上。
显然,主极大两侧两暗纹之间的角距离a
λ
θ2
0=∆,为其他相邻暗纹之间角距离a
λ
θ=
∆的两倍。
(3) 除了中央主极强以外,两相邻暗纹之间都有一次极强出现在0)sin (2=β
β
βd d 位置
上,要求β值为:±1.43π,±2.46π,±3.47π,…对应的sin θ值a
λ
43
.1±,a
λ
46
.2±,
a
λ
47
.3±…,各次极强的强度依次为0.047 I 0,0.017 I 0,0.008 I 0,…
以上是单缝夫琅禾费衍射的理论结果,其光强分布曲线如图4所示。
2.双缝衍射
将图1中的单缝D 换成双缝,每条缝的宽度仍为a ,中间隔着宽度为b 的不透明部分,则两缝的间距为d=a+b,如图5所示。
理论计算得出,屏幕上P θ处的光强分布为:
νββ
θ22
20
cos sin 4I I = (2)
其中λ
θ
πνλθπβsin ,sin d a ==
π
π
π
π
π
π
图4
式(2)表明,双缝衍射图样的光强分布由两个因子决定:其一是
2
2sin β
β
,即单缝夫琅
禾费衍射图样的光强分布;其二是4I 0cos 2v ,它表示光强同为I 0而相位差2v 的两束光所产生的干涉图样的光强分布。
因此双缝夫琅禾费衍射图样是单缝衍射和双缝干涉这两个因素联合作用的结果。
由式(2)可以得出:(1) 只有这两个因子中有一个为零,则光强为零。
就第一个因子
2
2sin β
β
而言,光强为零的条件是:
πλ
θ
πβk a ==
sin (3)
即λθk a =sin (k =±1, ±2, ±3…)
就第二个因子cos 2v 而言,光强为零的条件是:
πλθπν)2
1
(sin -±==
m d 即λθ)2
1
(sin -±=m d (m =1, 2, 3…) (4)
(2) 出现双缝干涉光强极大值的条件是:
πλ
θ
πνn d ==
sin 即λθn d =sin (n =0,±1, ±2, ±3…) (3) 当λθn d =sin 确定的干涉极大正好与由λθk a =sin 确定的衍射极小的位置重合时,
那么第n 级干涉极大将不会出现,这称为缺级。
即当:
a
d k n = 时发生缺级。
例如
3=a
d
,则缺少±3,±6,±9,…各级,其光强分布曲线如图8所示。
【实验目的】
1.研究单缝夫琅禾费衍射的光强分布;
2.观察双缝衍射和单缝衍射之间的异同,并测定其光强分布,加深对衍射理论的了解; 3.学习使用光电元件进行光强相对测量的方法。
【实验仪器】
缝元件、光学实验导轨、半导体激光器、激光功率指示计、白屏、大一维位移架、十二档光探头。
【实验步骤】
1. 将导轨平稳地放置在一个坚固的平台上。
2.将半导体激光器放置于导轨的一端,缝元件架紧靠激光器放置,将一维位移架放置在导
轨的另一端,放上12档光探头并锁紧,调节光探头到一维位移架的中间区域。
3.调整激光器指向方位和光探头的高低,使激光准确进入探测光栏孔。
4.将缝元件架上放上缝元件,单缝使用0.2mm、双缝使用0.3mm。
调节光路,使光探头端
出现合适条纹。
(为消除杂散光的影响,应将每一测量值减去背景光电流,或者当检流计接入电路后,在背景光照射下调整零点。
)
5.光探头盘选择0.8mm接收缝,位置每隔0.5mm记录一次数据。
分别单缝、双缝进行实验。
6.转动一维位移架上的丝杠钮,使探头从一端向另一端进行扫描探测,以减少丝杠间隙造
成的测量误差。
单缝最少测量到2级,双缝最少测量到4级。
7.根据测量数据,在坐标纸上(或用计算机)作出相对光强Iθ/I o(即相对电流jθ/j o)与位置P
的关系曲线,也即衍射光强分布图。
8.从实验导轨上读出或用米尺测出缝到光电池的距离,分别计算出对应的θ角。
【数据处理】
1,根据测量数据作出的光强—位置图,在图中找出0级、1级、2级……暗条纹光强峰值
所对应的X 轴上的位置差。
根据公式a k λ
θ=
,分别计算出,各级暗条纹所对应的缝宽
a 的值。
2, 求a 的平均值,并与缝元件上所标数据比较,求出百分误差。
3, 在图中找出0级、1级、2级……明条纹所对应的Y 轴上的光强峰值。
并与光强理论值
0.047 I0,0.017 I0,0.008 I0,…比较。
4, 作图双缝光强—位置图,在图中找出0级、1级、2级……条纹光强峰值所对应的X 轴
上的位置,找出缺级条纹的位置,理解条纹缺级的理论意义。