[81页]电感耦合等离子体原子发射光谱分析-讲课

合集下载

电感耦合等离子体-质谱法 ppt课件

电感耦合等离子体-质谱法  ppt课件

PPT课件
37
基体效应:
ICPMS中所分析的试样,—般为固体含量其质量分数 小于1%,或质量浓度约为1000ug.mL-1的溶液试样。 当溶液中共存物质量浓度高于500—1000ug.mL-1 时, ICPMS分析的基体效应才会显现出来。共存物中含有 低电离能元素例如碱金属、碱土金属和镧系元素且超 过限度。由它们提供的等离子体的电子数目很多,进 而抑制包括分析物元素在内的其它元素的电离,影响 分析结果。试样固体含量高会影响雾化和蒸发溶液以 及产生和输送等离子体的过程。试样溶液提升量过大 或蒸发过快,等离子体炬的温度就会降低,影响分析 物的电离,使被分析物的响应下降、基体效应的影响 可以采用稀释、基体匹配、标准加入或者同位素稀释 法降低至最小。
Ion Optics Mass Separation Device
Turbo Molecular Pump
Turbo Molecular Pump
Mechanical Pump
RF Power Supply
Basic Instrumental Components of ICP-MS
PPT课件 10
PPT课件 33

同质量类型离子干扰
同质量类型离子干扰是指两种不同元素有几乎相 同质量的同位素。对使用四极质谱计的原子质谱仪来 说,同质量类指的是质量相差小于一个原于质量单位 的同位素。使用高分辨率仪器时质量差可以更小些。 周期表中多数元素都有同质量类型重叠的一个、二个 甚至三个同位素。 如:铟有113In+和115In+两个稳定的同位素 前者与113Cd+重叠,后者与115Sn+重叠。 因为同质量重叠可以从丰度表上精确预计.此干扰 的校正可以用适当的计算机软件进行。现在许多仪器 已能自动进行这种校正。

电感耦合等离子体原子发射光谱分析

电感耦合等离子体原子发射光谱分析
随着科学技术的不断发展,ICP-AES技术在不断改进和完善,为各领域的科学研究 提供了有力支持。
电感耦合等离子体原子发射光谱分析简介
ICP-AES基本原理
利用电感耦合等离子体作为激发光源,使样 品中的原子或离子被激发并发射出特征光谱 ,通过对光谱的分析确定元素的种类和含量 。
ICP-AES仪器组成
仪器操作与实验过程
仪器准备
检查仪器状态,确保各 部件正常运行。开启仪 器,进行预热和校准。
样品引入
将制备好的样品引入等 离子体焰炬中,注意控
制引入速度和量。
光谱采集
设置合适的观测参数, 如波长范围、扫描速度
等,采集光谱信号。
数据处理与分析
对采集的光谱信号进行背景 校正、干扰元素校正等处理
,得到准确的分析结果。
生物医学材料研究
ICP-AES可分析生物医学材料(如生物陶瓷、生物降解塑料等)中的 元素组成和含量,为材料设计和性能优化提供数据支持。
THANKS FOR WATCHING
感谢您的观看
光谱仪
包括光栅或棱镜分光系统、光电 倍增管或固态检测器等,用于分 散和检测发射出的特征光谱。
工作气体
通常使用氩气作为工作气体, 用于维持等离子体的稳定性和 激发样品中的原子或离子。
环境条件
需要保持实验室的清洁、干燥和恒 温等环境条件,以确保仪器设备的
正常运行和实验结果的准确性。
样品前处理技术
样品消解
电感耦合等离子体原子发射光谱分 析
contents
目录
• 引言 • 实验原理与技术 • 实验方法与步骤 • 结果分析与讨论 • 应用领域与案例
01 引言
背景与意义
电感耦合等离子体原子发射光谱分析(ICP-AES)是一种广泛应用于元素分析的技 术。

