《运筹学》教案(5)—图与网络分析解析

合集下载

运筹学 图与网络分析PPT学习教案

运筹学 图与网络分析PPT学习教案

ij
min{ V1到Vj中间最多经过t-2个点 P1j(t-1)=
P1j(t-2)
+wij}
终止原则:
1)当P1j(k)= P1j(k+1)可停止,最短路P1j*= P1j(k) 2)当P1j(t-1)= P1j(t-2)时,第1再9页多/共迭59页代一次P1j(t) ,若P1j(t) =
P1j(t-1) ,则原问题无解,存在负回路。
图与网络模型Graph Theory
最短路问题
v1,u1 =(M,W,G,H); v2,u2 =(M,W,G);
v3,u3 =(M,W,H);
v4,u4 =(M,G,H);
v5,u5 =(M,G)。
此游戏转化为在下面的二部图中求从 v1 到 u1 的最短路问题。
v1
v2
v3
v4
v5
u5
u4
例: 求下图所示有向图中从v1到各点 的最短路。
2 v1
v2
4
5 -2 v3 6
-3 4
v4
7
v6 -3 2
v5
3
4
v8
-1
v7
第20页/共59页
wij
d(t)(v1,vj)
v1 v2 v3 v4 v5 v6 v7 v8 t=1 t=2 t=3 t=4 t=5 t=6
v1 0 2 5 -3
0 0 0 00 0
参加的游客众多,游客甚至不惜多花机票钱暂转取道它地也愿参加
此游。旅行社只好紧急电传他在全国各地的办事处要求协助解决此
问题。很快,各办事处将其已订购机票的情况传到了总社。根据此
资料,总社要作出计划,最多能将多少游客从成都送往北京以及如
何取道转机。下面是各办事处已订购机票的详细情况表:

管理运筹学 图与网络分析PPT教案

管理运筹学 图与网络分析PPT教案

v1
2
A
4
v6
3
7
3
v2
5
v5
5
6
2
4
5
v3 2 v4
7
v7
第27页/共83页
支撑树的权:如果T=(V,E)是G的一个支撑树,则称E中所 有边的权之和为支撑树T的权,记为w(T)。即
w(T )
wij
[vi ,v j ]T
v1
2
A
4
v6
3
7
3
v2
5
v5
5
6
2
4
5
v3 2 v4
7
v7
上例中支撑树的权为 3+7+5+2+2+3+4=26
第34页/共83页
v1
2
A
4
v6
3
7
3
v2
5
v5
5
6
2
4
5
v3 2 v4
7
v7
第35页/共83页
课堂练习:1.分别用三种方法求下图的最小支撑树
v2
7
v5
5
2
3
4
v1
4
5
v4 3
1
1
v7
7
4
v3
v6
第36页/共83页
2. 某农场的水稻田用堤埂分割成很多小块。为了 用水灌溉,需要挖开一些堤埂。问最少挖开多少条 堤埂,才能使水浇灌到每小块稻田?
水源
第37页/共83页
作业 P221: 第3题
第38页/共83页
§3 最短路问题
1. 问题的提出 2. 最短路问题的Dijkstra算法 3. 求任意两点之间最短距离的矩阵算法

运筹学-图论

运筹学-图论
以可允许的10个状态向量作为顶点,将可能互相转移的状态用线段连接起 来构成一个图。
根据此图便可找到渡河方法。
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
简单链:(v1 , v2 , v3 , v4 ,v5 , v3 )
v2
简单圈: (v4 , v1 , v2 , v3 , v5 , v7 , v6 ,v3 , v4 )
v6
v4
v5
v3
v7
连通图:图中任意两点之间均至少有一条通路,否则称为不连通 图。
v1 v5
v1
v6
v2
v2
v4
v3
v5
v4
v3
连通图
以后除特别声明,均指初等链和初等圈。
不连通图
有向图:关联边有方向 弧:有向图的边 a=(u ,v),起点u ,终点v; 路:若有从 u 到 v 不考虑方向的链,且 各方向一致,则称之为从u到v 的 路; 初等路: 各顶点都不相同的路; 初等回路:u = v 的初等路; 连通图: 若不考虑方向是
无向连通图; 强连通图:任两点有路;
端点的度 d(v):点 v 作为端点的边的个数 奇点:d(v)=奇数;
偶点:d(v) = 偶数; 悬挂点:d(v)=1; 悬挂边:与悬挂点连接的边; 孤立点:d(v)=0; 空图:E = ,无边图
v1
v3
v5 v6
v2
v4
图 5.7
v5
v4
V={v1 , v2 , v3 , v4 , v5 ,v6 , v7 }
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;

