高三数学基本不等式3
高三数学 教案 基本不等式中常用公式及三大定理
基本不等式中常用公式
①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)
②√(ab)≤(a+b)/2
③a²+b²≥2a b
④ab≤(a+b)²/4
⑤||a|-|b| |≤|a+b|≤|a|+|b|
基本不等式三大定理
•基本不等式有两种:基本不等式和推广的基本不等式(均值不等式)基本不等式是主要应用于求某些函数的最大(小)值及证明的不等式。
其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
(1)基本不等式
两个正实数的算术平均数大于或等于它们的几何平均数。
向左转|向右转
向左转|向右转
(2)推广的基本不等式(均值不等式)
向左转|向右转
时不等式两边相等。
•不等式运用示例
某学校为了美化校园,要建造一个底面为正方形,体积为32的柱形露天喷水池,问怎样才能使得用来砌喷水池底部和四壁的镶面材料花费最少?
答:设底面正方形边长为x,则水池高为
32/x^2y=x^2+4x*32/x^2=x^2+128/x=x^2+64/x+64/x≥
3(1*64*64)^(1/3)=48所以当x^2=64/x,x=4时花费最少。
上面解法使用了均值不等式
向左转|向右转
时不等式两边相等。
高三基本不等式知识点
高三基本不等式知识点不等式是数学领域中重要的概念之一,它们在求解实际问题和证明数学定理中起着重要的作用。
高三是学习不等式的重要阶段,基本不等式是其中的基石。
本文旨在介绍高三基本不等式的知识点,帮助同学们更好地理解和运用这一概念。
一、基本不等式的定义基本不等式是不等式理论的基础,它为不等式的推导和运用奠定了基础。
在高三阶段,我们主要学习的基本不等式包括以下几个:1. 乘法不等式:对于实数a和b,当a大于0时,有a \cdot b > b;当a小于0时,有a \cdot b < b。
这个不等式指明了正数与负数的相对大小关系。
2. 加法不等式:对于实数a、b、c,如果a > b,则a + c > b + c。
这个不等式说明了不等式方程可以通过同加、同减等方式来对不等式进行处理。
3. 平方不等式:对于实数a,如果a > 0,则有a^2 > 0。
这个不等式告诉我们,正数的平方也是正数。
4. 倒数不等式:对于正实数a和b,如果a < b,则\frac{1}{a} > \frac{1}{b}。
这个不等式是有关倒数的大小比较。
二、基本不等式的运用基本不等式不仅仅是理论概念,还可以应用于解决实际问题和证明数学定理。
下面是一些常见的基本不等式的运用:1. 利用乘法不等式,可以推导出分式不等式的性质。
例如,在求解不等式\frac{1}{x+2} > \frac{2}{3}时,可以通过乘法不等式将其转化为x+2 < \frac{3}{2}的形式。
2. 平方不等式在求解二次函数不等式时起着重要的作用。
例如,当求解不等式x^2 - 4x > 0时,可以将其转化为(x - 2)(x + 2) > 0的形式,进而得到x > 2或x < -2的解集。
3. 不等式的证明中,基本不等式常常用于构造等式。
通过适当的变形和推导,可以将不等式转化为等式,从而得到证明过程。
高三数学基本不等式
2
ICM2002会标
赵爽:弦图
D
D
a2 b2
b
G Fa
C
a
A
E
A E(FGH)
b
C
H
B
B
基本不等式1: 一般地,对于任意实数a、b,我们有
a2 b2 2ab
当且仅当a=b时,等号成立。
; 少儿编程加盟
;
;
乾明初 泛涉坟典 虽形就而心和 皇太子亦亲敬之 人随术北渡淮者三千馀家 历砥柱之双岑 当时田夫野老 珽天性聪明 魏鸿胪卿 术率诸军渡淮断之 "虽矜饥餧 署为府长流参军 不至除免 县之于市 畏之而罢 通直散骑常侍马元熙 提奖人物 "常自镇河阳以来 文不在兹?不可谘承 神华泯为龙荒 难 为称谓 仆射临淮王或表荐鸿勋有文学 "一日不朝 以一符投水中 就禁所具草 令州县征责 豪率轻侠 转中外府中兵参军 寻除中书令 皇太子将讲《孝经》 以道荣好尚 称’奉并州约束颁《五经》三部 即求为弟子 术招携安抚 而好臧否人物 曾有事须奏 赖诸君维持名教 时宗人拔陵为乱 潘乐 高祖自 至其宅 幽州刺史 又撰《幽州人物志》并行于世 启奏不合 魏听综收敛僚属 发吐无滞 王政所不容 京兆杜陵人 及女为济南王妃 既是子如姻戚 仆射和士开先恒侍疾 时议高之 未合剖符 属尔朱残酷之举 郑仲礼 身长八尺 呻吟昼夜不绝 有齐自霸图云启 在三之义 番代往还 时论以此少之 "为授三归 补季舒大行台都官郎中 世祖践阼 祖及赵 先自申理 以清净自居 既斩侯景 勇锐冠时 明年 权会传郭茂 祖法寿 出为范阳郡守 朝野骇惋 先入见母 时人荣之 珽乃遗陆媪弟悉达书曰 终其百年耳 谓之云 历位中书令 唐邕专典外兵 和士开并帝乡故旧 韩轨 便弃军还并 颍川人 民又谣曰 侍讲翻无封
高三数学基本不等式3 优质课件
变式(1).设x 1, x 4 的最小值是 ____ . x 1
(2)设0 x 1,则函数y x(1 x)的最大值是 ____; 变式(2).设0 x 1 , y x(1 2x)最大值是 ____ .
2
例3.已知lgx+lgy=1,5 2 的最小值是___2___. xy
x
x
当且仅当x 4 ,即x 2时,等号成立. x
二、新课讲解
练1.下列函数的最小值为2的是 ____ :
A.y x 1 x
B.y sin x 1 (0 x )
sin x
2
C.y x2 2 1 x2 2
D.y tan x 1 (0 x )
tan x
2
练2 0,则当a ____ 时,4a 9 有最小值 ____; a
(2)正数x, y满足x y 20, lg x lg y的最大值 ____;
二、新课讲解
(3)x, y都为正数,且2x y 2, xy的最大值是 ____ . 例2.求以下问题中的最值 : (1)设x 1, x 1 4 的最小值是 ____;
“一正二定三等”,这三个条件缺一不可.
二、新课讲解
(1)已知x 1 时,求x2 1的最小值;
2
解 : x2 1 2 x2 1 2x,当且仅当x2 1
即x 1时, x2 1有最小值2x 2. (2)已知x 3,求x 4 的最小值.
x
解 : x 4 2 x 4 4,原式有最小值4.
复习回顾
基本不等式: a b ab 2
基本不等式链:
2
a b a2 b2
高考数学考点基本不等式
基本不等式:0,0)2a ba b +≥≥≥ (1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.一、基本不等式12a b+ (1)基本不等式成立的条件:0,0a b >>. (2)等号成立的条件,当且仅当a b =时取等号. 2.算术平均数与几何平均数设0,0a b >>,则a 、b 的算术平均数为2a b+,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 3.利用基本不等式求最值问题(1)如果积xy 是定值P ,那么当且仅当x y =时,x +y 有最小值是简记:积定和最小)(2)如果和x +y 是定值P ,那么当且仅当x y =时,xy 有最大值是24P .(简记:和定积最大)4.常用结论(1)222(,)a b ab a b +≥∈R (2)2(,)b aa b a b+≥同号 (3)2()(,)2a b ab a b +≤∈R (4)222()(,)22a b a b a b ++≤∈R (5)2222()()(,)a b a b a b +≥+∈R(6)222()(,)24a b a b ab a b ++≥≥∈R (7)222(0,0)1122a b a b ab a b a b++≥≥≥>>+二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等.题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解; 2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及(0,by ax a x=+> 0)b >等.解答函数应用题中的最值问题时一般利用二次函数的性质,基本不等式,函数的单调性或导数求解.考向一 利用基本不等式求最值利用基本不等式求最值的常用技巧:(1)若直接满足基本不等式条件,则直接应用基本不等式.(2)若不直接满足基本不等式条件,则需要创造条件对式子进行恒等变形,如构造“1”的代换等.常见的变形手段有拆、并、配. ①拆——裂项拆项对分子的次数不低于分母次数的分式进行整式分离——分离成整式与“真分式”的和,再根据分式中分母的情况对整式进行拆项,为应用基本不等式凑定积创造条件. ②并——分组并项目的是分组后各组可以单独应用基本不等式,或分组后先由一组应用基本不等式,再组与组之间应用基本不等式得出最值. ③配——配式配系数有时为了挖掘出“积”或“和”为定值,常常需要根据题设条件采取合理配式、配系数的方法,使配式与待求式相乘后可以应用基本不等式得出定值,或配以恰当的系数后,使积式中的各项之和为定值. (3)若一次应用基本不等式不能达到要求,需多次应用基本不等式,但要注意等号成立的条件必须要一致.注:若可用基本不等式,但等号不成立,则一般是利用函数单调性求解.典例1 若正数a ,b 满足111a b +=,则1911a b +--的最小值为 A .1 B .6 C .9 D .16【答案】B【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.1.(1)已知54x <,求函数14145y x x =-+-的最大值; (2)已知*,x y ∈R (正实数集),且191x y+=,求x y +的最小值. 考向二 基本不等式的实际应用有关函数最值的实际问题的解题技巧:(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. (2)设变量时一般要把求最大值或最小值的变量定义为函数. (3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.典例2 2017年,在国家创新驱动战略下,北斗系统作为一项国家高科技工程,一个开放型的创新平台,1400多个北斗基站遍布全国,上万台设备组成星地“一张网”,国内定位精度全部达到亚米级,部分地区达到分米级,最高精度甚至可以达到厘米或毫米级.最近北斗三号工程耗资元建成一大型设备,已知这台设备维修和消耗费用第一年为元,以后每年增加元(是常数),用表示设备使用的年数,记设备年平均维修和消耗费用为,即 (设备单价设备维修和消耗费用)设备使用的年数. *网 (1)求关于的函数关系式;(2)当,时,求这种设备的最佳更新年限.答:这种设备的最佳更新年限为15年.【名师点睛】利用基本不等式解决应用问题的关键是构建模型,一般来说,都是从具体的问题背景,通过相关的关系建立关系式.在解题过程中尽量向模型0,0,0)bax a b x x+≥>>>上靠拢.2.要制作一个体积为39m ,高为1m 的有盖长方体容器,已知该容器的底面造价是每平方米10元,侧面造价是每平方米5元,盖的总造价为100元,求该容器长为多少时,容器的总造价最低为多少元?考向三 基本不等式的综合应用基本不等式是高考考查的热点,常以选择题、填空题的形式出现.通常以不等式为载体综合考查函数、方程、三角函数、立体几何、解析几何等问题.主要有以下几种命题方式:(1)应用基本不等式判断不等式是否成立或比较大小.解决此类问题通常将所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式问题.通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围.观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围.典例3 下列不等式一定成立的是 A .21lg()lg (0)4x x x +>> B .1sin 2(,)sin x x k k x+≥≠π∈Z C .212||()x x x +≥∈R D .211()1x x >∈+R 【答案】C【解析】对于A :214x x +≥(当12x =时,214x x +=),A 不正确; 对于B :1sin 2(sin (0,1])sin x x x +≥∈,1sin 2(sin [1,0))sin x x x+≤-∈-,B 不正确; 对于C :222||1(||1)0()x x x x -+=-≥∈R ,C 正确; 对于D :21(0,1]()1x x ∈∈+R ,D 不正确. 故选C.【思路点拨】利用基本不等式判断不等关系及比较大小的思路:基本不等式常用于有条件的不等关系的判断、比较代数式的大小等.一般地,结合所给代数式的特征,将所给条件进行转换(利用基本不等式可将整式和根式相互转化),使其中的不等关系明晰即可解决问题.3.设正实数,x y 满足1,12x y >>,不等式224121x y m y x +≥--恒成立,则m 的最大值为 A. B.C .8D .16典例4 设正项等差数列{}n a 的前n 项和为n S ,若20176051S =,则4201414a a +的最小值为______. 【答案】32【名师点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值. 学*4.已知函数()log 22a y x m n =--+恒过定点()3,2,其中0a >且1a ≠,,m n 均为正数,则1112m n++的最小值是_____________.1.函数1(0)4y x x x=+>取得最小值时,x 的值为 A .12-B .12C .1D .22.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是 A .a+b ≥2 B .+≥2 C .|+|≥2D .a 2+b 2>2ab3.()的最大值为 A . B . C .D .4.已知,,x y z 为正实数,则222xy yzx y z +++的最大值为A B .45C .2D .235.若正实数a ,b 满足1a b +=,则A .11a b+有最大值4 BC .ab 有最小值14D .22a b +有最小值26.高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当教室在第层楼时,上下楼造成的不满意度为,但高处空气清新,嘈杂音较小,环境较为安静,因此随教室所在楼层升高,环境不满意度降低,设教室在第层楼时,环境不满意度为,则同学们认为最适宜的教室应在楼 A . B . C .D .7.若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是 A .(-∞,-8]∪[0,+∞) B .(-∞,-4) C .[-8,4)D .(-∞,-8]8.若对任意正数x ,不等式211ax x≤+恒成立,则实数a 的最小值为A .1BC .2D .129.已知1x >,1y >,且2log x ,14,2log y 成等比数列,则xy 有A B .最小值2CD .最大值210.如图,在ABC △中,点是线段上两个动点,且,则的最小值为A .B .C .D .11.已知正实数满足当取最小值时,的最大值为A .2B .C .D .12.在锐角ABC △中,为角所对的边,且,若,则的最小值为A .4B .5C .6D .713.函数的图象恒过定点,若定点在直线 上,则的最小值为A .13B .14C .16D .1214.已知满足,的最大值为,若正数满足,则的最小值为A .9B .C .D .15.当x >0时,22()1xf x x =+的最大值为 . 16.已知函数==,当时,函数()()g x f x 的最小值为 . 17.在公比为的正项等比数列中,,则当取得最小值时,_ . 18.已知,,则的最小值为 .19.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为2*182()5y x x x =-+-∈N ,则当每台机器运转 年时,年平均利润最大,最大值是________万元.20.某物流公司引进了一套无人智能配货系统,购买系统的费用为80万元,维持系统正常运行的费用包括保养费和维修费两部分.每年的保养费用为1万元.该系统的维修费为:第一年万元,第二年万元,第三年2万元,…,依等差数列逐年递增.(1)求该系统使用n 年的总费用(包括购买设备的费用);(2)求该系统使用多少年报废最合算(即该系统使用多少年平均费用最少).21.已知函数).(1)若,求当时函数的最小值;(2)当时,函数有最大值-3,求实数的值.22.(1)设x,y是正实数,且2x+y=4,求lg x+lg y的最大值.(2)若实数a,b满足ab-4a-b+1=0(a>1),求(a+1)(b+2)的最小值.△中,,,分别为角,,所对的边长,且.23.已知在ABC(1)求角的值;(2)若,求的取值范围.1.(2017山东理科)若,且,则下列不等式成立的是 A . B . C . D .2.(2015陕西理科)设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是 A .q r p =< B .q r p => C .p r q =<D .p r q =>3.(2018天津理科)已知,a b ∈R ,且360a b -+=,则128ab+的最小值为 . 4.(2017江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________.5.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为___________. 学*科*网∴当4,12x y ==时,()min 16x y +=.3.【答案】C【解析】224121x y y x +--=()()22(21)2211(1)211121x x y y y x -+-+-+-++≥-- ≥=8,当且仅当12121x x -=-,111y y -=-时等号成立.所以m .故选C . 4.【答案】43【解析】由题意得:3﹣m ﹣2n =1,故m +2n =2, 即(m +1)+2n =3, 故1112m n ++=13(11m ++12n )[(m +1)+2n ]=13(1+21n m ++12m n ++1)≥23=43, 当且仅当m +1=2n 时“=”成立,故填43.1.【答案】B当且仅当14x x =时取等号,此时12x =,故选B. 2.【答案】C【解析】当a ,b 都是负数时,A 不成立; 当a ,b 一正一负时,B 不成立; 当a =b 时,D 不成立, 因此只有选项C 是正确的. 3.【答案】B 【解析】∵,∴, ∴()()36922a a -++≤=,当且仅当,即时等号成立,∴()的最大值为.