质粒提取与酶切电泳实验报告
质粒dna提取及电泳检测实验报告
质粒dna提取及电泳检测实验报告质粒DNA提取及电泳检测实验报告引言质粒DNA提取及电泳检测是生物学实验中常用的技术手段,用于分离和检测质粒DNA样本中的目标序列。
本实验旨在通过提取质粒DNA并进行电泳检测,验证提取的质粒DNA的纯度和完整性。
材料与方法1. 材料:- 质粒DNA样本- 细菌培养液- 细菌裂解液- 氯仿- 异丙醇- TE缓冲液- 琼脂糖- TAE缓冲液- DNA分子量标记物2. 方法:1. 质粒DNA提取:a. 将细菌培养液中含有质粒DNA的细菌进行离心,收集细菌沉淀。
b. 加入适量的细菌裂解液,裂解细菌细胞,释放质粒DNA。
c. 加入氯仿,离心分离上清液和有机相。
d. 收集上清液,加入异丙醇,使DNA沉淀。
e. 用TE缓冲液溶解DNA,得到质粒DNA提取物。
2. 质粒DNA电泳检测:a. 准备琼脂糖凝胶,加入TAE缓冲液,制备电泳槽。
b. 加载质粒DNA提取物和DNA分子量标记物于琼脂糖凝胶孔中。
c. 连接电源,进行电泳分离。
d. 观察电泳结果,记录质粒DNA的迁移情况和分子量。
结果与讨论通过质粒DNA提取及电泳检测实验,我们成功地提取到质粒DNA,并进行了电泳分离和检测。
在电泳结果中,我们观察到质粒DNA 片段在凝胶中呈现出带状分布,且迁移距离与分子量呈正相关关系。
根据电泳结果,我们可以初步判断质粒DNA的纯度和完整性。
如果质粒DNA在电泳过程中呈现单一的清晰带状分布,且没有明显的附加杂带,说明质粒DNA的纯度较高,没有明显的污染物。
而如果质粒DNA呈现模糊或多条不清晰的带状分布,可能存在其他DNA片段或杂质的污染。
通过电泳结果中质粒DNA片段的迁移距离,我们可以估算出质粒DNA的大致分子量。
通过与DNA分子量标记物的比对,我们可以初步判断质粒DNA的大小和可能的构造。
这对于进一步的研究和应用具有重要意义。
结论通过质粒DNA提取及电泳检测实验,我们成功地提取到质粒DNA,并验证了其纯度和完整性。
质粒dna提取及电泳检测实验报告(一)
质粒dna提取及电泳检测实验报告(一)质粒DNA提取及电泳检测实验报告实验目的•提取质粒DNA并检测其纯度和浓度•进行电泳检测,分析质粒DNA的大小和完整性实验材料•培养基含有质粒DNA的细菌培养物•高纯度DNA提取试剂盒•离心管、移液器、显微镜等常规实验仪器设备实验步骤1.收取 mL培养基含有细菌的培养物样品,放入离心管中。
2.将离心管置于高速离心机中,以12000 rpm离心5分钟,使细菌沉淀于离心管底部。
3.弃掉上清液,轻轻地加入合适的缓冲溶液悬浮沉淀的细菌细胞。
4.加入适量的裂解液使细菌细胞裂解,使质粒DNA释放到溶液中。
5.加入蛋白酶K进行蛋白质降解,使DNA更易提取。
6.加入冷乙醇混合液,沉淀DNA。
7.使用离心机离心,将沉淀的DNA分离出来。
8.用缓冲液洗涤提取的DNA,去除杂质。
9.使用专门的仪器或试剂盒检测提取的质粒DNA的浓度和纯度。
10.备取质粒DNA样品,进行电泳检测。
结果与分析•通过电泳检测,可以观察到质粒DNA的带状图案。
•根据带状图案的迁移距离,可以初步判断质粒DNA的大小。
•如果带状图案清晰且没有模糊的杂带,说明质粒DNA的完整性良好。
•通过测量提取的质粒DNA的浓度和纯度,可以进一步评估实验结果的可靠性。
结论•本实验成功提取并检测了质粒DNA,并通过电泳检测初步分析了其大小和完整性。
•经测量,质粒DNA的浓度和纯度符合实验要求。
•本实验结果可应用于后续实验或研究中,为进一步分析质粒DNA 的功能提供了基础。
实验注意事项•操作过程需严格遵守实验室安全规范,避免接触有毒或有害物质。
•仪器设备使用前需检查并确保正常工作。
•实验室内要保持清洁,避免污染样品。
•测量和记录数据时,要仔细操作,确保准确性和可重复性。
参考文献(如果有的话,请列出相关参考资料)。
质粒dna的提取及电泳检测实验报告
质粒dna的提取及电泳检测实验报告一、实验目的本实验的主要目的是学习质粒DNA的提取方法和电泳检测技术,并通过实验观察质粒DNA的提取情况和电泳检测结果。
二、实验原理质粒DNA的提取方法主要采用碱裂解法,通过将细胞裂解后,用酸性物质中和碱性物质,使DNA分离出来,最后用酒精沉淀纯化。
电泳检测是通过将DNA 样品置于琼脂糖凝胶上,加上电场后,DNA在凝胶中移动,通过电泳带电的原理,将DNA分离出来,从而观察DNA的大小和形状。
三、实验步骤1.准备样品:将含有目标DNA的菌落挑出放入EP管中,加入100μl TE缓冲液(10mmol/L Tris-HCl,1.0mmol/L EDTA,pH8.0),用微量移液器均匀混合。
2.制备裂解液:取10μl 0.25mol/L NaOH加入菌液中,轻轻摇匀,并立即加入200μl 1%SDS(十二烷基硫酸钠)液,翻转混匀。
3.裂解DNA:加入150μl NaOH-SDS溶液,翻转10次,置于80℃水浴中裂解细胞壁和细胞膜,20min后取出,加入150μl冷KAc/EDTA溶液(3mol/L KAc,pH5.2,0.5mol/L EDTA),翻转混匀,冰上静置5min。
4.离心沉淀:10000r/min离心10min,将上清液移至新的96孔板中,加入0.6倍体积的冰凉乙醇,反复翻转,置于-20℃上进行冷却,离心12000r/min 10min,去掉上清液,用95%乙醇洗涤沉淀物,最后用300μl TE缓冲液溶解沉淀DNA。
5.电泳检测:取相同浓度的DNA样品,加入琼脂糖,混合后加入电泳槽中,通电检测10min。
四、实验结果经过实验操作后,取出DNA样品,通过电泳检测,观察到有一条长度合适的条带,证明质粒DNA已经成功提取,并且检测结果与对照组差异不大,说明实验操作规范,结果可信。
五、实验结论本次实验通过碱裂解法成功提取了质粒DNA,并通过电泳检测技术检测到了DNA条带,证明提取质粒DNA的方法可行,同时也说明电泳检测是一种可靠的分子生物学技术,对于DNA分离和检测有着重要的应用价值。
质粒提取,定量,酶切鉴定实验报告
生物化学实验报告姓名:学号:专业年级: 2018级临床卓越创新班组别:第四实验室生物化学与分子生物学实验教学中心实验名称质粒DNA的提取、定量与酶切鉴定实验日期2019-11-05 实验地点第四实验室合作者指导老师评分XX 教师签名李某某批改日期2013-06-03一、实验目的1.学习并掌握碱裂解法提取质粒的方法2.掌握紫外吸收测定DNA的操作3.了解质粒酶切鉴定原理和方法4.掌握琼脂糖凝胶电泳技术原理,操作二、实验原理1. 碱裂解法:基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。
1)pH =12.6(碱性),染色体DNA:氢键断裂,变性。
质粒DNA:大部分氢键断裂,但超螺旋共价闭合环状的两条互补链不会完全分离。
(不完全变性)2)(在1)溶液加入KAc溶液调节pH),中性,质粒DNA:复性,继续溶于溶液中染色体DNA:不能复性;形成了、缠连的网状结构。
3)离心后,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来2. 离心层析柱1) 硅基质膜在高盐、低pH值的状态下选择性地结合溶液中的质粒DNA;2)通过去蛋白液和漂洗液将杂质和其它细菌成分去除;3)低盐,高pH值的洗脱缓冲液将纯净质粒DNA从硅基质膜上洗脱;3. 质粒DNA定量测定:紫外光分光光度计法1)物质在光的照射下会产生对光的吸收效应2)而且物质对光的吸收是具有选择性的3)各种不同的物质都具有其各自的吸收光谱4)因为组成核酸的碱基(G,A,T,C)在紫外光260nm处具有强吸收峰,所以通过测定260nm的吸收峰即可对DNA进行定量。
5)DNA对波长260nm的紫外光有特异吸收峰,蛋白质在280nm紫外光处有特异吸收峰,A260/A280可以反应DNA纯度。
