AM调制系统仿真
AM—调制与解调仿真
引言本次实践开设的计算机课程设计为软件仿真,利用matla b编写程序建立M文件对计算机实验进行仿真。
随着通信技术的发展日新月异,通信系统也日趋复杂,在通信系统的设计研发过程中,软件仿真已成为必不可少的一部分.随着信息技术的不断发展,涌现出了许多功能强大的电子仿真软件,如Work be enc h、Pr ote l、Sys temview 、Matlab 等。
虚拟实验技术发展迅速,应用领域广泛,一些在现实世界无法开展的科研项目可借助于虚拟实验技术完成,例如交通网的智能控制、军事上新型武器开发等。
调制就是使一个信号(如光等)的某些参数(如振幅、频率等)按照另一个欲传输的信号(如声音、图像等)的特点变化的过程.解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。
对于幅度调制来说,解调是从它的幅度变化提取调制信号的过程。
对于频率调制来说,解调是从它的频率变化提取调制信号的过程。
在信号和模拟通信的中心问题是要把载有消息的信号经系统加工处理后,送入信道进行传送,从而实现消息的相互传递.消息是声音、图像、文字、数据等多种媒体的集合体。
把消息通过能量转换器件,直接转变过来的电信号称为基带信号。
A M是调幅(Amplitud eModu lation),用AM 调制与解调可以在电路里面实现很多功能,制造出很多有用又实惠的电子产品,为我们的生活带来便利.用MAT LAB 仿真工具仿真的AM 调制解调与解调器抗干扰性能分析的工作原理和工作过程,完成对调制与解调过程的分析以及相干解调器的抗干扰性能的分析.通过对波形图的分析给出不同信噪比情况下的解调结果对比.寻找最佳调试解调途径已相当重要。
其中将数字信息转换成模拟形式称调制,将模拟形式转换回数字信息称为解调。
本文主要的研究内容是了解AM 信号的数学模型及调制方式以及其解调的方法在不同的信噪比情况下的解调结果.先从AM 的调制研究,其次研究A M的解调以及一些有关的知识点,得出AM 信号的数学模型及其调制与解调的框图和调制解调波形图,然后利用MATLAB 编程语言实现对A M信号的调制与解调,给出不同信噪比情况下的解调结果对比。
实验2:AM调制与解调仿真
实验2:AM调制与解调仿真一、实验目的1、掌握AM的调制原理和MATLAB Simulink仿真方法2、掌握AM的解调原理和MATLAB Simulink仿真方法二、实验原理1、AM调制原理所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。
这里高频振荡波就是携带信号的运载工具,也叫载波。
振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。
在线性调回系列中,最先应用的一种幅度调制是全条幅或常规调幅,简称为调制(AM)。
在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。
m(t)为取值连续的调制信号,c(t)为正弦载波。
下图为AM调制原理图:2、AM解调原理从高频已调信号中恢复出调制信号的过程为解调,又称为检波。
对于振幅调制信号,解调就是从它的幅度变化上提取调制信号的过程,解调是调制的逆过程。
下图为AM解调原理图:三、实验步骤1、AM调制方式的MATLAB Simulink仿真(1)原理图(2)仿真图(3)仿真分析①调制器Constant和Add 以及低通滤波器,sine wave2和product1是对已调信号频谱进行线性搬移,低通滤波器是滤除高频部分,得到原始信号②调制后调制后信号加上了2v的偏置,频率变大了,幅度随时间在不断的呈现周期性变化,在1~2.5之间,大于调制前的幅度。
③模拟信号的调制是将要发送的模拟信号附加到高频振荡上,再由天线发射出去,这里的高频振荡就是载波。
振幅调制就是由调制信号去控制高频振荡的振幅,直至随调制信号做线性变化。
2、AM解调方式的MATLAB Simulink仿真(1)原理图(2)仿真图(3)仿真分析①调制器Sine wave2和product1是低通滤波器,Sine wave2 和 product1是对已调信号的频谱进行线性搬移,低通滤波器是滤除信号的高频部分以得到原始信号。
AM模拟调制系统的设计与仿真
AM模拟调制系统的设计与仿真AM(幅度调制)模拟调制系统是一种将模拟信号调制到载波上的技术。
设计与仿真AM模拟调制系统可以帮助我们理解AM调制原理、调制过程以及系统的性能。
以下是一个关于AM模拟调制系统的设计与仿真的详细介绍。
首先,AM模拟调制系统的设计包括两个主要部分:调制器和解调器。
调制器负责将来自音频源的模拟信号调制到载波信号上,解调器负责从调制后的信号中恢复出原始音频信号。
在设计调制器时,首先需要确定载波频率。
一般情况下,载波频率选择在AM广播频段范围内,例如535kHz至1605kHz。
然后,选择一个适当的载波幅度,这会影响到解调过程中的恢复信号的质量。
接下来,设计一个低通滤波器,该滤波器用于去除调制过程中产生的上、下频谱区域。
最后,通过一个运放电路将调制后的信号放大到合适的水平。
在设计解调器时,需要采用一个带通滤波器来滤除载波信号和上、下频谱区域,使得只剩下原始音频信号。
然后,通过一个恢复电路将解调后的信号放大和恢复正常的幅度。
最后,通过一个扬声器将音频信号转换为可听的声音。
在进行系统的仿真时,可以使用一些仿真软件,例如MATLAB或Simulink,来模拟AM调制系统的性能。
首先,可以创建一个输入信号作为模拟音频信号源,该信号可以是音乐、语音或其他类型的声音。
然后,可以创建一个载波信号,其频率和幅度与设计中选择的相同。
接下来,使用模拟调制技术将输入信号调制到载波信号上,并通过一个示波器观察调制后的信号波形。
然后,使用带通滤波器去除载波和上、下频谱区域,并通过示波器观察解调后的信号波形。
最后,通过扬声器播放解调后的信号,以观察恢复音频信号的质量。
在仿真过程中,还可以改变不同参数的取值,例如载波频率、幅度、带宽等,以观察其对系统性能的影响。
此外,还可以添加噪声、多径传播等干扰信号,以评估系统在复杂环境下的性能。
总结来说,AM模拟调制系统的设计与仿真是一个学习和理解AM调制原理和性能的过程。
AM模拟调制系统的设计与仿真
AM模拟调制系统的设计与仿真AM调制是一种将基带信号调制到载频上的调制技术,广泛应用于无线电通信、广播电视、音频传输等领域。
本文将介绍AM模拟调制系统的设计与仿真。
AM调制系统主要由三个部分组成:基带信号产生器、载波信号产生器和调制器。
基带信号产生器用于产生模拟调制信号,载波信号产生器用于产生载波信号,调制器将基带信号和载波信号进行调制。
通过仿真可以验证系统的正确性和性能。
首先,需要设计基带信号产生器。
基带信号可以是音频信号、语音信号或其他需要传输的信号。