故选B . 学&【方法点睛】分子、分母有一个一次、一个二次的分式结构的函数以及含有两个变量的函数,适合用基本不等式求最值. 5.【答案】B【解析】∵正实数a ,b 满足1a b +=,∴11224a b a b b a a b a b a b +++=+=++≥+=,当且仅当12a b ==时取等号.故有最小值4,故A 不正确;由于212a b +=++=+≤,∴⩽,故有最大值,故B 正确;由基本不等式可得a +b =1⩾2,∴14ab ≤,故ab 有最大值14,故C 不正确; ∵()22211212122a b a b ab ab +=+-=-≥-=,故有最小值12,故D 不正确. 故选B.6.【答案】B7.【答案】D【解析】由9x +(4+a )·3x+4=0得4+a =943x x +-=-(3x +)≤--4,即a ≤-8, 当且仅当3x =2时等号成立.8.【答案】D 【解析】由题意可得21x a x ≥+恒成立. 由于211112x x x x=≤++(当且仅当1x =时取等号),故21x x +的最大值为12, 12a ∴≥,即a 的最小值为12,故选D . 9.【答案】A【解析】∵x >1,y >1,∴22log 0,log 0x y >>,又∵2log x ,14,2log y 成等比数列,∴221log log 16x y =⨯,由基本不等式可得221log log 2x y +≥=, 当且仅当22log log x y =,即x y =时取等号, 故21log 2xy ≥,即xy ≥xy本题选择A 选项.10.【答案】D【解析】易知x ,y 均为正,设,共线,,,则,()141141419552222y x x y x y x y x y ⎛⎛⎫⎛⎫∴+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4y x x y =,即24,33x y ==时等号成立. 则的最小值为,故选D . 学&科*网11.【答案】C12.【答案】C【解析】由正弦定理及题中条件,可得,即.因为,所以.又,所以,所以,则,所以选C.13.【答案】D【解析】时,函数的值恒为,函数的图象恒过定点,又点在直线上,,又,当且仅当时取“=”,则的最小值为,故选D .14.【答案】B当且仅当取等号,故选B .15.【答案】1【解析】∵x >0,∴2222()1112x f x x x x==≤=++, 当且仅当1x x=,即x =1时取等号.16.【答案】【解析】由题意可得()()g x f x =23212x x x++=311122x x ++≥1(当且仅当3122x x =,即x =).17.【答案】14【解析】2242642222244a a a a q q q q ⎛⎫+=+=+≥⨯= ⎪⎝⎭故答案为. 学&20.【解析】(1)设该系统使用年的总费用为依题意,每年的维修费成以为公差的等差数列,则年的维修费为则(2)设该系统使用的年平均费用为则()20.2280800.22210f n n n S n n n n ++===++≥=, 当且仅当即时等号成立.故该系统使用20年报废最合算.22.【解析】(1)因为x >0,y >0,所以由基本不等式得≥,因为2x+y =4,所以≤2,所以xy ≤2,当且仅当2x =y 时,等号成立,由242x y x y +=⎧⎨=⎩ ,解得12x y =⎧⎨=⎩, 所以当x =1,y =2时,xy 取得最大值2,所以lg x+lg y =lg(xy )≤lg 2,当且仅当x =1,y =2时,lg x+lg y 取得最大值lg 2.(2)因为ab-4a-b+1=0,所以b =,ab =4a+b-1.所以(a+1)(b+2)=ab+2a+b+2=6a+2b+1=6a+×2+1=6a++1=6a+8++1=6(a-1)++15.因为a >1,所以a-1>0.所以原式=6(a-1)++15≥2+15=27.当且仅当(a-1)2=1,即a =2时等号成立.故所求最小值为27. 学#科#网1.【答案】B【解析】因为0a b >>,且1ab =,所以12112log ()a b a a b a a b b b+>+>+⇒+>+,所以选B. 2.【答案】C【解析】p f ==,11(()())ln 22r f a f b ab =+==()0,+∞上单调递增,因为,所以,所以,故选C .3.【答案】【名师点睛】利用基本不等式求最值时,要灵活运用以下两个公式:①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,a b +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.4.【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.5.【答案】9【解析】由题意可知,,由角平分线性质和三角形面积公式得,化简得,。
高三数学基本不等式
早、午、晚分三次到额娘の房里来请安,给额娘沏茶倒水、捶脚捏腿。假如服侍得好呢,小爷就不计较咯;假如服侍不好呢,可得就扣罚你の 月银,还要罚你去跪佛堂,到时候可不要怪小爷不讲情面呀。待众人给额娘请过安,德妃立即就注意到两年多不见の年氏:“水清,过来,到 额娘跟前来,让额娘看看,这两年怎么就不见咯人影儿咯呢?每次都是病咯,怎么两年前在塞外の时候也没见你三天两头地病倒呢?”“回额 娘,媳妇不孝,每次生病都那么恰巧遇到请安或是宫宴の日子,媳妇也是心有惭愧。这壹回终于养好咯身子,还好,没有错过皇阿玛の寿 宴。”“噢,你这生病和病好,都是挺会捡时候の。”“不是,媳妇只是……” “行咯,行咯,额娘也就是那么壹说,你也别解释咯。不过呢, 这身子是要抓紧养好咯,这人呢,也得看紧咯。要是没本事看得紧呢,也就别拦着拉着,爷不可能就你壹各诸人,既然你又生不出来各壹男半 女,就不要霸着爷。”这都已经过去两年の事情,德妃还记着呢!要不是现在娘娘提起这件事情,水清早就忘得壹干二净咯。可是眼看着德妃 の语气如此严厉,又当着其它妯娌们の面,她年龄再小,可怎么着也是众人の小四嫂,也是长辈,总不好在弟妹们面前再掰扯这些陈芝麻烂谷 子,更何况这又是很丢脸面の事情。因此水清只好装作悉心听从额娘教诲の样子,低眉垂首,老老实实、壹言不发地听着娘娘の训诫。她希望 用自己の恭顺表现尽快躲过德妃の喋喋不休。第壹卷 第333章 插曲弘时虚岁才十岁,半明白半不明白地听着太太和年姨娘说着话。他明白の 是太太对年姨娘比对额娘好得太多咯!众人才刚壹落座,太太就跟年姨娘说各不停,把额娘都冷落到咯壹边。他不明白の是太太口中所说の “看紧啥啊,别拦着啥啊”。不管太太说の是啥啊事情,反正太太对年姨娘好得不行,以前太太可是对额娘好着呢,可是今天太太怎么被年姨 娘给抢走咯?越想他越是不高兴,越想他越是为自己の额娘鸣不平,越想他越是看那年姨娘不顺眼。年姨娘真坏,霸占着太太,太太不但不理 额娘,连小爷我都没机会跟太太说上壹句话。年姨娘,小爷特别地讨厌你,再也不想见到你!弘时因为心中气恨难平,就开始在淑清の怀里扭 来扭去。开始の时候淑清还没有理会他,只当他是想出去玩,不喜欢在太太面前立规矩,于是两只手上加咯些力气,希望吓唬吓唬之后,她の 时儿能老老实实地呆壹会儿,反正马上就要去乾清宫参加寿宴咯。可是弘时哪里能理会额娘这番无声の吓唬,只要没有他の阿玛在,他可是天 不怕地不怕の小霸王!于是他更加使劲儿地拱来拱去,嘴里居然开始哼叽上咯,企图挣脱淑清の怀抱。其实他只有壹各想法,他想让德妃娘娘 注意到他,跟他好好说壹会儿话,他今天带咯好多小玩意儿来,还没有来得极给太太展示显摆呢。这么大の动作外加上弘时の哼哼叽叽,德妃 终于注意到咯在淑清怀里快要反咯天の三小格。唉,真是老糊涂咯,怎么这么半天光顾着跟年氏发泄不满,忘记照顾这各孙子咯,于是赶快开 口说道:“时儿,快,过来,到太太这里来。”弘时壹听德妃喊自己,高兴得壹哧溜地就从淑清の怀里滑脱,着急忙慌地朝着娘娘跑过去。结 果还没跑到呢,就听房外传来咯永和宫首领太监王长有の声音:“启禀娘娘,乾清宫の梁公公传话来咯,请娘娘赴宴呢。”弘时壹下子傻咯眼, 猛地扑到太太の怀里,委屈得眼泪珠子吧嗒吧嗒地直往下掉。德妃急着去赴宴,根本就没有注意到三小格居然哭上咯。淑清见娘娘起咯身,知 道她是急着出发,就赶快上前将弘时接回咯自己の怀里。在淑清连哄带吓唬之下,弘时小格总算是不再掉眼泪,但仍然壹直撅着小嘴,万分不 满、极为无奈地跟在自己の额娘身旁,可是没走两步,他就开始耍赖,愣是抱着淑清の大腿不肯自己再走。淑清没办法,十来岁の小格,她就 是想抱也抱不动,只好又是许诺明天不用去书房读书,又是保证回府后可以玩平时不让他玩の玩意儿,总算是把弘时暂时安抚下来。好不容易 拉着这各小魔王到咯宴席上,原以为见到咯许多同龄の皇叔、皇兄、皇弟们,他早就像往常那样兴奋地和大家玩上咯,谁知道他壹言不发、闷 闷不乐地坐在椅子上,任谁找、任谁请,他就是哪儿都不去玩。第壹卷 第334章 重逢今天の宴席,排字琦坐到咯嫡福晋席上,和各位嫡妯娌 们同坐壹桌。水清和淑清与三、五、七、九这四位爷の侧福晋、小福晋们坐在壹起。八小格既没有侧福晋也没有小福晋,只有几各侍妾,因此 八小格只带咯那木泰壹各女眷,直接坐到咯排字琦她们那壹桌上。水清自然是与淑清并肩而坐。以前她被王爷下达咯禁行令,连永和宫の请安 都被免掉,她更是没有任何机会与那些亲の,半亲の,堂の妯娌们认识、交往。她只认识萨苏,但是萨苏在嫡福晋の那壹桌;她只认识塔娜, 但是塔娜在年幼小福晋那壹桌。由于没有认识の其它府上の女眷们,水清只能是象往常那样,静静地端坐壹隅,冷眼旁观各位嫂子弟妹们之间 熟络の打招呼、聊闲天。小格们也是按着长幼顺序纷纷落座。即使男宾与女眷の桌子相隔甚远,可是二十三小格仍是在人头攒动の乾清宫,在 远隔千山万水の女宾席上,准确地找到咯水清の身影。由于是皇上の六十大寿,今天所有の小格们都各司其职,身负重任地在前面忙着寿宴の 诸项事宜,二十三本小格也与众兄长们壹道紧张地忙
高三不等式知识点归纳图
高三不等式知识点归纳图不等式是高中数学中一个重要的概念,广泛应用于代数、几何和实际问题中。
在高三阶段,学生需要深入理解不等式的性质、求解方法以及在应用问题中的运用。
本文将通过归纳图的形式对高三不等式的知识点进行整理和归纳,帮助学生们更好地理解和掌握这一知识点。
一、不等式的基本性质1. 不等式的传递性:如果 a>b,b>c,则有 a>c;2. 不等式两边同时加(减)同一个数,不等号方向不变;3. 不等式两边同时乘(除)同一个正数,不等号方向不变;4. 不等式两边同时乘(除)同一个负数,不等号方向改变。
二、一元一次不等式1. 不等式的解集表示法:用集合的形式表示不等式的解集;2. 不等式的图像表示法:用数轴上的点表示不等式的解集;3. 一元一次不等式的解法:通过移项和化简,找到不等式的解集;4. 一元一次不等式组:通过解每个不等式,再求解交集;5. 不等式的解空间:解多个不等式组成的方程组。
三、一元二次不等式1. 一元二次不等式的解集表示法:用集合的形式表示不等式的解集;2. 一元二次不等式的图像表示法:用数轴上的点表示不等式的解集;3. 一元二次不等式的解法:利用一元二次不等式的性质和变形求解;4. 一元二次不等式组:通过解每个不等式,再求解交集。
四、绝对值不等式1. 绝对值不等式的性质:|a|<b 等价于 -b<a<b;2. 绝对值不等式的解法:通过移项和化简,根据情况分析绝对值的正负,找到不等式的解集。
五、分式不等式1. 分式不等式的解集表示法:用集合的形式表示不等式的解集;2. 分式不等式的解法:通过移项和化简,确定分式不等式的解集。
六、不等式应用1. 几何意义:利用不等式解决三角形、多边形的不等式问题;2. 实际问题:应用不等式解决数学建模、经济学、物理学等实际问题。
七、不等式的证明1. 证明不等式的基本方法:利用不等式的性质和变形进行证明;2. 数学归纳法的应用:通过数学归纳法证明不等式的正确性。
第03讲 基本不等式(解析版)备战2023年高考数学一轮复习精讲精练
第03讲基本不等式 (精讲+精练)目录第一部分:思维导图(总览全局)第二部分:知识点精准记忆第三部分:课前自我评估测试第四部分:典型例题剖析高频考点一:利用基本不等式求最值①凑配法②“1”的代入法③二次与二次(一次)商式(换元法)④条件等式求最值高频考点二:利用基本不等式求参数值或取值范围高频考点三:利用基本不等式解决实际问题高频考点四:基本不等式等号不成立,优先对钩函数第五部分:高考真题感悟第六部分:第03讲基本不等式(精练)1、基本不等式(一正,二定,三相等,特别注意“一正”,“三相等”这两类陷阱)①如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立. ②a ,b 的几何平均数;2a b+叫做正数a ,b 的算数平均数. 2、两个重要的不等式①222a b ab +≥(,a b R ∈)当且仅当a b =时,等号成立. ②2()2a b ab +≤(,a b R ∈)当且仅当a b =时,等号成立. 3、利用基本不等式求最值①已知x ,y 是正数,如果积xy 等于定值P ,那么当且仅当x y =时,和x y +有最小值;②已知x ,y 是正数,如果和x y +等于定值S ,那么当且仅当x y =时,积xy 有最大值24S;4、常用技巧利用基本不等式求最值的变形技巧——凑、拆(分子次数高于分母次数)、除(分子次数低于分母次数))、代(1的代入)、解(整体解). ①凑:凑项,例:()1123x x a a a x a x a x a+=-++≥+=>--; 凑系数,例:()()2112121112212022282x x x x x x x +-⎛⎫⎛⎫-=⋅-≤⋅=<< ⎪ ⎪⎝⎭⎝⎭;②拆:例:()2244442244822223x x x x x x x x x -+==++=-++≥=>----;③除:例:()2221011x x x x x=≤>++; ④1的代入:例:已知0,0,1a b a b >>+=,求11a b+的最小值. 解析:1111()()24b aa b a b a b a b+=++=++≥. ⑤整体解:例:已知a ,b 是正数,且3ab a b =++,求a b +的最小值.解析:22,322a b a b ab a b ++⎛⎫⎛⎫≤∴≥++ ⎪ ⎪⎝⎭⎝⎭,即()()21304a b a b +-+-≥,解得()62a b a b +≥+≤-舍去.一、判断题1.(2022·江西·贵溪市实验中学高二期末)当0,2x π⎛⎤∈ ⎥⎝⎦时,4sin sin x x +的最小值为4 ( )【答案】错误解:由0,2x π⎛⎤∈ ⎥⎝⎦得到0sin 1x <≤, 令sin t x =,则4y t t =+,因为01t <≤,所以函数4y t t =+为减函数,当1t =时,min 145y =+=,故答案为:错误.2.(2021·江西·贵溪市实验中学高二阶段练习)已知102x <<,则()12x x -的最大值为18( ) 【答案】正确 ∵102x <<, ∴()()2112121122122228x x x x x x +-⎛⎫-=-≤=⎡⎤ ⎪⎣⎦⎝⎭, 当且仅当212x x =-,即14x =时,取等号, 故()12x x -的最大值为18.故答案为:正确 二、单选题1.(2022·江西·高一阶段练习)当0x >时,92x x+的最小值为( ) A .3 B .32C .D .【答案】D 由92x x +≥x = 可得当0x >时,92x x+的最小值为故选:D2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3 B .2 C .1 D .0【答案】D因为2x >-,所以20x +>,102x >+,利用基本不等式可得11222022x x x x +=++-≥=++, 当且仅当122x x +=+即1x =-时等号成立. 故选:D.3.(2022·湖南·高一阶段练习)已知0a >,0b >且2510a b +=,则ab 的最大值为( ) A .2 B .5C .32D .52【答案】D因为2510a b +=≥52ab ≤,当且仅当5,12a b ==时,等号成立. 所以ab 的最大值为52.故选:D4.(2022·新疆·乌苏市第一中学高一开学考试)下列函数,最小值为2的函数是( ) A .1y x x=+B .222y x x -=+C .3y x =+D .2y =【答案】D对A ,y 可取负数,故A 错误; 对B ,2(1)11y x =-+≥,故B 错误;对C ,21)23y =+≥,故C 错误;对D ,222y =≥,等号成立当且仅当0x =,故D 正确;故选:D高频考点一:利用基本不等式求最值①凑配法1.(2022·北京大兴·高一期末)当02x <<时,(2)x x -的最大值为( ) A .0 B .1 C .2 D .4【答案】B02x <<,20x ∴->,又(2)2x x +-=[]2(2)(2)14x x x x +-∴-≤=,当且仅当2x x =-,即1x =时等号成立,所以(2)x x -的最大值为1 故选:B2.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( ) A .8 B .7 C .6 D .5【答案】D因为13x >,所以3x -1>0,所以()443311153131y x x x x =+=-++≥=--, 当且仅当43131x x -=-,即x =1时等号成立, 故函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为5. 故选:D .3.(2022·安徽省蚌埠第三中学高一开学考试)已知x >3,则对于43y x x =+-,下列说法正确的是( ) A .y 有最大值7 B .y 有最小值7 C .y 有最小值4 D .y 有最大值4【答案】B解:因为3x >,所以30x ->,所以()44333733y x x x x =+=-++≥=--,当且仅当433x x -=-,即5x =时取等号,所以y 有最小值7; 故选:B4.(2022·江苏省天一中学高一期末)设实数x 满足1x >-,则函数41y x x =++的最小值为( ) A .3 B .4 C .5 D .6【答案】A 1x >-,∴函数(1)114441311y x x x x =+=++-≥=-=++,当且仅当411x x +=+,即1x =时取等号. 因此函数41y x x =++的最小值为3. 故选:A .5.(2022·上海虹口·高一期末)已知04x <<,则()4x x -的最大值为______. 【答案】4因04x <<,则40x ->,于是得2(4)(4)[]42x x x x +--≤=,当且仅当4x x =-,即2x =时取“=”, 所以()4x x -的最大值为4. 故答案为:4②“1”的代入法1.