第1章 随机过程的基本概念习题答案

合集下载

随机过程(北航著)北京航空航天大学出版社第1章习题课后答案

随机过程(北航著)北京航空航天大学出版社第1章习题课后答案

第一章概论第1题某公共汽车站停放两辆公共汽车A 和B ,从t=1秒开始,每隔1秒有一乘客到达车站。

如果每一乘客以概率21登上A 车,以概率21登上B 车,各乘客登哪一辆车是相互统计独立的,并用j ξ代表t=j 时乘客登上A 车的状态,即乘客登上A 车则j ξ=1,乘客登上B 车则jξ=0,则,21}0{,21}1{====j j P P ξξ当t =n 时在A 车上的乘客数为n n j j n ηξη,1∑==是一个二项式分布的计算过程。

(1)求n η的概率,即;,...,2,1,0?}{n k k P n ===η(2)当公共汽车A 上到达10个乘客时,A 即开车(例如t =21时921=η,且t =22时又有一个乘客乘A 车,则t =22时A 车出发),求A 车的出发时间n 的概率分布。

解(1):nn k n k P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==21}{η 解(2):nn n n P P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−==−2191212191A)10n 9A 1-n (}n A {1名乘客登上车时刻第名乘客;在有时刻,车在开车在时刻车第2题设有一采用脉宽调制以传递信息的简单通信系统。

脉冲的重复周期为T ,每一个周期传递一个值;脉冲宽度受到随机信息的调制,使每个脉冲的宽度均匀分布于(0,T )内,而且不同周期的脉宽是相互统计独立的随机变量;脉冲的幅度为常数A 。

也就是说,这个通信系统传送的信号为随机脉宽等幅度的周期信号,它是以随机过程)(t ξ。

图题1-2画出了它的样本函数。

试求)(t ξ的一维概率密度)(x f t ξ。

解:00(1)()()(){()}{()0}[(1),],(0,){()}{[(1),]}{[(1)]}1(1)(1)1({()0}1{()}t A A n n n Tt n T f x P x A P x P t A P P t P t n T nT n T P t A P t n T nT P t n T d TT t n T T nT t T t n Tt n T T t n P t P t A ξδδξξηξηηηξξ−−=−+====∈−∈==∈−+=>−−=−+−=−==−−−=−−−==−==∫是任意的脉冲宽度01)(1)()()()()(1)()t A T tn T Tf x P x A P x t t n x A n x T T ξδδδδ=−−∴=−+⎛⎞⎛⎞=−−+−−⎜⎟⎜⎟⎝⎠⎝⎠第3题设有一随机过程)(t ξ,它的样本函数为周期性的锯齿波。

随机过程答案西交大

随机过程答案西交大

【第一章】 1.1 证明:∵1111,,,,,A F F F F ∈ΩΦ∈ΩΩ∈Φ∈Ω-Φ∈ΩΦ∈且∴1F 是事件域。

∵222,,,,c A A F F A F A A ∈Ω∈Ω∈-Φ∈=Ω-∴22222,,,,c c A F A F A F A F A F ∈-Φ∈-Φ∈Ω-∈Ω-∈ 且2,c c AA A A F ΦΩ=ΩΦΩ∈∴2F 是事件域。

且12F F ∈。

∵2ΩΩ∈∴3F Ω∈∴3F 是事件域。

且23F F ∈∴123,,F F F 皆为事件域且123F F F ∈∈。

1.2一次投掷三颗均匀骰子可能出现的点数ω为(),,,,,,,,16,6,6i j k i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤∴样本空间()61=,,n i j i k ji j k ==≥≥Ω事件(){},,|,,i j k A i j k ωω==,,,,,,6,16,6i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤ 事件域2F Ω= 概率测度()()(),,1P 677i j k A i j =--,,,,,,16,6,6i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤则(),,F P Ω为所求的概率空间。

1.3 证明:(1)由公理可知()0P Φ=(2)有概率测度的可列可加性可得 ()11n nk k k k P A P A ==⎛⎫= ⎪⎝⎭∑∑(3)∵,,A B F A B ∈⊂ ∴B A F -∈,()A B A -=Φ由概率测度的可列可加性可得:()()()()P B P A B A P A P B A =+-=+- 即()()()P B A P B P A -=-有概率测度的非负性可得()()()0P B P A P B A -=-≥,即()()P B P A ≥ (4)若B =Ω,由(3)则有()()1P A P A =- (5)∵()()()()121212P A A P A P A P A A +=+- 假设()()()()()11211111m mm k k i j i j k m k i j m i j k m k P A P A P A A P A A A P A A A +=≤<≤≤<<≤=⎛⎫=-+-+- ⎪⎝⎭∑∑∑成立,则()()()()()()()()()11111111111111211111+1m m m m k k m m k m k k k k k mm k iji j k k i j mi j k mm m m m k k m k i j i k i j mP A P A A P A P A P A A P A P A P A A P A A A P A A A P A A P A P A A P A A ++++====+=≤<≤≤<<≤++=+=≤<≤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==+-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+-+-⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭=-+∑∑∑∑∑()()()()()()()()()()()()1121111121111212111111111n j k m i j k mm i j m i j k m m m i j m i j k m m m k i j i j k m k i j m i j k m A P A A A P A A A P A A A A P A A A A P A P A A P A A A P A A A +≤<<≤++++≤<≤≤<<≤+++=≤<≤+≤<<≤+-+-⎛⎫--+-+- ⎪⎝⎭=-+-+-∑∑∑∑∑∑也成立由数学归纳法可知()()()()()11211111n nn k k i j i j k n k i j n i j k n k P A P A P A A P A A A P A A A +=≤<≤≤<<≤=⎛⎫=-+-+- ⎪⎝⎭∑∑∑()()()()()()111122212123231231n nn n k k k k k k k k n n n k k k k k k nk k nk k P A P A A P A P A P A A P A P A P A P A A P A A P A P A P A P A =========⎛⎫⎛⎫⎛⎫⎛⎫=+=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫≤++ ⎪⎝⎭≤≤∑1.4 (1)()()()()()()()()()()()()()()()()()()()()()21040114P AB P A P B P AB P AB P A P B P AB P A P B P A P AB P A P B P AB P A P A B P A P A P A ≤-≤-≤≤-≤-=-=+-⎡⎤⎡⎤⎣⎦⎣⎦≤-≤(2)()()()()()()()()()()()()()()()()()()()()()()()if =1else if =P AB P BC P AB P BC P AB P AC P A B C P ABC P AB P BC P AC P A B C P ABC P BC P A B C P AB P BC P AB P BC --+=++-+=++-≤+≤---可由这个式子的轮换对称性证明这种情况(3)()()()()()()()()()()11111111111nnk k k k n n n nk k k k k k k k nk k nk k A A A AP A P A P A P A n P A P A n P A P A P A n ========⊂∴⊃⎛⎫≤≤=-=- ⎪⎝⎭-≤-∴≥--∑∑∑∑∑1.5()!!kn k k A n P X k n n k >==,∴()()()!11!k n F X P X x P X x n k =≤=->=-1.6由全概率公式()()()()()()()()()()()()100112211110101=1424P Y X P Y P X P Y P X P Y P X P Y P Y P Y e -≥=≥=+≥=+≥==+-=+-=-=-1.7 证明: 显然()()()()111111122,,,,,,0n n n n n F x x F x x F y x P x X y x X x X ∆=-=≤≤≤≤≥假设()()121111222,,,,,,,0i n i i i i i n n F x x P x X y x X y x X y x X x X ∆∆∆=≤≤≤≤≤≤≤≤≥成立 从而()()()()12+11111222111112221111122211122,,,,,,,,,,,,,,,,,,,0i i n i i i i i n n i i i i i n n i i i i i n n F x x P x X y x X y x X y x X x X P x X y x X y x X y y X x X P x X y x X y x X y x X x X +++++++++∆∆∆∆=≤≤≤≤≤≤≤≤-≤≤≤≤≤≤≤≤=≤≤≤≤≤≤≤≤≥(分布函数对于每一变元单调不减)也成立由数学归纳法可知()()121111222,,,,0n n n n n F x x P x X y x X y x X y ∆∆∆=≤≤≤≤≤≤≥1.8()()()()()()()()()()()''''''',,0','x y x y x x y x y x y x y x y x x y y h x y eeh x y eeeee e e e x x y y -+-+-+-+-+-+----∆=-∆∆=---=--≥≤≤所以h 是二元单调不减函数。

