数值分析实验报告(附程序)
数值分析实验报告
数值分析实验报告【引言】数值分析是一门研究利用计算机和数学方法解决实际问题的学科,它在工程、科学和经济领域中有着广泛的应用。
在这个实验报告中,我将分享我在数值分析实验中的一些发现和结果。
【实验目的】本次实验的目的是通过数值方法对给定的问题进行求解,并分析数值方法的精确性和稳定性。
我们选择了经典的插值和数值积分问题来进行实验。
【实验过程】在插值问题中,我使用了拉格朗日插值和样条插值两种方法。
通过使用已知的数据点,这些方法能够通过构造多项式函数来逼近原始函数,从而能够在未知点上进行预测。
通过比较两种插值方法的结果,我发现拉格朗日插值在低维数据上表现更好,而样条插值在高维数据上更能保持插值曲线的平滑性。
在数值积分问题中,我使用了复合梯形公式和复合辛普森公式来进行数值积分。
这两种方法可以将复杂的区间上的积分问题转化为对若干个小区间进行数值积分的问题。
实验结果表明,复合辛普森公式在使用相同的步长时,其数值积分结果更为精确。
【实验结果】我以一个实际问题作为例子来展示实验结果。
问题是计算半径为1的圆的面积。
通过离散化的方法,我将圆划分为多个小的扇形区域,并使用数值积分方法计算每个扇形的面积。
最后将每个扇形的面积相加,即可得到圆的近似面积。
通过调整离散化的精度,我发现随着扇形数量的增加,计算得到的圆的面积越接近真实的圆的面积。
在插值问题中,我选择了一段经典的函数进行插值研究。
通过选择不同的插值节点和插值方法,我发现当插值节点越密集时,插值结果越接近原函数。
同时,样条插值方法在高阶导数连续的情况下能够更好地逼近原始函数。
【实验总结】通过这次实验,我对数值分析中的插值和数值积分方法有了更深入的理解。
我了解到不同的数值方法在不同的问题中有着不同的适用性和精确度。
在实际应用中,我们需要根据具体问题选择合适的数值方法,并进行必要的数值计算和分析,以获得准确可靠的结果。
总的来说,数值分析作为一种重要的工具和方法,在科学研究和工程实践中具有广泛的应用,并且不断发展和创新。
数值分析综合实验报告
一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
数值分析(计算方法)课程设计实验报告(附程序)
n=4 时,max[L(X)-h(X)]=0.4020;
n=8 时,max[L(X)-h(X)]=0.1708;
n=10 时,max[L(X)-h(X)]=0.1092。
图象分析: 从图象可以看出随着插值节点数的增加出现异常的摆动,中间能较好的接近 原函数,但两边却出现很大的误差。
(3).对定义在(-5,5)上的函数
程序代码 2:
x=[-1:0.2:1]; y=1./(1+25.*x.^2); x0=[-1:0.01:1]; y0=lagrange(x,y,x0); y1=1./(1+25.*x0.^2);
plot(x0,y0,'--r'); hold on; plot(x0,y1,'-b'); x2=abs(y0-y1); max(x2) ; 程序代码3: n=3; for i=1:n x(i)=cos(((2.*i-1).*pi)./(2.*(n+1))); y(i)=1./(1+25.*x(i).*x(i)); end x0=-1:0.01:1; y0=lagrange(x,y,x0); y1=1./(1+25.*x0.^2); plot(x0,y0,'--r') hold on plot(x0,y1,'-b')
以 x1,x2,„,xn+1 为插值节点构造上述各函数的 Lagrange 插值多项式, 比较其 结果。
设计过程: 已知函数 f(x)在 n+1 个点 x0,x1,…,xn 处的函数值为 y0,y1,…,yn 。 求一 n 次多 项式函数 Pn(x),使其满足: Pn(xi)=yi,i=0,1,…,n. 解决此问题的拉格朗日插值多项式公式如下
数值分析实验 实验报告
数值分析实验实验报告数值分析实验实验报告一、引言数值分析是一门研究如何利用计算机对数学问题进行数值计算和模拟的学科。
在实际应用中,数值分析广泛应用于工程、物理、金融等领域。
本实验旨在通过实际操作,探索数值分析方法在实际问题中的应用,并通过实验结果对比和分析,验证数值分析方法的有效性和可靠性。
二、实验目的本实验的主要目的是通过数值分析方法,解决一个实际问题,并对比不同方法的结果,评估其准确性和效率。
具体来说,我们将使用牛顿插值法和拉格朗日插值法对一组给定的数据进行插值,并对比两种方法的结果。
三、实验步骤1. 收集实验数据:我们首先需要收集一组实验数据,这些数据可以来自实验测量、调查问卷等方式。
在本实验中,我们假设已经获得了一组数据,包括自变量x和因变量y。
2. 牛顿插值法:牛顿插值法是一种基于差商的插值方法。
我们可以通过给定的数据点,构造一个插值多项式,并利用该多项式对其他点进行插值计算。
具体的计算步骤可以参考数值分析教材。
3. 拉格朗日插值法:拉格朗日插值法是另一种常用的插值方法。
它通过构造一个满足给定数据点的多项式,利用该多项式对其他点进行插值计算。
具体的计算步骤也可以参考数值分析教材。
4. 结果比较与分析:在完成牛顿插值法和拉格朗日插值法的计算后,我们将比较两种方法的结果,并进行分析。
主要考虑的因素包括插值误差、计算效率等。
四、实验结果在本实验中,我们选取了一组数据进行插值计算,并得到了牛顿插值法和拉格朗日插值法的结果。
经过比较和分析,我们得出以下结论:1. 插值误差:通过计算插值点与实际数据点之间的差值,我们可以评估插值方法的准确性。
在本实验中,我们发现牛顿插值法和拉格朗日插值法的插值误差都较小,但是拉格朗日插值法的误差稍大一些。
2. 计算效率:计算效率是衡量数值分析方法的重要指标之一。
在本实验中,我们发现牛顿插值法的计算速度较快,而拉格朗日插值法的计算速度稍慢。
五、实验结论通过本实验,我们对数值分析方法在实际问题中的应用有了更深入的了解。
数值分析2024上机实验报告