运筹学图与网络分析

运筹学图与网络分析
第5章 图论与网络分析
网络分析
➢ 图的基本概念 ➢最小支撑树问题 ➢ 最短路径问题 ➢网络最大流问题
图论起源:哥尼斯堡七桥问题
A
A
C
D
C
D
B
B
问题:一个散步者能否从任一块陆地出发;走过七 座桥;且每座桥只走过一次;最后回到出发点
结论:每个结点关联的边数均为偶数
§1 图的基本概念
1图
由点和边组成;记作G=V;E;其中 V=v1;v2;……;vn为结点的集 合;E=e1;e2;……;em 为边的集合; 点表示研究对象 边表示研究对象之间的特定关系
例 : G1为不连通图; G2为连通图
G1
G2
5 支撑子图
图G=V;E和G'=V ' ;E ';若V =V ' 且E ' E ;则 称G' 为
G的支撑子图;
例 :G2为G1的支撑子图
v5
v5
v1
v4 v1
v4
v2
v3
G1
v2
v3
G2
例 : G2 是G1 的子图;
v2
e1 v1
e6 e7
e2
v3
e8 e9
两条以上的边都是权数最大的边;则任意去掉其 中一条: ③若所余下的图已不含圈;则计算结束;所余下的图 即为最小支撑树;否则;返问①;
例 求上例中的最小支撑树
v1
5
v2
7.5 4
5.5
3
v5
2
解:
v3 3.5 v4 v1
5
v2
75 4
55
3
v5
2
v3 3 5 v4
算法2避圈法:从某一点开始;把边按权从小到大 依次添入图中;若出现圈;则删去其中最大边;直至 填满n1条边为止n为结点数 ;

运筹学图与网络分析-最短路

运筹学图与网络分析-最短路

(P0
)
min P
(P)
路P0的权称为从vs到vt的距离,记为d(vs,vt)。
求网络上的一点到其它点 的最短路
Dinkstra标号法
这是解决网络中某一点到其它点的最 短路问题时目前认为的最好方法。
适用于有向图权值非负的情况
有向图权值非负---- Dijkstra算法
Dijkstra算法的基本步骤(权值非负) 1、给顶点v1标号(0),v1称为已标号点,记标号点集为
(1,2)
2
2
0
1
2
5
7
(2,4)
3 5 55
7
3
1 (4,4) 3 1
4
6
7
(1,3)
5
④重复上述步骤,直至全部的
点都标完。
(1,2)
2
2
0
1
2
5
7
(2,4)
3 5 55
7
1
3
3
1
4
6
7
(1,3)
5
7
(1,2)
2
2
0
2
7
1
5
(2,4)
35
55
7
1
3
3
1
4
6
7
(1,3)
5
(3,7)
(1,2)
2
2
0
2
7
1
5 3 5 55 7
3
1
3 1
34 5 6
7
④重复上述步骤,直至全部的
(1,2)
点都标完。
2
2
0
2
7
1
5 3 5 55 7

运筹学(双语)图与网络详细教案

运筹学(双语)图与网络详细教案
复习相关知识用破圈 法和避圈法做课后 179 页 1,3,4
看示意图,广开思 路,思考提出的问 题。
看图,听故事
根据教师 PPT 展示 结合预习,学习英 语专业词汇与表达
听讲,对不明白地 方随时发问
跟老师一起尝试
针对老师给出的案 例可以讨论,可以 独立解决。在示意 图上进行破圈法避 圈法操作
学生看,理解、一 起作答。
通过讲述,之后在放出八桥 图,是否可以不重复一次通 过 在这个基础上介绍 图与网络相关定义 定理
学生理解,判断是否为 联通图
课件 最小树
定义,性质,解法
案例
学校铺 设水管
练习
破圈法 和避圈 法
稍复杂案例
破圈法 和避圈 法
最短路径法
Dijkstra 标号法 法
布置作业,结束
归类为最小树,演示如何解决
学生独立或讨论完成,教师给予 单个检查,最后公布答案。 巩固加深最小树问题认识和求解
掌握最短路径求解
八、英语词汇
Graph theory is one of the oldest branches of mathematics. Graph theory and algorithm have a
natural link, such as the seven bridge problem.
singularity
奇点
pair-point
偶点
graph