第二章 电感耦合等离子发射光谱分析

第二章 电感耦合等离子发射光谱分析

第五节 ICP-AES测光装置
• 主要有光电检测和照相检测两种方式,常用光电 检测。
• 一、照相检测法
• 照相检测法能够在很宽的范围内记录,对于判断 干扰线,选择分析线很方便。因此,在定性分析 和多元素同时定量分析中仍然有一定的用途。 • 定量分析测谱线的强度,I ∝ C。用测微光度计 测量谱线上谱线的黑度,换算成强度,经常使用 内标法。
第三步是利用检测计算系统记录光谱,测量谱线波长,
强度或宽度,并进行运算,最后得到试样中元素的含 量.
根据试样的处理方式,分两种方法
直接光谱分析法:不需要预先化学处理,采用粉末 或固体作为试样
化学光谱分析法:试样需要预先经过化学处理,一 般采用溶液作为试样. • 根据待测物质所发射的光谱,确定其中含有的元素 种类—光谱定性分析.
• 通过谱线强度的比较,测定物质中各种元素含量---光谱定量分析.
第二节 ICP概述
• 一 等离子体定义
• 一般是指高度电离的气体,它属于物质的“第四 态”、离子,也含有部分分子和原子,整体呈现 电中性。 • “等离子体”的光源指的是在氩气或氦气等稀有 气体中发生的火焰状放电。电弧法,火花法和火 焰法发射光谱分析的光源也是“等离子体”光源。
(2)荧光光谱分析
• 根据原子或分子的特征荧光光谱来研究物质的结 构和测定物质的化学成分的方法,激发光源通常 为紫外光(如汞弧灯)。
(3)吸收光谱分析
• 根据原子或分子的特征吸收光谱来研究物质的结 构和测定物质的化学成分的方法,激发光源通常 为连续光源(如钨丝灯)。
二 原子结构和原子光谱
• 基态 激发态 电子从E1-----E2叫跃迁。 • 电子由E低----E高叫激发,原子在光的作用下激 发-------受激吸收。 • 激发态原子由高能级向低能级跃迁,释放出光子------自发发射. • 亚稳态 亚稳态 -----低能级,释放出光子----受激发射. • 受激发射大大弱于受激吸收,因而没有输出.然而 利用激光器可以把受激发射加以放大,获得激光

检测中心-电感耦合等离子体光谱仪(ICP)及其应用介绍 ppt课件

检测中心-电感耦合等离子体光谱仪(ICP)及其应用介绍  ppt课件
1. 利用等离子体激发光源(ICP)使试样蒸发汽化, 离解 或分解为原子状态,原子可能进一步电离成离子态, 原子及离子在光源中激发发光。
2. 利用光谱仪器将光源发射的光分解为按波长排列的光 谱。
3. 利用光电器件检测光谱,按测定得到的光谱波长对试 样进行定性分析,按发射光强度进行定量分析.
ppt课件
ppt课件
7
2.仪器结构
2.ICP发射光谱仪的构成
ppt课件
8
2.ICP结构-仪器类型
单道扫描型光谱仪 固定多通道型光谱仪 全谱直读型光谱仪
• 谱线选择灵活 • 定量、定性和半定量分
析 • 仪器价格低 • 分析速度慢,精度稍差
• 多元素同时测定,分析速 度快
• 分析精度高、稳定性好 • 操作简单,消耗少
光谱定量分析的依据是: I = ACb
I:谱线强度。 C:待测元素的浓度。 A:常数。 b: 分析线的自吸系数,在ICP-AES中为1。
ppt课件
23
3.ICP方法
定量分析原理1.外标法
配制一组有浓度梯度的标准溶液,依次测量标准溶液的发 射强度值,作出标准工作曲线。
I
I
强度
0 C
I aC
浓度 C
ppt课件
24
3.ICP方法
B. 内标法
样品与标准都加入相同的浓度 内标线与分析线有类似的... • ...化学与物理特性 • ...谱线的激发能 • ...电离能 • ...波长范围与强度
B. 内标法的优点
提高主元素的准确度
一个或几个元素准确地加入给标样和 样品
提高精密度与准确度RSD ~0.1 0.5 %
ICP结构示意图
R.F发生器
ppt课件

电感耦合高频等离子体原子发射光谱分析(ICP—AES)

电感耦合高频等离子体原子发射光谱分析(ICP—AES)

电感耦合高频等离子体原子发射光谱分析(ICP—AES)本章要求:电感耦合高频等离子体原子发射光谱法是以电感耦合等离子焰炬为激光源的一类新型光谱分析方法(Inductively Coupled Plasma—Atomic Emission Spectrometry,简称ICP—AES)。

由于该法具有检出限较低、准确度及精密度高、分析速度快和线性范围宽等许多独特的优点,因此在国外ICP—AES法已发展成为一种极为普遍、适用范围极广的常规分析方法,并广泛用于环境试样、岩石矿物、生物医学以及金属与合金中数十种元素的分析测定。

在国内ICP—AES法的研究工作始于1974年,现已有上千个科研单位、大专院校、工厂以及环境监测等部门拥有了此种分析手段,ICP—AES法已成为近年来我国分析测试领域中发展最快的测试方法之一。