随机过程课后习题答案

随机过程课后习题答案

随机过程课后习题答案随机过程课后习题答案随机过程是概率论和数理统计中的一个重要分支,研究的是随机事件在时间上的演变规律。

在学习随机过程的过程中,习题是不可或缺的一部分。

通过解习题,我们可以更好地理解和掌握随机过程的基本概念和性质。

下面是一些随机过程课后习题的答案,希望对大家的学习有所帮助。

1. 假设随机过程X(t)是一个平稳过程,其自协方差函数为Cov[X(t), X(t+h)] =e^(-2|h|),求该过程的自相关函数。

解:首先,自协方差函数Cov[X(t), X(t+h)]可以通过自相关函数R(t, h)来表示,即Cov[X(t), X(t+h)] = R(t, h) - E[X(t)]E[X(t+h)]。

由于该过程是平稳过程,所以E[X(t)]和E[X(t+h)]是常数,可以将其记为μ。

因此,Cov[X(t), X(t+h)] = R(t, h) - μ^2。

根据题目中给出的自协方差函数,我们有e^(-2|h|) = R(t, h) - μ^2。

将μ^2移到等式左边,得到R(t, h) = e^(-2|h|) + μ^2。

所以,该过程的自相关函数为R(t, h) = e^(-2|h|) + μ^2。

2. 假设随机过程X(t)是一个平稳过程,其自相关函数为R(t, h) = e^(-3|h|),求该过程的均值和方差。

解:由于该过程是平稳过程,所以均值和方差是常数,可以将均值记为μ,方差记为σ^2。

根据平稳过程的性质,自相关函数R(t, h)可以表示为R(h) = E[X(t)X(t+h)] =E[X(0)X(h)]。

根据题目中给出的自相关函数,我们有R(h) = e^(-3|h|)。

将t取为0,得到R(h) = E[X(0)X(h)] = μ^2。

所以,该过程的均值为μ。

根据平稳过程的性质,方差可以表示为Var[X(t)] = R(0) - μ^2。

将t取为0,得到Var[X(t)] = R(0) - μ^2 = e^(-3*0) - μ^2 = 1 - μ^2。

随机过程作业和答案第一二章

随机过程作业和答案第一二章

随机过程作业第一章 P9例题6:随机过程X(t)=A+Bt, t ≥0, 其中A 和B 是独立随机变量,分布服从正态分布N(0, 1)。

求X(t)的一维和二维分布。

解 先求一维分布。

当t 固定,X(t)是随机变量,因为 EX(t)=EA+tEB=0, DX(t)=DA+2t DB=1+2t故X(t)具有正态分布N(0, 1+2t )。

这亦是随机过程X(t)的一维分布。

再求二维分布。

当1t , 2t 固定, X(1t )=A+B 1t , X(2t )=A+B 2t因A 、B 独立同正态分布,故(A, B)T 亦为二维正态分布。

则其线性变换也服从正态分布。

且所以二维分布是数学期望为(0, 0)T,协方差矩阵 的二维正态分布。

P10例题7:随机过程X(t)=Acost, -∞<t<∞,其中A 是随机变量,且有分布列 A 1 2 3 P 1/3 1/3 1/3 求 (1) 一维分布函数(2) 二维分布函数解 (1) 先求所以222211211)DX(t ,1)DX(t , 0)EX(t ,0)(t t t EX +=+===212121211))(())()X(t ())X(t ),(cov(t t Bt A Bt A E t X E t X +=++==⎥⎦⎤⎢⎣⎡++++222121211111t t t t t t )3π,0x x F )2πF(x;x F ;,( ),4;(21π( ;) 4F x π。

X()cos ,442A A ππ==显然,三值,,易知它仅取2232 22{()42P X π=={cos 42P A π==1P{A 1},3==31}223)4({ ,31 }2)4({====ππX P X P 同理,⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<= 2 23 x 1,2 23x 2 ,32 2 x 22 ,3122 x 0 )4; ( ,πx F进而有P18例题1:具有随机初相位的简谐波 其中a 与 是正常数,而 服从在区间[0,2 ]上的均匀分布, 求X(t)的数学期望方差和相关函数。