可以使用软件工具如MATLAB来产生基带信号,也可以使用硬件电路如函数发生器来产生基带信号。
其次,设计载波信号产生器。
载波信号通常是一个高频正弦波信号,频率根据具体应用需求决定。
可以使用软件工具如MATLAB来产生载波信号,也可以使用硬件电路如震荡器来产生载波信号。
最后,设计调制器。
调制器主要是将基带信号和载波信号进行调制,实现信号的叠加。
调制器可以使用模拟电路如放大器和混频器来实现,也可以使用数字电路如FPGA来实现。
在调制过程中,可以选择不同的调制方式,如DSB-SC调制、SSB调制或VSB调制,根据需求选择适合的调制方式。
设计完整的调制系统后,可以进行系统的仿真。
仿真可以使用软件工具如MATLAB、Simulink或Multisim等来实现。
通过输入不同的基带信号,观察经过调制后的信号,检查是否满足要求。
可以使用示波器来显示信号的时域和频域特性,分析调制效果和系统性能。
在进行系统仿真时,可以对系统的不同参数进行调整和优化,如基带信号的频谱、带宽、载波信号的频率、调制指数等。
通过调整参数,可以优化系统性能,提高信号的质量和传输效果。
在设计和仿真过程中,需要考虑系统的线性度、功率效率、频率响应等指标。
根据具体应用需求,可以对系统进行优化和改进。
总之,AM模拟调制系统的设计与仿真是一个综合性的工程项目,需要综合考虑基带信号产生器、载波信号产生器和调制器的设计与实现。
实验2:am调制及解调仿真
实验2:AM调制与解调仿真一、实验目的1、掌握AM的调制原理和MATLAB Simulink仿真方法2、掌握AM的解调原理和MATLAB Simulink仿真方法二、实验原理1、AM调制原理所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。
这里高频振荡波就是携带信号的运载工具,也叫载波。
振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。
在线性调回系列中,最先应用的一种幅度调制是全条幅或常规调幅,简称为调制〔AM〕。
在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。
m〔t〕为取值连续的调制信号,c〔t〕为正弦载波。
下列图为AM调制原理图:2、AM解调原理从高频已调信号中恢复出调制信号的过程为解调,又称为检波。
对于振幅调制信号,解调就是从它的幅度变化上提取调制信号的过程,解调是调制的逆过程。
下列图为AM解调原理图:三、实验步骤1、AM调制方式的MATLAB Simulink仿真〔1〕原理图〔2〕仿真图〔3〕仿真分析①调制器Constant和Add 以及低通滤波器,sine wave2和product1是对已调信号频谱进展线性搬移,低通滤波器是滤除高频局部,得到原始信号②调制后调制后信号加上了2v的偏置,频率变大了,幅度随时间在不断的呈现周期性变化,在1~2.5之间,大于调制前的幅度。
③模拟信号的调制是将要发送的模拟信号附加到高频振荡上,再由天线发射出去,这里的高频振荡就是载波。
振幅调制就是由调制信号去控制高频振荡的振幅,直至随调制信号做线性变化。
2、AM解调方式的MATLAB Simulink仿真〔1〕原理图〔2〕仿真图〔3〕仿真分析①调制器Sine wave2和product1是低通滤波器,Sine wave2 和 product1是对已调信号的频谱进展线性搬移,低通滤波器是滤除信号的高频局部以得到原始信号。
AM信号的仿真分析
AM信号的仿真分析AM(幅度调制)信号是一种常见的模拟调制技术,它在通信系统中起着重要的作用。
本文将对AM信号进行仿真分析,从原理、调制过程到解调过程进行详细的讨论。
一、幅度调制原理AM信号的产生是通过将低频音频信号与高频载波信号进行调制。
设载波信号为cos(2πf_ct),音频信号为m(t),调制过程可以表示为s(t) = Acos(2πf_ct)(1+ k_am(t)),其中Ac为载波幅度,k_am为调制指数。
可以看到,通过调制指数k_am,音频信号的幅度对载波信号进行调制,从而产生AM信号。
二、AM信号的频谱特性AM信号的频谱特性可以通过频谱分析进行研究。
分析得出,AM信号的频谱主要分布在载频处和载频两侧的正负边带处。
载频处是由于音频信号的幅度最大引起的,正负边带处是由于音频信号的幅度变化引起的。
频谱图如下所示:(插入一张AM信号频谱图)1.载波信号的生成以MATLAB为例,可以通过以下代码生成一个脉冲调制信号:(插入MATLAB代码)2.音频信号的生成仿真中可以选择一段音频作为音频信号输入。
以一个500Hz的正弦波为例,可以通过以下代码生成:(插入MATLAB代码)3.调制过程的仿真将音频信号与载波信号进行幅度调制,并将调制后的信号进行绘制:(插入MATLAB代码)通过运行仿真程序,可以得到调制后的AM信号的时域波形和频谱波形。
1.包络检波(插入MATLAB代码)2.同步检波同步检波可以通过包络检波后,再经过滤波和降频处理得到音频信号。
仿真中,可以模拟原始音频信号作为参考信号,通过乘法混频得到相干波,并通过滤波器得到音频信号。
以下是同步检波的仿真代码:(插入MATLAB代码)通过运行仿真程序,可以获得音频信号的时域波形和频谱波形。
五、结论通过以上对AM信号的仿真分析,可以得到以下结论:1.AM信号的频谱特性主要分布在载频处和正负边带处。
2. AM调制过程中,通过调制指数k_am调制音频信号,可以产生AM 信号。
AM波的调制与解调仿真
AM波的调制与解调仿真1系统框图2工作原理从发送端发送一AM波,通过电容三点式振荡器自激,使原始信号附加在一高频信号产生一个已调幅信号,所谓附加在高频信号上,就是利用信号来控制高频振荡的某一参数,使这个信号隋参数变化。
这里,高频信号就是携带信号的运载工具,即为载波。
之后信号到达接收部分,中频调幅接收机电路是指已调高频信号通过时,在接收端获得所需的中频调制信号的这样一个电路。
将天线上接收的各种频率不同的信号通过选频网络,选出所需的调幅波,再将它进行放大后检波;经过检波器得到的是一个低频调制信号,将它与本地振荡信号进行混频后得到某一所需的中频调制信号,再进行放大和滤波后,便可在接收端观察到一合适的中频调制信号波形。
3 各单元电路设计1)电容三点式振荡器图2 电容三点式振荡器电路2) 模拟乘法器图3 模拟乘法器电路3)MC1496乘积型同步检波电路图4 MC1496乘积型同步检波电路4)低通滤波电路0IO2IO2图5 低通滤波电路4 仿真结果低频调制信号仿真图:低频信号频谱图:低频调制信号的 V=200mv;f=2M;通过观察其频谱,可知中心频率为47.305KHZ.高频载波仿真图:高频载波频谱图:分析可知:高频载波的 V=3.07v;f=10.3MHZ;通过观察其频谱可知:其中心频率为56.650KHZ。
调幅波仿真图形:调幅波频谱图:调幅波的频率f=10.2MHZ,基本等于载波频率;而观察其频谱可知,由于存在其他杂频干扰,图形不为规则的冲击谱,且该调幅波的带宽B=4M。