为了使这种新型分析技术在环境监测中得到普及,环境监测人员必须对ICP—AES法有所了解,在学习中应掌握以下几方面的知识。

1、电感耦合等离子体(ICP)光谱技术的发展概况。

2、ICP光源的理论基础。

3、ICP所用的高频电源。

4、ICP所需的进样装臵。

5、ICP炬管及工作气体。

6、ICP仪器的分光、测光装臵。

7、ICP-AES法的分析技术。

8、ICP-AES法的应用。

9、有机试液的ICP光谱分析。

10、ICP-AES法和其他分析技术的比较。

参考文献1、光谱学与光谱分析编辑部,《ICP光谱分析应用技术》,1982年,北京大学出版社。

2、蔡德,《光谱分析辞典》,1987年,光谱实验室编辑部。

3、陈新坤,《电感耦合等离子体光谱法原理和应用》,1987年,南开大学出版社。

4、不破敬一郎,《ICP发射光谱分析》,1987年,化学工业出版社。

5、辛仁轩,《电感耦合等离子体光源—原理、装臵和应用》,1984年,光谱实验室编辑部。

6、《分析技术辞典,发射光谱分析》,1980年,科学出版社。

7、高铮德,《光谱分析常识》,1985年,光谱实验室编辑部。

电感耦合等离子体质谱法 ppt课件

电感耦合等离子体质谱法  ppt课件


固体样品:除另有规定外,称取样品适量 (0.1g ~ 3g ),结合实验室条件以及样品基质 类型选用合适的消解方法。消解方法有敞口容 器消解法、密闭容器消解法和微波消解法。样
1. 标准品贮备液的制备:
分别精密量取铅、砷、镉、汞、铜单 元素标准溶液适量,用10%硝酸溶液 稀释制成每lmL分别含铅、砷、镉、 汞、铜为1μ g、0.5μ g、1μ g、 1μ g、10μ g的溶液。
1
2
坐标,浓度为横坐 标,绘制标准曲线。
测定,取3次读数的 平均值。从标准曲 线上计算得出供试 品溶液的浓度。
空白试验, 根据仪器说 明书的要求 扣除空白干
THANKS
18
铅、镉、砷、汞、铜测定法—— 电感耦合等离子体质谱法
目录
1
对仪器的一般要求 干扰和校正 供试品溶液的制备 注意事项 测定法 测定步骤
2
3
4
5
6
什么是电感耦合等离子体质谱法?

电感耦合等离子体质谱法(ICP-MS)是以等离子体为离子源 的一种质谱型元素分析方法。 主要用于进行多种元素的同时测定,并可与其他色谱分离技 术联用,进行元素价态分析。 测定时样品由载气(氩气)引入雾化系统进行雾化后,以气 溶胶形式进入等离子体中心区,在高温和惰性气氛中被去溶 剂化、汽化解离和电离,转化成带正电荷的正离子,经离子 采集系统进入质谱仪,质谱仪根据质荷比进行分离,根据元 素质谱峰强度测定样品中相应元素的含量。 本法具有很高的灵敏度,适用于各类药品中从痕量到微量的 元素分析,尤其是痕量重金属元素的测定。

选择内标时应考虑如下因素:

( 1 )待测样品中不含有该元素 ( 2 ) 与待测 元素质量数接近 ( 3 )电离能与待测元素电离

电感耦合等离子体原子发射光谱分析

电感耦合等离子体原子发射光谱分析

非络伊德
1976年
(M.Floyed) 蒙塔塞 (A.Montaser)和法
塞尔
研制成功程序扫描等离子体 光谱仪用等离子体光源作为 原子荧光光谱仪的原子化器
1979 霍克(R.Hock) 用等离子体作为质谱分析的
1980年 和法塞尔
离子源
1980 1981年
帕森(M.Parson)
编制等离子体谱线表和干扰 线表
1975 年前 后
鲍希隆公司应用研究 所(Baush & Lomb
ARL)和费希尔(Fisher) 科学公司的佳尔阿许
(Jarrell-Ash)分部
相 代 子投继 商体放把 品光市第 等谱场一离仪A开E的S辟推新了广阶IC应段P用-
2020/6/21
6
感耦等离子体原子发射光谱分析
年代 作者或厂商
技术内容
2020/6/21
感耦等离子体原子发射光谱分析
10
4.发射光谱的产生
4.1 光源
要产生光谱,就必须能提供足够 的能量使试样蒸发、原子化、激发, 产生光谱。
目前常用的光源有高温火焰、直流 电弧(DC arc)、交流电弧(AC arc)、电 火花(electric spark)及电感耦合高频等 离子体(ICP)。
等离子火焰
1961~ 1962年
里德(Reed)
设计制造了通入切向气流获得稳定 的等离子火焰的石英炬管,并提出
可作为发射光谱分析光源
Hale Waihona Puke 获得实用的稳定的等离 子火焰
1962年
1964~ 1965年
美国法塞尔 (V.A.Fassel)和英
国格林菲尔德 (S.Greenfield)
法塞尔 和林菲尔德