Connected graph
连通图
undirected graph
无向图
Directed Graph
有向图
Vertex 结点
Edge

Shortest path arc 弧

图与网络分析 胡运权 第四版 运筹学PPT课件

图与网络分析 胡运权 第四版 运筹学PPT课件
4
3.关联与相邻
❖关联(边与点的关系):若e是v1、v2两点间
的边,记e=[v1,v2 ],称v1、v2 与e关联。
v1
e
v2
❖相邻(有公共边,称点v1与v2相邻;
边e1与e2 有公共点,称边e1与e2相邻。
e1
V2
V1
e2
V3
5
4. 链、圈与连通图
■链:由图G中的某些点与边相间构成的序列 {V1,e1,V2,e2, ……,Vk,ek},若满足 ei=[Vi, Vi ],则称此
(4)A={v1,v2,v4}
[0,v1]
[2,v1]
2
6
v1
v2
v3
1 [1,v1]10
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
4
[3,v1]
v8 8
考虑边(v1,v6),(v2,v3),(v2,v5),(v4,v7)
计算min { 0+3, 2+6, 2+5, 1+2}=min {3,8,7,3}=3
70
费用、容量等),则称这样 1
4
的图为网络图。
20
45
3
4.2 最小支撑树问题
C1 根
C2
C3
C4

❖树:无圈的连通图,记为T。
8
❖树的性质
■ 树中任意两个节点间有 且只有一条链。
2
3
1
5
4
■ 在树中任意去掉一条边, 1
则不连通。
2
3
5
4
■如果树T有m个结点,则 边的个数为m-1。

运筹学第六章图与网络分析

运筹学第六章图与网络分析

S
2
4
7
2 A
0 5
S
5 45 B
98
14
5
13
D
T
C
E
4
4
4
7
最短路线:S AB E D T
最短距离:Lmin=13
2.求任意两点间最短距离的矩阵算法
⑴ 构造任意两点间直接到达的最短距离矩阵D(0)= dij(0)
S A B D(0)= C D E T
SABCDET 0 25 4 2 02 7 5 20 1 5 3 4 1 0 4 75 0 15 3 41 0 7 5 7 0
e1 v1
e5
v0 e2
e3
v2
e4
e6 e7
v3
v4
(4)简单图:无环、无多重边的图称为简单图。
(5)链:点和边的交替序列,其中点可重复,但边不能 重复。
(6)路:点和边的交替序列,但点和边均不能重复。
(7)圈:始点和终点重合的链。
(8)回路:始点和终点重合的路。
(9)连通图:若一个图中,任意两点之间至少存在一条 链,称这样的图为连通图。 (10)子图,部分图:设图G1={V1,E1}, G2={V2,E2}, 如果有V1V2,E1E2,则称G1是G2的一个子图;若 V1=V2,E1E2,则称G1是G2的一个部分图。 (11)次:某点的关联边的个数称为该点的次,以d(vi)表示。
步骤:
1. 两两连接所有的奇点,使之均成为偶点;
2. 检查重复走的路线长度,是否不超过其所在 回路总长的一半,若超过,则调整连线,改 走另一半。
v1
4
v4
4
1
4
v2
v5
5

运筹学图与讲义网络分析

运筹学图与讲义网络分析

v2 2
v4
3
v1
1
4
2
2
v6
5 v3 4
2 v5
解:(1)首先给v1以P标号,给其余所有点T标号。
P(v1)0 T ( v i) ( i 2 ,3 , ,6 )
(2)T ( v 2 ) m T ( v 2 ) , P i ( v 1 n ) l 1 ] [ 2 m ,0 i 3 ] n 3[
(二)、 图的矩阵表示
对于网络(赋权图)G=(V,E),其中边 (vi , v j )
有权
w
i
,构造矩阵
j
A,(ai其j)n中n :
aij 0wij
(vi ,vj)E (vi ,vj)E
称矩阵A为网络G的权矩阵。
设图G=(V,E)中顶点的个数为n,构造一个
矩阵 A(ai,j)n其n 中:
aij 01
v4
A = {(v1 , v3 ) , (v2 , v1) , (v2 , v3 ) , v1
v6
(v2 , v5 ) , (v3 , v5 ) , (v4 , v5 ) , (v5 , v4 ) , (v5 , v6 ) }
v3
v5
图2
4、一条边的两个端点是相同的,那么称这条边是环。
5、如果两个端点之间有两条以上的边,那么称它们为 多重边。
v4
e11 e4
v6
e5
v5
(a)
v2
e1
e8
v1
e7
e6
v7
v6 e5
v5
(b)
子图
v2
v3
e1
e9
v1
e7
e10
e6
v7 e11