数值分析2024上机实验报告数值分析是计算数学的一个重要分支,它研究如何用数值方法来解决数学问题。
在数值分析的学习过程中,学生需要通过上机实验来巩固理论知识,并学会使用相应的数值方法来解决实际问题。
本篇报告将详细介绍2024年度数值分析上机实验的内容和结果。
一、实验内容2024年度数值分析上机实验分为四个部分,分别是:方程求根、插值与拟合、数值积分和常微分方程的数值解。
1.方程求根这部分实验要求使用数值方法求解给定的非线性方程的根。
常见的数值方法有二分法、牛顿法、割线法等。
在实验过程中,我们需要熟悉这些数值方法的原理和实现步骤,并对不同方法的收敛性进行分析和比较。
2.插值与拟合这部分实验要求使用插值和拟合方法对给定的一组数据进行拟合。
插值方法包括拉格朗日插值、牛顿插值等;拟合方法包括最小二乘拟合、多项式拟合等。
在实验中,我们需要熟悉插值和拟合方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
3.数值积分这部分实验要求使用数值方法计算给定函数的积分。
常见的数值积分方法有梯形法则、辛普森法则、龙贝格积分等。
在实验过程中,我们需要熟悉这些数值积分方法的原理和实现步骤,并对不同方法的精度和效率进行比较。
4.常微分方程的数值解这部分实验要求使用数值方法求解给定的常微分方程初值问题。
常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。
在实验中,我们需要熟悉这些数值解方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
二、实验结果在完成2024年度数值分析上机实验后,我们得到了以下实验结果:1.方程求根我们实现了二分法、牛顿法和割线法,并对比了它们的收敛速度和稳定性。
结果表明,割线法的收敛速度最快,但在一些情况下可能会出现振荡;二分法和牛顿法的收敛速度相对较慢,但稳定性较好。
2.插值与拟合我们实现了拉格朗日插值和最小二乘拟合,并对比了它们的拟合效果和精度。
结果表明,拉格朗日插值在小区间上拟合效果较好,但在大区间上可能出现振荡;最小二乘拟合在整体上拟合效果较好,但可能出现过拟合。
数值分析方法实验报告
一、实验目的通过本次实验,掌握数值分析方法的基本原理和应用,熟悉MATLAB编程环境,学会使用MATLAB进行数值计算,并分析不同数值方法的优缺点。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种迭代方法,通过不断缩小根所在的区间,直到满足精度要求为止。
(2)步骤:①给定初始区间[a, b],使得f(a) f(b) < 0;②计算区间中点c = (a + b) / 2;③判断f(c)的符号:a. 若f(c) = 0,则c为方程的根;b. 若f(c) f(a) < 0,则新的区间为[a, c];c. 若f(c) f(b) < 0,则新的区间为[c, b];④重复步骤②和③,直到满足精度要求。
(3)代码实现:```MATLABfunction root = bisection_method(f, a, b, tol)while (b - a) / 2 > tolc = (a + b) / 2;if f(c) == 0break;elseif f(a) f(c) < 0b = c;elsea = c;endendroot = (a + b) / 2;end```2. Newton法求方程根(1)原理:Newton法是一种基于切线逼近的迭代方法,通过不断逼近函数的零点。
(2)步骤:①给定初始值x0;②计算导数f'(x)和f(x)在x0处的值;③计算新的近似值x1 = x0 - f(x0) / f'(x0);④重复步骤②和③,直到满足精度要求。
(3)代码实现:```MATLABfunction root = newton_method(f, df, x0, tol)while abs(f(x0)) > tolx1 = x0 - f(x0) / df(x0);x0 = x1;endroot = x0;end```3.不动点迭代法求方程根(1)原理:不动点迭代法是一种迭代方法,通过不断逼近不动点,即方程的根。
数值分析实验报告
一、实验目的1. 理解数值分析的基本概念和常用算法;2. 掌握数值方法在求解实际问题中的应用;3. 培养编程能力,提高对数值分析软件的使用熟练度。
二、实验内容本次实验主要涉及以下内容:1. 拉格朗日插值法;2. 牛顿插值法;3. 线性方程组的求解方法;4. 方程求根的数值方法;5. 最小二乘法曲线拟合。
三、实验步骤1. 拉格朗日插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算拉格朗日插值多项式L(x)。
(3)利用L(x)计算待求点x0的函数值y0。
2. 牛顿插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算牛顿插值多项式N(x)。
(3)利用N(x)计算待求点x0的函数值y0。
3. 线性方程组的求解方法(1)输入数据:给定线性方程组的系数矩阵A和常数向量b。
(2)采用高斯消元法求解线性方程组Ax=b。
4. 方程求根的数值方法(1)输入数据:给定函数f(x)和初始值x0。
(2)采用二分法求解方程f(x)=0的根。
5. 最小二乘法曲线拟合(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)建立线性最小二乘模型y=F(x)。
(3)利用最小二乘法求解模型参数。
四、实验结果与分析1. 拉格朗日插值法与牛顿插值法的比较通过实验,我们发现牛顿插值法的精度高于拉格朗日插值法。
这是因为牛顿插值法在计算过程中考虑了前一项的导数信息,从而提高了插值多项式的平滑性。
2. 线性方程组的求解方法高斯消元法在求解线性方程组时,计算过程较为繁琐,但稳定性较好。
在实际应用中,可根据具体问题选择合适的方法。
3. 方程求根的数值方法二分法在求解方程时,收敛速度较慢,但具有较好的稳定性。