解调波仿真图:解调波频谱图:经检波后得到的包络波形与低频调制信号波形变化一致,其频谱的中心频率为f=47.798KHZ。
AM调制解调电路的设计仿真与实现
AM调制解调电路的设计仿真与实现一、AM调制原理AM调制(Amplitude Modulation)是一种将调制信号的振幅变化嵌入到载波信号中的调制方式。
调制信号通常是低频信号,而载波信号则是高频信号。
通过调制,把载波信号的振幅按照调制信号的幅度变化,实现信号的传输。
AM调制过程中,调制指数的大小决定了调制信号对载波信号的影响程度。
二、AM调制电路的设计AM调制电路需要实现信号的调制以及解调两个部分。
1.调制部分设计调制部分的主要任务是将调制信号与载波信号相乘,实现调制效果。
设计需要考虑的要点有:(1)调制器:调制器使用运算放大器作为基本构建单元,将调制信号与载波信号相乘,输出调制波形。
(2)输出滤波器:调制后的信号带有高频成分和调制信号的频率分量,通过使用一个带通滤波器,滤除非关注的频率成分。
2.解调部分设计解调部分的主要任务是从调制后的信号中恢复出原始的调制信号。
设计需要考虑的要点有:(1)检波器:解调电路中最重要的组成部分是检波器。
检波器用于从调制信号中提取出被调制信号,通常使用整流器或鉴频器实现。
(2)滤波器:在解调信号之后,需要通过滤波器去除高频噪声和杂散信号,从而得到原始的调制信号。
三、AM调制解调电路的仿真实验为了验证设计的正确性和有效性,可以使用电子电路仿真软件进行AM调制解调电路的仿真实验。
常用的仿真软件有Multisim、PSPICE等。
在设计好AM调制解调电路模型之后,可以进行以下仿真实验:1.调制效果验证:输入一个调制信号和一个载波信号,观察输出调制波形的振幅变化情况。
可以调整调制指数或载波频率,观察调制效果的变化。
2.解调效果验证:输入一个调制信号和一个载波信号的混合信号,通过滤波器和检波器,恢复出原始的调制信号。
观察解调效果的清晰度和准确性。
通过仿真实验,可以对设计的AM调制解调电路进行参数优化和性能评估,进一步提高电路的可靠性和效率。
四、AM调制解调电路的实际实现在进行仿真实验验证通过后,可以将AM调制解调电路进行实际实现,制作出实际的电路板和元件。
AM调制与相干解调系统仿真
AM调制与相干解调系统仿真摘要本课程设计主要利用MATLAB集成环境下的Simulink仿真平台,设计一个AM 调制与相干解调通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。
经过调制,初步实现了设计目标,并且经过适当的完善后,实验成功。
关键词Simulink;仿真;AM调制;相干解调1 引言本课程设计是在MATLAB集成环境下,设计一个AM调制与相干解调通信系统,并在Simulink平台上仿真,并把运行仿真结果输入显示器,拿解调输出的波形与基带信号进行比较,根据显示结果分析所设计的系统性能。
MATLAB是一种可交互式使用又能解释执行的计算机编程语言,利用简单的命令,能快速完成其他高级语言只有通过复杂编程才能实现的数值运算和图形显示。
Simulink是建立在MATLAB基础上的动态系统仿真工具。
利用MATLAB工具箱可以快速完成各类数值计算、符号计算和数据可视化等任务,可以解决有关线性代数、矩阵分析、微积分、微分方程、信号与系统、信号分析与处理、系统控制等领域的问题;利用Simulink机器模块库,则能够方便地创建各种动态系统的模型并进行仿真,可以用来仿真线性系统、非线性系统、连续系统、离散系统、连续和离散的混合系统、多速率采样系统以及单任务或多任务的离散事件驱动系统。
通过Simulink,用户可以快速的构建和运行仿真模型,根据仿真结果分析系统性能,并且从中分离出影响系统性能的关键因素,找出最优的系统配置方案。
1.1课程设计目的设计一个AM调制与相干解调通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能【1】。
1.2课程设计的要求(1)构建调制电路,并用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号频谱的变化。
(2)再以调制信号为输入,构建解调电路,用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号频谱的变化。
am调制系统仿真
基于Matlab的AM调制系统仿真
一、设计目的
1.掌握振幅调制和解调原理。
2.学会Matlab仿真软件在振幅调制和解调中的应用。
3.掌握参数设置方法和性能分析方法。
4.通过实验中波形的变换,学会分析实验现象。
调制信号是来自信源的调制信号(基带信号),这些信号可以是模拟的,亦可以是数字的。
为首调制的高频振荡信号可称为载波,它可以是正弦波,亦可以是非正弦波(如周期性脉冲序列)。
载波由高频信号源直接产生即可,然后经过高频功率放大器进行放大,作为调幅波的载波,调制信号由低频信号源直接产生,二者经过乘法器后即可产生双边带的调幅波。
二、信号解调
从高频已调信号中恢复出调制信号的过程称为解调(demodulation ),又称为检波(detection )。
对于振幅调制信号,解调(demodulation )就是从它的幅度变化上提取调制信号的过程。
解调(demodulation )是调制的逆过程。
可利用乘积型同步检波器实现振幅的解调,让已调信号与本地恢复载波信号相乘并通过低通滤波可获得解调信号
三、实验代码
见所附matlab文件
四、仿真结果
五、成员分工
分析代码——秦修恒,杨璨宇
视频录制——秦修恒
实验报告——杨璨宇。
AM调制MATLAB仿真程序
AM调制MATLAB仿真程序% AM_amplitude_modulation_test.mclc;close all;clear all;%--参数%--采样参数fs =10e6; %--数字采样速率, fs >= 2(fc+fm+0.5*Bm), 这⾥取 fs = 10 MHzN =200; %--采样点个数, N > fix(2*fs/fm); %--⾄少⼀个周期内采两个点n =0:N-1; %--采样序列t =n/fs; %--采样时间序列%--调制信号Am =1; %--归⼀化幅值fm =0.1e6; %--调制信号的频率, 这⾥取 fm = 0.1MHzBm = 0;%--带宽,这⾥取为单频信号,所以 Bm=0%-----------------------%--调制信号表达式%----------------------sm = Am*cos(2*pi*fm*t);%--载波信号Ac =1; %--归⼀化幅值fc =1e6; %--载波频率, ⼀般 fc > fm, 这⾥取 fc = 1 MHz%-----------------------%--载波信号表达式%----------------------sc = Ac*cos(2*pi*fc*t);%--调制度mf = 0.5;%--mf 取值在 0 和 1 之间. mf = 0 表⽰没有调制;mf =1 是过调制的边界%--普通幅度调制:载波+双边带 %-- 点乘:.