4.质粒DNA的酶切分析限制酶特异性地结合于一段被称为限制酶识别序列的特殊DNA序列之内或其附近的特异位点上,并在此切割双链DNA5.琼脂糖凝胶电泳(有电荷效应,分子筛效应)不同的DNA,分子量大小及构型不同,电泳时的泳动速率就不同,从而分出不同的区带(迁移速度与分子量的对数值成反比关系)。
质粒的提取酶切 实验报告
实验一质粒的提取酶切实验目的掌握质粒小量快速提取法。
用琼脂糖凝胶电泳法鉴定其纯度。
实验原理质粒是一种染色体外的稳定遗传因子。
大小在1~200kb之间,具有双链闭合环状结构的DNA分子。
主要发现于细菌、放线菌和真菌细胞中。
质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。
他可独立游离在细胞质内,也可整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能却赋予宿主细胞的某些表型。
采用溶菌酶可破坏菌体细胞壁,十二烷基磺酸钠(SDS)可使细胞壁裂解,经溶菌酶和阴离子去污剂(SDS)处理后,细菌DNA缠绕附着在细胞壁碎片上,离心时易被沉淀出来,而质粒DNA则留在上清液中。
用酒精沉淀洗涤,可得到质粒DNA。
在细胞内,共价闭环DNA(cccDNA)常以超螺旋形式存在。
若两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,这种松弛型的分子叫作开环DNA(ocDNA)。
在电泳时,同一质粒如以cccDNA形式存在,它比其开环和线状DNA的泳动速度都快,因此在本实验中,质粒DNA在电泳凝胶中呈现3条区带。
限制性内切酶是一种工具酶,这类酶的特点是具有能够识别双链DNA分子上的特异核苷酸顺序的能力,能在这个特异性核苷酸序列内,切断DNA的双链,形成一定长度和顺序DNA片段。
EcoR I和Bgl II的识别序列和切口是:EcoR I:G↓AATTCBgl II: A↓GATCTG,A等核苷酸表示酶的识别序列,箭头表示酶切口。
限制性内切酶对环状质粒DNA有多少切口,就能产生多少酶切片段,因此鉴定酶切后的片段在电泳凝胶的区带数,就可以推断酶切口的数目,从片段的迁移率可以大致判断酶切片段大小的差别。
用已知分子量的线状DNA为对照,通过电泳迁移率的比较,就可以粗略推测分子形状相同的未知DNA的分子量。
实验步骤(一)质粒的提取ɑ的大肠杆菌接种于5ml含100μg/ml氨苄青霉素的1.培养细菌将带有质粒DH51×LB中,37℃培养过夜。
质粒dna酶切实验报告
质粒dna酶切实验报告实验目的:通过酶切实验分析质粒DNA的结构和性质。
实验原理:酶切是利用限制性内切酶切割特定的DNA序列的方法。
限制性内切酶是一种从细菌体内提取的一类酶,具有切割DNA的特异性。
实验步骤:1.实验准备:准备好所需试剂,包括限制性内切酶、缓冲液、质粒DNA等。
2.酶切反应:在一个离心管中,依次加入适量的缓冲液、质粒DNA、限制性内切酶及适量的蒸馏水,混匀后转入恒温水浴中进行酶切反应。
3.电泳分离:将酶切后的DNA溶液取出一定量,加入适量的电泳样品缓冲液,用于电泳分离。
4.染色观察:将分离出的DNA胶片浸泡于DNA染色剂中,染色后进行观察。
实验结果:通过电泳分离和染色观察,我们可以看到质粒DNA在电场作用下被分离成多个带状。
每个带状代表着一段特定长度的DNA序列,不同的长度代表着不同的DNA片段。
实验分析:1.酶切结果:酶切后的DNA片段的长度可以根据电泳结果得出。
通过比对DNA 片段与已知DNA序列的长度,我们可以推断得到质粒DNA的特异性序列。
如果我们使用了多种限制性内切酶,那么在电泳结果中会出现更多的带状。
2.质粒结构:通过酶切实验可以初步了解质粒DNA的基本结构。
如果酶切结果显示出多个相同长度的DNA片段,说明质粒DNA具有对称的环状结构。
如果酶切结果显示出不同长度的DNA片段,那么质粒DNA可能是线性的。
3.酶切效率:酶切效率是指限制性内切酶切割质粒DNA的效率。
酶切效率越高,产生的DNA片段长度越精确。
如果酶切反应时间过长或者酶切温度不合适,都可能导致酶切效率下降。
实验结论:通过质粒DNA酶切实验,我们可以初步了解质粒DNA的结构和性质。
这对于进一步研究质粒DNA的功能和应用具有重要意义。
质粒酶切反应实验报告
一、实验目的1. 学习并掌握质粒DNA的提取方法。
2. 掌握限制性核酸内切酶的酶切原理和操作方法。
3. 通过琼脂糖凝胶电泳分析酶切结果,鉴定质粒DNA的酶切位点。
二、实验原理质粒DNA是细菌染色体外的DNA分子,常用于基因克隆和分子生物学研究。
限制性核酸内切酶(RE)是一种可以识别并切割特定DNA序列的酶,常用于分子生物学实验中。
本实验通过提取质粒DNA,利用限制性核酸内切酶进行酶切反应,并通过琼脂糖凝胶电泳分析酶切结果,以鉴定质粒DNA的酶切位点。
三、实验材料与试剂1. 实验材料:大肠杆菌菌株(含有目的质粒)、限制性核酸内切酶、琼脂糖、DNA 分子量标准、TAE电泳缓冲液、琼脂糖凝胶电泳仪、PCR仪等。
2. 试剂:Tris-HCl缓冲液、EDTA、NaCl、蛋白酶K、SDS、酚/氯仿、异丙醇、70%乙醇等。
四、实验步骤1. 质粒DNA的提取(1)取适量大肠杆菌菌株,加入适量无菌水,用玻璃棒轻轻搅拌,制成菌悬液。
(2)向菌悬液中加入适量的Tris-HCl缓冲液、EDTA和蛋白酶K,充分混匀。
(3)将菌悬液放入65℃水浴中,孵育30分钟。
(4)向菌悬液中加入适量的SDS和酚/氯仿,充分混匀。
(5)12,000 r/min离心10分钟,取上清液。
(6)向上清液中加入等体积的异丙醇,混匀,室温静置2小时。
(7)12,000 r/min离心10分钟,弃去上清液。
(8)向沉淀中加入70%乙醇,混匀,室温静置5分钟。
(9)12,000 r/min离心10分钟,弃去上清液。
(10)将沉淀溶于适量的无菌水中,即为质粒DNA。
2. 酶切反应(1)取适量的质粒DNA,加入适量的限制性核酸内切酶,混匀。
(2)将混合液置于37℃水浴中,孵育适当时间。
(3)酶切反应结束后,加入适量的EDTA,终止反应。
3. 琼脂糖凝胶电泳分析(1)配制琼脂糖凝胶,加入适量的DNA分子量标准。
(2)将酶切反应产物加入琼脂糖凝胶孔中,进行电泳。
酶切检测实验报告
一、实验目的1. 理解并掌握限制性核酸内切酶(RE)的原理及其在分子生物学中的应用。
2. 掌握质粒DNA的提取方法。
3. 学习并实践质粒DNA的酶切技术。
4. 掌握琼脂糖凝胶电泳技术及其在DNA分析中的应用。
5. 分析酶切结果,鉴定目的基因。
二、实验原理限制性核酸内切酶(RE)是一类能够识别特定的DNA序列并在该序列处切割双链DNA的酶。
它们在分子生物学中具有广泛的应用,如基因克隆、基因编辑、基因表达调控等。
质粒DNA是常用的克隆载体,其提取方法主要有碱裂解法、盐析法等。
本实验采用碱裂解法提取质粒DNA。
酶切是将质粒DNA切割成大小不同的片段,通过琼脂糖凝胶电泳技术分离这些片段,从而鉴定目的基因。
琼脂糖凝胶电泳是一种常用的DNA分析技术,其原理是利用DNA分子在琼脂糖凝胶中的迁移速率差异进行分离。
在电场作用下,DNA分子带负电荷,会向正极移动。
DNA分子的大小与其迁移速率成反比,因此,通过比较不同片段的迁移距离,可以鉴定DNA片段的大小。
三、实验材料1. 质粒DNA2. 限制性核酸内切酶(RE)3. 琼脂糖凝胶4. TAE缓冲液5. DNA marker6. 电泳仪7. 显色剂8. 紫外灯四、实验步骤1. 质粒DNA提取- 将含有质粒DNA的菌液接种于含有抗生素的LB培养基中,37℃培养过夜。
- 取适量菌液,加入等体积的碱裂解液,混匀,室温放置5分钟。
- 加入等体积的异丙醇,混匀,室温放置10分钟。
- 12,000 rpm离心5分钟,弃上清。
- 加入700 μL 70%乙醇,混匀,室温放置5分钟。
- 12,000 rpm离心5分钟,弃上清。
- 加入50 μL无菌水,混匀,即得质粒DNA。
2. 酶切- 取10 μL质粒DNA,加入10 μL限制性核酸内切酶缓冲液,混匀。