对于初始值的选择,应尽量接近真实根。
4. 最小二乘法曲线拟合最小二乘法在拟合曲线时,误差较小,适用于数据点较多的情况。
数值分析原理实验报告
一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。
对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。
二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。
2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。
对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。
牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。
3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。
对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。
(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。
数值分析实验报告5篇
1.69376699767424 0.92310666706964 0.08471614569741 0.40804026409411
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
讨论:
利用这种方法进行这类实验,可以很精确的扰动敏感性的一般规律。即 当对扰动项的系数越来越小时,对其多项式扰动的结果也就越来越小, 即扰动敏感性与扰动项的系数成正比,扰动项的系数越大,对其根的扰 动敏感性就越明显,当扰动的系数一定时,扰动敏感性与扰动的项的幂 数成正比,扰动的项的幂数越高,对其根的扰动敏感性就越明显。
解线性方程组的直接方法
实验 (主元的选取与算法的稳定性) 问题提出:Gauss消去法是我们在线性代数中已经熟悉的。但由于计算 机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss消去法作为数值算法的稳定性呢?Gauss消去法从理论算法到数值 算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它 却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的 Gauss消去过程。 实验要求: (1)取矩阵,则方程有解。取n=10计算矩阵的条件数。让程序自动选 取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最 小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去 过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析 不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元
数值分析的实验报告
数值分析的实验报告实验目的本实验旨在通过数值分析方法,探讨数学问题的近似解法,并通过实际案例进行验证和分析。
具体目的包括: 1. 理解和掌握数值分析的基本原理和方法; 2. 学会使用计算机编程语言实现数值分析算法; 3. 分析数值分析算法的精确性和稳定性; 4. 根据实验结果对数值分析算法进行优化和改进。
实验步骤1. 问题描述首先,我们选择一个数学问题作为实验的对象。
在本次实验中,我们选取了求解非线性方程的问题。
具体而言,我们希望找到方程 f(x) = 0 的解。
2. 数值方法选择根据非线性方程求解的特点,我们选择了牛顿迭代法作为数值方法。
该方法通过不断迭代逼近方程的解,并具有较好的收敛性和精确性。
3. 程序设计与实现为了实现牛顿迭代法,我们使用了Python编程语言,并使用了相应的数值计算库。
具体的程序实现包括定义方程 f(x) 和其导数f’(x),以及实现牛顿迭代法的迭代过程。
4. 实验案例与结果分析我们选择了一个具体的方程,例如 x^3 - 2x - 5 = 0,并通过程序运行得到了方程的解。
通过比较实际解与数值解的差异,我们可以分析数值方法的精确性和稳定性。
5. 优化与改进基于实验结果的分析,我们可以对数值分析算法进行优化和改进。
例如,通过调整迭代的初始值、增加迭代次数或修改算法公式等方式,改进算法的收敛性和精确性。
实验结论通过本次实验,我们深入理解了数值分析的基本原理和方法,并通过具体案例验证了牛顿迭代法的有效性。
同时,我们也意识到数值分析算法的局限性,并提出了一些改进的建议。
在今后的数学问题求解中,我们可以运用数值分析的方法,通过计算机编程实现更精确的近似解。
数值分析实验报告
数值分析实验报告数值分析实验报告姓名:张献鹏学号:173511038专业:冶金工程班级:重冶二班目录1拉格朗日插值 (1)11.1问题背景.....................................................................................................11.2数学模型.....................................................................................................1.3计算方法1.....................................................................................................21.4数值分析.....................................................................................................2复化辛普森求积公式 (2)2.1问题背景2.....................................................................................................32.2数学模型.....................................................................................................32.3计算方法.....................................................................................................2.4数值分析5.....................................................................................................3矩阵的 LU 分解 (6)63.1问题背景.....................................................................................................3.2数学模型6.....................................................................................................3.2.1理论基础 (6)3.2.2实例 (7)73.3计算方法.....................................................................................................3.4小组元的误差 (8)4二分法求方程的根 (9)94.1问题背景.....................................................................................................94.2数学模型.....................................................................................................4.3计算方法9.....................................................................................................4.4二分法的收敛性 (11)5雅可比迭代求解方程组 (11)115.1问题背景...................................................................................................5.2数学模型11...................................................................................................5.2.1理论基础 (11)5.2.2实例 (12)5.3计算方法 (12)5.4收敛性分析 (13)6Romberg 求积法 (14)6.1问题背景 (14)6.2数学模型: (14)6.2.1理论基础 (14)6.2.2实例 (14)6.3计算方法 (15)6.4误差分析 (16)7幂法 (16)7.1问题背景 (16)7.2数学模型 (16)7.2.1理论基础 (16)7.2.2实例 (17)7.3计算方法 (17)7.4误差分析 (18)8改进欧拉法 (18)8.1问题背景 (18)8.2数学模型 (19)8.2.1理论基础 (19)8.2.2实例 (19)8.3数学模型 (19)8.4误差分析 (21)1拉格朗日插值1.1问题背景1f ( x)2, 5 x 5 求拉格朗日插值。
《数值分析》实验报告书
N4(0.895) function [y,R]= newcz(X,Y,x,M) x=0.895; M=4; X=[0.4,0.55,0.65,0.8,0.9]; Y=[0.41075,0.57815,0.69675,0.88811,1.02652];
n=length(X); m=length(x); for t=1:m z=x(t); A=zeros(n,n);A(:,1)=Y'; s=0.0; p=1.0; q1=1.0; c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)-A(i-1,j-1))/(X(i)-X(i-j+1)); end q1=abs(q1*(z-X(j-1)));c1=c1*j; end C=A(n,n);q1=abs(q1*(z-X(n))); for k=(n-1):-1:1 C=conv(C,poly(X(k)));d=length(C); C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); end R=M*q1/c1; 运行结果: ans = 1.0194
实验三、解线性方程组的直接法
解线性方程组的直接法是指经过有限步运算后能求得方程组精确解
的方法。但由于实际计算中舍入误差是客观存在的,因而使用这类方法 也只能得到近似解。目前较实用的直接法是古老的高斯消去法的变形, 即主元素消去法及矩阵的三角分解法。引进选主元的技巧是为了控制计 算过程中舍入误差的增长,减少舍入误差的影响。一般说来,列主元消 去法及列主元三角分解法是数值稳定的算法,它具有精确度较高、计算 量不大和算法组织容易等优点,是目前计算机上解中、小型稠密矩阵方 程组可靠而有效的常用方法。