* , 两个相等长度的⽮量对应点相乘% s_am = (1+mf*Am*cos(2*pi*fm*t)).*(Ac*cos(2*pi*fc*t));%----------------------------%--普通幅度调制, 调幅波表达式%----------------------------s_am_general = (1+mf*sm).*sc; %--%--双边带调制:抑制载波 %-- 点乘:.* , 两个相等长度的⽮量对应点相乘% s_am_DSB = mf*Am*cos(2*pi*fm*t).*(Ac*cos(2*pi*fc*t));%----------------------------%--双边带调制, 调幅波表达式%----------------------------s_am_DSB = mf*sm.*sc; %--%--单边带调制:抑制载波+抑制其中⼀个边带% s_am_SSB_UP = ⾼通滤波器{Am*mf*cos(2*pi*fm*t).*Ac*cos(2*pi*fc*t)};% = 0.5*Am*mf*cos(2*pi*(fm+fc)*t);%--上边带% s_am_SSB_DW = 低通滤波器{Am*mf*cos(2*pi*fm*t).*Ac*cos(2*pi*fc*t)};% = 0.5*Am*mf*cos(2*pi*(fm-fc)*t);%--下边带,DW 表⽰ DOWN%----------------------------%--单边带调制, 调幅波表达式%----------------------------s_am_SSB_UP = 0.5*Am*mf*cos(2*pi*(fm+fc)*t); %--上边带s_am_SSB_DW = 0.5*Am*mf*cos(2*pi*(fm-fc)*t); %--下边带,DW 表⽰ DOWN%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ s_am = s_am_general; %--普通幅度调制(包含:载波+上边带+下边带)%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ %--频谱计算fft_sm = fft(sm);fft_sc = fft(sc);fft_s_am = fft(s_am);f = ((fix(-N/2)):1:fix(N/2)-1)*fs/N;%--x轴坐标,适合 fftshift 之后,画图使⽤%--绘图figure('color','w')subplot(3,2,1)plot(sc)title('载波信号')axis tightsubplot(3,2,5)plot(s_am)title('调幅信号')axis tightsubplot(3,2,2)plot(f,fftshift(abs(fft_sm)))title('基带信号-频谱')axis tightsubplot(3,2,4)plot(f,fftshift(abs(fft_sc)))title('载波信号-频谱')axis tightsubplot(3,2,6)plot(f,fftshift(abs(fft_s_am)))title('调幅信号-频谱')axis tightsuptitle('幅度调制-普通幅度调制')%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ s_am = s_am_DSB; %--双边带幅度调制(抑制:载波)%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ %--频谱计算fft_sm = fft(sm);fft_sc = fft(sc);fft_s_am = fft(s_am);f = ((fix(-N/2)):1:fix(N/2)-1)*fs/N;%--x轴坐标,适合 fftshift 之后,画图使⽤%--绘图figure('color','w')subplot(3,2,1)plot(sm)title('基带信号')axis tight %--使得图形紧凑subplot(3,2,3)plot(sc)title('载波信号')axis tightsubplot(3,2,5)plot(s_am)title('调幅信号')axis tightsubplot(3,2,2)plot(f,fftshift(abs(fft_sm)))title('基带信号-频谱')axis tightsubplot(3,2,4)plot(f,fftshift(abs(fft_sc)))title('载波信号-频谱')axis tightsubplot(3,2,6)plot(f,fftshift(abs(fft_s_am)))title('调幅信号-频谱')axis tightsuptitle('幅度调制-双边带调制')%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ s_am = s_am_SSB_UP; %--单边带幅度调制(抑制:载波+下边带)%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ %--频谱计算fft_sm = fft(sm);fft_sc = fft(sc);fft_s_am = fft(s_am);f = ((fix(-N/2)):1:fix(N/2)-1)*fs/N;%--x轴坐标,适合 fftshift 之后,画图使⽤%--绘图figure('color','w')subplot(3,2,1)plot(sc)title('载波信号')axis tightsubplot(3,2,5)plot(s_am)title('调幅信号')axis tightsubplot(3,2,2)plot(f,fftshift(abs(fft_sm)))title('基带信号-频谱')axis tightsubplot(3,2,4)plot(f,fftshift(abs(fft_sc)))title('载波信号-频谱')axis tightsubplot(3,2,6)plot(f,fftshift(abs(fft_s_am)))title('调幅信号-频谱')axis tightsuptitle('幅度调制-单边调制-上边带')%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ s_am = s_am_SSB_DW; %--单边带幅度调制(抑制:载波+上边带)%--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ %--频谱计算fft_sm = fft(sm);fft_sc = fft(sc);fft_s_am = fft(s_am);f = ((fix(-N/2)):1:fix(N/2)-1)*fs/N;%--x轴坐标,适合 fftshift 之后,画图使⽤%--绘图figure('color','w')subplot(3,2,1)plot(sm)title('基带信号')axis tight %--使得图形紧凑subplot(3,2,3)plot(sc)title('载波信号')axis tightsubplot(3,2,5)plot(s_am)title('调幅信号')axis tightsubplot(3,2,2)plot(f,fftshift(abs(fft_sm)))title('基带信号-频谱')axis tightsubplot(3,2,4)plot(f,fftshift(abs(fft_sc)))title('载波信号-频谱')axis tightsubplot(3,2,6)plot(f,fftshift(abs(fft_s_am)))title('调幅信号-频谱')axis tightsuptitle('幅度调制-单边调制-下边带')。
(代码)基于MATLAB的AM调制解调系统仿真报告
内部基于MATLAB的AM调制解调系统仿真报告XXXX-XXXX-XXXX-XXXXV1.0天津市智能信号与图像处理重点实验室2013年10月29日修订历史记录日期版本文档负责人修改内容2013-10-29 V1.0 刘亚洲创建文档编制姓名签字日期电话审查姓名签字日期电话审核姓名签字日期电话批准姓名签字日期电话文档评审负责人:参加评审人员:目录1引言 (5)1.1设计目的 (5)1.2术语定义 (5)1.3参考资料 (5)1.4文档组织 (5)2 AM调制解调 (6)2.1AM调制 (6)2.2AM解调 (7)3 基于MATLAB的AM仿真 (8)3.1仿真基本参数 (8)3.2生成调制信号 (8)3.3AM调制器 (8)3.4相干解调器 (9)4 仿真结果曲线 (10)4.1发送信号波形和频谱 (10)4.2载波信号波形和频谱 (12)4.3AM信号波形和频谱 (14)4.4相干解调波形和频谱 (16)4.5恢复信号波形和频谱 (18)5总结 (20)6程序附录 (20)1引言1.1设计目的本报告依照传统模拟调制的规范,给出了AM调制解调的具体流程,重点研究了系统中各阶段信号时域和频谱波形以及频谱的搬移变化,为AM调制解调系统信号波形的进一步深入研究做了基础。
1.2术语定义本文档使用以下关键术语和简略语。
英文缩写英文全称中文名称AM Amplitude Modulation 幅度调制AWGN Additive White Gaussian Noise 加性高斯白噪声1.3参考资料[1]通信原理(第六版)樊昌信曹丽娜编著国防工业出版社2007年1月1.4文档组织报告第二部分给出了AM调制解调的基本原理;第三部分给出了系统在MATLAB里面的程序调试及仿真;第四部分给出了各仿真模块输出时域和频域波形,并对比发射信号和接收信号的时域波形;第五部分对报告进行了总结。
2 AM 调制解调信源信号信宿信号AM 调制AM 解调信道加性噪声图1 AM 调制解调系统框图图1显示给出了用于AM 调制解调的系统框图。
AM系统仿真
*******************实践教学*******************大学计算机与通信学院2014年秋季学期通信原理课程设计题目: AM调制系统仿真专业班级:通信工程姓名:学号:指导教师:成绩:摘要这次的课程设计我们组主要运用MATLAB设计AM调制解调系统仿真。
在这次课程设计中先根据AM调制与解调原理编写调制解调程序,然后设计FIR低通滤波器,合理设置参数并运行,并通过不断的修改优化得到需要信号,之后分别加入高斯白噪声,并分析对信号的影响,最后通过对解调信号的波形图、频谱图和功率谱的分析得出AM调制解调系统仿真是否成功。
关键词:AM;调制;解调;噪声;滤波目录前言 (1)第一章基本原理 (2)2.1 AM调制解调原理 (2)2.2高斯白噪声原理 (4)2.3 Matlab基本原理 (5)第二章FTR滤波器的设计 (6)2.1 FIR数字低通滤波器的设计 (6)第三章基于Matlab的AM调制系统仿真 (8)3.1 载波信号的仿真 (8)3.2 AM调制信号的仿真 (9)3.3 AM已调信号的信号仿真 (10)3.4 AM解调信号的仿真 (11)总结 (14)致谢 (15)参考文献 (16)附录一 (17)附录二 (20)前言调制就是使一个信号(如光、高频电磁振荡等)的某些参数(如振幅、频率等)按照另一个欲传输的信号(如声音、图像等)的特点变化的过程。
用所要传播的语言或音乐信号去改变高频振荡的幅度,使高频振荡的幅度随语言或音乐信号的变化而变化,这个控制过程就称为调制。
其中语言或音乐信号叫做调制信号,调制后的载波就载有调制信号所包含的信息,称为已调波。
解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。
对于幅度调制来说,解调是从它的幅度变化提取调制信号的过程。
对于频率调制来说,解调是从它的频率变化提取调制信号的过程。
频率解调要比幅度解调复杂,用普通检波电路是无法解调出调制信号的,必须采用频率检波方式,如各类鉴频器电路。
AM调制与包络(相干)解调系统仿真
2
其调制波形图及频谱图如下:
m t
m t
t
t
M Βιβλιοθήκη M Am m A t t 0 0
H H
t
载波
H
H
t
载波
t
SAM
SAM
t
sAM t
sAM t
t
c
0
c
c
0
c
t
•
AM信号波形的包络与输入基带信号成正比,故用包络 检波的方法很容易恢复原始调制信号。 但为了保证包络 检波时不发生失真,必须满足,否则将出现过调幅现象而 带来失真。AM信号的频谱是由载频分量和上、下两个边带 组成(通常称频谱中画斜线的部分为上边带,不画斜线的 部分为下边带)。上边带的频谱与原调制信号的频谱结构 相同,下边带是上边带的镜像。显然,无论是上边带还是 下边带,都含有原调制信号的完整信息。故AM信号是带有 载波的双边带信号,它的带宽信号带宽的两倍。
相干解调 由AM信号的频谱可知,如果将已调信号的频谱搬回到 原点位置,即可得到原始的调制信号频谱,从而恢复出原 始信号。解调中的频谱搬移同样可用调制时的相乘运算来 实现。相干解调的关键是是必须产生一个与调制器同频同 相位的载波。如果同频同相位的条件得不到满足,则会破 坏原始信号的恢复。
三.Simulink仿真
图2.1 幅度调制模型
在图2-1中,若假设滤波器为全通网络(=1),调制信号 叠加直流后再与载波相乘,则输出的信号就是常规双边带 (AM)调幅 .AM调制器模型如图2-2所示