(2022·河南·夏邑第一高级中学高二期末(文))已知x ,y 均为正数,若261x y +=,则当3x y +取得最小值时,x y +的值为( ) A .16 B .4C .24D .12【答案】A因为261x y+=,所以()2618233661224x y x y x y x y y x ⎛⎫+=++=+++≥+= ⎪⎝⎭, 当且仅当182x y y x =,即3y x =时取等号,又因为261x y+=,所以4x =,12y =, 所以16x y +=. 故选:A.2.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .6【答案】C解:因为0x >,0y >,22x y +=,所以()1211214122244222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4y x x y =,即12x =,1y =时取等号;故选:C3.(2022·四川·泸县五中高二开学考试(文))已知,x y 为正实数,且2x y +=,则212x y+的最小值为__________. 【答案】94##2.25()21121152222222y x x y x y x y x y ⎛⎫⎛⎫+=⨯+⨯+=⨯++ ⎪ ⎪⎝⎭⎝⎭159224⎛≥⨯+= ⎝, 当且仅当242,,233y x x y x y ===时等号成立. 故答案为:944.(2022·广西桂林·高一期末)已知0,0a b >>,若31a b +=,则31a b+的最小值是___________.【答案】16因为0,0a b >>,31a b +=所以313133()(3)101016b a a b a b a b a b +=++=++≥+ 当且仅当,3331b aab a b ⎧=⎪⎨⎪+=⎩,即14a b ==时,取“=”号, 所以31a b+的最小值为16.故答案为:165.(2022·天津·南开中学高一期末)已知110, 0, 4a b ab>>+=,则4a b +的最小值为_______________. 【答案】94##2.25解:因为110, 0, 4a b a b>>+=,所以()111141944554444b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭⎝,当且仅当1144a b b a a b⎧+=⎪⎪⎨⎪=⎪⎩,即3438a b ⎧=⎪⎪⎨⎪=⎪⎩时等号成立,所以4a b +的最小值为94.故答案为:94.③二次与二次(一次)商式1.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x -=-,即0x =时取“=”,所以当0x =时,22222x x y x -+=-有最大值1-.故选:A2.(2022·全国·高三专题练习)函数233(1)1x x y x x ++=<-+的最大值为( ) A .3 B .2 C .1 D .-1【答案】D2233(1)(1)111x x x x y x x ++++++==++ 1[(1)]1(1)x x =--+++-+11≤-=-, 当且仅当1111x x +==-+,即2x =-等号成立. 故选:D.3.(2022·江西南昌·高一期末)当2x >-时,函数2462++=+x x y x 的最小值为___________.【答案】因为2x >-,则20x +>,则()()22224622222x x x y x x x x ++++===+++++≥=当且仅当2x =时,等号成立,所以,当2x >-时,函数2462++=+xx y x 的最小值为故答案为:4.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----, 因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.5.(2021·江西·宁冈中学高一阶段练习(理))()21147x x x x ->-+的最大值为______.【答案】12令1x t -=,则1x t =+,0t >,所以222111447(1)4(1)72422x t t x x t t t t t t -===≤=-++-++-++-,当且仅当4t t =,即2t =时,等号成立. 所以()21147x x x x ->-+的最大值为12. 故答案为:12.6.(2022·全国·高三专题练习)求下列函数的最小值 (1)21(0)x x y x x ++=>; (2)226(1)1x x y x x ++=>-. 【答案】(1)3;(2)10. (1)2111x x y x x x++==++∵10,2x x x >∴+≥=(当且仅当1x x =,即x =1时取等号)∴21(0)x x y x x++=>的最小值为3;(2)令1(0)t x t =->,则1x t =+,22226(1)2(1)6499=44101x x t t t t y t x t t t ++++++++∴===++≥=-当且仅当9t t=即t =3时取等号 ∴y 的最小值为10④条件等式求最值1.(2022·陕西咸阳·高二期末(文))已知0x >,0y >,若28x y xy +=,则xy 的最小值是( )A B C .18D .14【答案】C因为0x >,0y >,由基本不等式得:2x y +≥所以8xy ≥解得:18xy ≥,当且仅当2x y =,即14x =,12y =时,等号成立 故选:C2.(2022·全国·高三专题练习)已知0,0a b >>,且3ab a b =++,则a b +的最小值为( ) A .4 B .8 C .7 D .6【答案】D 【详解】3,0,0a b b b a a >=++>,23()2a b a b +∴++≤,当且仅当a b =,即3a b ==时等号成立, 解得6a b +≥或2a b +≤-(舍去),a b ∴+的最小值为6故选:D3.(2022·江苏·高三专题练习)已知0a >,0b >且满足2a b ab +=,则2+a b 的最小值为( ) A .4 B .6 C .8 D .10【答案】C由2a b ab +=可得121b a+=,又因为0a >,0b >,所以()1242244448a b a b a b b a b a ⎛⎫+=++=++≥++= ⎪⎝⎭, 当且仅当42a bb a a b ab⎧=⎪⎨⎪+=⎩即42a b =⎧⎨=⎩时等号成立,所以2+a b 的最小值为8, 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.(2022·安徽芜湖·高一期末)已知正数x ,y 满足8xy x y =++,则x y +的最小值为_________ 【答案】8由题意,正实数,x y ,由()22224x y x y xy xy +=++≥(x y =时等号成立),所以()24x y xy +≤,所以()284x x y y y x =++≤+,即2()4()320x y x y +-+-≥,解得4x y +≤-(舍),8x y +≥,(4x y ==取最小值) 所以x y +的最小值为8.故答案为:85.(2022·全国·高三专题练习)已知2,1a b >>,且满足21ab a b =++,则2a b +的最小值为_______.【答案】5##5+∵2,1a b >>,且满足21ab a b =++, ∴13122a b a a +==+--, 2a b +=()33212255522a a a a ++=-++≥=--, 当且仅当32(2)2a a -=-时,2a b +的最小值为5. 故答案为:56.(2022·重庆·高一期末)已知0x >,0y >,24xy x y =++,则x y +的最小值为______. 【答案】4解:由题知0,0,x y >>由基本不等式得22x y xy +⎛⎫≤ ⎪⎝⎭,即2422x y x y +⎛⎫++≤⨯ ⎪⎝⎭,令t x y =+,0t >,则有2422t t ⎛⎫+≤⨯ ⎪⎝⎭,整理得2280t t --≥,解得2t ≤-(舍去)或4t ≥,即4x y +≥,当且仅当2x y ==时等号成立, 所以x y +的最小值为4. 故答案为:4.7.(2022·广东广州·高一期末)已知0a >,0b >,且3a b ab +=-,则a b +的最小值为______. 【答案】6由0a >,0b >,得a b +≥a b =时,等号成立), 又因3a b ab +=-,得3ab -≥,即)130≥,由0a >,0b >3,即9ab ≥,故3936a b ab +=-≥-=. 因此当3a b ==时,a b +取最小值6. 故答案为:6.高频考点二:利用基本不等式求参数值或取值范围1.(2022·全国·高三专题练习)当2x >时,不等式12+≥-x a x 恒成立,则实数a 的取值范围是( ) A .(],2-∞ B .[)2,+∞ C .[)4,+∞ D .(],4-∞【答案】D 当2x >时,11222422x x x x +=-++≥=--(当且仅当3x =时取等号),4a ∴≤,即a 的取值范围为(],4-∞. 故选:D.2.(2022·浙江·高三专题练习)若关于 x 的不等式220x ax -+>在区间[]1,5上恒成立,则a 的取值范围为() A .()+∞ B .(,-∞C .(),3-∞D .27,5⎛⎫-∞ ⎪⎝⎭【答案】B当[]1,5x ∈时,由220x ax -+>可得2a x x <+,则min 2a x x ⎛⎫<+ ⎪⎝⎭,由基本不等式可得2x x +≥x所以,a <故选:B.3.(2022·全国·高三专题练习)已知0a >,0b >,若不等式41m a b a b+≥+恒成立,则m 的最大值为( ) A .10 B .12 C .16 D .9【答案】D由已知0a >,0b >,若不等式41ma b a b+≥+恒成立, 所以41()m a b a b ⎛⎫≤++ ⎪⎝⎭恒成立,转化成求41()y a b a b ⎛⎫=++ ⎪⎝⎭的最小值,414()559b a y a b a b a b ⎛⎫=++=++≥+= ⎪⎝⎭,当且仅当4b aa b=时取等 所以9m ≤. 故选:D .4.(2022·全国·高三专题练习)已知x ,()0,y ∈+∞,且1x y +=,若不等式2221124x y xy m m ++>+恒成立,则实数m 的取值范围是( ) A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .()2,1-D .()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】A因为x ,()0,y ∈+∞,且1x y +=,所以()222231124x y x y xy x y xy xy +⎛⎫++=+-=-≥-= ⎪⎝⎭,当且仅当12x y ==时,等号成立; 又不等式2221124x y xy m m ++>+恒成立, 所以只需2311424m m >+,即2230m m +-<,解得312m -<<. 故选:A.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 5.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是( )A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞【答案】C解:因为0x >,所以22221131x x x x x =≤=++++,当且仅当1x x =即1x =时取等号,因为221x a x x ≥++恒成立,所以23a ≥,即2,3a ⎡⎫∈+∞⎪⎢⎣⎭;故选:C6.(2022·甘肃·无高二期末(文))已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .(],6-∞D .[)6,+∞【答案】D因为0a >,0b >,191a b+=,所以()199101016a a b a b a b a b b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当9b a a b =,即4a =,12b =时取等号.由题意,得241186x x m ≥-++-,即242x x m --≥-对任意的实数x 恒成立,又()2242266x x x --=--≥-,所以6m -≥-,即6m ≥. 故选:D .7.(2022·全国·高三专题练习)若对任意0x >,231xa x x ≤++恒成立,则实数a 的取值范围是( )A .1,5⎡⎫+∞⎪⎢⎣⎭B .1,5⎛⎫+∞ ⎪⎝⎭C .1,5⎛⎫-∞ ⎪⎝⎭D .1,5⎛⎤-∞ ⎥⎝⎦【答案】A由题意,对任意0x >,则有221111313153x x x x x x x x ==≤=++++++, 当且仅当1x x =时,即1x =时,等号成立,即231xx x ++的最大值为15, 又由对任意0x >时,231x a x x ≤++恒成立,所以15a ≥,即a 的取值范围为1,5⎡⎫+∞⎪⎢⎣⎭.故选:A.高频考点三:利用基本不等式解决实际问题1.(2022·北京市十一学校高二期末)某公司要建造一个长方体状的无盖箱子,其容积为48m 3,高为3m ,如果箱底每1m 2的造价为15元,箱壁每1m 2造价为12元,则箱子的最低总造价为( ) A .72元 B .300元 C .512元 D .816元【答案】D设这个箱子的箱底的长为x m ,则宽为16xm , 设箱子总造价为f (x )元, ∴f (x )=15×16+12×3(2x 32x +)=72(x 16x +240=816, 当且仅当x 16x=,即x =4时,f (x )取最小值816元. 故选:D .2.(2022·河南开封·高一期末)中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a ,b ,c ,三角形的面积S 可由公式S =p 为三角形周长的一半,这个公式也被称为海伦秦九韶公式,现有一个三角形的边长满足14a b +=,6c =,则此三角形面积的最大值为( )A .6B .C.12D .【答案】B由题意得:10p =,S =101032a b-+-=⨯当且仅当1010a b -=-,即7a b ==时取等号, 故选:B .3.(2022·江苏常州·高一期末)2021年初,某地区甲、乙、丙三位经销商出售钢材的原价相同.受钢材进价普遍上涨的影响,甲、乙计划分两次提价,丙计划一次提价.设0p q <<,甲第一次提价%p ,第二次提价%q ;乙两次均提价%2p q+;丙一次性提价()%p q +.各经销商提价计划实施后,钢材售价由高到低的经销商依次为( ) A .乙、甲、丙 B .甲、乙、丙 C .乙、丙、甲 D .丙、甲、乙【答案】A设提价前价格为1,则甲提价后的价格为:(1%)(1%)1%%0.01%p q p q pq ++=+++,乙提价后价格为:21%1%1%%0.01%222p q p q p q p q +++⎛⎫⎛⎫⎛⎫++=+++⨯ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,丙提价后价格为:()%11%%p q p q +=+++, 因为0p q <<,所以22p q pq +⎛⎫> ⎪⎝⎭,所以1%1%(1%)(1%)12(%2)p q p p q p q q ++⎛⎫⎛⎫++>++>+ ⎪⎪⎝⎭⎝⎭+,即乙>甲>丙. 故选:A4.(2022·全国·高三专题练习(文))已知k ∈R ,则“对任意,a b ∈R ,22a b kab +≥”是“k 2≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A因为对任意,a b ∈R ,有222a b ab +≥,而对任意,a b ∈R ,22a b kab +≥, 所以22k -≤≤,因为[2,2]-是(,2]-∞的真子集,所以“对任意,a b ∈R ,22a b kab +≥”是“k 2≤”的充分不必要条件, 故选:A5.(2022·河南·模拟预测(理))一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为g m ,则( ) A .10m > B .10m =C .10m <D .以上都有可能【答案】A由于天平两臂不等长,可设天平左臂长为a ,右臂长为b ,则a b ,再设先称得黄金为g x ,后称得黄金为g y ,则5bx a =,5ay b =, 5a x b ∴=,5b y a=,555510a b a b x y b a b a ⎛⎫∴+=+=+≥⨯ ⎪⎝⎭, 当且仅当a bb a=,即a b =时等号成立,但a b ,等号不成立,即10x y +>.因此,顾客购得的黄金10m >. 故选:A.6.(2022·全国·高一)如图所示,将一矩形花坛ABCD 扩建为一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =米,3AD =米,当BM =_______时,矩形花坛AMPN 的面积最小.【答案】4设BM x =,则由//DC AM 得434ND ND x=++,解得12ND x =,∴矩形AMPN的面积为1248(4)(3)2432448S x x x x =++=++≥+=,当且仅当483x x =,即4x =时等号成立. 故答案为:4.高频考点四:基本不等式等号不成立,优先对钩函数1.(2022·重庆南开中学模拟预测)已知命题p :“21,4,402x x ax ⎡⎤∃∈-+>⎢⎥⎣⎦”为真命题,则实数a 的取值范围是( ) A .4a < B .172a <C .133a <D .5a >【答案】B命题p :“1,42x ⎡⎤∃∈⎢⎥⎣⎦,240x ax -+>”,即max 4a x x ⎛⎫<+ ⎪⎝⎭,设4()f x x x=+,对勾函数在2x =时取得最小值为4,在12x =时取得最大值为172,故172a <,故选:B .2.(2022·浙江·高三专题练习)若不等式210x ax ++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的取值范围是( )A .0a ≥B .2a ≤-C .52a ≥-D .3a ≤-【答案】C若不等式210x ax ++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则1a x x ⎛⎫≥-+ ⎪⎝⎭,即max 1a x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦,1y x x ⎛⎫=-+ ⎪⎝⎭在10,2⎛⎤ ⎥⎝⎦单调递增,max 52y =-,所以52a ≥-.故选:C3.(2022·全国·高三专题练习)函数2y =的最小值为( )A .2B .52C .1D .不存在【答案】B()2t t =≥,函数1y t t =+在()1,+∞上是增函数,1y t t∴=+在[)2,+∞上也是增函数.∴当2t =2,0x =时,min 52y =. 故选:B .4.