Y=[0.82741,0.82659,0.82577,0.82495]; n=length(X); m=length(x); for i=1:m z=x(i);s=0.0; for k=1:n p=1.0; q1=1.0; c1=1.0; for j=1:n if j~=k p=p*(z-X(j))/(X(k)-X(j)); end q1=abs(q1*(z-X(j))); c1=c1*j; end s=p*Y(k)+s; end y(i)=s; end R=M.*q1./c1; 运行结果: ans = 0.8261 2. N3(0.596) function [y,R]= newcz(X,Y,x,M) x=0.596; M=3;
哈工大数值分析实验报告
哈工大数值分析实验报告标题:哈工大数值分析实验报告一、实验目的:本实验的目的是探究在数值分析中使用的各种数值方法,对于解决实际问题的有效性和可靠性进行评估。
二、实验内容:本实验主要包括以下几个方面的内容:1. 熟悉数值分析中常用的数值方法,如数值积分、数值微分、迭代法等;2. 在MATLAB等数学软件平台上,编写程序实现所学的数值方法;3. 使用所编写的程序,对给定的实际问题进行求解,并分析其结果的有效性和可靠性;4. 根据实际问题的特点,评估不同数值方法的适用性,并给出相应的结论和建议。
三、实验步骤:1. 阅读相关的理论知识,熟悉数值分析中常用的数值方法;2. 编写数值分析实验的程序代码,包括数值积分、数值微分和迭代法等;3. 使用编写的程序,对所给的实际问题进行求解,记录并分析结果;4. 根据实际问题的特点,评估所使用的数值方法的可靠性和有效性;5. 根据实验结果,撰写实验报告,包括实验目的、实验内容、实验步骤和实验结果的分析等。
四、实验结果:根据实际问题的不同,实验结果也会有所差异。
在实验报告中,可以详细叙述对所给实际问题的求解过程,并对结果进行分析和解释。
同时,还可以比较不同数值方法的结果,评估其优劣和适用性。
五、实验结论:根据实验结果的分析,可以得出结论,总结不同数值方法的优缺点,并对其在实际问题中的应用进行评价。
同时,还可以给出相应的建议,为以后的数值分析工作提供参考。
六、实验总结:通过本次实验,进一步加深了对数值分析中常用数值方法的理解和掌握。
通过实际问题的求解,对于这些数值方法的应用和效果有了更深入的认识。
同时,也提高了编程和科研报告撰写的能力,为以后的学习和工作打下了坚实的基础。
以上是关于哈工大数值分析实验报告的基本内容,具体实验细节和结果请根据实际情况进行补充。
数值分析实验报告包括程序截图
计算机与信息工程学院数值分析实验报告计科专业2013级2班 姓名:_________学号:________ 注:实验平台为VS2013实验一:Lagrange 插值法一、 实验目的(1)通过实验掌握Lagrange 插值法; (2)学会用编程语言求解具体插值问题。
二、实验题目:按Lagrange 插值算法编程求出f(0.596)的近似值;三、实验原理若给定两个插值点),(),,(1100y x y x ,其中10x x ≠,在公式中取1=n ,则Lagrange 插值多项式为: )()()()()()(001010010110101x x x x y y y x x x x y x x x x y x p ---+=--+--=是经过),(),,(1100y x y x 的一条直线,故此法称为线性插值法。
若函数给定三个插值点 2,1,0),,(=i y x i i ,,其中i x 互不相等,在公式中取1=n ,则Lagrange 插值多项式为:))(())(())(())(())(())(()(1202102210120120102102x x x x x x x x y x x x x x x x x y x x x x x x x x y x p ----+----+----=这种插值法称为二次插值或抛物插值。
四、实验内容与步骤五、实验程序六、实验结果及其分析教师评语: 实验成绩:_____计算机与信息工程学院数值分析实验报告实验二:最小二乘法一、 实验目的(1)掌握最小二乘法的基本思路和拟合步骤; (2)培养编程与上机调试能力。
二、 实验题目i x 1 2 3 4 5i y 4 4.5 6 8 8.5 i w 2 1 3 1 1三、 实验原理已知数据对()(),1,2,,j j x y j n =,求多项式0()()mi i i p x a x m n ==<∑使得20110(,,,)nm i n i j j j i a a a a x y ==⎛⎫Φ=- ⎪⎝⎭∑∑为最小,这就是一个最小二乘问题。
数值分析实验报告
数值分析实验报告一、实验目的数值分析是一门研究用计算机求解数学问题的数值方法及其理论的学科。
本次实验的目的在于通过实际操作和编程实现,深入理解和掌握数值分析中的常见算法,提高运用数值方法解决实际问题的能力,并对算法的精度、稳定性和效率进行分析和比较。
二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。
实验所依赖的主要库包括 NumPy、Matplotlib 等。
三、实验内容(一)函数逼近与插值1、拉格朗日插值法通过给定的离散数据点,构建拉格朗日插值多项式,对未知点进行函数值的估计。
2、牛顿插值法与拉格朗日插值法类似,但采用了不同的形式和计算方式。
(二)数值积分1、梯形公式将积分区间划分为若干个梯形,通过计算梯形面积之和来近似积分值。
2、辛普森公式基于抛物线拟合的方法,提高积分近似的精度。
(三)线性方程组求解1、高斯消元法通过逐行消元将线性方程组化为上三角形式,然后回代求解。
2、 LU 分解法将系数矩阵分解为下三角矩阵 L 和上三角矩阵 U,然后通过两次前代和回代求解。
(四)非线性方程求解1、二分法通过不断将区间一分为二,逐步缩小根所在的区间,直到满足精度要求。
2、牛顿迭代法利用函数的切线来逼近根,通过迭代逐步收敛到根的近似值。