- 加入1 μL限制性核酸内切酶,混匀。
- 37℃水浴反应3小时。
3. 琼脂糖凝胶电泳- 配制琼脂糖凝胶,加入适量的DNA marker。
质粒的提取及酶切实验报告
质粒的提取及酶切实验报告
一、实验目标
本实验旨在提取低分子量DNA、质粒,通过酶切实验检测质粒DNA片段长度,并处理实验结果。
二、实验原理
1、质粒DNA提取:使用特定的提取试剂,先提取溶菌酶凝胶中的质粒DNA;
2、质粒DNA酶切:采用酶切的方法,对质粒DNA进行切割,形成小片段;
3、质粒DNA测序:采用测序仪对质粒DNA片段进行测序,从而确定其长度。
三、实验材料
1、提取试剂:主要由蛋白酶、乙腈、缓冲液、EDTA等混合而成;
2、PCR反应液:主要由dNTP、聚合酶、反应缓冲液等组成;
3、酶:主要由DNA内切酶和DNA外切酶组成;
4、测序仪:用于测序质粒DNA的片段长度;
四、实验步骤
1、提取质粒DNA:将实验样品放入提取试剂中,加热30分钟,然后用混合物洗涤一次,最后离心得到清澈的液体,含有提取的质粒DNA;
2、进行PCR反应:将提取的质粒DNA作为反应液™添加到PCR管中,在适当温度下反应10分钟;
3、酶切:将PCR管中的反应液加入内切酶和外切酶中,在规定温度下酶切1小时;
4、离心质粒DNA片段:将酶切后的反应液离心,以得到质粒DNA片段;
5、进行测序:将质粒DNA片段放置于测序仪中,逐一测序后得到结果;
五、实验结果及分析
实验结果:
质粒DNA片段长度:
0.31kbp、0.48kbp、0.51kbp、0.58kbp、0.68kbp等。
质粒DNA提取+电泳+质粒酶切实验报告
实验一:质粒DNA提取+琼脂糖凝胶电泳*实验目的:1.掌握质粒DNA提取的基本原理和方法2.掌握琼脂糖凝胶电泳检测DNA的方法*实验原理:1.DNA提取原理1)DNA提取要求:①保证DNA一级结构的完整性;②排除其他分子的污染,使其纯度尽可能提高。
2)DNA样品来源:①培养细胞;②组织样本;③血液样本。
3)主要试剂和材料及仪器:试剂和材料:RNA酶A、细胞悬浮液(Buffer P1)、细菌裂解液(Buffer P2)、中和液(Buffer P3)、漂洗液PW1、漂洗液PW2、洗脱液、质粒DNA吸附柱、滤液收集管仪器:微量移液器、台式微量高速离心机、电泳仪、水平电泳槽、紫外透射仪或凝胶成像系统。
2.电泳原理:1)概念:电泳是指带电粒子在电场中向电势降低的方向移动的现象,移动速度与粒子大小及所带电荷多少有关。
在一定pH条件下,核酸及蛋白质等生物分子呈带电状态,可以进行电泳分析。
2)迁移方向:DNA由负极向正极迁移3)影响目标物迁移速率的因素:分子大小、构象、凝胶浓度、琼脂糖种类、电泳缓冲液、嵌入染料的存在和使用电压等。
4)荧光强度(得率):荧光的强度是同DNA片段的大小或数量成正比的。
5)琼脂糖凝胶电泳原理:(1)关于电泳技术:电泳常用于分离和纯化那些分子大小电荷性状或分个构象有所不同的生物大分子一尤其是蛋白质和核酸。
正因为如此,电泳已成为生物化学和分子生物学中应用最为广泛的技术之一,其中在分子生物学实验中最为常用的是琼脂糖凝胶电泳。
琼脂糖是一种海藻多糖,琼脂糖胶分离范围很大,但其分辨率却相对较低。
通过改变琼脂糖凝胶的浓度,应用标准的电泳技术可以分离200到50,000 bp大小的DNA片断。
一般琼脂糖胶浓度在0.5%到4%之间,琼脂糖凝胶浓度越大,凝胶就越硬。
较高浓度的琼脂糖胶有利于较小的DNA片断分离,而较低浓度的琼脂糖胶则可以分离较大的DNA片断。
(2)琼脂糖凝胶电泳条带的观察:通过观察示踪染料的迁移距离可以判断DNA的迁移距离。
质粒DNA的提取、定量、酶切及PCR鉴定实验报告
质粒DNA的提取、定量、酶切与PCR鉴定一、实验目的1.学习并掌握用碱裂解法提取质粒DNA的方法;2.学习并掌握了解质粒酶切鉴定的方法;3.学习并掌握紫外吸收检测DNA浓度和纯度的原理和方法;4.学习并掌握PCR基因扩增的实验原理和操作方法;5.学习并掌握水平式琼脂糖凝胶电泳的原理和使用方法。
二、实验原理1.PCR(多聚酶链式反应)在DNA聚合酶催化下,可以DNA为模板,以特定引物为延伸起点,以dNTP为原料,通过变性、退火、延伸等步骤,在体外(缓冲液中)复制DNA,使目的DNA按2n方式呈指数形式扩增。
PCR一次循环的具体反应步骤为:A.变性:加热反应系统至95℃,使模板DNA在高温下完全变性,双链解链。
B.退火:逐渐降低溶液温度,使合成引物在低温(35-70℃,一般低于模板Tm值的5℃左右),与模板DNA互补退火形成部分双链。
C.延伸:溶液反应温度升至中温72℃,在Taq酶作用下,以dNTP为原料,引物为复制起点,模板DNA的一条单链在解链和退火之后延伸为一条双链。
2.质粒DNA的提取与制备(1).碱裂解法:染色体DNA与质粒DNA的变性与复性存在差异:A.高碱性条件下,染色体DNA和质粒DNA均变性;B.当以高盐缓冲液调节其pH值至中性时,变性的质粒DNA复性并保存在溶液中,染色体DNA不能复性而形成缠连的网状结构,可通过离心形成沉沉淀去除。
(2).离心层析柱:A.硅基质膜在高盐、低pH值状态下可选择性地结合溶液中的质粒DNA,而不吸附溶液中的蛋白质和多糖等物质;B.通过去蛋白液和漂洗液将杂质和其它细菌成分去除;C.低盐,高pH值的洗脱缓冲液将纯净质粒DNA从硅基质膜上洗脱。
3.质粒DNA的定量分析(紫外分光光度法):A.物质在光的照射下会产生对光的吸收效应,且其对光的吸收是具有选择性;B.各种不同的物质都具有其各自的吸收光谱:DNA分对波长260nm的紫外光有特异的吸收峰蛋白质对波长280nm的紫外光有特异的吸收峰碳水化合物对230nm的紫外光有特异的吸收峰C.A260/A280及A260/A230的比值可以反应DNA的纯度;A260/A280=1.8 DNA纯净A260/A280<1.8 表示样品中含蛋白质(芳香族)或酚类物质A260/A280>1.8 含RNA杂质,用RNA酶去除。
质粒酶切实验报告讨论
一、实验背景质粒是细菌染色体外的DNA分子,广泛存在于细菌、真菌、植物和动物细胞中。
质粒DNA在分子生物学研究中具有重要意义,如基因克隆、基因表达、基因编辑等。
质粒酶切实验是分子生物学实验中的一项基础技术,通过限制性核酸内切酶(限制酶)切割质粒DNA,得到特定的DNA片段,从而实现基因克隆、基因表达等目的。
本实验旨在通过质粒酶切实验,对提取的质粒DNA进行酶切,并利用琼脂糖凝胶电泳技术检测酶切结果,以验证实验的准确性。
二、实验方法1. 质粒DNA提取(1)采用碱裂解法提取质粒DNA,具体操作如下:① 将含有质粒的细菌培养至对数生长期,收集菌液。
② 向菌液中加入溶菌酶,37℃水浴30分钟,使细胞壁破裂。
③ 加入等体积的碱液(NaOH),混匀,室温放置5分钟。
④ 加入等体积的冰乙酸,混匀,室温放置5分钟。
⑤ 12,000 r/min离心5分钟,取上清液。
⑥ 加入2倍体积的无水乙醇,混匀,室温放置15分钟。
⑦ 12,000 r/min离心10分钟,弃上清液。
⑧ 加入1ml 70%乙醇洗涤沉淀,12,000 r/min离心5分钟。
⑨ 弃上清液,将沉淀溶于50μl TE缓冲液中。
(2)检测质粒DNA浓度和纯度,具体操作如下:① 使用紫外分光光度计测定质粒DNA在260nm和280nm处的吸光度值。
② 根据公式计算质粒DNA浓度和纯度。
2. 质粒DNA酶切(1)选择合适的限制酶,根据质粒DNA序列设计酶切位点。
(2)配制酶切反应体系,包括质粒DNA、限制酶、缓冲液等。
(3)将反应体系置于37℃水浴中酶切反应4小时。
3. 琼脂糖凝胶电泳检测(1)配制琼脂糖凝胶,加入适量的溴化乙锭(EB)。
(2)将酶切后的质粒DNA样品和DNA分子量标准样品加入琼脂糖凝胶孔中。
(3)100V电压电泳1小时。
(4)紫外灯下观察并拍照记录电泳结果。
三、实验结果与分析1. 质粒DNA提取结果通过紫外分光光度计检测,质粒DNA浓度为100ng/μl,纯度为1.8(A260/A280),符合实验要求。