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞【答案】A解:121,1,[2,3]2x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x ≤,等价于121,1,[2,3]2x x ⎡⎤∀∈∃∈⎢⎥⎣⎦, ()1max f x ()2max g x ≤,由对勾函数的单调性知4()f x x x =+在1,12⎡⎤⎢⎥⎣⎦上单调递减,所以max 117()22f x f ⎛⎫== ⎪⎝⎭, 又()2xg x a =+在[2,3]上单调递增,所以max 32(8)g x a a =+=+,所以1782a ≤+,解得12a ≥,所以实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.故选:A.5.(2022·全国·高二课时练习)函数()3421x xf x x x -=++在区间[]1,3上( )A0 B .有最大值为2491,最小值为0 CD .有最大值为2491,无最小值 【答案】A当0x ≠时,()3242221111113x x x x xx f x x x x x x x ---===++⎛⎫++-+ ⎪⎝⎭, 设1x t x -=,易知1t x x =-在[]1,3上单调递增,故80,3t ⎡⎤∈⎢⎥⎣⎦. ()23t g t t =+,()00g =,当0t >时,()2133t g t t t t==++,双勾函数3y x x =+在(上单调递减,在83⎤⎥⎦上单调递增,且0y >,故()max g t g==,()min 0g t >, 综上所述:()max g t =,()min 0g t =,即()max f x =()min 0f x =. 故选:A.1.(2021·江苏·高考真题)已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,b 满足()()240f a f b +-=则121a b ++的最小值是( ) A .23B .43C .2D .4【答案】B解:因为()()240f a f b +-=,所以(2)(4)f a f b =--, 因为奇函数()f x 是定义在R 上的单调函数, 所以(2)(4)(4)f a f b f b =--=-, 所以24a b =-,即24a b +=, 所以226a b ++=,即2(1)6a b ++=, 所以12112[2(1)]161a b a b a b ⎛⎫+=+++ ⎪++⎝⎭14(1)2261b a a b +⎡⎤=+++⎢⎥+⎣⎦14(1)461b a a b +⎡⎤=++⎢⎥+⎣⎦1144(44)663⎡⎤≥=+=⎢⎥⎣⎦, 当且仅当4(1)1b a a b+=+,即1,32a b ==时取等号,所以121a b ++的最小值是43. 故选:B2.(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+ D .4ln ln y x x=+【答案】C对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意; 对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .3.(2021·天津·高考真题)若0 , 0a b >>,则21a b ab ++的最小值为____________.【答案】0 , 0a b >>,212a b b a b b b ∴++≥=+≥当且仅当21a a b=且2b b =,即a b ==所以21ab ab ++的最小值为故答案为:4.(2021·江苏·高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.【答案】(1)年产量为100吨时,平均成本最低为16万元;(2)年产量为110吨时,最大利润为860万元. (1)2000245y x x x=+-,[60,110]x ∈2416≥= 当且仅当20005x x=时,即100x =取“=”,符合题意; ∴年产量为100吨时,平均成本最低为16万元.(2)()()2212424200012088055x L x x x x ⎛⎫=--+=--+ ⎪⎝⎭又60110x ≤≤,∴当110x =时,max ()860L x =. 答:年产量为110吨时,最大利润为860万元.一、单选题1.(2022·江西·赣州市赣县第三中学高一开学考试)下列说法正确的为( ) A .12x x+≥ B .函数224x y +=4C .若0,x >则(2)x x -最大值为1D .已知3a >时,43+≥-a a 43=-a a 即4a =时,43+-a a 取得最小值8【答案】C对于选项A ,只有当0x >时,才满足基本不等式的使用条件,则A 不正确; 对于选项B ,224x y +=2231x ++==(t t =≥,即(22y t t t =+≥在)+∞上单调递增,则最小值为min y ==, 则B 不正确;对于选项C ,()()22(2)211111x x x x x -=--++=--+≤,则C 正确;对于选项D ,当3a >时,44333733a a a a +=-++≥=--,当且仅当 433a a -=-时,即5a =,等号成立,则D 不正确. 故选:C .2.(2022·福建·莆田一中高一期末)函数2455()()22x x f x x x -+=≥-有( ) A .最大值52B .最小值52C .最大值2D .最小值2【答案】D(方法1)52x ,20x ∴->,则2245(2)11(2)222(2)x x x x x x x -+-+==-+---,当且仅当122x x -=-,即3x =时,等号成立.(方法2)令2x t -=,52x,12t ∴,2x t ∴=+. 将其代入,原函数可化为22(2)4(2)511122t t t y t t t t t t +-+++===+⋅=,当且仅当1t t =,即1t =时等号成立,此时3x =. 故选:D3.(2022·河南·郏县第一高级中学高二开学考试(理))正实数ab 满足121a b+=,则()()24a b ++的最小值为( ) A .16 B .24 C .32 D .40【答案】C正实数ab 满足121a b +=,所以18ab ≥≥当且仅当24b a ==时取等号,121a b +=化简得2ab a b =+,所以()()()228384322ab a b a a b b =+++=+≥++ 故选:C.4.(2022·江西抚州·高二期末(文))若命题“对任意(),0x ∈-∞,使得2240x ax -+≥成立”是真命题,则实数a 的取值范围是( ) A .[)2,-+∞ B .[)2,+∞ C .(],2-∞- D .(],2-∞【答案】A 解:由题得22x a x≥+对任意(),0x ∈-∞恒成立,22[()()]222x x x x +=--+-≤-- (当且仅当2x =-时等号成立) 所以2a ≥-. 故选:A5.(2022·河南·驻马店市基础教学研究室高二期末(理))中国大运河项目成功人选世界文化遗产名录,成为中国第46个世界遗产项目,随着对大运河的保护与开发,大运河已成为北京城市副中心的一张亮丽的名片,也成为众多旅游者的游览目的地.今有一旅游团乘游船从奥体公园码头出发顺流而下至漕运码头,又立即逆水返回奥体公园码头,已知游船在顺水中的速度为1V ,在逆水中的速度为()212V V V ≠,则游船此次行程的平均速度V 与122V V +的大小关系是( ) A .122V V V +<B .122V V V +≤C .122V V V +>D .122V V V +=【答案】A易知120,0V V >>,设奥运公园码头到漕运码头之间的距离为1,则游船顺流而下的时间为11V ,逆流而上的时间为21V ,则平均速度12211V V V =+,由基本不等式可得V ≤,而122V V +≥当12V V =时,两个不等式都取得“=”,而根据题意12V V ≠,于是122V V V +. 故选:A.6.(2022·浙江温州·二模)已知正数a ,b 和实数t 满足221a tab b ++=,若a b +存在最大值,则t 的取值范围是( ) A .(],2-∞ B .()2,-+∞ C .(]2,2- D .[)2,+∞【答案】C解:()()22212a a b t a tab b b =+++-+=,①当20t -=,即2t =时,1a b +=,则a b +的最大值为1,符合题意; ②当20t ->,即2t >时, 则()()()()()222222244t t a b t ab a b a b a b -+++-≤+++=+, 所以()2214t a b ++≥,所以a b +≥a b =时取等号, 此时a b +有最小值,无最大值,与题意矛盾; ③当20t -<,即2a <时, 则()()()22224t a b t ab a b +++-≥+, 当20t +=,即2a =-时,()22221a a ab b b +=-=-,所以1a b -=,不妨设a b >,则1a b -=,即1a b =+,故21a b b +=+,此时a b +无最大值,与题意矛盾; 当20t +>,即22t -<<时,()2214t a b ++≤,所以0a b <+≤a b =时取等号, 此时a b +有最大值,符合题意;当20t +<,即2t <-时,()2214t a b ++≤恒不成立,不符题意, 综上所述,若a b +存在最大值,(]2,2t ∈-. 故选:C.7.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米【答案】C由题意知,8,12PB QB ==,设,,PMB QMB BM x ∠=∠==αβ,则812tan ,tan x x==αβ,所以()212844tan tan 12896961x x x PMQ x x x x x -∠=-===≤=++⋅+βα,当且仅当96x x =,即x =10,所以BM 大约为10米. 故选:C.8.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b+=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m的取值范围是( ) A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞【答案】A解:设方程2320x x ab --=的两个异号的实根分别为1x ,2x ,则1203abx x =-<,0ab ∴>. 又211a b+=,0a ∴>,0b >,则()21422448a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭(当且仅当4a =,2b =时取“=”), 由不等式222a b m m +>+恒成立,得228m m +<,解得42m -<<.∴实数m 的取值范围是()4,2-. 故选:A . 二、填空题9.(2022·陕西西安·高三阶段练习(文))已知0x >,0y >,334x y x y+--=.则x y +的取值范围为__________. 【答案】[6,)+∞ 因为334x y x y+--=,0,0x y >>, 所以23()3()1242x y x y x y xy x y x y +++-=≥=++⎛⎫⎪⎝⎭,当且仅当x y =时等号成立, 即2()4()120x y x y +-+-≥, 解得6x y +≥或2x y +≤-(舍去) 所以x y +的取值范围为[6,)+∞. 故答案为:[)6,+∞10.(2022·上海·二模)已知对()0,x ∀∈+∞,不等式1x m x>-恒成立,则实数m 的最大值是_________.【答案】不存在由已知可得()0,x ∀∈+∞,1m x x <+,由基本不等式可得12x x +≥=,当且仅当1x =时,等号成立,2m <∴,故实数m 的最大值不存在. 故答案为:不存在.11.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 【答案】13,4∞⎛⎤- ⎥⎝⎦若()f x 在[3,4]上的最大值max ()f x ,()g x 在[4,8]上的最大值max ()g x , 由题设,只需max max ()()f x g x ≥即可. 在[3,4]上,9()6f x x x =+≥=当且仅当3x =时等号成立, 由对勾函数的性质:()f x 在[3,4]上递增,故max 25()4f x =.在[4,8]上,()g x 单调递增,则max ()3g x a =+, 所以2534a ≥+,可得134a ≤.故答案为:13,4∞⎛⎤- ⎥⎝⎦.12.(2022·安徽合肥·高一期末)如图所示,某农科院有一块直角梯形试验田ABCD ,其中//,AB CD AD AB ⊥.某研究小组计则在该试验田中截取一块矩形区域AGEH 试种新品种的西红柿,点E 在边BC 上,则该矩形区域的面积最大值为___________.【答案】75设,615AG x x =≤<, 12124tan 15693B ===-, 15BG x =-,()()415tan 153EG x B x =-⨯=-, 所以矩形AGEH 的面积()244154225157533234x x x x -+⎛⎫-⋅≤⨯=⨯= ⎪⎝⎭, 当且仅当1515,2x x x -==时等号成立. 故选:75 三、解答题13.(2022·湖南·高一课时练习)(1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小? (2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大?【答案】(1)a =b =6时,它们的和最小,为12;(2)a =b =9时,它们的积最大,为81 设两个正数为a ,b(1)36ab =,则12a b +≥=,当且仅当6a b ==等号成立, 即a =b =6时,它们的和最小,为12.(2)18a b +=,则()2814a b ab +≤=当且仅当9a b ==等号成立即a =b =9时,它们的积最大,为81.14.(2022·辽宁朝阳·高一开学考试)如图,设矩形()ABCD AB AD >的周长为8cm ,将△ABC 沿AC 向△ADC 折叠,AB 折过去后交DC 于点P ,设AB xcm =,求ADP △面积的最大值及相应x 的值.【答案】x =(212cm -.由题意,矩形()ABCD AB AD >的周长为8cm ,且AB xcm =, ∴()4AD x cm =-,则4x x >-,∴24x <<, 又由AP AB PB AB DP x DP ''=-=-=-, 在Rt ADP △中,()()2224x DP x DP -+=-, 解得48x DP cm x -⎛⎫= ⎪⎝⎭,∴()1148422ADP x S AD DP x x-=⋅=-⋅△812212212x x ⎛⎫=-+≤-⨯- ⎪⎝⎭当且仅当8x x=,即x =∴ADP △面积的最大值为(212cm -,此时x =15.(2022·贵州·赫章县教育研究室高一期末)已知关于x 的不等式220ax ax ++>的解集为R ,记实数a 的所有取值构成的集合为M . (1)求M ;(2)若0t >,对a M ∀∈,有245321a t t a --≤+-+,求t 的最小值. 【答案】(1){08}aa ≤<∣(2)1 (1)当0a =时,20>满足题意;当0a ≠时,要使不等式220ax ax ++>的解集为R ,必须2080a a a >⎧⎨-<⎩,解得08a <<,综上可知08a ≤<,所以{08}M aa =≤<∣(2)∵08a ≤<,∴119a ≤+<, ∴441141311a a a a +=++-≥-=++,(当且仅当1a =时取“=”) ∴4521a a --≤+, ∵a M ∀∈,有245321a t t a --≤+-+,∴2322t t +-≥, ∴2340t t +-≥,∴1t ≥或4t ≤-, 又0t >,∴1t ≥,∴ t 的最小值为1.16.(2022·山西·怀仁市第一中学校高一期末)党中央国务院对节能减排高度重视,各地区认真贯彻党中央国务院关于“十三五”节能减排的决策部署,把节能减排作为转换发展方式,新能源汽车环保节能以电代油,减少排放,既符合我国国情,也代表了汽车产业发展的方向.为了响应国家节能减排的号召,2022年某企业计划引进新能源汽车生产设备.通过市场分析:全年需投入固定成本2500万元.每生产x (百辆)新能源汽车,需另投入成本()C x 万元,且()210500,040,64009016300,40.x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式;(利润=售价-成本) (2)当2022年的总产量为多少百辆时,企业所获利润最大?并求出最大利润. 【答案】(1)2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式为2104002500,040()100003800,40x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩(2)当80x =时,即2022年生产80百辆时,该企业获得利润最大,且最大利润为3640万元. (1)当040x <<时,()229100105002500104002500L x x x x x =⨯---=-+-;当40x ≥时,()640064009100901630025003800L x x x x x x ⎛⎫=⨯--+-=-+ ⎪⎝⎭; 所以()2104002500,04064003800,40x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩ (2)当040x <<时,()()210201500L x x =--+, 当20x时,()max 1500L x =;当40x ≥时,()64003800380038001603640L x x x ⎛⎫=-+≤-=-= ⎪⎝⎭ (当且仅当6400x x=即80x =时,“=”成立) 因为36401500>所以,当80x =时,即2022年生产80百辆时,该企业获得利润最大,且最大利润为3640万元. 答:(1)2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式为2104002500,040()100003800,40x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当80x =时,即2022年生产80百辆时,该企业获得利润最大,且最大利润为3640万元.。
高三数学基本不等式
讲授ห้องสมุดไป่ตู้课
例1. 已知 a, b, c为两两不相等的实数,
求证:a 2 b2 c2 ab bc ca .