四、实验步骤(一)函数逼近与插值1、拉格朗日插值法定义计算拉格朗日基函数的函数。
根据给定的数据点和待求点,计算插值多项式的值。
输出插值结果,并与真实值进行比较。
2、牛顿插值法计算差商表。
构建牛顿插值多项式。
进行插值计算和结果分析。
(二)数值积分1、梯形公式定义积分区间和被积函数。
按照梯形公式计算积分近似值。
分析误差。
2、辛普森公式同样定义积分区间和被积函数。
运用辛普森公式计算积分近似值。
比较与梯形公式的精度差异。
(三)线性方程组求解1、高斯消元法输入系数矩阵和右端项向量。
进行消元操作。
回代求解方程。
输出解向量。
2、 LU 分解法对系数矩阵进行 LU 分解。
工程数值分析实验报告(3篇)
第1篇一、实验目的本次实验旨在通过数值分析的方法,对工程实际问题进行建模、求解和分析。
通过学习数值方法的基本原理和算法,提高解决实际工程问题的能力。
二、实验内容1. 线性方程组的求解2. 矩阵特征值与特征向量的计算3. 函数插值与曲线拟合4. 数值微分与积分三、实验步骤1. 线性方程组的求解(1)编写程序实现高斯消元法、克劳斯消元法和列主元素法(2)设计输入界面,用户输入增广矩阵的行和列,填写系数及常数项(3)分别运用三种方法求解线性方程组,比较求解结果的正确性、数值稳定性和计算效率2. 矩阵特征值与特征向量的计算(1)编写程序实现幂法、QR算法和逆幂法(2)设计输入界面,用户输入矩阵的行和列,填写矩阵元素(3)分别运用三种方法计算矩阵的特征值与特征向量,比较求解结果的准确性和计算效率3. 函数插值与曲线拟合(1)编写程序实现拉格朗日插值、牛顿插值和样条插值(2)设计输入界面,用户输入函数的自变量和函数值,选择插值方法(3)分别运用三种方法进行函数插值,比较插值结果的准确性和光滑性4. 数值微分与积分(1)编写程序实现有限差分法、龙格-库塔法和辛普森法(2)设计输入界面,用户输入函数的导数或积分的上下限,选择数值方法(3)分别运用三种方法进行数值微分和积分,比较求解结果的准确性和计算效率四、实验结果与分析1. 线性方程组的求解通过实验,我们发现列主元素法在求解线性方程组时具有较好的数值稳定性,计算效率也较高。
而高斯消元法和克劳斯消元法在处理大型稀疏矩阵时存在一定的困难。
2. 矩阵特征值与特征向量的计算实验结果表明,QR算法和逆幂法在计算矩阵特征值与特征向量时具有较高的准确性和计算效率。
幂法在处理大型稀疏矩阵时表现出较好的性能。
3. 函数插值与曲线拟合在函数插值和曲线拟合实验中,样条插值方法具有较好的准确性和光滑性。
拉格朗日插值和牛顿插值方法在处理简单函数时表现良好,但在处理复杂函数时可能存在精度问题。
数值分析实验报告doc
数值分析实验报告篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告数值分析实验报告课题一:解线性方程组的直接方法1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。
2.实验过程:实验代码:#include "stdio.h"#include "math.h"#includeusing namespace std;//Gauss法void lzy(double **a,double *b,int n) {int i,j,k;double l,x[10],temp;for(k=0;k {for(j=k,i=k;j {if(j==k)temp=fabs(a[j][k]);else if(temp {temp=fabs(a[j][k]);i=j;}}if(temp==0){cout return;}elsefor(j=k;j {temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;i {l=a[i][k]/a[k][k];for(j=k;j a[i][j]=a[i][j]-l*a[k][j]; b[i]=b[i]-l*b[k];}}if(a[n-1][n-1]==0){cout return;}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i>=0;i--)temp=0;for(j=i+1;j temp=temp+a[i][j]*x[j]; x[i]=(b[i]-temp)/a[i][i];}for(i=0;i {printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}//平方根法void pfg(double **a,double *b,int n) {int i,k,m;double x[8],y[8],temp;for(k=0;k {temp=0;for(m=0;m temp=temp+pow(a[k][m],2); if(a[k][k] return;a[k][k]=pow((a[k][k]-temp),1.0/2.0); for(i=k+1;i {temp=0;for(m=0;m temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k];}temp=0;for(m=0;m temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k>=0;k--){temp=0;for(m=k+1;m temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;i {printf("x%d=%lf\t",i+1(转自:小草范文网:数值分析实验报告),x[i]);printf("\n");}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10];for(i=0;i {a0[i]=a[i][i];if(i c[i]=a[i][i+1];if(i>0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;i {b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;i y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i>=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;i {printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}int main(){int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;i {A[i]=(double *)malloc((n)*sizeof(double));B[i]=(double*)malloc((n)*sizeof(double));C[i]=(double*)malloc((n)*sizeof(double)); }cout cin>>n;cout for(i=0;i for(j=0;j篇三:数值分析实验报告(包含源程序)课程实验报告课程实验报告。
数值分析实验报告
数值分析实验报告数值分析实验报告导言数值分析是一门研究利用计算机进行数值计算和数值模拟的学科。
通过数值分析,我们可以利用数学方法和计算机技术解决实际问题,提高计算效率和精度。
本实验报告将介绍我们在数值分析实验中所进行的研究和实践。
一、实验目的本次实验的目的是通过数值分析方法,研究和解决实际问题。
具体而言,我们将通过数值计算方法,对某个物理模型或数学模型进行求解,并分析结果的准确性和稳定性。
二、实验方法我们采用了有限差分法作为数值计算的方法。
有限差分法是一种常用的数值分析方法,适用于求解偏微分方程和差分方程。
通过将连续的问题离散化为离散的差分方程,我们可以得到数值解。
三、实验步骤1. 确定问题:首先,我们需要确定要研究的问题。
在本次实验中,我们选择了热传导问题作为研究对象。
2. 建立数学模型:根据研究问题的特点,我们建立了相应的数学模型。
在热传导问题中,我们可以利用热传导方程描述热量的传递过程。
3. 离散化:为了进行数值计算,我们需要将连续的问题离散化为离散的差分方程。
在热传导问题中,我们可以将空间和时间进行离散化。
4. 求解差分方程:通过求解离散化的差分方程,我们可以得到数值解。
在热传导问题中,我们可以利用迭代法或直接求解法得到数值解。
5. 分析结果:最后,我们需要对数值解进行分析。
我们可以比较数值解和解析解的差异,评估数值解的准确性和稳定性。
四、实验结果通过数值计算,我们得到了热传导问题的数值解。
我们将数值解与解析解进行比较,并计算了误差。
结果显示,数值解与解析解的误差在可接受范围内,证明了数值计算的准确性。
此外,我们还对数值解进行了稳定性分析。
通过改变离散化步长,我们观察到数值解的变化趋势。
结果显示,随着离散化步长的减小,数值解趋于稳定,证明了数值计算的稳定性。
五、实验总结通过本次实验,我们深入了解了数值分析的基本原理和方法。
我们通过数值计算,成功解决了热传导问题,并对数值解进行了准确性和稳定性分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pn ( x ) L i ( x ) y i
i 0
n
其中 Li(x) 为 n 次多项式:
L i (x)
( x x 0 )( x x 1 ) ( x x i 1 )( x x i 1 ) ( x x n ) ( x i x 0 )( x i x 1 ) ( x i x i 1 )( x i x i 1 ) ( x i x n )
f ( x)
2i , n
n
1 1 25 x 2
i 0,1, 2, , n
区间[-考虑设计 1,1]的一个等距划分,节点为
xi 1
则拉个朗日插值多项式为
Ln ( x )
1 l ( x) 2 i i 0 1 25 xi
其中的 li(x),i=0,1,2,…,n 是 n 次 Lagrange 插值基函数。 设计要求: 1.选择不断增大的分点数 n=2,3,… *画出原函数 f(x)及插值多项式函数 Ln(x)在[-1,1]上的图像; *给出每一次逼近的最大误差; *比较并分析实验结果。 2.选择其它函数,例如定义在区间[-5,5]上的函数。
if(Nb==1) x0=linspace(a,b,Nd+1);y0=feval(f,x0); x=a:0.1:b;y=lagrange(x0,y0,x); fplot(f,[a,b],'co'); hold on; plot(x,y,'b--'); xlabel('x') ;ylabel('y=f(x)o and y=ln(x)--'); hold on; f1=1./(1+25*x.^2); err=max(abs(y-f1)); result=inputdlg({'请输入插值点数N:'},'charpt_2',1,{'10'}); xc=-cos(pi*[0:4]/4); x=(a+b)*0.5+(b-a)*xc*0.5; elseif(Nb==2) x0=linspace(a,b,Nd+1);y0=feval(f,x0); x=a:0.1:b; cs=spline(x0,y0);y=ppval(cs,x); plot(x0,y0,'o');hold on;plot(x,y,'k-'); xlabel('x');ylabel('y=f(x) o and y=spline(x)-'); end function y=lagrange(x0,y0,x) n=length(x0); m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end t1=clock %获得系统时间
附录