运筹学第五章 图与网络分析

运筹学第五章 图与网络分析

v6
v7
v8
考虑边(v1,v2),(v1,v6),(v4,v2),(v4,v7)
计算 min{0+2, 0+3, 1+10, 1+2}=min {2,3,11,3} =2
v2:[2,v1]
(4)A={v1,v2,v4}
[0,v1] [2,v1] 2 1 10 [1,v1] v4 5 v6 [3,v1] 4 2 v7
最短.
最小支撑树的求法
1 破圈法 2 避圈法
5.2.1 求解最小支撑树问题的破圈法
方法:去边破圈的过程。 步骤:1)在给定的赋权的连通图上任找 一 个圈。 2)在所找的圈中去掉一条权数最 大的边。 3)若所余下的图已不含圈,则计 算结束,余下的图即为最小支撑
树,否则返回 1)。
例1:用破圈法求右图
v1 1 5 4 v2 2 v4 3 v6
权和=15
5.3 最短路问题
问题:求网络中一定点到其它点的最短路。
5.3.1 最短路问题的Dijstra解法 方法:给vi点标号[αi,vk] 其中:αi:vi点到起点vs的最短距离 vk: vi的前接点
方法:(1) 给起点vs标号[0,vs]。 (2)把顶点集v分为互补的两部分A和Ā 其中:A:已标号点集 Ā:未标号点集 (3)考虑所有这样的边[vi, vj], 其中vi ∈A,vj ∈ Ā 挑选其中与vs距离最短的点vj标号 [min{αi+cij},vi]
[3,V1]
考虑边(v2,v3),(v2,v5),(v4,v7),(v6,v7)
计算 min { 2+6, 2+5, 1+2, 3+4}=min {8,7,3,7}=3
v7:[3,v4]

第5章图与网络分析163页PPT

第5章图与网络分析163页PPT

bi j 0wi j
(vi ,vj)E (vi ,vj)E
例6.4 下图所表示的图可以构造权矩阵B如下:
v1 4
v2
36
72
v6 4
3
3
v3
5
2
v5
v4
v1 0 4 0 6 4 3
v
2

4
0
2
7
0
0

B

v3
0
2
0
5
0
3
v4 6 7 5 0 2 0
v
5
4
17
v4
树与图的最小树
v1 23 v6
20
v2
1
4
v7
9
15 v3
28 25
16 3
v5
17
v4
v1
v2
23 v6
1
4
v7
9
15 v3
28
25
16 3
v5
17
v4
v1
v2
23 v6
1
4
v7 9
15 v3
28
25
16 3
v5
17
v4
v1
v2
23
1
4
v7
v6
9
v3
28
25
16 3
v5
17
v4
v1