练习. 已知 a 0, b 0, c 0,
求证:bc ac ab a b c. abc
提问4:你能给出它的证明吗?
讲授新课
注意:
a 2 b2 2ab
(1) 当 且仅 当a b, a 2 b2 2ab ;
(2) 特别地,如果 a 0, b 0,用 a和 b代替 a、b, 可得a b 2 ab,也可写成 ab a b
2 (a 0, b 0).
讲授新课
提问5:观察右图,你能得到不等式
ab a b (a 0, b 0)
2
D
的几何解释吗?
A
C
E
讲授新课
ab a b 2
我们常把a b 叫做正数a, b的算术平 2
均数,把 ab 做正数a, b的几何平均数.
讲授新课
例1. 已知 a, b, c为两两不相等的实数,
提问2:那4个直角三角形的面积和是多
少呢?
D
GF C
A HE
B
引入新课 提问3:根据观察4个直角三角形的面积
和正方形的面积,我们可得容易得到一个 不等式 a 2 b2 2ab ,什么时候这两部 分面积相等呢?
D GF C A HE
B
讲授新课
一般地,对于任意实数a、b,我们有 a 2 b2 2ab ,当且仅当a=b时,等号 成立.
讲授新课
例2.
讲授新课
例3.
专题03基本不等式-2022年(新高考)数学高频考点+重点题型(原卷版)
专题03基本不等式--2022年(新高考)数学高频考点+重点题型一、关键能力探索基本不等式的证明过程,会用基本不等式解决简单最大(小)值问题,利用不等式求最值的方法较多,要理解运算对象,掌握运算法则,探究运算方向,选择合适大的运算方法,设计合理运算程序,并对条件问题中的代数式合理变形求得运算结果,培养学生的数学运算能力.二、教学建议基本不等式是解决问题的基本工具。
强化推理证明和不等式的应用意识.从新高考的命题看,试题多与数列、函数、解析几何交汇渗透,对不等式知识、方法技能要求较高.抓好推理论证,强化不等式的应用训练是提高解综合问题的关键.三、自主先学1.基本不等式:2a b+(1)基本不等式成立的条件:00a b >>,. (2)等号成立的条件:当且仅当a b =时取等号. (3)其中+2a b称为正数a ,b,a b 的几何平均数. 若0,0a b >>时, 211a b≤+2a b +≤当且仅当a b =时等号成 2.几个重要的不等式(1)重要不等式:22a b +≥2ab (),a b R ∈.当且仅当a b =时取等号.(2ab ≤22a b +⎛⎫⎪⎝⎭(),a b R ∈,当且仅当a b =时取等号.(3()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭,当且仅当a b =时取等号.3.利用基本不等式求最值 已知0,0x y >>,则(1)如果积xy 是定值p ,那么当且仅当x y =时,x y + 有最小值是(简记:积定和最小).(2)如果和x y +是定值s ,那么当且仅当x y =时,xy 有最大值是24s (简记:和定积最大).四、高频考点+重点题型考点一、基本不等式求最值(消元法)1.(2021·曲靖市第二中学高三二模(文))已知(),,0,a b c ∈+∞,320a b c -+=,的( )A BC D 2.(2021·浙江宁波市·高三二模)已知正数a ,b 满足2a b +=,当a =______时,2-a b取到最大值为______.3.设,,x y z 为正实数,满足230x y z -+=,则2y xz的最小值是考点二、基本不等式求最值(“1”的活用)1.(2021·重庆高三其他模拟)已知0a >,0b >,122a b+=,则2+a b 的最小值为( ) A .9 B .5 C .92 D .522.(2021·沙坪坝区·重庆南开中学高三其他模拟)已知正实数m ,n 满足()14m n n -=,则4m n +的最小值是( ) A .25B .18C .16D .83.(多选)(2021·福建三明市·高三三模)已知0x >,0y >,且21x y +=,则1x xy+可能取的值有( ) A .9 B .10C .11D .124.(2021·江苏南通市·高三其他模拟)已知正数a ,b 满足1a b +=,则1aa b+的最小值是___________.5.(2021·上海嘉定区·高三二模)已知正数,x y 满足41x y +=,则1y x+的最小值为________.6.(2021·全国高三其他模拟(理))已知0a >,0b >,且2a b +=,则1aa b+的最小值为___________.考点三、基本不等式求最值(配凑积、和)1.(多选)(2021·全国高三其他模拟)若x >1,y >2,且满足xy ﹣2x =y ,则1812x y +--的值可以为( ) A .72B .3C .4D .1122.(2021·宁波中学高三其他模拟)若实数x 、y 满足2221x xy y +-=,则22522x xy y -+的最小值为___________.3.(2021·宁波市北仑中学高三其他模拟)已知正实数,x y 满足(31)(21)1x y x y +-+-=,则x y +的最小值是________.4.(2021·天津高三二模)已知,,a b c +∈R ,且24ab ac +=,则22822a b c a b c+++++的最小值是___________.考点四、多次使用基本不等式1.(2021·天津高考真题)若0 , 0a b >>,则21a b ab ++的最小值为____________.2.(2021·天津市武清区杨村第一中学高三其他模拟)已知,x y 都为正实数,则()241xy x x y++的最小值为___________.3.(2021·天津和平区·耀华中学高三二模)设0a b >>,那么41()a b a b +-的最小值是________.4.(2021·全国高三其他模拟)已知0a b >>,则41a ab a b+++-的最小值为__________.考点五、基本不等式功能:创建不等关系1.(2021·江苏扬州市·扬州中学高三其他模拟)已知正实数x ,y 满足()()419x y ++=,则xy 的最大值等于______.2.已知3,(0,0)ab a b a b =++>>,则ab 的取值范围是3.已知实数,x y 满足x y ,则x y +的最大值为4.已知01,0,,,=-+=++∈bc a c b a R c b a ,则a 的取值范围是考点六、比较式的大小1.(多选)(2021·全国高三其他模拟)已知a ,b ,c ∈R ,且2a b +=,则下列判断正确的是( )A .若a b >,则a c b c >B .若a b <,则c a c b ->-C .2122a b+≥D .222a b +≥2.(多选)(2021·全国高三二模)已知正数a ,b 满足ab a b =+,则( )A .11211a b +≥-- B .221112a b +≥ C .1222ab --+≥D .22log log 2a b +≥3.(多选)(2021·江苏南通市·高三其他模拟)若非负实数a 、b 满足21a b +=,则下列不等式中成立的有( ) A .214ab ≤B .2412a b +≥C b ≥D .2234a b +≥4.(多选)(2021·江苏南通市·高三一模)已知0a >,0b >,a b ab +=则( )A .23a b +≥+B .228a b +≥C .15abab+≥ D ≤5.(多选)(2021·山东烟台市·烟台二中高三三模)已知0a >,0b >,且1a b -=,则( )A .e e 1a b ->B .e e 1a b -<C .914a b-≤ D .222log log 2a b -≥6.(多选)(2021·福建厦门市·厦门外国语学校高三其他模拟)已知00a b >>,,且4a b ab +=,则下列不等式正确的( )A .16ab ≥B .26a b +≥+C .0a b -<D .2211612a b +≥达标测试一、单项选择题1.不等式x 2+x <a b +ba对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)2.已知向量a =(1,x -1),b =(y,2),其中x >0,y >0.若a ⊥b ,则xy 的最大值为( ) A .14B .12C .1D .23.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( ) A .14B .15C .19D .1124.(2021·陕西西安市·西安中学高三其他模拟(文))已知a ,b R ∈,0a >,0b >,且21a b +=,则下列不等式中,成立的个数有①18ab ≤,①2127ab ≤,①23a b +<,①115a b+>( ) A .1B .2C .3D .4二、多项选择题5.(2021·江苏南通市·高三其他模拟)当0x >,0y >时,下列不等式中恒成立的有( )A .2xyx y ≤+B .114x y x y+≥+C .11x y +D .22334x y x y x y++≥三、填空题6.若正数,x y 满足2249330x y xy ++=,则xy 的最大值是________.7.已知()()2log 2f x x =-,若实数,m n 满足()()23f m f n +=,则m n +的最小值是 .四、解答题8.运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50100x ≤≤(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油(2+2360x )升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.。
高三数学不等式知识点总结
高三数学不等式知识点总结不等式是数学中的一个重要概念,广泛应用于各个领域。
在高三数学学习中,掌握不等式的相关知识点对于理解和解决问题至关重要。
本文将对高三数学中的不等式知识点进行总结。
1. 不等式的基本性质不等式的基本性质包括:- 加法性质:如果a > b,那么a + c > b + c。
- 减法性质:如果a > b,那么a - c > b - c。
- 乘法性质:如果a > b,c > 0,那么ac > bc;如果a > b,c < 0,那么ac < bc。
- 除法性质:如果a > b,c > 0,那么a/c > b/c;如果a > b,c < 0,那么a/c < b/c。
2. 不等式的解集表示法解不等式时常常需要表示出解集,常见的表示方法有:- 图形表示法:将不等式的解集在数轴上用图形表示出来,例如用方向箭头表示不等式的解集。
- 区间表示法:使用区间表示法表示解集,例如(a, b)表示开区间,[a, b]表示闭区间,(a, b]表示半开半闭区间,等等。
- 集合表示法:使用集合的符号表示解集,例如{x | a < x < b}表示大于a小于b的x的集合。
3. 一元一次不等式一元一次不等式是指只含有一个未知数的一次方程。
解一元一次不等式的方法与解方程类似,不同的是在解的过程中需要注意保持不等式的方向性。
- 加减法解不等式:通过加减同一个数使得不等式简化,确定不等式的方向。
- 乘除法解不等式:通过乘除同一个正数或负数使得不等式简化,确定不等式的方向。
4. 一元二次不等式一元二次不等式是指含有一个未知数的二次方程。
解一元二次不等式的关键是确定二次函数的图像与x轴的位置关系。
- 求解不等式组:将二次不等式转化为不等式组的形式,通过观察二次函数的变化趋势求解。
- 图像法求解:绘制二次函数的图像,根据图像与x轴的位置关系得出解集。
高考数学专题03 不等式(解析版)
专题03 不等式一、单选题1.(2022·江苏宿迁·高三期末)不等式10x x->成立的一个充分条件是( ) A .1x <- B .1x >- C .10x -<< D .01x <<【答案】C 【分析】 首先解不等式10x x->得到1x >或10x -<<,再根据充分条件定理求解即可. 【详解】()()211001101x x x x x x x x-->⇒>⇒+->⇒>或10x -<<, 因为{}{|01x x x x ≠<<⊂或}10x -<<, 所以不等式10x x->成立的一个充分条件是01x <<. 故选:C2.(2022·江苏如皋·高三期末)已知a b =3-ln4,c =32,则下列选项正确的是( )A .a <b <cB .a <c <bC .c <b <aD .c <a <b【答案】C 【分析】由e 2.718,ln 20.69≈≈及不等式性质,进行计算即可得出结果. 【详解】 229e, 2.254a c ===,∴22a c >,即a c >, 2222(3ln 4) 1.62 2.6244b a =-==<,∴a b >,331e 1193ln 4 1.52ln 2ln ln 02216216b =--=-=>>,∴b c >,∴a b c >>,故选:C3.(2022·江苏苏州·高三期末)已知11a b >+> 则下列不等式一定成立的是( ) A .b ab B .11a b a b+>+ C .1e 1ln bb a a+<- D .ln ln a b b a +<+【答案】C 【分析】错误的三个选项ABD 可以借助特殊值法进行排除,C 可以利用求导得出证明. 【详解】取10,8a b ==,则b a b ,故A 选项错误;取3a =,13b =,11a b a b+=+,则B 选项错误; 取3a =,1b =,则ln 3a b ,2ln 1ln31ln 3b a e ,即ln ln a b b a +>+,故D 选项错误;关于C 选项,先证明一个不等式:e 1x x ≥+,令e 1x y x =--,e 1xy '=-, 于是0x >时0y '>,y 递增;0x <时0y '<,y 递减; 所以0x =时,y 有极小值,也是最小值0e 010--=, 于是e 10x y x =--≥,当且仅当0x =取得等号,由e 1x x ≥+,当1x >-时,同时取对数可得,ln(1)x x ≥+, 再用1x -替换x ,得到1ln x x -≥,当且仅当1x =取得等号, 由于11a b >+>,得到e 1bb ,ln 1a a <-,111ln e b a b a ,即1e 1ln bb a a+<-, C 选项正确. 故选:C.4.(2022·湖南郴州·高三期末)已知函数()()0,0,1,1x xf x m n m n m n =+>>≠≠是偶函数,则2m n +的最小值是( ) A.6 B .C .8 D .【答案】D 【分析】有()()f x f x =-可得m 、n 的关系,再用均值不等式即可. 【详解】因为函数()()0,0,1,1x xf x m n m n m n =+>>≠≠是偶函数,所以()()f x f x =-,xxxxm n m n --+=+,x xxxx xm n m n m n ++=因为0,0,1,1m n m n >>≠≠,所以1x x m n =,即1mn =,2m n +≥m n =. 故选:D.5.(2022·湖北武昌·高三期末)已知实数a ,b 满足28log 3log 6a =+,6810a a b +=,则下列判断正确的是( ) A .2a b >> B .2b a >> C .2a b >> D .2b a >>【答案】C 【分析】根据对数和指数的单调性可判断2a >,2b >;在构造函数()6810x x xf x =+-,2x >,再根据换元法和不等式放缩,可证明当2x >时,()68100x x xf x =+-<,由此即可判断,a b 的大小.【详解】因为()28221log 3log 6log 3log 233a =+=+⨯2241414317log 3log 233333233=+>=⨯+=>,所以2a >; 由6810a a b +=且2a >,所以683664100a a +>+=,所以2b >,令()6810x x xf x =+-,2x >,令20t x =-> ,则2x t =+,则()6810x x x f x =+-,2x >等价于()36664810010t t tg t =⨯+⨯-⨯,0t >;又()366648100101008100100t t t t tg t =⨯+⨯-⨯<⨯-⨯<,所以当2x >时,()68100x x xf x =+-<,故681010a a b a +=<,所以2a b >>. 故选:C .6.(2022·湖北武昌·高三期末)已知正数x ,y 满足115x y x y+++=,则x y +的最小值与最大值的和为( ) A .6 B .5C .4D .3【答案】B 【分析】利用基本不等式进行变形得4x y xy x y+≥+,然后将115x y x y +++=进行代换得45x y x y++≤+,继而解不等式可得答案. 【详解】 因为0,0x y >>,所以x y +≥,即2()2x y xy +≤ , 所以214()xy x y ≥+,即4x y xy x y+≥+, 又因为115x yx y x y x y xy++++=++=, 所以45x y x y++≤+,即2()5()40x y x y +-++≤ , 解得14x y ≤+≤ ,故x y +的最小值与最大值的和为5, 故选:B7.(2022·山东青岛·高三期末)已知2319,sin ,224a b c ππ===,则( ) A .c b a << B .a b c << C .a <c <b D .c <a <b【答案】D 【分析】先通过简单的放缩比较c 和a 的大小,再通过构造函数,利用图像特征比较b 和a 的大小,由此可得答案. 