九年级数学上册知识点归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册知识点归纳(北师大版)
第一章 特殊平行四边形
第二章 一元二次方程
第三章 概率的进一步认识
第四章 图形的相似
第五章 投影与视图
第六章 反比例函数
(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的 两顶点连成的线段叫做它的对角线。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个
距离称为平行线之间的距离。
第一章
特殊平行四边形
..... ...
1菱形的性质与判定
菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定
※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)
※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定
正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)
※正方形常用的判定:有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):
※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
一组邻边相等菱形
一个内角为直角(或对角线相等)
平行四边形一组邻边相等且一个内角为直角
(或对角线互相垂直平分)
正方形..
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半
第二章一元二次方程
1认识一元二次方程
※只含有一个未知数的整式方程,且都可以化为ax2bx c 0(a、b、c为
常数,a≠0)的形式,这样的方程叫一元二次方程。
※把ax2bx c0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
2用配方法求解一元二次方程①
配方法 <即将其变为(x m)20的形式>
※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;
②将二次项系数化成1;
③把常数项移到方程的右边;
④两边加上一次项系数的一半的平方;
⑤把方程转化成(x m)
⑥两边开方求其根。
0的形式;
3用公式法求解一元二次方程
②公式法x b b2
2a
4ac
(注意在找abc时须先把方程化为一般形式)
4用因式分解法求解一元二次方程
③分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)
5一元二次方程的根与系数的关系
※根与系数的关系:当b2-4ac>0时,方程有两个不等的实数根;
当b2-4ac=0时,方程有两个相等的实数根;
当b2-4ac<0时,方程无实数根。
※如果一元二次方程ax2bx c0的两根分别为x、x,则有:
1 2x
1
x
2
b
a
x x
12
c
a
。
※一元二次方程的根与系数的关系的作用:
(1)已知方程的一根,求另一根;
(2)不解方程,求二次方程的根x、x的对称式的值,特别注意以下公式:
1 2
①x
1x2
2
(x
1
x)2
2
2x x
1 2
②
11x x
11
x x x x
1 2 1 2
③(x
1
x)2
2
(x
1
x)2
2
4x x
1 2
④|x
1x | (x
2 1
x)2
2
4x x
1 2
⑤(|x| |x|) 1
2
(x
1
x)2
2
2x x
1 2
2|x x |
1 2
⑥x
1x3
2
(x
1
x)3
2
3x x(x
1 2 1
x)
2
⑦其他能用x
1
x或x x
2 1 2
表达的代数式。
(3)已知方程的两根x、x,可以构造一元二次方程:
1 2x
2 (x
1
x)x x x
2 1 2
......
2
2
2 3