图2.2 AM调制模型
• 时域表达式: sAM (t ) [ A0 m(t )]cos ct A0 cos ct m(t )cos ct • 频谱表达式: S ( ) A [ ( ) ( )] 1 [ M ( ) M ( )] AM 0 c c c c
AM信号的调制与解调(带仿真图)
AM信号的调制与解调(带仿真图)
AM调制(Amplitude Modulation)是指将一个较低频率的信息信号,如语音、音乐等,通过调制将其变成一个载波的振幅随时间变化的信号,使之能够通过远距离传输,同时也可通过解调还原出原始信号。
AM信号的调制过程:
首先,我们需要一个高频载波信号(通常为数十kHz至数百kHz范围内的正弦波信号),用于携带信息信号。
将载波信号的振幅、频率、相位等参数保持不变,称为“未调制”的载波信号。
接着,将需要传输的信息信号(如语音、音乐等)与未调制的载波信号进行线性加和,得到调制信号。
调制信号的振幅随着信息信号的变化而变化,从而实现了信息的传输。
AM信号的解调过程:
当调制信号到达接收端时,需要通过解调还原出原始信号。
解调方法有多种,这里介绍AM信号的一个简单解调方法——幅度解调(AM Detector)。
幅度解调的基本原理是利用二极管的阻抗特性,将入射信号的高频载波部分“切掉”,只保留信息信号的部分,从而实现解调。
具体操作过程为:
首先,将接收到的调制信号通过一个带通滤波器(Bandpass Filter)滤掉不需要的高频信号,保留低频信息信号。
接着,将滤波后的信号通过一个二极管(Detector)进行整流(Rectify),从而将信号全部变为正半波。
最后,将整流后的信号再通过一个低通滤波器(Lowpass Filter)滤掉高频噪声,从而还原出原始信息信号。
利用MATLAB仿真AM DSB调制解调系统
利用MATLAB 仿真AM/DSB 调制解调系统一、 系统概述利用MATLAB 的GUI 设计一个仿真AM/DSB 调制解调的系统。
输入不同的参数,产生不同的载波信号、调制信号、调幅信号、解调后信号、滤波后信号。
其中,调幅有标准调幅(AM )和双边带调幅(DSB )两种方案,而滤波器也有FIR 低通滤波和IIR 低通滤波两种选择。
二、背景知识1.振幅调制所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。
这里高频振荡波就是携带信号的运载工具,也叫载波。
振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。
在线性调制系列中,最先应用的一种幅度调制是全调幅或常规调幅,简称为调幅(AM )。
为了提高传输的效率,还有载波受到抑制的双边带调幅波(DSB )和单边带调幅波(SSB )。
本系统采用AM 与DSB 两种调制方式。
设正弦载波为)cos()(0ϕω+=t A t c c式中,A 为载波幅度;c ω为载波角频率;0ϕ为载波初始相位(通常假设0ϕ=0). 调制信号(基带信号)为)(t m 。
根据调制的定义,振幅调制信号(已调信号)一般可以表示为)cos()()(t t Am t s c m ω=设调制信号)(t m 的频谱为)(ωM ,则已调信号)(t s m 的频谱)(ωm S : )]()([2)(c c m M M A S ωωωωω-++= 3.信号解调从高频已调信号中恢复出调制信号的过程称为解调。
对于振幅调制信号,解调就是从它的幅度变化上提取调制信号的过程。
解调是调制的逆过程。
可利用乘积型同步检波器实现振幅的解调,让已调信号与本地恢复载波信号相乘并通过低通滤波可获得解调信号。
4.滤波器解调后的信号还需要进行低通滤波滤去高频部分才能获得所需信号。
低通滤波器种类繁多,每一种原理各不相同。
本系统有FIR 与IIR 两种滤波器可供选择。
三、系统界面简介如图所示,输入参数,选择调幅方案与滤波器后,点击不同的信号按钮,就会在两个坐标系里分别出现该信号的时域波形图和频域波形图。
AM调制与包络(相干)解调系统仿真 设计报告
通信系统课程设计报告AM调制与包络(相干)解调系统仿真摘要本课程设计主要利用MATLAB集成环境下的Simulink仿真平台,设计一个AM 调制与相干解调通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。
经过调制,初步实现了设计目标,并且经过适当的完善后,实验成功。
关键词Simulink;仿真;AM调制;相干解调Abstract This course design mainly use MATLAB Simulink simulation platform of integrated environment, designing a AM modulation and coherent demodulation communication system, respectively, in the ideal and non-ideal channel operation, and the operation input display simulation results, analysis the performance of the system designed according to the results of the display.After modulation, preliminary design goal is achieved, and after the improvement of the appropriate experiment is successful.Keywords Simulink;The simulation;AM modulation; Coherent demodulationAM调制与包络(相干)解调系统仿真目录1引言 ................................................................................................... - 1 -1.1课程设计目的.................................................................................................................................... - 1 -1.2课程设计的要求................................................................................................................................ - 1 -1 .3设计平台........................................................................................................................................... - 1 - 2设计原理......................................................................................................................................... -2 -2.1AM调制原理 ..................................................................................................................................... - 2 -2.2 相干解调........................................................................................................................................... - 3 - 3设计步骤............................................................................................................................................. - 3 -3.1构建AM调制与相干解调框图........................................................................................................ - 3 -3.2模型文件的参数配置........................................................................................................................ - 4 -3.4 仿真与结果分析............................................................................................................................... - 5 - 4出现的问题及解决方法 ................................................................... - 9 - 5结束语 ............................................................................................. - 10 -25结束语- 10 -1 引言本课程设计是在MATLAB集成环境下,设计一个AM调制与相干解调通信系统,并在Simulink平台上仿真,并把运行仿真结果输入显示器,拿解调输出的波形与基带信号进行比较,根据显示结果分析所设计的系统性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指导教师对学生在课程设计中的评价评分项目优良中及格不及格课程设计中的创造性成果学生掌握课程内容的程度课程设计完成情况课程设计动手能力文字表达学习态度规范要求课程设计论文的质量指导教师对课程设计的评定意见综合成绩指导教师签字 2014年1月10日AM调制系统仿真摘要本课程设计主要利用MATLAB集成环境下的Simulink仿真平台,设计一个AM调制通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。
经过调制,初步实现了设计目标,并且经过适当的完善后,实验成功。
关键词Simulink;仿真;AM调制;相干解调1 引言本课程设计是在MATLAB集成环境下,设计一个AM调制通信系统,并在Simulink 平台上仿真,并把运行仿真结果输入显示器,拿解调输出的波形与基带信号进行比较,根据显示结果分析所设计的系统性能。
MATLAB是一种可交互式使用又能解释执行的计算机编程语言,利用简单的命令,能快速完成其他高级语言只有通过复杂编程才能实现的数值运算和图形显示。
Simulink是建立在MATLAB基础上的动态系统仿真工具。
利用MATLAB 工具箱可以快速完成各类数值计算、符号计算和数据可视化等任务,可以解决有关线性代数、矩阵分析、微积分、微分方程、信号与系统、信号分析与处理、系统控制等领域的问题;利用Simulink机器模块库,则能够方便地创建各种动态系统的模型并进行仿真,可以用来仿真线性系统、非线性系统、连续系统、离散系统、连续和离散的混合系统、多速率采样系统以及单任务或多任务的离散事件驱动系统。
通过Simulink,用户可以快速的构建和运行仿真模型,根据仿真结果分析系统性能,并且从中分离出影响系统性能的关键因素,找出最优的系统配置方案。
1.1课程设计目的设计一个AM调制通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。
本课程设计课题主要研究AM 调制与解调模拟系统的理论设计和软件仿真方法。
通过完成本课题的设计,拟主要达到以下几个目的:(1)掌握模拟系统AM 调制与解调的原理;(2)掌握AM 调制与解调模拟系统的理论设计方法;(3)掌握应用MATLAB分析系统时域、频域特性的方法,进一步锻炼应用Matlab进行编程仿真的能力;(4)熟悉基于Simulink的动态建模和仿真的步骤和过程;1.2课程设计的要求(1)构建调制电路,并用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号频谱的变化。
(2)再以调制信号为输入,构建解调电路,用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号频谱的变化。
(3)在调制与解调电路间加上噪声源,模拟信号在不同信道中的传输:a 用高斯白噪声模拟有线信道,b 用瑞利噪声模拟有直射分量的无线信道,c 用莱斯噪声模拟无直射分量的无线信道。
将三种噪声源的方差均设置为0.1,分析比较通过三种不同信道后的接收信号的性能。
(4)在老师的指导下,要求独立完成课程设计的全部内容,并按要求编写课程设计学年论文,能正确阐述和分析设计和实验结果。
1.3设计任务及技术指标(1)设计实现AM调制与解调的模拟系统,给出系统的原理框图,对系统的主要参数进行设计说明。