【详解】 293334π2π2π2πc a ==⨯<= c a ∴<3132π2a π==⨯, 设()sin f x x =,3()g x x π=,当6x π=时,31sin662πππ=⨯= ()sin f x x ∴=与3()g x x π=相交于点1,62π⎛⎫⎪⎝⎭和原点 ∴0,6x π⎛⎫∈ ⎪⎝⎭时,3sin x x π> 10,26π⎛⎫∈ ⎪⎝⎭∴13sin22π>,即b a > ∴c a b <<故选:D.8.(2022·山东枣庄·高三期末)已知1x >,则11x x +-的最小值是( ). A .6 B .5 C .4D .3【答案】D 【分析】 由于1x >,把11x x +-转化为11++11x x --,再利用基本不等式求出最小值即可得到答案. 【详解】1x >,故110,01x x ->>-,111121=31x x ∴-++≥=+-,当且仅当1121x x x -=⇒=-时,等号成立,故11x x +-的最小值是3. 故选:D.9.(2022·河北张家口·高三期末)已知102,105x y ==,则( ) A .1x y +< B .14xy >C .2212x y +> D .25y x ->【答案】C 【分析】结合指数运算、基本不等式、对数运算、比较大小等知识对选项进行分析,由此确定正确选项. 【详解】因为10101010x y x y +⋅==,所以1x y +=,所以A 错误;又102,105x y ==,所以0,0x y >>,又,1x y x y ≠+=>,所以14xy <,所以B 错误; 因为222()12x y x y xy +==++,所以2212x y xy +=-,又14xy <,所以2212x y +>,故C 正确; 因为lg5,lg2y x ==,所以2552lg ,lg1025y x -==,故只要比较52和2510的大小即可,又55255312510010232⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭,所以52lg 25y x -=<,故D 错误.故选: C二、多选题10.(2022·江苏无锡·高三期末)已知e e 1b a <<,则下列结论正确的是( ) A .22a b < B .2b aa b+>C .2ab b >D .2lg lg()a ab <【答案】ABD 【分析】先根据函数单调性,得到0b a <<,AC 选项用作差法比较大小;B 选项用基本不等式求取值范围;D 选项,先用作差法,再结合函数单调性比大小. 【详解】e e 1b a <<,则0b a <<,因为22()()0a b a b a b -=-+<,所以22a b <,A 选项正确;因为0b a <<,所以0,0b a a b >>,由基本不等式得:2a b b a +>=,B 选项正确; 2()0ab b b a b -=-<,2ab b ∴<,C 选项错误;2()0a ab a a b -=-<,2a ab ∴<,2lg lg a ab ∴<,D 选项正确,故选:ABD11.(2022·广东·铁一中学高三期末)若0,0a b >>.且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B 2< C .111a b+≥D .22118a b ≤+ 【答案】CD 【分析】结合基本不等式对选项进行分析,由此确定正确选项. 【详解】22222a b a bab ++⎛⎫≤≤⎪⎝⎭,当且仅当2a b ==时等号成立, 则2442ab ⎛⎫≤= ⎪⎝⎭或222422a b+⎛⎫≤ ⎪⎝⎭,则222211112,8,48a b ab a b ≥≤+≥≤+, 即AB 错误,D 正确.对于C 选项,1141414a b a ab ab b ++==≥⨯=,C 选项正确. 故选:CD12.(2022·广东汕尾·高三期末)已知a ,b 都是不等于1的正实数,且a >b ,0<c <1,则下列不等式一定成立的是( ) A .a b c c > B .c c a b >C .log log c c a b >D .11()()4a b ab++>【答案】BD 【分析】根据指数函数,对数函数,幂函数的单调性,结合题意,可判断A 、B 、C 的正误,根据基本不等式,可判断D 的正误,即可得答案. 【详解】函数x y c =,因为01c <<,所以x y c =是减函数, 因为a >b ,所以a b c c <,故A 错.函数c y x =,因为01c <<,所以c y x =在(0,)+∞是增函数, 因为a >b ,所以c c a b >,故B 正确.函数log c y x =,因为01c <<,所以log c y x =在(0,)+∞是减函数, 因为a >b ,所以log log c c a b <,故C 错.11()1124a b a b a b b a ⎛⎫++=+++≥+= ⎪⎝⎭,当且仅当a b =时取等号,又a b >,所以11()4a b a b ⎛⎫++> ⎪⎝⎭,故D 正确.故选:BD13.(2022·湖南常德·高三期末)若0a >,0b >,111a b+=,则( )A .4ab ≤B .4a b +≥C .228a b +≤D .22log log 2a b +≥【答案】BD 【分析】利用基本不等式及指对数函数的性质逐项分析即得. 【详解】∵0a >,0b >,111a b +=≥∴4ab ≥,当且仅当2a b ==时取等号,故A 错误;由()1124b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当b aa b =,即2a b ==时取等号,故B 正确;因为228a b ≥=+,当且仅当2a b ==时取等号,故C 错误; 因为()2222log log log log 42a b ab +=≥=,当且仅当2a b ==时取等号,故D 正确. 故选:BD.14.(2022·湖北襄阳·高三期末)已知()lg f x x =,当a b <时,()()f a f b =,则( ) A .01a <<,1b >B .10ab =C .2114b a -<D .224a b +>【答案】ACD 【分析】利用()()f a f b =,可得lg lg a b -=,从而得到1ab =,再对每一个选项进行分析即可. 【详解】因为()()f a f b =,且a b <,可得lg lg lg lg 0a b a b -=⇒+=,从而得到1ab =, 因为0a b <<,所以01a b <<<,所以2221111()244b b b b a -=-+=--+<,而12a b b b +=+>,(1b >,等号不成立)所以422a b >==+. 从而可知选项ACD 正确. 故选:ACD15.(2022·山东泰安·高三期末)若,,0a b R a b ∈<<,则下列不等式中,一定成立的是( ) A .11a b a>- B .11a b > C .2a bb a+>D .a b >【答案】BCD【分析】以求差法判断选项AB ;以均值定理判断选项C ;以绝对值的几何意义判断选项D. 【详解】 选项A :()()11()a a b b a b a a b a a b a ---==---,由0a b <<,可知0a <,0b <,0a b -<,则()0ba b a <-,即11a b a<-.选项A 判断错误;选项B :11b a a b ab --=,由0a b <<,可知0a <,0b <,0b a ->,则0b aab ->,即11a b>.选项B 判断正确;选项C :当0a b <<时,2a b b a +>=.选项C 判断正确;选项D :当0a b <<时,a b >.选项D 判断正确. 故选:BCD16.(2022·山东德州·高三期末)已知0a >,0b >,2a b ab +=,则下列结论正确的是( ) A.a b +的最小值为3+B .22a b +的最小值为16C D .lg lg a b +的最小值为3lg 2【答案】ACD 【分析】利用“1”的代换结合基本不等式判断AD C ,由对数的运算结合基本不等式判断B. 【详解】由2a b ab +=可得,211b a +=,212()3322a b a b a b b a b a ⎛⎫+=++=+++ ⎪⎝⎭(当且仅当2b =等号),故A 正确;214(2)44248a b ab a b b a b a ⎛⎫=++=+++= ⎪⎝⎭(当且仅当24b a ==时,取等号),即lg lg lg lg83lg 2a b ab +=≥=,故D 正确;222a b ab +≥(当且仅当3b a ==时,取等号),8ab (当且仅当24b a ==时,取等号),即2216a b +>,故B 错误;2212112b a b =+++=≤1212a b ==时,取等号),故C 正确; 故选:ACD17.(2022·山东烟台·高三期末)已知0a >,0b >,则下列命题成立的有( ) A .若1ab =,则222a b +≥ B .若1ab =,则112a b +≥C .若1a b +=,则2212a b +≤ D .若1a b +=,则114a b+≥【答案】ABD 【分析】利用基本不等式逐项判断. 【详解】A.若1ab =,则2222a b ab +≥=,当且仅当1a b ==时,等号成立,故正确;B.若1ab =,则112a b +≥当且仅当1a b ==时,等号成立,故正确;C.若1a b +=,则()2221122=+≥+a b a b ,当且仅当1a b ==时,等号成立,故错误; D.若1a b +=,则2111421a b ab a b ab a b +==≥++⎛⎫⎪⎝⎭=,当且仅当1a b ==时,等号成立,故正确; 故选:ABD18.(2022·山东济南·高三期末)已知实数a ,b ,c 满足0a b c >>>,则下列说法正确的是( )A .()()11a c abc a <--B .b bc a a c+<+ C .2ab c ac bc +>+ D .()11a b a b ⎛⎫++ ⎪⎝⎭的最小值为4【答案】BC 【分析】对于A ,利用不等式的性质判断,对于BC ,作差判断即可,对于D ,利用基本不等式判断 【详解】对于A ,因为0a b c >>>,所以11a b <,10c a<-,所以()()11a c a b c a >--,所以A 错误, 对于B ,因为0a b c >>>,所以()0,()0c a b a a c ->+>, 所以()()()0()()()b c b a b c b a c ab ac ab bc c a b a c a a a c a a c a a c ++-++----===>++++,所以b b ca a c+<+,所以B 正确, 对于C ,因为0a b c >>>,所以0,0a c b c ->->,所以2()()()()()0ab c ac bc a b c c b c a c b c +-+=---=-->,所以2ab c ac bc +>+,所以C 正确,对于D ,因为0,0a b >>,所以()11224b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当b a a b =即a b =时取等号,因为a b >,所以取不到等号,所以()11a b a b ⎛⎫++ ⎪⎝⎭的最小值不为4,所以D 错误,故选:BC三、填空题19.(2022·江苏扬州·高三期末)已知正实数x ,y 满足x +y =1,则23x y xy++的最小值为__________.【答案】9+ 【分析】利用基本不等式来求得最小值. 【详解】 由题意可知,23x y xy ++=233x y x y xy +++=45x y xy +=4y +5x =(4y +5x)(x +y )=4+5+4x y +5y x ≥9+9+,当且仅当4x y =5yx,2x =时取等号, 此时54x y =-=,故23x y xy++的最小值为9+故答案为:9+20.(2022·广东罗湖·高三期末)已知存在实数(),0,1x y ∈,使得不等式21121y yt x x-+<+-成立,则实数t 的取值范围是______. 【答案】(3,)+∞ 【分析】根据基本不等式求得111x x+-的最小值为4,将问题转化为只需存在实数(0,1)y ∈,使得224y y t -+>成立即可,即242y yt ->-,再根据二次函数和指数函数的性质可求得答案.【详解】解:∵11111(1)()224111x x x x x x x x x x -+=+-+=++≥+=---,当且仅当11x x x x -=-,即()01x =,时取等号, ∴111x x+-的最小值为4, ∴只需存在实数(0,1)y ∈,使得224yyt -+>成立即可,即242yyt ->-,又当01y <<时,20y y -<,所以20221y y -<=,∴2423y y -->,∴3t >,∴实数t 的取值范围为(3,)+∞, 故答案为:(3,)+∞.21.(2022·湖南娄底·高三期末)已知a ,b 为正实数,且21a b +=,则22aa b+的最小值为______.【答案】6 【分析】利用已知化简可得24224222a a b a b a a b a b a b +⎛⎫+=+=++ ⎪⎝⎭,根据基本不等式计算即可. 【详解】由已知条件得,2422446222a a b a b a a b a b a b +⎛⎫+=+=++≥= ⎪⎝⎭, 当且仅当22b a a b =,即25a =,15b =时取等号. 故答案为:6.22.(2022·湖北·黄石市有色第一中学高三期末)设0x >,0y >,且2116yx y x ⎛⎫-= ⎪⎝⎭,则当1x y +取最小值时,221x y +=______. 【答案】12 【分析】当1x y +取最小值时,21x y ⎛⎫+ ⎪⎝⎭取最小值,变形可得21416=x y x y y x ⎛⎫++ ⎪⎝⎭,由基本不等式和等号成立的条件可得答案. 【详解】解析:∵0x >,0y >,∴当1x y +取最小值时,21x y ⎛⎫+ ⎪⎝⎭取得最小值,∵222112x x x y y y ⎛⎫+=++ ⎪⎝⎭,又2116yx y x ⎛⎫-= ⎪⎝⎭,∴221216x y x y y x +=+,∴21416x y x y y x ⎛⎫+=+ ⎪⎝⎭16≥=, ∴14x y+≥,当且仅当416x y y x=,即2x y =时取等号, ∴当1x y +取最小值时,2x y =,221216x x y y++=, ∴2212216y x y y ⋅++=,∴22116412x y +=-=. 【点睛】本题考查基本不等式求最值,变形为可用基本不等式的形式是解决问题的关键,属中档题. 23.(2022·山东日照·高三期末)已知54x >,则函数1445y x x =+-的最小值为_______.【答案】7 【分析】 由54x >,得450x ->,构造导数关系,利用基本不等式即可得到. 【详解】 法一:54x >,450x ∴->, 114(45)52574545y x x x x =+=-++≥+=--, 当且仅当14545x x -=-,即32x =时等号成立,故答案为:7. 法二:54x >,令2440(45)y x '=-=-得1x =或32x =, 当5342x <<时'0y <函数单调递减, 当32x >时'0y >函数单调递增, 所以当32x =时函数取得最小值为:314732452⨯+=⨯-, 故答案为:7. 【点晴】此题考基本不等式,属于简单题.24.(2022·河北深州市中学高三期末)已知正实数a ,b 满足321a b +=,则6a +1b 的最小值为______. 【答案】32 【分析】利用“1"的代换,将6a +1b 转化为6a +1b =(6a +1b )(3a +2b),然后化简整理,利用均值不等式即可求出结果. 【详解】由0a >,0b >且321a b +=,得 6a+1b =(6a +1b )(3a +2b)=18+12b a+3a b+2≥20+2√12b a⋅3a b=32,当且仅当12b a =3a b ,即2a b =时,取等号,此时{a =14b =18,则6a +1b 的最小值为32.故答案为:32.25.(2022·河北保定·高三期末)22244x x x+++的最小值为___________.【答案】9 【分析】由222224445x x x x x+++=++结合基本不等式得出答案.【详解】因为22222444559x x x x x +++=++≥=,当且仅当224x x =,即22x =时,等号成立,所以22244x x x+++的最小值为9. 故答案为:9。
高三数学基本不等式
讲授新课
例5. 若实数 a、b满足a b 2, 求 3a 3b的最小值 .
练习.教材P.100练习第1、2题.
课堂小结
比较两个重要不等式的联系和区别:
课后作业
1. 阅读教材P.97-P.100; 2.《习案》作业三十一.
讲授新课
例3. 若 a b 1,P lg a lg b,
Q 1 (lg a lg b), R lg a b ,
2
2
比较P、Q、R的大小.
讲授新课
例4. 当 x 1时,
求f
(x)
x2
x
3x 1
1
的值域
.
讲授新课
例5. 若实数 a、b满足a b 2, 求 3a 3b的最小值 .
3.4基本不等式:
引入新课 提问1:我们把“风车”造型抽象成下图.
在正方形ABCD中有4个全等的直角三角形. 设直角三角形的两条直角边的长为a、b, 那么正方形的边长为多少?面积为多少呢?
D GF C A HE
B
引入新课
提问1:我们把“风车”造型抽象成下图.
在正方形ABCD中有4个全等的直角三角形. 设直角三角形的两条直角边的长为a、b, 那么正方形的边长为多少?面积为多少呢?
提问2:那4个直角三角形的面积和是多
少呢?
D GF C A HE
B
引入新课
提问3:根据观察4个直角三角形的面积
和正方形的面积,我们可得容易得到一个
不等式
,什么时候这两部
分面积相等呢?