随机过程课后习题答案

随机过程课后习题答案

标准教材:随机过程基础及其应用/赵希人,彭秀艳编著索书号:O211.6/Z35-2备用教材:(这个非常多,内容一样一样的)工程随机过程/彭秀艳编著索书号:TB114/P50历年试题(页码对应备用教材)2007一、习题0.7(1)二、习题1.4三、例2.5.1—P80四、例2.1.2—P47五、习题2.2六、例3.2.2—P992008一、习题0.5二、习题1.4三、定理2.5.1—P76四、定理2.5.6—P80五、1、例2.5.1—P802、例2.2.2—P53六、例3.2.3—P992009(回忆版)一、习题1.12二、例2.2.3—P53三、例1.4.2与例1.5.5的融合四、定理2.5.3—P76五、习题0.8六、例3.2.22010一、习题0.4(附加条件给出两个新随机变量表达二、例1.2.1三、例2.1.4四、例2.2.2五、习题2.6六、习题3.3引理1.3.1 解法纠正 许瓦兹不等式()222E XY E X E Y ⎡⎤⎡⎤≤⎡⎤⎣⎦⎣⎦⎣⎦证明:()()()()222222222220440E X Y E X E XY E Y E XY E X E Y E XY E X E Y λλλ +⎡⎤⎡⎤=++≥⎣⎦⎣⎦∴∆≤⎡⎤⎡⎤∴-≤⎡⎤⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤∴≤⎡⎤⎣⎦⎣⎦⎣⎦例1.4.2 解法详解已知随机过程(){},X t t T ∈的均值为零,相关函数为()121212,,,,0a t t t t et t T a --Γ=∈>为常数。

求其积分过程()(){},t Y t X d t T ττ=∈⎰的均值函数()Y m t 和相关函数()12,Y t t Γ。

解:()0Y m t =不妨设12t t >()()()()()()1212222112121122122100,,Y t t t t t t t t t EY t Y t E X d X d d d τττττττττΓ===Γ⎰⎰⎰⎰()()()()()222121122221222112222212221212121212000220022002200222211||111111||211ττττττττττττττττττττττττ--------------=+-=+=---=+-+⎡=++--⎣⎰⎰⎰⎰⎰⎰⎰⎰t t t a a t t a a a a t t t a a at a t a at t a t t at at ed d ed de d e d a ae d e d a a t t e e a a a a t e e e a a⎤⎦同理当21t t >时()()2112112221,1a t t at at Y t t t e e e a a----⎡⎤Γ=++--⎣⎦ (此处书上印刷有误)例1.5.5解法同上例1.5.6 解法详解 普松过程公式推导:(){}()()()()()()()()()()()1lim !lim 1!!!1lim 1!!lim 1lim !lim lim !第一项可看做幂级数展开:第二项将分子的阶乘进行变换:→∞-→∞-→∞---∆-→∞→∞-→∞→∞===-∆∆-⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦⎡⎤⎡⎤-∆==⎢⎥⎣⎦⎣⎦⎡⎤⋅∆=∆⎢⎥--⎣⎦N k N N kkN N k kN N kN kq t qtN N k N kk k N N P X t k C P N q t q t k N k N q t q t N k k q t e e N N N q t q t N k N ()()()()()!lim 1!-→∞⎡⎤⎢⎥⎣⎦⎡⎤⎡⎤=∆⋅=⋅=⎢⎥⎣⎦-⎣⎦N k k k k kN k N q t N qt qt N k (){}()()()()!1lim 1!!!N kkN kqt P X t k N q t q t N k k qt ek -→∞-∴=⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦=例2.1.2 解法详解设(){},X t t -∞<<+∞为零均值正交增量过程且()()2212121,E X t X t t t t t -=->⎡⎤⎣⎦,令()()()1Y t X t X t =--,试证明(){},Y t t -∞<<+∞为平稳过程。

《随机过程》课后习题解答

《随机过程》课后习题解答
6、证函数 f (t ) 解 (1)
( k 0, 2, n )
1 为一特征函数,并求它所对应的随机变量的分布。 1 t2
n n i
f (t
i 1 k 1
tk )i k
5
=
i 1 k 1
n
n
i k
1 (ti tk )
2

i 1 k 1
n
n
e jti e jti e jti {1 ( jtk )(1 jtk )} n n e jtk e e i k jti = i 1 k 1 e n(1 jtk ) e
1 n n n j ( ti tk ) l ] i k = [e n i 1 k 1 l 1
(2) (3)
其期望和方差; 证明对具有相同的参数的 b 的 分布,关于参数 p 具有可加性。
解 (1)设 X 服从 ( p , b ) 分布,则
f X (t ) e jtx
0
b p p 1 bx x e dx ( p )
bp ( p)

x
0
p 1 ( jt b ) x
i k
1 M 2
0
ti t k } ) ( M 1max{ i , j n
且 f (t ) 连续 f (0) 1 (2) f (t )

f (t ) 为特征函数
1 1 1 1 1 [ ] 2 2 1 t 1 ( jt ) 2 1 jt 1 jt

3
fZ(k)() t (1 )kk! jk (1 jt)(k1)
E (Z k ) 1 (k ) f Z (0) ( 1) k k ! k j
n

钱敏平-龚光鲁-随机过程答案(部分)

钱敏平-龚光鲁-随机过程答案(部分)

随机过程课后习题答案第一章第二题:已知一列一维分布{();1}n F x n ≥,试构造一个概率空间及其上的一个相互独立的随机变量序列{(,);1}n n ξ⋅≥使得(,)n ξ⋅的分布函数为()n F x 。

解:有引理:设ξ为[0, 1]上均匀分布的随机变量,F(x)为某一随机变量的分布函数,且F(x)连续,那么1()F x η-=是以F(x)为分布的随机变量。

所以可以假设有相互独立的随机变量12,,...,n θθθ服从u[0, 1]分布,另有分布{()}n F x , 如果令1(,)()n n n F ξθ-⋅=,则有(,)n ξ⋅为服从分布()n F x 的随机变量。

又由假设条件可知,随机变量{(,),1}n n ξ⋅≥之间相互独立,则其中任意有限个随机变量12(,),(,),...,(,)n i i i ξξξ⋅⋅⋅的联合分布为:11221122{(,),(,),...,(,)}()()()i i n in i i i i in in P i x i x i x F x F x F x ξξξ⋅≤⋅≤⋅≤=⋅⋅⋅⋅再令112{,,...,,...},,{|()[0,1],1,2,...}n i i i i w w w w A A x F x i -Ω=∈=∈=,令F 为Ω所有柱集的σ代数,则由Kolmogorov 定理可知,存在F 上唯一的概率测度P 使得:11221122{(,),(,),...,(,)}()()()i i n in i i i i in in P i w i w i w F w F w F w ξξξ⋅≤⋅≤⋅≤=⋅⋅⋅⋅则所构造的概率空间为(Ω,F , P)。