15
9
7 ④ 14


10
19
20
6 ⑥

25
图的矩阵描述: 邻接矩阵、关联矩阵、权矩阵等。
1. 邻接矩阵 对于图G=(V,E),| V |=n, | E |=m,有nn阶方矩阵

运筹学课件-第六章图与网络分析

运筹学课件-第六章图与网络分析
运筹学课件-第六章 图与网络分析
contents
目录
•的算法 • 图的应用
01
CATALOGUE
图的基本概念
图的定义
总结词
图是由顶点(或节点)和边(或弧) 组成的数据结构。
详细描述
图是由顶点(或节点)和边(或弧) 组成的数据结构,其中顶点表示对象 ,边表示对象之间的关系。根据边的 方向,图可以分为有向图和无向图。
04
CATALOGUE
图的算法
深度优先搜索
要点一
总结词
深度优先搜索是一种用于遍历或搜索树或图的算法。
要点二
详细描述
该算法通过沿着树的深度遍历树的节点,尽可能深地搜索 树的分支。当节点v的所在边都己被探寻过,搜索将回溯到 发现节点v的那条边的起始节点。这一过程一直进行到已发 现从源节点可达的所有节点为止。如果还存在未被发现的 节点,则选择其中一个作为源节点并重复以上过程,整个 进程反复进行直到所有节点都被访问为止。
物流网络设计的应用
在物流规划、供应链管理、运输优化等领域有广泛应用,例如通过物 流网络设计优化货物运输路径、提高仓储管理效率等。
生物信息学中的图分析
生物信息学中的图分析
利用图论的方法对生物信息进 行建模和分析,以揭示生物系 统的结构和功能。
生物信息学中的节点
代表生物分子、基因、蛋白质 等。
生物信息学中的边
Dijkstra算法
总结词:Dijkstra算法是一种用于在有向图中查找单源 最短路径的算法。
详细描述:Dijkstra算法的基本思想是从源节点开始, 逐步向外扩展,每次找到离源节点最近的节点,并更新 最短路径。该算法使用一个优先级队列来保存待访问的 节点,并将源节点加入队列中。然后,从队列中取出具 有最小优先级的节点进行访问,并将其相邻节点加入队 列中。这一过程一直进行,直到队列为空,即所有可到 达的节点都已被访问。Dijkstra算法的时间复杂度为 O((V+E)logV),其中V是节点的数量,E是边的数量。

第六章物流运筹学——图与网络分析.

第六章物流运筹学——图与网络分析.
L( )
( vi ,v j )
l
ij
最小的 。
Dijkstra算法
算法的基本步骤: (1)给 v s 以 P 标号, P(vs ) 0 ,其余各点均给 T 标号, T (vi ) 。 (2)若 vi 点为刚得到 P 标号的点,考虑这样的点 v j: (vi , v j ) E ,且 v j 为 T 标号,对 v j 的 T 标号进行如下的更改:
v2
(4,3)
v4
(3,3)
(5,3) (1,1) (1,1) (3,0)
vs
(5,1)
vt
(2,1)
v1
(2,2)
v3
图 6-14
运输线路图
第四节 最小费用最大流问题
在容量网络 G (V , E, C ) ,每一条边 (vi , v j ) E 上,除了已 给容量 cij 外,还给了一个单位流量的费用 bij 0 ,记此时的容 量网络为 G (V , E, C , B) 。 所谓最小费用最大流问题就是要求一个最大流 f ,使流的 总运输费用 b( f )
定理 6-1 任何图中顶点次数的总和等于边数的 2 倍。 推论 6-1 任何图中,次为奇数的顶点必有偶数个。 图 G (V , E ) 和图 H (V , E ) ,若 V V且E E ,则 称 H 是 G 的子图,记作: H G ;特别的,当 V V 时, 称 H 为 G 的生成子图。
容量网络g若?为网络中从sv到tv的一条链给?定向为从sv到tv?上的边凡与?同向称为前向边凡与?反向称为后向边其集合分别用??和??表示??ijff?是一个可行流如果满足??????0ijijijijiijjffcvv??????????c???0ijijijfvv????则称?为从sv到tv的关于f的可增广链

运筹学第六章图与网络分析(ppt文档)

运筹学第六章图与网络分析(ppt文档)

§6.1 图的基本概念和模型
一、概念
(1)图:点V和边E的集合,用以表示对某种现实事物
的抽象。记作 G={V,E}, V={v1,v2,···,vn}, 点:表示所研究的事物对象; E={e1,e2,···,em}
边:表示事物之间的联系。
e0
(2)若边e的两个端点重 合,则称e为环。
(3)多重边:若某两端点之 间多于一条边,则称为多重边。
D 8 64 5 0 15
E 7 53 4 1 0 6
T 14 11 9 10 5 6 0
i
dir(1)
r
drj(1)
j
⑷ 构造任意两点间最多可经过7个中间点到达的最短距 离矩阵 D(3)= dij(3)
其中
dij(3)=
min
r
{
dir(2)+
drj(2)
}
SABCDET
S 0 2 4 4 8 7 13
dir(0)
r i
drj(0)
j
⑶ 构造任意两点间最多可经过3个中间点到达的最短距 离矩阵 D(2)= dij(2)
其中
dij(2)=
min
r
{
dir(1)+
drj(1)}
SABCDET
S 0 2 4 4 8 7 14
A 2 0 2 3 6 5 11
B 4 20 1 43 9 D(2)= C 4 3 1 0 5 4 10
2. 破圈法:
⑴ 任取一圈,去掉其中一条最长的边, ⑵ 重复,至图中不存在任何的圈为止。
2. 破圈法
A
S
5 × B 5× D 5 T
C
4× E
最小部分树长Lmin=14