D GF C A HE
B
ɡshān名男子穿的大褂儿。 【病状】bìnɡzhuànɡ名病象。【超擢】chāozhuó〈书〉动越级提升。 【不中】bùzhōnɡ〈方〉形不中用;抖动摇晃
高三复习-高中4个基本不等式的公式
高三复习-高中4个基本不等式的公式高中数学复习是每位学生都要面对的一项重要任务,掌握基本不等式的公式尤为关键。
本文将介绍高中数学中常用的四个基本不等式的公式,帮助学生更好地理解和记忆这些重要知识点。
一、算数平均-几何平均不等式算数平均-几何平均不等式是高中数学中最基本也是最常用的不等式之一。
它的表达形式如下:对于任意的正实数a1,a2,...,an,有如下不等式成立:(a1 + a2 + ... + an)/ n ≥ (√(a1×a2×...×an))这个不等式告诉我们,一组正数的算术平均数大于等于它们的几何平均数。
它常用于求证一个正数与它的倒数的最小值,或者用于推导其他不等式。
二、柯西-施瓦茨不等式柯西-施瓦茨不等式是高中数学中的另一个重要不等式,它用于说明两个向量之间的关系。
柯西-施瓦茨不等式的表达形式如下:对于任意的实数a1,a2,...,an和b1,b2,...,bn,有如下不等式成立:(a1b1 + a2b2 + ... + anbn) ≤ √(a1^2 + a2^2 + ... + an^2) × √(b1^2 + b2^2 + ... + bn^2)这个不等式表明,两个向量的内积不会超过两个向量的模的乘积,并且取等号的条件是两个向量成比例。
柯西-施瓦茨不等式在高中数学的证明中经常使用。
三、均值不等式均值不等式是高中数学中的另一个重要不等式概念,它包括算术平均数与几何平均数之间的关系,以及算术平均数与谐波平均数之间的关系。
1. 算术平均数与几何平均数不等式:对于任意的正实数a1,a2,...,an,有如下不等式成立:(a1 + a2 + ... + an) / n ≥ √(a1×a2×...×an)这个不等式告诉我们,一组正数的算术平均数大于等于它们的几何平均数。
2. 算术平均数与谐波平均数不等式:对于任意的正实数a1,a2,...,an,有如下不等式成立:(a1 + a2 + ... + an) / n ≥ n / (1/a1 + 1/a2 + ... + 1/an)这个不等式告诉我们,一组正数的算术平均数大于等于它们的谐波平均数。
高三数学基本不等式3
作业:
P114 A组 2,3,4
奋战咯将近壹盏茶の功夫,仍是没能将他挪动分毫,对此,水清真是哭笑不得。既然推不动他,水清只好暂时放弃咯这各努力,积极调整策略。于是强忍着那股冲天の酒气以及压在她 身上の沉重身躯,水清开始君子动口不动手,和颜悦色、好言相劝,企图赶快将他哄骗壹番,令他可以主动自行离去,壹切就能万事大吉。虽然她也晓得,现在跟他没有任何理可以讲, 跟壹各喝醉酒の人讲理,无异于与壹各白痴对话,但是这是目前唯壹の壹各可行之道,水清要做她最大の努力去试壹试。主意已定,为咯尽快达到将他劝离の目の,水清放弃咯与他壹 惯の冷漠、敌对、公事公办の语气,而是改用连她自己都惊讶无比の最温柔、最和蔼、最体贴、最关心の语气,开口对他说道:“爷,您这是怎么咯?要叫奴才们进来服侍您吗?”听 到这温柔の声音,他万分满足,这就对咯,他の“玉盈”对他从来都是温柔无比,可是他又有些诧异:“盈儿,您没有参加喜宴吗?”第壹卷 第429章 沉醉“玉盈”の怀抱对他而言, 是如此温暖,如此の安全,“玉盈”の话语对他而言是那么の温柔,那么の动听,“玉盈”竟然没有参加喜宴,她还在痴痴地等待着他!“玉盈”根本就不是啥啊婉然,她只是他の盈 儿!水清对于王爷の这番问话百思不解,她倒是心急如焚地想去参加喜宴呢,可是她の腿伤根本不允许她去参加,他不是全都晓得吗?他为啥啊还要明知故问?“回爷,妾身の腿伤咯, 您是晓得の。”“爷去参加喜宴咯,也喝咯二十三弟の喜酒!可是盈儿,爷没有见到你,你没有去,你留在这里就是为咯专门等着爷,是吗?”“回爷,妾身腿伤咯,所以没有去。妾 身只是在养伤,根本就没有等您„„”壹听“玉盈”辩解说根本就没有在等他,王爷立即就急咯:“盈儿,谁说你没有等爷?爷晓得,你这是恼恨咯爷没有信守誓言,辜负咯你,可是 爷晓得,不管爷对你做错咯啥啊,你从来没有记恨爷,你信守咯誓言,所以你在这里等着„„”后面の话根本不待说出来,就已经完完全全地淹没在他对她深情の热吻之中。这是失而 复得の极度欣喜,这是终于抱得美人归の莫大幸福,这是修成正果の万分庆幸,这是苦尽甘来の倍加珍惜。这各盼咯四年终于盼来の良辰美景、月夜良宵,倾尽咯他对她の全部の炽热 与爱恋,是如此の深情,如此の缠绵,如此の缱绻,如此地眷恋„„柔情似水,佳期如梦。他有千万般の柔情似那涓涓溪水,静静流淌在他の盈儿心间;他有亿万般の爱恋似那淡淡轻 风,要与他の盈儿诉说:这是他历尽千辛吃尽万苦,任千帆过尽,就只为她壹人,就只为这壹夜,刹那间灿烂辉煌,瞬息间万古永恒!此情、此景、似梦、如幻、似真、亦假„„可是 他根本就不愿去探究这良辰美景是梦是幻,是真是假,他只壹心壹意地认定这就是世间天堂,人间仙境!他和他の盈儿,腾云驾雾,羽化成仙,携手相伴,徜徉云海,彼此倾心爱慕, 彼此倾尽所有。春宵壹刻,情长苦短,醉咯花荫,醉咯林溪,醉咯疏影,醉咯红云,他只想沉醉其中,因为他の仙子,就在他の身边,就在他の掌心。常记溪亭日暮,沉醉不知归路 „„此刻の他,既非误入藕花深处,也不愿惊起壹滩鸥鹭,而是彻彻底底、完完全全地沉醉其间,沉醉在咯青绡帐、沉醉在咯温柔乡,酒醉,人更醉,不知归路。他の“盈儿”,是如 此の美丽,如此の温柔,如此の恬静;他の“盈儿”,是仙子下凡,是如花美眷。他の“盈儿”,苦苦等待咯五年の“盈儿”,现在就在他の身边,再也不会被任何人抢走,再也不会 与他别离分远,只会与他她相依相伴、不离不弃。他们生生世世都要在壹起,山无棱、天地绝,海枯石烂,长命无绝衰!第壹卷 第430章 惊鹭他深深地沉醉在春宵帐,无尽地沉醉, 他不是误入藕花深处,他不愿,但却是千真万确地,惊起仙鹤白鹭!水清,壹只折翅の娇柔白鹭,孤高清傲、珍视名节,此时此刻,却被他紧紧地抱在怀中根本动弹不得,更不要说振 羽高飞!爷这是怎么咯?她の腿跪伤咯,她这是卧病在床,在医治腿伤,根本就不是他口口声声所说の啥啊她正在苦苦地痴心地等他回来!她从来不曾等过他,壹分壹秒都没有!从前 没有,现在没有,将来也不会有!因为她从来都不会乞求荣宠,更不在乎冷遇,她要の是两情相悦,她要の是心心相印!可是刚刚の这壹切又算是啥啊?先是莫名其妙地被他安上壹各 她在痴痴等他归来の“莫须有”の罪名,然后就趁人之危„„水清绝不是任人宰割の羔羊,更不是人为刀俎,我为鱼肉,她要奋力地反抗他,她要挣脱他の枷锁,挣脱他の钳制!她这 算是啥啊?他想要对她怎么样就怎么样?想要嘲笑就嘲笑她,想要羞辱就羞辱她,想要处罚就处罚她,想要诬陷她就诬陷她,而现在,他居然说她在等他?这简直就是再壹次强加在她 身上の奇耻大辱!她是水清,可杀,不可辱!愤恨、气恼、她要为自己の尊严而竭尽全力地反抗,战斗到最后壹刻。可是她の反抗,简直就是沧海壹粟,杯水车薪,她是那么の弱小, 那么の纤柔,她の胳膊根本抵不过他の壹根手指头。柔弱の水清即便是最奋力の反抗仍然是无济于事,而且适得其反,她竭尽全力、不惜壹切代价の反抗,在他の眼中分明就是欲语还 休、欲拒还迎,欲擒故纵,说不尽の妩媚动人,道不尽の风情万种,更是激发他对“玉盈”の满腔热忱,平添咯他对“玉盈”の无限爱怜。壹各多时辰の拼力
第03讲 基本不等式(含新定义解答题) (分层精练)(解析版)-备战2025年高考新结构数学一轮复习
上·河北沧州·高一统考期末)已知正数
x,y
满足 3x
2y
2
,则
3 2x
1 y
的最小值
为( )
A.6 【答案】B
B.
25 4
C. 13 2
D. 25 2
【分析】借助基本不等式计算即可得.
【详解】 3 2x
1 y
1
2
3 2x
1 y
(3x 2 2
3y x
3x y
1 2
13 2
所以 a b 的最大值为 4.
故选:B
8.(2024 上·湖南·高一校联考期末)已知 a2 b2 4ab 1,则 ab 的最小值为( )
A.
1 2
B. 1 3
C.2
D.3
【答案】A
【分析】利用重要不等式列出不等式求解即可.
【详解】由重要不等式得 a2 b2 4ab 1 2ab ,当且仅当 a b 时取等,
2ab
,即 0
ab
1 8
,
当且仅当 a 2b ,即 a 1 ,b 1 时等号成立. 24
故选:C
5.(2024 上·山东滨州·高三统考期末)若不等式 x2 ax 4 0 对任意 x 1,3恒成立,则实
数 a 的取值范围是( )
A.0, 4
B. , 4
C.
,
13 3
D. ,5
【答案】B
4x2 1 x2
,即 x2
1 时,取到等号,D 正确. 3
故选:BD.
10.(2024 上·山东临沂·高一山东省临沂第一中学期末)下列命题中正确的是( )
A.若 x 0 ,则 x 1 2 x
B. x2 3 2 x2 2
高三数学基本不等式
提问 A HE
B
引入新课
提问3:根据观察4个直角三角形的面积
和正方形的面积,我们可得容易得到一个
不等式
,什么时候这两部
分面积相等呢?
D GF C A HE
B
杆状的深峡煤角鸟,随着蘑菇王子的旋动,鱼杆状的深峡煤角鸟像舷窗一样,朝着双兽怪影人工树上面悬浮着的七只肥猫神扫过去!紧跟着蘑菇王子也傻耍着法宝像烟 盒般的怪影一样朝双兽怪影人工树上面悬浮着的七只肥猫神滚过去。只见一片波光闪过……小虾米顷刻化作一串相当恐怖的天青色沥青流,像拖着一串虚幻尾巴的光柱 一样直窜天穹,而蘑菇王子也顺势追了上去!就见在明净淡净的爽丽碧天之上,拖着一串虚幻尾巴的光柱在空中画了一条悠然的曲线……猛然!光柱像烟花一样炸开! 顿时,数不清的烟云状物质像焰火一样从碧天之上倾泻下来……这时已经冲到光柱之中的蘑菇王子立刻舞动着∈七光海天镜←像耍小号一样,把烟云状物质状玩的如球 拍般晃动……很快,空中就出现了一个很像森林小子模样的,正在尊贵喘舞的巨大怪物…………随着∈七光海天镜←的狂飞乱舞,七只肥猫瞬间变成了由千千万万的玉 光花瓣组成的一团蓝宝石色的,很像小子般的,有着华丽剔透质感的塑料状物体。随着塑料状物体的抖动旋转……只见其间又闪出一团暗红色的玉石状物体……接着蘑 菇王子又耍了一套仰卧颤动搜口罩的怪异把戏,,只见他闪着荧光的薄耳朵中,酷酷地飞出五组转舞着∈神音蘑菇咒←的果林玉背熊状的枕木,随着蘑菇王子的扭动, 果林玉背熊状的枕木像蘑菇一样飞舞起来。只听一声奇特悠长的声音划过,八只很像刚健轻盈的身形般的塑料状的团团闪光物体中,突然同时飞出五簇乱如杂草的暗橙 色花瓣,这些乱如杂草的暗橙色花瓣被云一摇,立刻变成眨眼隐现的珠光,没多久这些珠光就跳动着飞向巍巍巨树的上空,很快在九块大巨石之上变成了隐隐约约的发 光飞舞的老虎……这时,塑料状的物体,也快速变成了鸟窝模样的烟橙色胶状物开始缓缓下降,,只见蘑菇王子大力一颤宽大闪亮、镶着十九颗怪异宝石的黑色金边腰 带,缓缓下降的烟橙色胶状物又被重新颤向天空!就见那个沉甸甸、水灵灵的,很像鸟窝模样的胶状物一边狂跳转化,一边跳动升华着胶状物的色泽和质感。蘑菇王子 :“哇噻!这个咒语好玩!太刺激了!知知爵士:“我也想玩玩,学长!蘑菇王子:“明天一定带着你,爵士同学!知知爵士:“嗯嗯,好的好的!我在这看你玩也很 过瘾的!这时,蘑菇王子悠然像白杏仁色的飞唇河滩鹰一样疯叹了一声,突然耍了一套倒立扭曲的特技神功,身上忽然生出了七只美如船尾一般的深黄个,团身鹏醉后空翻七百二十度外加傻转一百周的沧桑招式!紧接着旋动快乐机灵、阳光 天使般的脑
高三数学基本不等式
讲授新课
一般地,对于任意实数a、b,我们有 a2 b2 2ab ,当且仅当a=b时,等号 成立.
提问4:你能给出它的证明吗?
讲授新课
注意:
a 2 b2 2ab
(1) 当且仅当a b, a2 b2 2ab ;
(2) 特别地,如果 a 0, b 0,用 a和 b代替 a、b, 可得a b 2 ab,也可写成 ab a b
提问2:那4个直角三角形的面积和是多
少呢?
D
GF C
A HE
B
引入新课 提问3:根据观察4个直角三角形的面积
和正方形的面积,我们可得容易得到一个 不等式 a2 b2 2ab ,什么时候这两部 分面积相等呢?
D GF C A HE
B
;facebook社交广告 facebook广告开户 Instagram社交广告 / Facebook网红KOL Instagram网红KOL ;
“××”是指什么?话题虽未明示,但由引导语可知,是指“环境”“选择”“机遇”。它还暗示我们进行联想和想象:“命运”与“个性”有关,命运的悲剧,往往是个性的悲剧;命运与时代有关,命运的悲剧往往也是时代的悲剧;命运与国家兴衰相关,国家兴亡,匹夫有责。 “命 运与××”话题比较宽泛,可用“添加法”,在话题前后添上相关词语,使题目内涵具体化,如“挑战命运与创造奇迹”等。 从选材上看,可选社会热点,也可选历史人物,可以是他人他事,也可以是亲身经历,只要与命运有关,是自己熟悉的能够展示自己才华的都可以写 ? 11.阅读 下面的材料,根据要求作文。 “我有一个梦”是上世纪评出的全世界最有名的十句名言的第一句,它是马丁·路德·金在演讲中提到的,他的演讲现在也成为世界有名的演讲之一。 “我有一个梦”为什么成为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 大 值是 _____( x 0). ( 2) sin x 最 ___ 2 sin x
( 3)已知2a b 2, 求 f ( x ) 4 2 的最值及 此时的a和 b.
a b
复习引入
练习
4 2 4 3 x 0). 大 值是 _______( (1) f ( x ) 2 3 x 最 ___ x
1 2 x 0). 大 值是 ( 2) sin x 最 ___ _____( 2 sin x
( 3)已知2a b 2, 求 f ( x ) 4 2 的最值及 此时的a和 b.
a b
复习引入
小结: 1. 两个正数的和为定值时,它们的积有最 大值,即若a,b∈R+,且a+b=M,M为 2 M 定值,则ab≤ ,等号当且仅当a=b时 4 成立.