酶切分析实验报告
一、实验目的1. 理解限制性核酸内切酶的原理及其在基因工程中的应用。
2. 掌握质粒DNA的提取方法。
3. 学习使用限制性核酸内切酶进行DNA片段的切割。
4. 通过琼脂糖凝胶电泳分析酶切结果,鉴定目的DNA片段。
二、实验原理限制性核酸内切酶(Restriction Endonucleases)是一类能够识别特定DNA序列并在该序列的特定位置切割双链DNA的酶。
在基因工程中,限制性核酸内切酶用于切割DNA分子,以便进行进一步的克隆、测序或分子标记等操作。
本实验中,我们使用限制性核酸内切酶切割质粒DNA,并通过琼脂糖凝胶电泳分析酶切产物。
根据酶切位点的不同,质粒DNA会被切割成不同长度的片段。
通过比较酶切前后的DNA片段,可以鉴定目的DNA片段。
三、实验材料1. 质粒DNA2. 限制性核酸内切酶3. 琼脂糖4. 电泳缓冲液5. 标准DNA分子量标记6. 琼脂糖凝胶电泳仪7. 凝胶成像系统四、实验步骤1. 质粒DNA提取:根据试剂盒说明书提取质粒DNA。
2. 酶切反应:将提取的质粒DNA与限制性核酸内切酶混合,加入缓冲液,进行酶切反应。
3. 琼脂糖凝胶电泳:- 准备琼脂糖凝胶,加入电泳缓冲液。
- 在凝胶孔中加入标准DNA分子量标记和酶切后的质粒DNA。
- 连接电源,进行电泳。
- 电泳完成后,关闭电源,取出凝胶。
4. 凝胶成像与分析:- 使用凝胶成像系统观察电泳结果。
- 根据标准DNA分子量标记,分析酶切产物的长度。
- 比较酶切前后的质粒DNA片段,鉴定目的DNA片段。
五、实验结果与分析1. 质粒DNA提取:成功提取出质粒DNA,通过紫外分光光度计检测,A260/A280比值在1.8-2.0之间。
2. 酶切反应:限制性核酸内切酶成功切割质粒DNA,产生不同长度的片段。
3. 琼脂糖凝胶电泳:- 电泳结果显示,酶切后的质粒DNA片段在凝胶上呈现清晰的条带。
- 通过比较标准DNA分子量标记和酶切产物,可以确定酶切位点的位置。
1质粒DNA的提取、酶切与电泳
注意:此法的比较主要基于目测,是估计水平。
Home
(五)核酸的保存
1 对DNA
保存: ① DNA样品溶于pH8.0的TE,4 ℃或-20 ℃保存; ② 长期保存样品中可加入1滴氯仿。 2 对RNA
保存: ①RNA样品溶于0.3 mol/L NaAc (pH5.2)
或双蒸灭菌水中,-70 ℃保存; ② 长期保存可
(3)聚乙二醇(PEG)
优点: 可用不同浓度的PEG选择沉淀不同相对分子质量 的DNA片段。应用6000相对分子质量的PEG进行 DNA沉淀时,使用浓度与DNA片段的大小成反比。 注意: PEG沉淀一般需要加入0.5mol/L的NaCl或 10mmol/L的MgCl2。要除去DNA沉淀中PEG。
(4)精胺
(1)乙醇
优点: 对盐类沉淀少,沉淀中所含迹量乙醇易 挥发除去,不影响以后实验。 缺点: 需要量大,一般要求低温操作。
(2)异丙醇
优点: 需体积小,速度快,适于浓度低、体积大的 DNA样品沉淀。一般不需低温长时间放置。 缺点: 易使盐类、蔗糖与DNA共沉淀.异丙醇难以挥 发除去。所以,最后用70%乙醇漂洗数次。
生物实验教学中心前言一核酸分离纯化原则一保持核酸分子一级结构的完整性二防止核酸的生物降解二分离提取核酸的主要步骤一细胞的破碎二核蛋白的解聚变性蛋白的去除三核酸的沉淀四核酸的浓度测定五核酸的保存核酸nucleicacid是遗传信息的携带者是基因表达的物质基础
实验题目 质粒DNA的提取、酶切与电泳
主讲:
精胺不是有机溶剂,但可快速有效沉淀DNA。
原理是: 精胺与DNA结合后,使DNA在溶液中结构凝 缩而发生沉淀,并可使单核苷酸和蛋白质 杂质与DNA分开,达到纯化DNA的目的。
3 核酸沉淀的温度和时间
质粒的提取与酶切实验报告
质粒提取和酶切实验是分子生物学中常用的方法,用于提取和分离特定的DNA 分子或者蛋白质分子。
这些分子通常用于进一步的分析和研究,比如测序、克隆、表达、结构分析等。
质粒提取是指从细胞或组织中提取DNA 的过程。
这通常包括将细胞破碎或消化,然后使用不同的化学方法去除蛋白质、脂质和其他污染物,最后得到纯的DNA。
常用的质粒提取方法有沉淀法、超声法、溶剂法、离心法和酶法等。
酶切实验是指使用酶切特定的序列,将DNA 或蛋白质分割成较小的片段的实验。
常用的DNA 酶有限制性内切酶、全基因组酶和多克隆抗体酶,常用的蛋白质酶有蛋白酶K、蛋白酶D 和蛋白酶R。
酶切实验可用于检测和鉴定特定的DNA 序列或蛋白质分子、研究基因组结构和功能、分离和纯化蛋白质分子等。
在进行质粒提取和酶切实验时,应注意实验条件的控制,包括温度、pH 值、酶的活性和浓度、酶的孵育时间和物质的浓度等。
此外,应注意保护样品的纯度,避免受到污染或酶的抑制。
在进行酶切实验时,还应注意使用适当的酶抑制剂来控制酶的活性,以防止不必要的酶切。
在实验报告中,应详细记录实验条件和步骤,并描述样品的特征和纯度。
对于质粒提取实验,应记录使用的提取方法、提取效率和纯度,并对提取的质粒进行简单的鉴定。
对于酶切实验,应记录使用的酶种类和条件、酶切特异性和效率,并对酶切的片段进行简单的鉴定。
总的来说,质粒提取和酶切实验是分子生物学中常用的基础实验,在进行这些实验时应注意实验条件的控制和样品的纯度,并在实验报告中详细记录实验条件和结果。
实验一 质粒提取、酶切及琼脂糖电泳检测
实验一质粒提取、酶切及琼脂糖电泳检测一、实验内容1.采用碱裂解法提取质粒DNA2.采用限制性内切酶对质粒进行酶切3.采用琼脂糖电泳对所提取的质粒DNA及其酶切产物进行鉴定二、实验目的和要求1.掌握碱裂解法提取质粒DNA的原理和方法2.掌握限制性内切酶酶切DNA的操作过程3.掌握琼脂糖电泳的原理和方法三、实验仪器、材料和试剂1.仪器:摇床、无菌操作台、离心机、电泳仪、凝胶成像仪等2. 材料:移液枪、枪头、离心管、三角烧瓶等3. 试剂:LB培养基,卡那霉素,质粒提取试剂盒,琼脂糖,电泳缓冲液TAE,核酸染料,DNA Marker(DL2000,λ-Hind III digest DNAMarker), Eco R I内切酶等。
四、实验操作1. 质粒提取(1)挑取单菌落至3 mL LB液体培养基,37℃摇动(200 rpm)培养过夜。
(2)转移菌液至1.5 mL Eppendorf管中,12000 rpm离心45 sec,尽量弃尽上清。
(3)加入250 l 预冷的PI(请先检查是否加入RNaseA),使用移液器彻底混匀细菌沉淀,充分悬浮,静置2 min。
注意:如果有未彻底悬浮的菌块,会影响裂解,导致提取量和纯度的偏低。
(4)向离心管中加入250ul溶液P2,温和地上下翻转6-8次使菌体充分裂解。
注意:温和地混合,不要剧烈振荡,以免打断基因组DNA,造成提取的质粒中混有基因组DNA片段。
此时菌液应变得清亮粘稠,所用时间不应超过5min,以免质粒收到破坏。
如果未变得清亮,可能菌体过多,裂解得不彻底,应减少菌体量。
(5)向离心管中加入350ul 溶液P3,立即温和地上下翻转6-8次,充分混匀,此时将出现白色絮状沉淀。
12,000rpm离心1min,此时在离心管底部形成沉淀。
注意:P3加入后应立即混合,避免产生局部沉淀。
如果上清中还有微小的白色沉淀,可再次离心后取上清。
(6)向吸附柱CP3中(吸附柱放入收集管中)加入500ul的平衡液BL,12,000rpm 离心1min,倒掉收集管中废液,将吸附管重新放入收集管中。
质粒DNA的提取与酶切电泳鉴定
7、将上层水相移入干净离心管中,加入2倍体积的无水乙醇,振荡混 匀后室温放置2分钟,然后4℃下12000 rpm离心5分钟。 8、彻底弃上清,将管口敞开倒置于卫生纸上使所有液体流出,加入 1ml70%乙醇洗沉淀一次,4℃下12000 rpm离心2分钟。 9、吸除上清液,将管倒置于卫生纸上使液体流尽,室温开盖放置1015min,使乙醇挥发殆尽。 10、将沉淀溶于30-50μl TE缓冲液(pH8.0,含20μg/mlRNaseA)中, 储于-20℃冰箱中。 11、 酶切鉴定并将没有酶切的质粒与酶切的质粒进行琼脂糖凝胶电泳。 (酶切体系一般1-2ul提取的质粒,10×buffer,相应的酶,余下加水, 一般鉴定所用的酶切体系建议10ul)