程序代码 1: function t_charpt result=inputdlg({'请选择实验,若选2.1,请输入1,否则输入2:'},'charpt_2',1,{'1'}); Nb=str2num(char(result)); if(Nb~=1)&(Nb~=2) errordlg('实验选择错误!');return;end promps={'请选择实验函数,若选f(x),请输入f,若选h(x),请输入h,若选g(x),请输入g:'}; % 选择所要运算的函数 titles='charpt_2'; result=inputdlg(promps,'charpt 2',1,{'f'}); Nb_f=char(result); if(Nb_f~='f'&Nb_f~='h'&Nb_f~='g') errordlg('实验选择错误!'); return;end result=inputdlg({'请输入插值点数N:'},'charpt_2',1,{'10'}); Nd=str2num(char(result)); if(Nd<1)errordlg('结点输入错误!');return;end switch Nb_f case 'f' f=inline('1./(1+25*x.^2)');a=-1;b=1; case 'h' f=inline('x./(1+x.^4)');a=-5;b=5; case 'g' f=inline('atan(x)');a=-5;b=5; end
h( x )
x , g ( x) arctan x 1 x4
重复上述实验看其结果如何。 3.区间[a,b]上切比雪夫(Chebychev)点的定义为
xk
(2k 1) ba ba cos 2 2 2(n 1)
, k 1, 2, , n 1
f ( x)
(1).在 MATLAB6.5 中输入函数
1 1 25 x 2
当取不同的分点数 n 时,所得图象与原函数图象对比如下:
n=2 时;最大误差为: Max[L(x)-f(x)]=0.6462
n=3 时,max[L(X)-f(X)]=0.7070;
n=6 时,max[L(X)-f(X)]=0.6169;
数值分析课程设计
课程设计的目的和意义: 《课程设计》是数值分析的同步课程,是《数值分析》的上机实习课。 《数值分析》 课程中构造了各种有效的算法和有效公式,同学们通过上机 作课程设计,学习揣摩这些算法的思想和构造,评价算法的优劣性。 通过上机, 可以提高我们运用数学软件编程解决问题的能力,为今后从事 科学计算和软件开发打下良好的基础。 课程设计的题目: 多项式插值的 Runge 振荡现象 设计目的: 通过对多项式插值现象的观察, 了解多项式的次数与逼近效果的关系,提高同 学们分析实验结果的能力。 问题提出: 考虑在一个固定区间上用插值逼近一个函数。显然,Lagrange 插值中使用的 节点越多, 插值多项式的次数就越高。 我们自然关心插值多项式增加时, Ln(x) 是否也更加靠近被逼近的函数。龙格(Runge)给出的一个例子是极著名并富有 启发性的。设区间[-1,1]上的函数
(3). 以上实验是从对区间的等距划分而作出的拉格朗日多项式,也因此产生 了龙格振荡现象,现在我们通过用切比雪夫点来对上述各函数的区间进行划分, 以此来建立拉格朗日多项式, 看这样建立的拉格朗日多项式是否还会出现龙格振 1 荡现象。 还是考虑函数 f ( x) ,为了与等距节点进行比较,我们 1 25 x 2 仍然选取节点数不断增多的拉格朗日多项式。得到不同图象:
计算机配置:AMD athlon(tm) 1.73GHz,512MB内存。 CPU时间:(4.880000-0.020000,4.880000+0.020000)seconds。 运行平台:MATLAB 6.5.1
n=3 时;
n=6 时;
Байду номын сангаас
n=11 时;
n=21 时。
图象分析: 可见利用切比雪夫点来构造的拉格朗日多项式比等距节点下的拉格朗日多项 式更为有效,随着节点数的增加,逼近程度就越好,它能很好的消除了“龙格现 象” 。 心得体会: 1)深入了解 matlab 运行环境和操作环境,初步学会调试程序,运用绘图命令制 作函数图象。 2)了解 lagrange 插值法龙格的异常现象,以及数值分析的解决方案。 3)懂得如何运用已有的知识更进一步了解未知的问题。 4)独立解决和思考问题的能力有了一定的提高。 参考文献: 《数值分析》华中科技大学出版社。李红 著 《matlab 从入门到精通》人民邮电出版社 求是科技 编著 《数值分析》北京理工大学出版社 史万明 孙新 等 编著
n=4 时,max[L(X)-h(X)]=0.4020;
n=8 时,max[L(X)-h(X)]=0.1708;
n=10 时,max[L(X)-h(X)]=0.1092。
图象分析: 从图象可以看出随着插值节点数的增加出现异常的摆动,中间能较好的接近 原函数,但两边却出现很大的误差。
(3).对定义在(-5,5)上的函数
程序代码 2: x=[-1:0.2:1]; y=1./(1+25.*x.^2); x0=[-1:0.01:1]; y0=lagrange(x,y,x0); y1=1./(1+25.*x0.^2);
plot(x0,y0,'--r'); hold on; plot(x0,y1,'-b'); x2=abs(y0-y1); max(x2) ; 程序代码3: n=3; for i=1:n x(i)=cos(((2.*i-1).*pi)./(2.*(n+1))); y(i)=1./(1+25.*x(i).*x(i)); end x0=-1:0.01:1; y0=lagrange(x,y,x0); y1=1./(1+25.*x0.^2); plot(x0,y0,'--r') hold on plot(x0,y1,'-b')
g(x)=arctanx
在 matlab 里输入相应的 lagrange 插值公式,当 n 取不同的值时,得到相应图象 如下:
n=4 时,max[L(X)-g(X)]=0.4458;
n=8 时,max[L(X)-g(X)]=0.3240;
N=10 时,max[L(X)-g(X)]=0.8066。