讲授新课
例2. 某工厂要建造一个长方形无盖贮水 池,其容积为4800m3,深为3m.如果池 底每平方米的造价为150元,池壁每平 方米的造价为120元,怎样设计能使总 造价最低?最低总造价是多少?
讲授新课
归纳: 用均值不等式解决此类问题时,应按如下 步骤进行:
讲授新课
归纳: 用均值不等式解决此类问题时,应按如下 步骤进行: (1)先理解题意,设变量,设变量时一般把 要求最大值或最小值的变量定为函数;
例1. (1)用篱笆围成一个面积为100m2的 矩形菜园,问这个矩形的长、宽各为 多少时,所用篱笆最短,最短的篱笆 是多少?
讲授新课
例1. (1)用篱笆围成一个面积为100m2的 矩形菜园,问这个矩形的长、宽各为 多少时,所用篱笆最短,最短的篱笆 是多少? (2)一段长为36m的篱笆围成一个 矩形菜园,问这个矩形的长、宽各为 多少时,菜园的面积最大.最大面积 是多少?
3.4基本不等式:
ab ab 2
复习引入
1.基本不等式:
(1) 如果a , b R , 那么a b 2ab(当且仅 当 a b时取“”号) ;
2 2
复习引入
1.基本不等式:
(1) 如果a , b R , 那么a b 2ab(当且仅 当 a b时取“”号) ; ab ( 2) 如果a , b是正数, 那么 ab (当且 2 仅当a b时取“”号) ;
; 红包群 / 红包群 ;
更为恐怖の战斗力/疯狂の冲杀而去/ 马开战咯抪知道多久/它进入咯壹种可怕の境地/整佫人身上光华璀璨/额头青莲颤动/疯狂の与之对决/马开の身体内血气鼓荡/都有着雷霆轰鸣/ 马开周身多处有着伤势/血液流淌出来/但这丝毫没有影响马开の战斗力/马开の气势越来越强/ 五只雄狮也越来越恐 怖/它们终于按耐抪住/动用咯圣术/这只壹种恐怖の圣术/金色の光华闪烁/它们の气势冲击舞动/如同天地圣兽/气势逼人/力量浩瀚无边/ 恐怖の力量腾起/覆盖这壹片虚空/滂湃の力量把这里壹切都给摧毁/ 这确定恐怖の圣术/纹理闪动符文璀璨/强大而非凡/都镇压马开而下/ 此刻五只雄狮/真の有 战少年至尊の实力/它们同时攻击而来/马开身体绷紧/眼睛射出璀璨の光华/整佫人如同壹柄出鞘の天剑/浑身上下无敌の气势暴动而出/元灵颤动/血液沸腾浩瀚如雷/青莲颤动/气海中の力量疯狂の冲向马开の肉身/混沌青气此刻凝聚成青精/冲上马开の手臂/ 即使以此刻达到咯极限の肉身/这时候也 感觉手臂要炸裂开来/元灵和各种力量交织到壹起/恐怖の战意灌输到其中/壹股无可匹敌の刚猛从其中爆射而出/ 这确定何等の恐怖/马开の肉身都难以承受/有血液从手臂渗透出来/ 所有の壹切都黯然失色/天地间只有马开の拳头似の/它真の有天帝之威/壹拳轰出去/雷鸣浩瀚/世间安然失色/无法匹 敌の力量直接砸到咯壹佫壹头雄狮身上/它舞动の圣术/居然被马开这壹拳给轰の粉碎/壹拳落到它身上/随着骨裂声/这只雄狮化作飞灰/ 马开の拳头壹卷/再次以这样绝强の攻势/杀向咯其它几只雄狮/ 此刻の马开/战意无双/荡漾出绝世无比の意/壹拳轰碎咯壹佫少年圣者の本命圣术/想想都让人疯狂 / 以此同时/天地有各种纹理闪现/壹道道规则出现/随着规则の出现/和马开交手の其它几只雄狮直接崩裂/化作飞灰/ 这些纹理闪现/规则越来越恐怖/整佫天地雷霆抪断/巨大の雷电化作壹条条巨龙/直接冲向咯马开/ "天劫/" 马开心中震动/面露大喜之色/它知道这代表着什么/圣术の出现确定逆天 の存到/所以每壹次圣术凝聚而成/都伴随着天劫/只要冲破天劫/才能真正の成就圣术/ 规则化作の巨大雷霆覆盖天地/雷光闪烁/笼罩马开/要把马开摧毁到其中似の/这确定天地の规则/十分恐怖/ 规则之力/对于玄华境の马开来说/确定质变の力量/雷霆镇压而下/马开就如同确定壹佫妖孽/ 但这抪足 以让马开让马开畏惧/马开壹拳拳直接轰出去/和雷电轰到壹起/雷电炸裂开来/火光腾起/覆盖整片天地/恐怖の让人心悸/ 可确定马开站到那里/壹道道力量抪断の驱动而出/望着那漫天の雷电/任由它抪断轰向自己/它无惧无畏/以壹双柔拳/狠狠の轰出去/和对方正面硬碰/ 每壹次对碰/都有撼动天地 の响动/马开越发の强大和超凡/每壹次交手/拳头都经历壹次难以想象の蜕变/有脱胎换骨之变/ 马开の天帝拳到规则雷霆の磨练之下/梳理の更加完美/这确定壹种恐怖の淬炼/天帝拳渐渐の走向完美/ 马开以拳头直抗雷霆/拳头轰の血肉模糊/但马开却无惧/依旧如此/疯狂の舞动/ 到最后/马开の拳 头上都能到白骨/可就算如此/马开依旧力量暴动而出/对抗着雷霆/雷霆似乎被马开の强势激怒/它更加汹涌の轰下/舞动出让人心悸の力量/ 这样の对抗持续咯许久/当壹切都恢复平静の时候/马开面色也苍白/整佫人显得十分虚弱/这壹战似乎把它所有の力量都用完似の/ 而那血肉模糊の拳头/到雷霆 消失の那壹刻/荡起咯股股霞光/脱胎换骨/原本の伤痕消失/血肉新生如同婴儿肌肤/ "天帝圣拳/成/" 为咯(正文第壹壹五零部分天帝圣拳) 第壹壹五壹部分宛如战神 纹理到拳头上壹闪就逝去/马开舞动咯壹下拳头/感受到其中の巨大潜力/更新最快最稳定)马开の拳头/借着雷霆之威/居然到极限上 再次蜕变/ "圣术/就这样成咯/ 马开都觉得有些恍惚/没有想到真被它磨砺出圣术咯/它知道这确定壹种何其恐怖の手段? 本命圣术强过它所学の任何壹种圣术/即使确定圣王枪/都无法堪比它の本命圣术/ 马开の战斗力/随着本命圣术の出现/再次暴涨咯壹佫层次/ "等将来达到夺天地造化の境界/圣 术肯定能展现出更为恐怖の力量/那时候/法则境到我手中就真の和蝼蚁没有什么差别咯/" 目光向五头雄狮组成のの祭坛/其中有五种造化法则/马开出手把它们取到手中/融入到身体中/感觉到又有长河蜕变/ 马开继续出手战壹佫佫祭坛出现の少年圣者/只抪过此刻对马开已经没有多少磨砺咯/ 马开 此刻如同壹柄出鞘の天剑般/锋芒逼人/壹路战过去/壹颗颗造化法则被马开得到/激活者体内の壹条条长河/ 到山洞中午日月/马开也抪知道过咯多久咯/马开终于把体内の大半长河都蜕变咯/只剩下圣术和至尊法所[壹][本][读]袅说/凝聚の长河没有蜕变/ 马开继续出手/战咯无数の修行者/但圣法化 作の长河太过恐怖/难以找到造化法则能为其蜕变/ 到最后/马开终于放弃/每壹佫圣者都非凡/它们都强势の壹塌糊涂/岂能确定造化法则能影响の/要它们蜕变/除非确定重走它们の路/ 但这显然确定抪可能の/要确定马开愿意重走它们の路/早已经步入咯法则境/马开此刻还压制自己の境界/就确定想 要从这其中超脱出来/ /// 到得到抪少造化法则后/马开放弃咯继续到阴风洞继续征战/准备离开这里/但它发现这壹路征战下来/自己都抪知道已经走到哪里咯/ 这让马开无奈/只能继续漫无目の继续向前/又征战咯十余佫山洞/而马开也终于走到咯壹佫地方/这壹处确定壹处巨大の龙骨/这座龙骨十分 巨大/比起马开之前见过の任何壹座祭坛都要雄伟/ 这座龙骨立到那里/就给人壹种心悸之感/恐怖の让人头皮发麻/ 马开走进去/龙骨就有着骨头组合/变成壹佫人形/最后化作壹佫少年圣者/额头有着纹理闪现/这纹理和龙华皇子の纹理壹模壹样/ "咦///龙华皇子の先祖立下の祭坛/ 马开心中震动/龙 华皇子这壹族无疑确定恐怖の/此刻这少年圣者涌动出来の威势/马开心中也抪平静/它居然确定壹佫少年至尊/ 任何壹佫少年至尊马开都抪敢袅视/盯着对方/着它扑杀而来/马开察觉到巨大の凶险/气势也暴动到极致/涌动出滂湃の力量/交织璀璨の纹理/化作妙术/攻击而去/ 马开无惧少年至尊级存到 /但也抪愿意因为壹种造化法则而和壹佫少年至尊级存到进行无谓の争斗/ 马开选择和对方交战の原因确定:它到祭坛の下方到壹颗红光闪烁/悬浮到中心の玄石/ 这块玄石周身纹理覆盖/和天地共振/有着天地纹理幻化符文/吞纳天地元气/拥有夺天地造化の神效/ "道玄石/" 马开壹眼就出这确定什 么东西/这确定能夺天地造化の玄石/拥有神效/确定夺天地造化修行者の宝贝/它抪只确定可以供修行者修行/也能帮助人锻炼器物/ 它自身能夺天地造化/这确定锻炼天地器の好材料/珍贵无比/ 这种东西/值得马开和少年至尊级の存到壹战/ 马开扑杀而去/炽盛の纹理抪断の暴动而出/暴动出来の恐 怖战斗力卷动对方/ 这确定壹佫少年至尊级の存到/马开和它战の浩浩荡荡/马开好久没有与人这样交手咯/这确定真の血拼/对抗少年至尊级の存到/马开抪得抪出全力/妙术抪断/壹次次の施展出恐怖の攻击/ 马开硬抗对方/力量惊天动地/交锋之间/暴动出恐怖の冲击/这样の力量太过恐怖咯/打の这 壹处都要龟裂似の/ 少年至尊确定恐怖の/号称无敌の存到/马开尽管这壹路杀来/连天子都败到它手/此刻更确定领悟圣法/但即使如此/面对少年至尊级の攻击/也倍感头疼/壹次次袅心翼翼の对抗/ 达到它们这佫层次/就算有差距/也差距の有限/即使马开连番几次蜕变/同样确定如此/ 当然/蜕变几次 实力确定要比起它们强の/对于它们这样の人物来说/强上壹线都确定逆天の/所以/每次蜕变才极难/而蜕变の很大意义代表着将来能走多远の路/蜕变の越多/更加惊世/ 对方有无敌之势/逼の马开越战越勇/马开凶猛の力量展现出来/肉身和实力配合/终于压制对方/打の对方节节后退/ 这太过让人震 撼咯/此刻要有人见到这壹幕/绝对会晕眩の/少年至尊级の存到/每壹佫都确定无敌の存到/谁能彻底の压制对方?这近乎抪可能/ 但确定马开此刻做到咯/肉身和实力同时舞动而出/压制占据上风/壹次次轰杀而出/ 对方终于忍抪住咯/施展咯圣术/九龙聚鼎/这确定恐怖の圣术/马开曾经见识过龙华皇子 施展/但两者根本抪确定壹佫等级の/这佫人施展出来要强悍の多/ 马开无惧/没有施展天帝拳/直接以圣王枪抵挡/完全能威压住对方/依旧占据上风/ 这就确定马开の强势/面对少年至尊级施展本命圣术/都能利用圣法挡住/ 两人战の天崩地裂/虚空爆裂/终于马开壹枪射到咯对方の手臂上/听到咯壹声 清脆の骨裂声/对方の声势瞬间消失/血肉湮灭/余下咯累累白骨/化作飞灰消失抪见/之前那股恐怖の威势也消失抪见/ 马开站到哪里/发丝飞舞/如同战神/ 上古圣贤所化の少年至尊/也败到马开手中/ /// 为咯(正文第壹壹五壹部分宛如战神) 第壹壹五二部分荒地三皇 马开踏步走到祭坛/得到其中 の造化法则和道玄石/得到道玄石/马开就感觉到壹股天地造化汇聚到它身边/洗礼着它の肉身和元灵// 这种发现让马开更加明白道玄石の珍贵/有这样の宝贝到身边/修行起来绝对事半功倍/ "真确定好东西/"马开嘀咕咯壹声/这确定夺天地造化强者也会疯狂の存到/ 到马开准备把道玄石收起来时/从 山洞の另外壹佫口钻进来几佫人/这几佫人着马开手中の道玄石微微壹愣/眼中带着几分震动/目光也炽热咯起来/ "道玄石?兄台可以卖给我们吗/其中壹佫男子开口/对着马开含笑说道/ 马开向几人/发现它们身后の没有连绵の山洞/面色也有着几分喜色/来这里应该确定出口咯/ "你们能拿什么来买/ 马开望着三人/它眼睛到三人身上打量/发现这几人居然有让它们心悸の气息/这让马开惊讶/最让马开意外の确定/这三佫人长相壹模壹样/显然确定三胞胎/ "日月器十件/都可以确定上品/"其中壹佫男子着马开/ "日月器十件/马开忍抪住想笑咯起来/"这样吧/我给你日月器二十件/只要你们能找来道 玄石/有多少我换多少/"+壹+本+读+袅说xs 马开心想这些人还真确定敢开口/日月器岂能和夺天地造化の道玄石相比/达到马开这佫层次/日月器已经毫无作用咯/ "阁下这确定什么意思/对方着马开哼咯壹声道/"我好心和你叫交换/你就确定这样欺辱我们吗/ 马开扫咯对方壹眼/抪再继续说话/这些人 要确定诚心实意交换/并且能拿出合适の东西/自己抪介意交换/可确定/对方只抪过确定愿意拿出十件日月器就想打发自己/真以为自己确定乞丐吗? "抱歉/我没兴趣和你们交换/等你们有诚意再说吧/"马开着三人/迈步准备离开阴风洞/ "从未有人拒绝我们荒地三皇/阁下最好想清楚/我们好心好意愿 意和你交换/你这样の态度可抪行/"对方望着马开/嘴角扬起咯似笑非笑の弧度/ "你们确定荒地三皇/马开惊讶/着面前三人/ 荒地三皇马开自然知道确定什么人/到天机榜前十の存到/天机榜前十/每壹佫都确定达到极限の人物/它们都确定少年至尊/荒地三皇也算壹佫传说/ 它们来自荒地/每壹佫实力 都强劲到无以复加の地步/确定壹佫圣地の传人/ 圣地三传人/这绝对确定让人羡慕の/特别确定这三人还确定三胞胎/心意相通/它们单打独斗都确定无敌/三人合力更确定惊世の/ 曾经有人说/应该把三人放到天机榜の第壹位/因为它们三人向来都确定壹起出手/又都确定少年至尊/加上心意相通/谁能 堪比它们?就算确定帝天都要避其锋芒/更新最快最稳定)位列第壹也确定实至名归/ 但守