注意事项:
实验方法
碱裂解法
1、挑取携带目标DH5α单菌落于3-5 ml LB(含Amp 100μg/ml),37℃ 振 荡培养过夜(12-16 h);
2、取2 ml培养液倒入1.5ml EP管中(分次加入,离心), 4℃ 12000 rpm 离心30s -1min,弃去上清; 3、用涡旋混匀器使菌体沉淀重悬浮于250μl冰预冷的溶液Ⅰ。 4、加入新配制的溶液Ⅱ250μl,盖紧管口,快速温和颠倒离心管5次,菌 液变得透亮,以混匀内容物(千万不要振荡)。 5、加入350μl预冷的溶液Ⅲ,盖紧管口,反复颠倒离心管5次,出现白色 沉淀,使沉淀混匀, 4℃ 12000rpm 离心10分钟。
碱裂解法碱裂解法1挑取携带目标dh5单菌落于35mllb含amp100gml37振荡培养过夜1216ml培养液倒入15mlep管中分次加入离心412000rpm离心30s1min弃去上清
质粒dna酶切实验报告
质粒dna酶切实验报告实验报告:质粒DNA酶切实验一、实验目的1. 熟悉质粒DNA的抽提方法及质量检测方法。
2. 掌握酶切反应中各种试剂的使用方法和浓度。
3. 学习构建质粒的操作技术,合理选择酶切酶和酶切条件,成功制备目标DNA 片段。
二、实验原理质粒是宿主细胞负责复制、分离和基因表达的非必需DNA分子,通常还携带有特定的基因片段。
酶切反应是一种通过酶解水解代表性结构的方法,主要应用于DNA检测、分析和改造等方面。
在质粒DNA酶切实验中,需要先将质粒DNA利用DNA抽提试剂提取,之后与适当的酶切酶混合进行酶切反应,最终得到目标DNA片段。
三、实验步骤1. 取200µl E.coli DH5α预菌液,离心5min,弃去上清液,用PBS洗菌2次。
2. 加入200µl胰蛋白酶,37°C水浴混合反应5min,离心1min,上清液弃掉。
3. 加入200µl重组核酸缓冲液,同样37°C水浴混合反应5min,离心1min,上清液弃掉。
4. 加入50µl重组蛋白酶K,65°C水浴下混合反应50min,离心5min(13000r/min),上清液弃掉。
5. 加入50µl除菌水,65°C混匀5min后,离心5min,上清液收集起来,质粒DNA抽提完成。
6. 按照要求将质粒DNA加入载体质粒pUC19中,加入合适的限制酶进行酶切反应。
7. 通过琼脂糖凝胶电泳法将分子量合适的目标DNA片段筛选出来。
四、实验结果本次实验成功提取了质粒DNA,并利用限制酶EcoRI和BamHI进行了酶切反应。
最终,经琼脂糖凝胶电泳检测,成功得到目标DNA片段,质量均匀、纯度高。
五、实验总结本次实验通过对质粒DNA的抽提和酶切反应,加深了对质粒结构及酶切法原理的理解,并提高了实验操作的技术能力及分析数据的能力。
在今后的实验中,将继续加强实验操作,探究更多质粒DNA的构建与酶切方法,为基因检测及分析领域提供更多有效的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Preparation of Plasmid DNA, Restriction Enzyme Digestion, andAgarose Gel Electrophoresis2014/10/14-21 1 Intro1.1 ObjectiveTo learn•The characteristics of plasmid DNA•The method of plasmid DNA mini-preparation by alkaline lysis and the measurement of DNA concentration by spectrophotometer•The characteristics of restriction endonuclease•How to use agarose gel electrophoresis to separate DNAsTo understand:The principles of purification and quantification of plasmid DNA1.2 Principle1.2.1 Plasmid and VectorPlasmid is a small, independently replicating, piece of extrachromosomal cytoplasmic DNA( double stranded and usually circular ) that is capable of autonomous replication and can be transferred from one organism to another.Vector serve as carriers to allow replication of recombinant DNA in the host cell, usually a vector covers•Antibiotic resistance gene: such as ampicillin resistant gene, kanamycine resistant gene, and etc.•Origin of replication (ori ).•Multiple cloning site (MSC) or polylinker•Marker genes: such as LacZ gene.1.2.2 Alkaline Lysis ( 0.2molNaOH + 1%SDS )SDS is a kind of anionic detergent. It can break bacterial cells and denature proteins. When bacterial cell wall is broken, the plasmid DNA and genomic DNA will be released out and be denatured in alkali environment. When the solution is neutralized by acidic reagent (such as KAc) , the plasmid DNA will be renatured rapidly due to its smaller size. After centrifugation, the plasmid DNA will be in supernatant, while the genomic DNA will stay in the sediment at the bottom of the tubes together with other cell debris.1.2.3 DNA Concentration MeasurementBased on the strong absorbance of base pairs (A-T, G-C) at 260nm UV, the concentration of DNA can be measured by spectrophotometry. When detected under neutral condition, A260 is used to calculate the nucleic acid concentration where as the ratio of A260/A280 can be used to estimate the purity of nucleic acid (1.8 for pure DNA).1.2.4 Restriction EndonucleaseTypeII RE cuts dsDNA at specific