(2)采用Matlab语言设计相关程序,实现系统的功能,要求采用两种方式进行仿真,即直接采用Matlab语言编程的静态仿真方式、采用Simulink进行动态建模和仿真的方式。
要求采用两种以上调制信号源进行仿真,并记录系统的各个输出点的波形和频谱图。
(3)采用LabVIEW进行仿真设计,实现系统的功能,要求给出系统的前面板和框图,采用两种以上调制信号源进行仿真,并记录仿真结果。
(4)要求对系统的时域、频域特性进行分析,并与理论设计结果进行比较分析。
(5)对系统功能进行综合测试,整理数据,撰写设计报告。
1 .4设计平台Simulink是Matlab环境下的一部分,它通过使用框图的方式编辑建模,比较直观。
Simulink是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中【2】。
Simulink是Matlab最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。
Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。
对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试【3】。
Simulink是一种可视化工具。
构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。
Simulink与MATLAB; 紧密集成,可以直接访问MATLAB大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。
1.5 拓展部分(1) 设计实现AM调制与解调的模拟系统,给出系统的原理框图,对系统的主要参数进行设计说明,具体参数包括:载波频率、调制信号频率、载波大小、调制信号大小、滤波器参数等。
并对所设计的系统进行理论分析计算。
(2)根据所设计的AM调制与解调的模拟系统,进行基于Matlab语言的静态仿真设计。
分别实现单音调制的普通调幅方式(AM)、抑制载波的双边带调制(DSB-SC)和单边带调制(SSB)的系统仿真设计,要求给出系统的Matlab编程仿真程序及结果,并要求写出程序的具体解释说明,记录系统的各个输出点的波形和频谱图。
要求调制信号分别采用不同类型的信号进行仿真,至少给出两种以上调制信号源,如:单音信号、合成复杂音信号、直接录制的模拟语音信号。
(3) 根据所设计的AM调制与解调的模拟系统,采用Simulink进行动态建模仿真设计。
分别实现普通调幅方式(AM)、抑制载波的双边带调制(DSB-SC)和单边带调制(SSB)的系统动态仿真设计,要求包括调制和解调的部分,并给出采用Simulink进行动态建模仿真的系统方框图,同时记录系统的各个输出点的波形和频谱图。
要求采用两种以上调制信号源进行仿真,具体参数自定。
载波信号频率根据设计情况设定。
(4)根据仿真结果,对系统的时域、频域特性进行分析,并与理论设计结果进行比较分析。
1.6 选作部分(1) 根据所设计的AM调制与解调的模拟系统,说明具体的参数,进行基于LabVIEW环境的仿真,分别实现普通调幅方式(AM)、抑制载波的双边带调制(DSB-SC)和单边带调制(SSB)的系统仿真设计,要求包括调制和解调的部分,给出系统的前面板和框图,并记录仿真结果。
(2)要求调制信号采用不同类型的信号源,进行进一步的仿真,给出系统的前面板和框图,并记录仿真结果,观察分析频谱的变化情况。
(3) 比较分析采用以上两种软件环境:Matlab 与LabVIEW ,进行仿真的各自的特点,分析说明不同语言环境的各自优势。
根据所设计的AM 调制与解调的模拟系统,采用Matlab 语言设计相关程序,并且利用GUI 设计图形用户界面,完成必选部分所要求的功能。
分析比较采用Matlab 语言的GUI 设计图形用户界面与采用LabVIEW 进行设计的各自的特点。
2 设计原理2.1AM 调制原理幅度调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。
幅度调制器的一般模型如图2.1所示。
幅度调制模型在图2-1中,若假设滤波器为全通网络(=1),调制信号()t m 叠加直流0A 后再与载波相乘,则输出的信号就是常规双边带(AM )调幅 .AM 调制器模型如图2-2所示AM 调制模型AM 信号波形的包络与输入基带信号()t m 成正比,故用包络检波的方法很容易恢复原始调制信号。
但为了保证包络检波时不发生失真,必须满足()max 0t m A ≥,否则将出现过调幅现象而带来失真。
AM 信号的频谱是由载频分量和上、下两个边带组成(通常称频谱中画斜线的部分为上边带,不画斜线的部分为下边带)。
上边带的频谱与原调制信号的频谱结构相同,下边带是上边带的镜像。
显然,无论是上边带还是下边带,都含有原调制信号的完整信息。
故AM 信号是带有载波的双边带信号,它的带宽信号带宽的两倍。
2.2 相干解调由AM信号的频谱可知,如果将已调信号的频谱搬回到原点位置,即可得到原始的调制信号频谱,从而恢复出原始信号。
解调中的频谱搬移同样可用调制时的相乘运算来实现。
相干解调的关键是是必须产生一个与调制器同频同相位的载波。
如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。
3设计步骤3.1构建AM调制与相干解调框图按照课程设计的各项要求,以及AM信号的调制解调原理,在仿真模型窗口选择合适的器件并在模块中画出AM调制和解调的电路级框图。
(1)打开Matlab7.0,出现下图界面(2)打开SImuilink.(3)点击新建文件。
在文件夹中加入元器件,连线,并创建模型文件。
AM调制解调电路框图3.2模型文件的参数配置将电路图连好后,依次对各模块和器件进行相应的参数配置。
在进行AM调制时,根据实际要求分别要对基带信号,直流信号,载波信号,基带信号的功率谱密度与调制信号的功率谱密度参数进行设置。
基带信号的的参数设置如图所示。
基带信号参数设置图载波信号参数设置如图所示载波信号参数设置图低通滤波器参数设置如图所示低通滤波器参数设置图3.4 仿真与结果分析接下来就是对构建的系统进行仿真。
运行完后,可以通过示波器和功率谱模块观察调制和解调结果。
在理想信道时的调制波形图如图所示。
AM调制波形图上图中,第一路为基带信号,第二路为AM调制信号,第三路为AM调制信号。
从图中可以看出,AM波的包络与基带信号的形状完全一致。
调制后的波形符合理论课中描述的波形,调制电路设计成功。
解调后的电路图如图所示。
AM解调波形图在上图种,第一路为解调后的信号,第二路为基带信号,由图形可以看出调制信号经过包络解波后能恢复成原始输入信号。
第三路为加入了高斯噪声后的解调信号,第四路为加入了莱斯噪声后的解调信号,第五路为加入了瑞利噪声后的解调信号.由上图可以看出,加入噪声后对解调信号有影响,其中高斯噪声对信号的影响最大。