第八题:令{};1n X n ≥是一列相互独立且服从(0,1)N (正态分布)的随机变量。

又令1n n S X X =++22(1)n S n n ξ+=1(,,)n n F X X σ=试证明:,;1n n F n ξ≥()是下鞅(参见23题)。

随机过程第一章习题答案

随机过程第一章习题答案
似水年华轻轻一瞥,年华似水轻描淡写
随机过程 第一章 习题答案
1.方法一: F (t ; x) P{ X (t ) x} P{ X sin t x} 当t k 时,P{ X (t ) 0} 1,其中k为整数,
k 当t 时,
x x sin t (i)若 sin t 0, F (t ; x) P{ X } ( x) dx sin t x 1 1 1 1 x 2 f (t ; x) ( ) exp{ ( )} sin t sin t sin t 2 2 sin t x x x sin t (ii )若 sin t 0, F (t ; x) P{ X } 1 P{ X } 1 ( x)dx sin t sin t 1 1 1 x 2 f (t ; x) Fx' (t ; x) exp{ ( )} sin t 2 2 sin t 1 1 x 2 f (t ; x) exp{ ( ) }, k 为整数。 2 sin t 2 sin t

时,k为整数,有 X
一维分布密度为:f (t ; x) 当t= k

时,k为整数,有P{ X (t ) 0} 1
1 1 Xt x}=P{e } e Xt x 1 1 1 =P{Xt ln }=P{Xt ln x}=P{X ln x}=1-P{X ln x} x t t 1 11 1 1 f (t ; x) Fx' (t ; x) f ( ln x)( ) f ( ln x) t t x tx t 2.F(t;x)=P{X(t) x}=P{e Xt x}=P{
方法二: X N(0,1) EX=0,EX 2 =DX=1 EX(t)=E(Xsin t)=sin tEX 0 k N(0 , sin 2 t) 1 1 x 2 exp{ ( ) }, x 2 sin t 2 sin t DX (t ) D(Xsin t) (sin t) 2 DX sin 2 t 当t

概率论与随机过程习题答案

概率论与随机过程习题答案

概率论与随机过程习题答案标准化工作室编码[XX968T-XX89628-XJ668-XT689N]《概率论与随机过程》第一章习题答案1. 写出下列随机试验的样本空间。

(1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。

解: ⎭⎬⎫⎩⎨⎧⨯=n n nn S 100,,1,0 ,其中n 为小班人数。

(2) 同时掷三颗骰子,记录三颗骰子点数之和。

解:{}18,,4,3 =S 。

(3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。

解: {}10,,4,3 =S 。

(4) 生产产品直到得到10件正品,记录生产产品的总件数。

解: {} ,11,10=S 。

(5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。

解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。

(6) 甲乙二人下棋一局,观察棋赛的结果。

解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。

(7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。

解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。

(8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。

(9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。

随机过程习题及答案

随机过程习题及答案

第二章 随机过程分析1.1 学习指导 1.1.1 要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。

1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。

可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。

2. 随机过程的分布函数和概率密度函数如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。

ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1)如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为1111111(,)(, ) (2 - 2)∂=∂F x t f x t x对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率{}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤称为随机过程ξ (t )的二维分布函数。

如果2212122121212(,;,)(,;,) (2 - 4)F x x t t f x x t t x x ∂=∂⋅∂存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。

对于任意时刻t 1,t 2,…,t n ,把{}n 12n 12n 1122n n ()(),(),,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。

如果n n 12n 12n n 12n 12n 12n(x )() (2 - 6)∂=∂∂∂F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,,存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。

随机过程第一章习题解答

随机过程第一章习题解答

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。

求X 的特征函数,EX 及DX 。

其中01,1p q p <<=-是已知参数。

解()()jtxjtk k X k f t E ee pq ∞===∑ 0()k jtkk p q e∞==∑ =0()1jt kjt k pp qe qe∞==-∑ 又20()kk k k q q E X kpq p kq pp p∞∞======∑∑ 222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n x S t dt n tdt xx∞∞+===+==-∑∑⎰⎰ 202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。

解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b+==222()()()PD XE X E X b ∴=== (4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设ln (),()(k Z F X E Z k =并求是常数)。

随机过程习题解答第1,2章

随机过程习题解答第1,2章

习题11. 令X(t)为二阶矩存在的随机过程,试证它是宽平稳的当且仅当EX(s)与E[X(s)X(s+t)]都不依赖s.证明:充分性:若X(t)为宽平稳的,则由定义知EX(t)=μ, EX(s)X(s+t)=r(t) 均与s 无关必要性:若EX(s)与EX(s)X(s+t)都与s 无关,说明EX(t)=常数, EX(s)X(s+t)为t 的函数2. 记1U ,...,n U 为在(0,1)中均匀分布的独立随机变量,对0 < t , x < 1定义I( t , x)=⎩⎨⎧>≤,,,,t x t x 01并记X(t)=),(11∑=nk k U t I n ,10≤≤t ,这是1U ,...,n U 的经验分布函数。