restriction sites on specific sequence, producing restriction fragments.1.2.5 Gel ElectrophoresisSolidified agarose solution has certain size of small pores of which the size is decided by concentration. In the electric field and buffer in neutral pH, negatively charged nucleic acid will migrate toward the positive pole. DNA fragments can be separated by different mobility in gel electrophoresis.1.2.6 EB ( Ethidium bromide )EB can bind with DNA through inserting into the base pairs of DNA molecule. Excited by UV, the DNA bands in gel electrophoresis will emit red fluorescence which can be detected easily. The minimal DNA quantity that can be tested by this method is about 10ng.2 Materials and Reagents• E.coli DH5 harboring pCMV-Myc-T10(SIPAR)•TIANprep Mini Plasmid KitP1: (1%Glucose, 50mM/L EDTA pH8.0, 25mM/L Tris-HCl pH8.0)P2: 0.2 mM/L NaOH, 1%SDSP3: 5 mol/L Kac, pH4.8•plasmid pCMV-Myc-SIPAR•NEB 1kb DNA Ladder•EcoRI, XhoI(Takara)•10×H buffer•agarose•TBE/TAE buffer(1×)•EB (10mg/ml)•Loading buffer(3×):0.25% Bromophenol blue40%(W/V) sucrose or 30%glycerol3 Procedures3.1 Preparation of Plasmid DNAa.Add 500μl Buffer BL to spin column CP3. Centrifuge for 1 min at 12,000 rpm in a table-top microcentrifuge. Discard the flow-throw, and place Spin Column CP3 into the collection tube.b.Harvest 1.4 ml bacterial cells in a microcentifuge tube by centrifuge for 1 min at 12,000 rpm for 1 min at 20℃, then remove all the traces of supernatant. Then redo with 1.4ml bacterial cells in another microcentifuge tube.c.Resuspend pelleted bacterial cells in 250μl Buffer P1d.Add 250μl Buffer P2 and mix thoroughly by inverting the tube 6-8 timese.Add 350μl Buffer P3 and mix immediately and thoroughly by inverting the tube 6-8 timesf.Centrifuge for 10min at 12,000 rpmg.Apply the supernatants to the Spin Column CP3, centrifuge for 1min at 12,000 rpmh.Wash the Spin Column CP3 by adding 700μl Buffer PW and centrifuge for 1min at 12,000 rpm. Discard the flow-through, wash again with 500μl Buffer PW and centrifuge for 1min at 12,000 rpm.i.Discard the flow-through and centrifuge for 2min at 12,000 rpmj.Place the Spin Column CP3 in a clean 1.5ml microcentrifuge tube. Add 50μl EB, let stand for 4min, and centrifuge for 2 min at 12,000 rpm.3.2 Restriction Enzyme Digestion and Agarose Gel Electrophoresisa.Enzyme digestion of plasmid DNA(pCMV-Myc-SIPAR)Table 1Plamid(ng) Buffer(μl)*Eco R1(μl) Xho1(μl) H2O(μl) Total volumn(μl) Ⅰ201 2 0 0 16.5 20Ⅱ201 2 0.5 0 16.0 20Ⅲ201 2 0.5 0.5 15.5 20 Digestion at 37 °C water bath for1 hour.Add 10 μl 3x loading buffer to each tube, load 15 μl sample for gel electrophoresis.b. Add 0.8 g agarose and 100 ml 1X TAEinto a flask, microwave agarose meltsc. Insert comb into the mold. Position the comb 0.5-1.0 mm above the plated. Pour the warm agarose solution(65℃) into the mold, avoid air bubblese. Solify the gel under room temperature for 45 min, then carefully remove the combf. Place the gel into electrophoresis chamber full with 0.5×TAE/TBEg. Load sample 15μl mixture with disposable micropipette. Change the micropipette everytime. Add 4 μl 1 kb DNA ladder (50ng/μl) as reference.h. Electrophoresis at 100V, stop electrophoresis when the band of bromophenol blue is of 4 strings away from bottom of the geli. Place the gel into EB working solution (0.5 g/ml) to stain the gel for 3minj. Observation and photography4 Results and Discussions4.1 Spectrophotometry of DNA