运筹学图与网络分析.pptx

运筹学图与网络分析.pptx
{a12,a14,a34}
{a26,a46 } φ
min{ li Wij | Vj J } lh Whk
iI
min{l1+W12, l1+W13, l1+W14}= min{0+3,0+2,0+5}=2= l1+W13 min{l1+W12, l1+W13, l3+W34}= min{0+3,0+5,2+1}=3= l1+W12, l3+W34 min{l2+W26, l4+W46}= min{3+7,3+5}=8= l4+W46
{ a57,a68 }
min{ li Wij | Vj J } lh Whk
iI
min{l1+W12, l1+W13, l1+W14}= min{0+2,0+6,0+3}=2= l1+W12 min{l1+W13, l1+W14, l2+W23, l2+W26}= min{0+6,0+3,2+3, 2+7}=3= l1+W14 min{l1+W13,l2+W23, l2+W26, l4+W45}= min{0+6,2+3,2+7,3+6}=5= l2+W23 min{l2+W26, l3+W35, l3+W36, l4+W45}= min{2+7,5+3,5+7,3+6}=8= l3+W35 min{l2+W26, l3+W36, l5+W56, l5+W57}= min{2+7,5+7,8+1,8+6}=9= l2+W26, l5+W56 min{ l5+W57, l6+W68}= min{8+6,9+4}=13= l6+W68

精选运筹学课件第八章图与网络分析资料

精选运筹学课件第八章图与网络分析资料

运筹学教程
v2
v6
e3
v3 e7
v5
运筹学教程
V= ( v1, v2,…... v6) E= ( e1, e2,…... e8) (e1)= (v1, v2) (e2)= (v1, v2) (e7)= (v3, v5) (e8)= (v4, v4) (e8)= (v4, v4),称为自回路(环); v6是孤立点,v5为悬挂点,e7为悬挂边,顶点v3的次为 4,顶点v4的次为4。
2l23+ 2l36+ l69+ l98+ l23+ 2l87+ 2l74+ l41+ l12=51
运筹学教程
第二步:调整可行方案,使重复边最多为一次
重复边 的总长:
v3
l69+ l98+ l41+ l12=21
5
v2
第三步:检查每个初等圈是否 5
v1
定理条件2,如果不满足,进行
2 v6 4 v9
例:求解网络的中国邮路问题
运筹学教程
v3
5
v2
5
v1
2 v6 4 v9
3
3
6 v5 4 v8
4
4
9
v4 4 v7
v3
5
v2
5
v1
2 v6 4 v9
3
3
6
v5 4 v8
4
4
9
v4 4 v7
第一步:确定初始可行方案
先检查图中是否有奇点,如果无奇点,为欧拉图;如果
有奇点,图中的奇点的个数比为偶数个,所以可以两两 配对,构造二重边。图中有4个奇点,v2,v4,v6,v8,配对 v2-v4,v6-v8,构造二重边。重复边 的总长:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v3


5 1 7 2
v5
4 3 v4 v5 v6 4 v6
赋权图(网络) 最小部分树 避圈法 破圈法 限定某条边必须选 取时的最小部分树 返回
6 v1 5 v2 v3 v1
练习
v2
v4
最短路问题及其算法

从指定点到所有其它点的最短路
不包含负权的最短路算法 包含负权的最短路算法 从指定点到所有其它点的第k条最短路 矩阵摹乘法
任意两点之间的最短路 网络的中心 网络的重心

返回
不包含负权的最短路算法
(原油加工厂)
v7 6
4
v8 4
2
2 4 4
v9
① v1 [0] ③ v4 ⑤ v6
v2 2
② v2
v5 2+4 v3 2+4 v8 6+4 v6 6+2 v6 6+4 v9 10+2
v4
4 v1(油田)

6 2
v5 4
B

无向图G=(V,E) 顶点V={A,B,C,D}={v1, v2, v3, v4} 边E={e1, e2, e3, e4, e5, e6, e7}、 e7=[v3, v4] 顶点个数p 和边数q 任意两点之间都有边相连,称为连通图 点边交替序列称为链;闭合的链称为圈
0
0