试求过程X (t )的均值和协方差函数。

解: EI ()k U t ,= P ()t U k ≤= t , D()),(k U t I = EI ()k U t ,-()2),(kU t EI= t -2t = t(1-t)j k ≠, cov ()),(),(j k U s I U t I ,=EI(t,k U )I(s,j U )-EI(t, k U )EI(s, j U ) = st -st=0k = j , cov ()),(),(j k U s I U t I ,= EI(t,k U )I(s,j U )-st = min(t,s)-stEX(t)=),(11∑=n k k U t EI n =∑=nk tn 11= tcov ())(),(s X t X =()()),(),,(cov 1),(),,(cov 1212j kjk nk k k U s I Ut I n U s I U t I n ∑∑≠=+=[]∑=nk st t s n12),min(1-=()st t s n-),min(13.令1Z ,2Z 为独立的正态分布随机变量,均值为0,方差为2σ,λ为实数,定义过程()t Sin Z t Cos Z t X λλ21+=.试求()t X 的均值函数和协方差函数,它是宽平稳的吗?Solution: ()221,0~,σN Z Z . 02221==EZ EZ .()()221σ==Z D Z D ,()0,21=Z Z Cov ,()0=t EX ,()()()()()[]s Sin Z s Cos Z t Sin Z t Cos Z E s X t X Cov λλλλ2121,+⋅+=[]t C o s S i n Z Z s t S i n C o s Z Z s t S i n S i n Z t C o s C o s Z E λλλλλλλλ12212221+++=()02++=s t S i n S i n s t C o s C o s λλλλσ =()[]λσs t Cos -2(){}t X 为宽平稳过程.4.Poisson 过程()0,≥t t X 满足(i )()00=X ;(ii)对s t >,()()s X t X -服从均值为()s t -λ的Poisson 分布;(iii )过程是有独立增量的.试求其均值函数和协方差函数.它是宽平稳的吗?Solution ()()()()t X t X E t EX λ=-=0,()()t t X D λ= ()()()()()s t s X t EX s X t X Cov λλ⋅-=,()()()()()ts s EX s X s X t X E 22λ-+-= ()()()()ts s EX s X D 220λ-++=()ts s s 22λλλ-+=()t s s λλλ-+=1 显然()t X 不是宽平稳的.5. ()t X 为第4题中的Poisson 过程,记()()()t X t X t y -+=1,试求过程()t y 的均值函数和协方差函数,并研究其平稳性. Solution ()λλ=⋅=1t Ey , ()()λ=t y DCov(y(t),y(s))=Ey(t)y(s)-Ey(t)y(s)=E(x(t+1)-x(t))(x(s+1)-x(s))-λ2(1)若s+1<t, 即s≤t-1,则Cov(y(t),y(s))=0-λ2=-λ2(2)若t<s+1≤t+1, 即t>s>t-1, 则Cov(y(t),y(s))=E[x(t+1)-x(s+1)+x(s+1)-x(t)][x(s+1)-x(t)+x(t)-x(s)] -λ2=E(x(t+1)-x(s+1))(x(s+1)-x(t))+E(x(t+1)-x(s+1))(x(t)-x(s))+E(x(s+1)-x(t))+E(x(s+1)-x(t))(x(t)-x(s))- λ2=λ(s+1-t)= λ-λ(t-s)- λ2(3) 若t<s<t+1Cov(y(t),y(s))= E [x(t+1)-x(s)+x(s)-x(t)] [x(s+1)-x(t+1)+x(t+1)-x(s)]- λ2 =(x(t+1)-x(s))(x(s+1)-x(t+1))+E(x(t+1)-x(s))(x(t+1)-x(s))+E(x(s)-x(t))(x(s+1)-x(t+1))+E(x(s)-x(t))(x(t+1)-x(s))- λ2=0+λ(t+1-s)+0-λ2=λ+λ(t-s)- λ2(4) 若s>t+1 Cov(y(t),y(s))=0-λ2=-λ2由此知,故方差只与t-s有关,与t,s无关故此过程为宽平稳的。

随机过程习题及部分解答(共享).docx

随机过程习题及部分解答(共享).docx

随机过程习题及部分解答习题一1.若随机过程X(/)为X(0 = A?,-oo<r<+oo,式中4为(0, 1)上均匀分布的随机变量,求X(/)的一维概率密度Px(x;t)。

2.设随机过程X(/) = 4cos(初+ 其中振幅A及角频率①均为常数,相位&是在[-兀,刃上服从均匀分布的随机变量,求X(/)的一维分布。

习题二1.若随机过程X(/)为X(t)=At -00 < r < +00 ,式中4为(0,1)上均匀分布的随机变量,求E[xa)],7?xa』2)2.给定一随机过程X(/)和常数Q,试以X(/)的相关函数表示随机过程y(0 = X(/ + a) —X(/)的自相关函数。

3.已知随机过程X(/)的均值阪⑴和协方差函数Cx (爪© , 0(/)是普通函数,试求随机过程丫⑴=X(/) + 0(/)是普通函数,试求随机过程丫⑴=X(/) + 0(/)的均值和协方差函数。

4.设X(t) = A cos at + B sin at,其中A, B是相互独立且服从同一高斯(正态)分布N(0Q2)的随机变量,a为常数,试求X(/)的值与相关函数。

习题三1.试证3.1节均方收敛的性质。

2.证明:若X(t),twT;Y(t),twT均方可微,a0为任意常数,则aX(t) + bY(t) 也是均方可微,且有[aX (?) + b Y(/)]' = aX'(/) + b Y'(/)3.证明:若X⑴,twT均方可微,/X/)是普通的可微函数,则f(Z)X(Z)均方可微且[f(ox(or-/w(o+/(ox,(o4.证明:设X⑴在[a,b]上均方可微,且X0)在[a,切上均方连续,则有X'⑴ dt = X(b) — X(a)J a5•证明,设X(t\t eT =[a,b];Y{t\t eT = [a,b]为两个随机过程,且在T上均方可积,a和0为常数,则有(*b (*b (*bf [aX(/) + 0Y(/)M = a [ Xit)dt + /3\ Y⑴ dtJ a J a J aeb rc rbaX (t)dt = X (t)dt + XQ) dt,aWcWbJ a J a Jc6.求随机微分方程X'(/) + aX ⑴二丫⑴ze[0,+oo]'X(0) = 0的X(t)数学期望E [X(0]。

随机过程习题答案

随机过程习题答案

随机过程习题解答(一)第一讲作业:1、设随机向量的两个分量相互独立,且均服从标准正态分布。

(a)分别写出随机变量和的分布密度(b)试问:与是否独立?说明理由。

解:(a)(b)由于:因此是服从正态分布的二维随机向量,其协方差矩阵为:因此与独立。

2、设和为独立的随机变量,期望和方差分别为和。

(a)试求和的相关系数;(b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。

解:(a)利用的独立性,由计算有:(b)当的时候,和线性相关,即3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为,且是一个周期为T的函数,即,试求方差函数。

解:由定义,有:4、考察两个谐波随机信号和,其中:式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。

(a)求的均值、方差和相关函数;(b)若与独立,求与Y的互相关函数。

解:(a)(b)第二讲作业:P33/2.解:其中为整数,为脉宽从而有一维分布密度:P33/3.解:由周期性及三角关系,有:反函数,因此有一维分布:P35/4. 解:(1) 其中由题意可知,的联合概率密度为:利用变换:,及雅克比行列式:我们有的联合分布密度为:因此有:且V和相互独立独立。