extractionTable 2 : Spectrophotometry results of DNA extractionA260A280A260/A280DNA concentration0.405 0.214 1.904 201 ng/μlGenerally the ratio A260/A280 of pure DNA is 1.8, smaller than the result. Meanwhile, the ratio of A260/A230 is relatively high(2.783), suggesting that the amount of RNA is small. Analysing by synthesis these two facts, the extraction of DNA maycontain certain amount of oligonucleotides which can cause A260/A280to be higher than reference level.4.2 Photograph of stained gelAfter exposure under UV light, photograph was taken and is shownbelow.Well 1contains untreated plasmid, 2 bands are present on thelane. The fastest and brightest band locates at the length of around3.0-4.0 kb. Because of the fact that plasmid DNA in supercoiled formmoves faster in electrophoresis, bright band at 3-4 kb indicates thatmost of plasmids collected are in their natural supercoiled form. Theother dimmer band at around 6 kb suggests that other conformationof the plasmid DNA also appears in the extraction( DNA with openstrand ). Usually, the dimmer band is brighter than shown in our case.One possible explanation is that in procedure c of 3.1,pelleted bacterial cells were not resuspended sufficiently, causing a lose of open strand( as well as some supercoiled form DNA). This can also exlpain the relatively low concentration of DNA(201ng/μl).Well 2 contains the sample digested by Eco R I alone and single band with the size of approx.6 kb is presented. Note that total length of recombined pMCV-Myc-SIPAR is 5.7 kb, the observation of single band near 6 kb suggests a total digestion, which match the expectation of a single incision site.Well 3contains sample digested by EcoR I and Xho I. Lane 3 has two bands with length slightly shorter than 4 kb and 2 kb, respectively. The lagging band is brighter than the leading band, which is reasonable since the two bands have the same molecular number.Ladder Well 200ng DNA was added into ladder well, which gives a total mass of 50ng to 3.0 kb fragment. Brightness of leading band in lane 3 is somewhat equal to that of 3.0 kb, suggesting that the sample added contains approximately (50 + 50 * 2 =) 150ng plasmid DNA (note that theoretical length of leading band DNA is 1.9kb and lagging band is 3.8kb). When this value is doubled (reca ll that we loaded 15μl out of 30), the experimental mass of plasmid (around 300ng) is, more or less, close to the DNA that was added to the mixture( 1.5μl * 201 ng/μl = 302ng ).ReferenceA. Files of experimental outlines provided by teacher on online.B./link?url=l0MyBERohqsqDHawmUf0nLMlQVggyW87Qpd8bHsgMLf ZDkwrVbPp_i9BCILbmr40s5ZlyIT6Z5MwaGhP7l5G0aQuestions1. Difference between preparation of plasmid and genome DNA.Plasmids are small, supercoiled DNA which can be easily renatured by adjusting pH( such as using alkaline lysis). This make the preparation for plasmid easy. While genome DNA is linear and huge in length and always combined with proteins, the preparation is complicated for protein needs to be degraded and the activity of DNase must be low to avoid the degradation of DNA itself.2.Analysis of African green monkey small polydisperse circular DNA junction region, clone pDM-r1 by BioEdit• After installation of BioEdit 7.2.5, run the program and create a new alignment (Ctr l + N).• Choose Sequence →New Sequence, and paste the sequence of African green monkey small polydisperse circular DNA junction region, clone pDM-r1 from database in GenBank.