任意两点之间的最短路算法(续)
4 2 1 1 2 3
2 3
-1 4
① ②
前3条最短路的计算
① 0 3 2 2 3 1 2 ② 1 0 -1 0 1 ③ ④
-1
2
③ ④

从点1到点4的第k条最短路算法 需要对所有点重复进行计算
返回
矩阵摹乘法
v7 6 v4 4
1步 2步 3步
4 6
v8 4 v5 4
2
2 4
v9 (原油加工厂)
v1 v2 v4
v6 v1 v2 Байду номын сангаас4
v6
树的性质



任意树中,至少有两个悬挂点; 树中不含圈,且满足边数q = 点数p - 1; 树中任意两点间存在唯一的一条链; 树中任意去掉一条边,则图不再连通; 树中任意两点间加上一条边,则将形成圈。
v3 v1 v5 v6
返回
v2
v4
最小部分树问题及算法
v4
图的次


次d(vj)
以点vj为顶点的边的条数,叫做点vj的次
悬挂点、孤立点、奇点、偶点
次为1的点叫做悬挂点;次为0的点叫做孤立点;次为奇
数则称奇点;次为偶数则称偶点。

次的性质
任意图中,所有点的次的总和是边数的2倍。
任意图中,奇点的个数为偶数。

返回
e2 e 3 v4 v3 e e5 7 e 6 e4 v2
v2 -1 v3 -2 v4 3
2 v3 4 v2 6 v5
v2 -5 v6 -1 v4 -7
v8 3 -5 v4 5 v7
v1 1
v7 -5
v1 1
v5 -3
求V1到各点的最短路 需要对所有点重复进行 计算 返回
7 v6
v4 -6 v5 0 v8 6 v7 0
8 v8
v2 -4 v5 3
v7 1
第 k 条最短路算法
第七章 图与网络分析
图与网络分析
图的基本概念 树的概念及最小树问题 最短路问题 最大流问题 匹配问题 覆盖问题 中国邮递员问题 图论的应用

返回
图的基本概念

哥尼斯堡七桥问题(1736,欧拉)
从某点出发走过7个桥且每桥只走一次,再回到原点,
是否可能? 欧拉将其归为“一笔画问题”。 A岸 C岛 B岸 D岛 C A D
v6
2 4 0 4 4 0 4 0 6 6 0 2 4 0 4 0 4 0 2
e1
v1
v5
e8
v6
树的概念及最小树问题
树的概念—不含圈的连通图 树的应用 树的性质 支撑树-图T(V,E’)是图G(V,E) 的支撑子图且图T是一个树 最小部分树 返回

我的 电脑
软 盘 A
硬 盘 C
硬 盘 D
光 盘 E
v3
v5
v3
v5
My … Program Documents Files
返回
4步
5步
0 0 0 0 0
v1(油田)
2
2 4 2 6 4 2 6 4 2 6 4 2 6 4
0 4 4 v 3 v2 6 10 6 8 10 10 6 8 10 10 12 6 8 10 10 12
v2
v6 4 v3
v4 4 v7 4+6 ④ v5 v5 4+6 v3 v9 8+4 ⑥ v8
只需对未得到标号点进行计算 “双标号算法” 练习 返回
v7
包含负权的最短路算法
v2 6 -1 v1 3 -2 8 -5 v4

-1 2
v5
-3 v3
1 2 -1
1
1
-3 v6 v7 7
1 v1 [0]
图的基本概念
e2 e3 v4 v3 e 7 e5 e6 e4 v2 a1 a2 a4 a6 v2 a5 e1
v1
有向图D=[V、A],顶点V、弧A,基础图 v1 a1=(v2,v1)≠(v1,v2); a2=(v1,v2)≠(v2,v1) a3 顶点个数p、弧数q 点弧交替的链称为路;闭合的路称回路 v 3
任意两点之间的最短路算法
2 v1 3
v1 v1 0 v 2 v3 v 4 v5 v6 v7 v2 2 0 v3 5 2
v2 1 3 v4 5
v4 3 1 0 v5
5
2 v3
7 5
v6
v6 1
v7
5 7
v7
返回
继续
v5
v1 v1 0 v 2 v3 D (1 ) v 4 v5 v6 v7
v2 2 0
v3 4 2
v4 3 3 1 0
v5 8 5 3 5
v6 9 7 4 6 1 0
v7 12 10 12 6 5 0
D (0)
0

7 3 5 5 0 1 7 0 5 0
相关文档
最新文档