(2)典型样本函数是一条正弦曲线。

(3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且所以。

(4)由于:所以因此当时,当时,由(1)中的结论,有:P36/7.证明:(1)(2) 由协方差函数的定义,有:P37/10. 解:(1)当i =j 时;否则令,则有第三讲作业:P111/7.解:(1)是齐次马氏链。

经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。

(2)由题意,我们有一步转移矩阵:P111/8.解:(1)由马氏链的马氏性,我们有:(2)由齐次马氏链的性质,有:,(2)因此:P112/9.解:(2)由(1)的结论,当为偶数时,递推可得:;计算有:,递推得到,因此有:P112/11.解:矩阵 的特征多项式为:由此可得特征值为:,及特征向量:,则有:因此有:(1)令矩阵P112/12.解:设一次观察今天及前两天的天气状况,将连续三天的天气状况定义为马氏链的状态,则此问题就是一个马氏链,它有8个状态。

随机过程第一章复习题及其解答预备知识

随机过程第一章复习题及其解答预备知识

第一章 一、 填空1.设{t X ,t T ∈}是一族独立的随机变量,则对于任意2n ≥和12,,...,t t ,n t T ∈12,,...,,n x x x R ∈有1212(,,...,)n t t t n P X x X x X x ≤≤≤=( )。

答案:1()int i i P X x =≤∏2.若2EX <∞,2EY <∞,则2()EXY ≤( )。

答案:22EX EY (Schwarz 不等式)3.设随机变量X 的特征函数为()X g t ,Y aX b =+,其中a ,b 为任意实数,则Y 的特征函数()Y g t =( ()itb X e g at )。

解:()()()()[][][]()it aX b i at X ibt ibt i at X ibt Y X g t E e E e e e E e e g at +====。

4.若12,,...X X 是相互独立且同分布的非负整数值随机变量,N 是与12,,...X X 独立的非负整数值随机变量,并且1,N X 的母函数分别为()G s 和()P s 。

则1Nk k Y X ==∑的母函数()H s =((())G P s )。

解:0()()kk H s P Y k s ∞===∑=0(,())kk l P Y k N l s ∞∞====∑=00()()k k l P N l P Y k s ∞∞====∑∑=00()()k l k P N l P Y k s ∞∞====∑∑=01()()lkj l k j P N l P X k s∞∞=====∑∑∑0()[()][()]ll P N l P s G P s ∞===∑。

5.设12,,...X X 为一列独立同分布的随机变量,随机变量N 只取正整数值,且N 与{}n X 独立,则1()Ni i E X ==∑(1()()E X E N )。

解:1111()[(|)](|)()N N Ni i i i i n i E X E E X N E X N n P N n +∞========∑∑∑∑1111111()()()()()()n n i n n E X P N n nE X P N n E X np N n +∞+∞+∞==========∑∑∑∑1()()E X E N =6.若X 1,X 2,…,X n 是相互独立的随机变量,且g i (t)是X i 的特征函数,i=1,2,…,n)则X=X 1+X 2+…X n 的特征函数g(t)= _g 1(t) g 2(t)…g n (t) 二、解答与证明题1.设P(S)是X 的母函数,试证: (1)若E(X)存在,则()1EX P '=(2)若D(X)存在,则 DX = P"(1)+ P ′(1)-[ P ′(1)]2 证明:(1)因为()0kkk P s p s∞==∑,则()11k k k P s kp s∞-='=∑,令1s →,得()11kk EX P kp ∞='==∑ 。

随机过程课后试题答案

随机过程课后试题答案

随机过程课后试题答案1. 题目:简述离散时间马尔可夫链和连续时间马尔可夫链的基本概念和性质。

答案:离散时间马尔可夫链(Discrete-time Markov Chain)是指在时间上的变化是离散的、状态空间是有限或可列无限的马尔可夫链。

其基本概念和性质如下:1.1 基本概念:- 状态空间:马尔可夫链的状态空间是指系统可能处于的状态集合,记作S。

离散时间马尔可夫链的状态空间可以是有限集合或可列无限集合。

- 转移概率:转移概率是指在给定前一个状态的条件下,系统转移到下一个状态的概率。

用P(i, j)表示系统从状态i转移到状态j的概率,其中i和j属于状态空间S。

- 转移概率矩阵:转移概率矩阵P是指表示从任一状态i到任一状态j的转移概率的矩阵。

对于离散时间马尔可夫链,转移概率矩阵是一个方形矩阵,维数与状态空间大小相同。

- 平稳概率分布:对于离散时间马尔可夫链,如果存在一个概率分布π,满足π = πP,其中π是一个行向量,P是转移概率矩阵,则称π为马尔可夫链的平稳概率分布。

1.2 性质:- 马尔可夫性:离散时间马尔可夫链具有马尔可夫性,即将来状态的发展只与当前状态有关,与过去的状态无关。

- 遍历性:若马尔可夫链中任意两个状态之间都存在路径使得概率大于零,则称该马尔可夫链是遍历的。

遍历性保证了马尔可夫链具有长期稳定的性质。

- 正常概率性:对于离散时间马尔可夫链,转移概率矩阵P的元素都是非负的,并且每一行的元素之和等于1。

- 可约性和不可约性:如果一个马尔可夫链中的所有状态彼此之间都是可达的,则称该马尔可夫链是不可约的。

反之,则称它是可约的。

不可约性保证了任意状态之间都可以相互转移。

- 周期性:对于不可约的离散时间马尔可夫链,如果存在某个状态,从该状态出发回到该状态所需的步数的最大公约数大于1,则称该状态是周期的。

若所有状态都是非周期的则称该马尔可夫链是非周期的。

2. 题目:连续时间马尔可夫链的定义和性质有哪些?答案:连续时间马尔可夫链(Continuous-time Markov Chain)是指在时间上的变化是连续的、状态空间是有限或可列无限的马尔可夫链。