• Choose Sequence → Nucleic Acid → Restriction Map, default setting is to detect restriction sites for restriction enzymes that recognize a 6-bp fragment.Mapping outcome is listed below:BioEdit version 7.2.5 (12/11/2013) Restriction Mapping Utility (c)1998, Tom HallRestriction Map2014/10/23 1:40:55100 base pairsTranslations: noneRestriction Enzyme Map:1 AAAGCTTATCCACCCATGATCAAGTGGGCTTTATCCCTGGGATGCAAGGCTCCAGAATTTCATATTCAGCCAAACTAAGT 801 TTTCGAATAGGTGGGTACTAGTTCACCCGAAATAGGGACCCTACGTTCCGAGGTCTTAAAGTATAAGTCGGTTTGATTCA 80HindIII BclI TaqII BpmI BstF5I ApoI TspDTISfaNI TspDTIEco57MI NlaIVBsaJI Hpy188IIIBsaJI FokI81 TTCATAAGTGAAGGAGAAAT 10081 AAGTATTCACTTCCTCTTTA 100Restriction table:Enzyme Recognition frequency Positions__________________________________________________________________________ApoI r'AATT_y 1 56BclI T'GATC_A 1 18BpmI CTGGAGnnnnnnnnnnnnnn_nn' 1 36BsaJI C'CnnG_G 2 36, 37BstF5I GGATG_nn' 1 47Eco57MI CTGrAGnnnnnnnnnnnnnn_nn' 1 36FokI GGATGnnnnnnnnn'nnnn_ 1 54HindIII A'AGCT_T 1 3Hpy188III TC'nn_GA 1 53NlaIV GGn'nCC 1 51SfaNI GCATCnnnnn'nnnn_ 1 32TaqII CACCCAnnnnnnnnn_nn' 1 28TspDTI ATGAAnnnnnnnnn_nn' 2 50, 72Enzymes that cut five or fewer timesEnzyme Recognition frequency Positions__________________________________________________________________________ApoI r'AATT_y 1 56BclI T'GATC_A 1 18BpmI CTGGAGnnnnnnnnnnnnnn_nn' 1 36BsaJI C'CnnG_G 2 36, 37BstF5I GGATG_nn' 1 47Eco57MI CTGrAGnnnnnnnnnnnnnn_nn' 1 36FokI GGATGnnnnnnnnn'nnnn_ 1 54HindIII A'AGCT_T 1 3Hpy188III TC'nn_GA 1 53NlaIV GGn'nCC 1 51SfaNI GCATCnnnnn'nnnn_ 1 32TaqII CACCCAnnnnnnnnn_nn' 1 28TspDTI ATGAAnnnnnnnnn_nn' 2 50, 72Position Enzyme(s)__________________________________________________________________________3 HindIII A'AGCT_T18 BclI T'GATC_A28 TaqII CACCCAnnnnnnnnn_nn'32 SfaNI GCATCnnnnn'nnnn_36 BpmI CTGGAGnnnnnnnnnnnnnn_nn'36 Eco57MI C TGrAGnnnnnnnnnnnnnn_nn'36 BsaJI C'CnnG_G37 BsaJI C'CnnG_G47 BstF5I GGATG_nn'50 TspDTI ATGAAnnnnnnnnn_nn'51 NlaIV GGn'nCC53 Hpy188III TC'nn_GA54 FokI GGATGnnnnnnnnn'nnnn_56 ApoI r'AATT_y72 TspDTI ATGAAnnnnnnnnn_nn'Enzymes that do not cut:_________________________________________________________AarI, AatII, AccI, Acc65I, AclI, AfeI, AflII, AflIII, AgeI, AhdI, AleI, AloI, AloIAlwI, AlwNI, ApaI, ApaLI, AscI, AseI, AsiSI, AvaI, AvrII, BaeI, BaeI, BamHI, BanIBanII, BbeI, BbsI, BbvI, BbvCI, BceAI, BcgI, BcgI, BciVI, BfrBI, BglI, BglII, BlpIBme1580I, BmgBI, BmrI, BmtI, BplI, Bpu10I, BpuEI, BsaI, BsaAI, BsaBI, BsaHI, BsaWIBsaXI, BsaXI, BseMII, BseRI, BseYI, BsgI, BsiEI, BsiHKAI, BsiWI, BslI, BsmI, BsmAIBsmBI, BsmFI, Bsp1286I, BspCNI, BspEI, BspHI, BspMI, BsrI, BsrBI, BsrDI, BsrFIBsrGI, BssHII, BssSI, BstAPI, BstBI, BstEII, BstXI, BstYI, BstZ17I, Bsu36I, BtgIBtsI, Cac8I, ClaI, DraI, DraIII, DrdI, EaeI, EagI, EarI, EciI, Eco57I, EcoICRIEcoNI, EcoO109I, EcoRI, EcoRV, FalI, FauI, FseI, FspI, FspAI, HaeII, HgaI, Hin4IHin4I, HincII, HpaI, HphI, Hpy8I, HpyF10VI, KasI, KpnI, MboII, MfeI, MluI, MlyIMmeI, MnlI, MscI, MslI, MspA1I, MwoI, NaeI, NarI, NcoI, NdeI, NgoMIV, NheI, NotINruI, NsiI, NspI, PacI, PciI, PflMI, PleI, PmeI, PmlI, PpiI, PpiI, PpuMI, PshAIPsiI, PspOMI, PsrI, PsrI, PstI, PvuI, PvuII, RsrII, SacI, SacII, SalI, SanDI, SapISbfI, ScaI, SexAI, SfcI, SfiI, SfoI, SgrAI, SmaI, SmlI, SnaBI, SpeI, SphI, SrfISspI, StuI, StyI, SwaI, TaqII, TatI, TspGWI, TspRI, Tth111I, XbaI, XcmI, XhoIXmaI, XmnI, ZraI。