随机过程复习题答案

随机过程复习题答案

随机过程复习题答案
1. 随机过程的定义是什么?
答:随机过程是一组随机变量的集合,这些随机变量是时间或空间的函数,用来描述系统随时间或空间的演变。

2. 什么是马尔可夫链?
答:马尔可夫链是一种随机过程,其中未来状态的概率分布仅依赖于当前状态,而与之前的状态无关。

3. 描述随机游走的特点。

答:随机游走是一种马尔可夫过程,其中每一步移动到相邻状态的概率是固定的,并且每一步都是独立的。

4. 什么是平稳过程?
答:平稳过程是指其统计特性不随时间变化的过程,即过程的均值、方差和自相关函数不随时间变化。

5. 如何定义一个过程的遍历性质?
答:一个过程的遍历性质是指该过程的样本函数的统计特性与该过程的总体统计特性相一致。

6. 什么是鞅?
答:鞅是一种随机过程,其中给定当前和过去信息,未来某个时间点的期望值等于当前的值。

7. 描述泊松过程的基本性质。

答:泊松过程是一种计数过程,具有独立增量、平稳增量和泊松分布的到达时间间隔等基本性质。

8. 什么是布朗运动?
答:布朗运动是一种连续时间随机过程,其增量服从正态分布,且具有独立性和平稳性。

9. 如何确定一个过程是否是高斯过程?
答:如果一个过程的所有有限维分布都是多元正态分布,则该过程是高斯过程。

10. 什么是随机过程的谱分析?
答:随机过程的谱分析是研究过程功率谱密度的方法,它描述了过程在不同频率上的功率分布。

随机过程课后试题答案

随机过程课后试题答案

随机过程课后试题答案一、选择题1. 随机过程的基本定义中,样本空间通常表示为:A. 一个集合B. 一个函数集合C. 一个概率空间D. 一个参数集合答案:A2. 若随机过程的样本轨迹几乎是连续的,则该过程是:A. 离散时间随机过程B. 连续时间随机过程C. 泊松过程D. 马尔可夫过程答案:B3. 马尔可夫性质的含义是未来的状态只依赖于当前状态,而与过去的状态无关。

这一性质不适用于:A. 泊松过程B. 布朗运动C. 马尔可夫链D. 所有随机过程答案:D4. 在随机过程中,如果两个随机变量的联合分布可以表示为它们各自的边缘分布的乘积,则这两个随机变量是:A. 独立的B. 相关的C. 正相关的D. 负相关的答案:A5. 随机游走的期望步长是:A. 1B. 2C. 依赖于起始点D. 依赖于步长分布答案:D二、填空题1. 一个随机过程的样本函数是定义在参数集合上的_________函数。

答案:实值或随机2. 在随机过程中,如果给定当前状态,下一状态的条件概率分布仅依赖于当前状态而不依赖于之前的状态,那么该过程是一个_________过程。

答案:马尔可夫3. 随机过程的均值函数(或称数学期望函数)是描述过程长期行为的重要工具,它是一个关于_________的函数。

答案:时间4. 布朗运动是一种连续时间随机过程,其样本轨迹具有_________性质。

答案:无处处可微5. 泊松过程是一种描述事件在时间上随机发生的随机过程,其特点是事件在任意两个不重叠时间区间内发生是_________的。

答案:相互独立三、计算题1. 假设有一个离散时间马尔可夫链,其状态转移矩阵为:\[P = \begin{bmatrix}0.7 & 0.3 \\0.4 & 0.6\end{bmatrix}\]求该马尔可夫链在第二时刻的状态概率分布,给定初始状态概率分布为:\\[\pi_0 = \begin{bmatrix}0.5 \\0.5\end{bmatrix}\]解:首先计算\( P^2 \),即状态转移矩阵的二次幂,然后利用\( \pi_0 \)和\( P^2 \)来计算第二时刻的状态概率分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 随机过程的基本概念1.设随机过程 +∞<<-∞=t t X t X ,cos )(0ω,其中0ω是正常数,而X 是标准正态变量。

试求X (t )的一维概率分布解:∵ 当0cos 0=t ω 即 πω)21(0+=k t 即 πω)21(10+=k t 时 {}10)(==t x p若 0cos 0≠t ω 即 πω)21(10+≠k t 时 {}{}x t X P x x X P t x F ≤=≤=0cos )(),(ω当 0cos 0>t ω时ξπωωξd et x X P t x F t x⎰-=⎭⎬⎫⎩⎨⎧≤=02cos 02021cos ),(此时 ()te xt x F t x f tx 0cos 2cos 121,),(022ωπω⋅=∂∂=-若 0cos 0<t ω时⎭⎬⎫⎩⎨⎧<-=⎭⎬⎫⎩⎨⎧≥=t x x P t x X P t x F 00cos 1cos ),(ωωξπωξd et x⎰--=02cos 02211同理有 tet x f tx 0cos 2cos 121),(022ωπω⋅-=-综上当:0cos 0≠t ω 即 πω)21(10+≠k t 时 tx et x f 022cos 20|t cos |121),(ωωπ-=2.利用投掷一枚硬币的试验,定义随机过程为⎩⎨⎧=,2,cos )(出现反面出现正面t t t X π 假定“出现正面”和“出现反面”的概率各为21。

试确定)(t X 的一维分布函数)21,(x F 和)1,(x F ,以及二维分布函数)1,21;,(21x x F解:(1)先求)21,(x F显然⎩⎨⎧=⎪⎩⎪⎨⎧-=⎪⎭⎫ ⎝⎛出现反面出现正面出现反面出现正面10,212,2cos 21πX随机变量⎪⎭⎫⎝⎛21X 的可能取值只有0,1两种可能,于是21021=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛X P 21121=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛X P 所以⎪⎩⎪⎨⎧≥<≤<=⎪⎭⎫ ⎝⎛1110210021,x x x x F再求F (x ,1)显然⎩⎨⎧-=⎩⎨⎧=出现反面出现正面出现反面出现正面 2 1 2cos (1)πX{}{}212)1(-1(1)====X p X p 所以⎪⎪⎩⎪⎪⎨⎧≥<≤<=2121- 21-10,1)(x x x x F(2) 计算)1,21;,(21x x F⎩⎨⎧-=⎩⎨⎧=出现反面出现正面出现反面出现正面21)1(, 1 0)21( X X于是2 ,1 121 ,12 ,10 211 ,00 )1(;211,21;,21212121212121⎪⎪⎪⎩⎪⎪⎪⎨⎧≥><≤->≤<≤-<≥+∞<<∞-<=⎭⎬⎫⎩⎨⎧≤≤⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛x x x x x x x x x x x X x X p x x F x 或或3.设随机过程(){}+∞<<-∞t t X ,共有三条样本曲线t X t X X cos )t,( ,sin )t,( ,1)t,(321===ϖϖϖ且,31)p()p()p(321===ϖϖϖ试求随机过程()t X 数学期望EX(t)和相关函数R x (t 1,t 2)。

解: 数学期望)cos (sin 313131cos 31sin 311)()(t t t t t EX t m X ++=⋅+⋅+⋅==)cos sin 1(31t t ++=相关函数21212121cos cos 3131sin sin 311)]()([),(t t t t t X t X F t t R X +⋅⋅+⋅==)]cos(1[3121t t -+=4.设随机过程 )0( )(>=-t et X Xt其中X 是具有分布密度f (x )的随机变量。

试求X (t )的一维分布密度。

解:对于任意 t >0 因为))((),(x t x P t x F X ≤=∴ 当x >0时{}{}⎭⎬⎫⎩⎨⎧-≥=≤-=≤=-t x X P x Xt P x e P t x F Xt X ln ln ),(⎰-∞--=⎭⎬⎫⎩⎨⎧-<-=t xd f t x X p ln )(1ln 1ξξ∴ xtt x f t x F xt x f X X 1ln ),(),(⋅⎪⎭⎫ ⎝⎛-=∂∂=当0≤x 时 {}0),(=≤=-x ep t x F XtX∴ 随机过程)(t X 的一维分布密度为 ⎪⎭⎫ ⎝⎛-=t x f xt t x f X ln 1),( 5.在题4中,假定随机变量X 具有在区间(0,T )中的均匀分布,试求随机过程的数字期望)(t EX 和自相关函数),(21t t R x解:∵ 随机变量X 的概率密度函数为⎪⎩⎪⎨⎧∈=其它),0(1)(T x Tx f X因此:TT T xt xt Txt X xt e t T dx e T dx T e dx x f e t EX 00 0)1(111)()(⎰⎰⎰-----==⋅== []0 t 11>-=-tT e Tt[][][])(21212121)()(),(t t X Xt Xt X e E e e E t X t X E t t R +---===()⎰+-+--+==Tt t T X t t x e t t T dx x f e 0)(21)(21211)(1)(6.设随机过程{}+∞<<-∞t t X ),(在每一时刻t 的状态只能取0或1的数值,而在不同时刻的状态是相互独立的,且对于作意固定的t 有{}p t X P ==1)( {}p t X P -==10)(其中0<p <1。

试求X (t)的一维和二维分布,并求x (t)的数学期望和自相关函数解:一维分布{}p t x P ==1)( {}p t x P -==10)(二维分布:{}2211)(,1)(p t X t X P ==={})1(0)(,1)(21p p t X t X p -=== {}p p t X t X p )1(1)(,0)(21-=== {}221)1(0)(,0)(p t X t X p -===X (t )的数字期望{}{}p t X p t X p t EX t m X ==⋅+=⋅==0)(01)(1)()(随机过程X (t )的自相关函数为[]{}+==⋅==1)(,1)(1)()(),(212121t X t X p t X t X E t t R X(){}101=⋅t X P 且0)(2=t X ;0)(1=t X 且1)(2=t X ;0)(1=t X 且}0)(2=t X {}{}2211)( 1)(p t X P t X P ==⋅== 7.设{}1,≥n X n 是独立同分布的随机序列,其中j X 的分布列为J=1,2,…定义∑==nj jn XY 1。

试对随机序列{}1,≥n Y n 求 (1)Y 1的概率分布列;(2)Y 2的概率分布列;(3)Y n 的数字期望;(4)Y n 的相关函数R Y (n, m )。

解:(1)∵ Y 1=X 1 故概率分布则为{}{}211 21111=-===Y P Y P (2)∵ 212X X Y += 2Y 可能的取值为0或2,-2{}{}{}{}1,11,1002121212=-=+-====+==X X P X X P X X P Y P={}{}{}{}21414111112121=+==-=+-==X P X P X P X P {}{}{}411,12221212=====+==X X P X X P Y P {}{}{}411,12221212=-=-==-=+=-=X X P X X P Y P (3)∑==nj jn XY 1的数字期望为∑∑∑====⎪⎭⎫ ⎝⎛-+⋅==⎪⎪⎭⎫ ⎝⎛=n j n j j n j j n EX X E EY 111021)1(211 (4)自样关函数 []⎥⎦⎤⎢⎣⎡==∑∑==m k k m j j Y X X E n Y m Y E n m R 11)()(),(当m ≥n 时⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+=∑∑∑∑∑∑=+===+==nk k mn j j n j j n k k m n j j nj j Y X X X E X X X E n m R 1121111),(⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=∑∑∑=+==n k k m n j j n j j X E X E X E 1121[]n n n n n m n j j nDY EY DY EY Y E X E EY =+==⋅⎥⎦⎤⎢⎣⎡+=∑+=2212)(∵ ∑∑===⎪⎪⎭⎫ ⎝⎛=nj j n j j n DX X D DY 11 (j X 相互独立)()[]∑=-=n j j j EX XE 122)(∵ 021)1(211=⋅-+⋅=j EX 1)(2=j X E ∴ []∑==-=nj n n DY 101∴ 当m ≥n 时 n DY n m R n Y ==),(8.设随机过程{}+∞<<-∞t t X ),(的数字期望为)(t m X 协方差为),(21t t C X ,而)(t ϕ是一个函数。

试求随机过程)()()(t t X t Y ϕ+=的数字期望和协方差函数。

解:随机过程)(t Y 的数字期望为[])()()()()()()()()(t Y t t m t E t EX t t X E t EY t m X Y ϕϕϕ+=+=+==的协方差函数为[][][])()()()(),(212121t Y E t Y E t Y t Y E t t C Y -=而 []()()[])()()()()()(221121t t X t t X E t Y t Y E ϕϕ++=()[])()()()()()()()(21211221t t t X t t X t t X t X E ϕϕϕϕ+++= [])()()()()()()()(21211221t t t EX t t EX t t X t X E ϕϕϕϕ+++=[][]()())()()()()()(221121t t EX t t EX t Y E t Y E ϕϕ++=[][])()()()()()()()(21211221t t t EX t t EX t t X E t X E ϕϕϕϕ++++= ∴ []),()()()()(),(21212121t t C t EX t EX t X t X E t t Cov X Y =-=思考:有没有更为简单的方法呢?9.给定随机过程{}+∞<<-∞t t X ),(,对于任意一个数x ,定义另一个随机过程⎩⎨⎧>≤=xt X xt X t Y )(0)(,1)( 试证:)(t Y 的数字期望和相关函数分别为随机过程)(t X 的一维和二维分布函数。

相关文档
最新文档