电感耦合等离子体光谱仪(ICP)及其应用介绍 PPT课件

电感耦合等离子体光谱仪(ICP)及其应用介绍 PPT课件

4.样品处理
高压密封罐消解
高压密封罐由聚四氟乙烯密封罐和不锈钢套筒构成。试样和酸放在带盖的 聚四氟乙烯罐中,将其放入不锈钢套筒中,用不锈钢套筒的盖子压紧密封聚四 氟乙烯罐的盖子,放入烘箱中加热。加热温度一般在120~180℃。聚四氟乙烯 罐的壁较厚,导热慢一般要加热数小时。停止加热后必须冷却才能打开。溶剂: 硝酸;硝酸+过氧化氢
谱线强度与浓度的关系
1. 标准曲线法
在ICP-AES定量分析中,谱线强度I与待测元素浓 度c在一定的浓度范围内有很好的线性关系I=KCb。K与 光源参数、进样系统、试样的蒸发激发过程以及试样 的组成等有关。b与试样的含量、谱线的自吸有关,称 为自吸系数。在高浓度时,b1,曲线发生弯曲。
光谱定量分析的依据是: I = ACb
2.仪器结构
2.ICP发射光谱仪的构成
2.ICP结构-仪器类型
单道扫描型光谱仪 固定多通道型光谱仪 全谱直读型光谱仪
• 谱线选择灵活 • 定量、定性和半定量分
析 • 仪器价格低 • 分析速度慢,精度稍差
• 多元素同时测定,分析速 度快
• 分析精度高、稳定性好 • 操作简单,消耗少
全谱直读式的等离子光谱仪,它采用 中阶梯光学系统结合固体检测器(CID ,CCD),既具有单道的灵活性,又 有多道的快速与稳定。
Plasma点火原理
炬管中的原子氩并不导电,因而也不会形成放电 。当点火器的高频火花放电在炬管内使小量氩气电离 时,一旦在炬管内出现了导电的粒子,由于磁场的作 用,其运动方向随磁场的频率而振荡,并形成与炬管 同轴的环形电流。
原子、离子、电子在强烈的振荡运动中互相碰撞 产生更多的电子与离子。磁场的强度和方向随时间而 变化,受磁场加速的电子和离子不断改变其运动方向 ,导致焦耳发热效应并附带产生电离作用。这种气体 在极短时间内在石英的炬管内形成一个新型的稳定的 “电火焰”光源。

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱法 (ICP-AES)是一种用于定量分析物质含量的一种光谱方法,可实时、快速地测定被测物质中各种元素的组成,包括含量低的微量元素和高价元素,广泛应用于土壤、水,食品及环境等实验室的精密分析领域。

I. 基本原理1. 基本概念电感耦合等离子体原子发射光谱法(ICP-AES)是将等离子体生成装置与原子发射光谱仪(AES)相结合,将原子发射光谱技术用于研究物质组成的有效技术手段。

根据它的原理,采用高频电感耦合方式,使物质在放电的同时流入等离子体,经原子高温热解的过程中,物质被分解成常见的原子离子核心状态,并释放出内部能量。

在此能量降落过程中,经由原子核发出的原子发射谱线可以把物质的组成成分用不同的光谱线表示出来,而这些谱线和元素种类以及它们的含量有直接关联,从而确认物质的组成结构和物质含量。

2. 优点电感耦合等离子体原子发射光谱法(ICP-AES)具有多种优点,如快速、精确,可以同时测定金属元素、非金属元素、电解质离子、有机氯离子和其他复杂物质等。

可以分析无金属和金属两种物质。

另外,大量分析样品不影响测试精度,量级区间宽,可测定高、中、低价元素以及极低的微量元素,可以分析微量物质,同时减小输入量。

3. 缺点电感耦合等离子体原子发射光谱法(ICP-AES)的缺点在于系统背景噪音较大,而且系统复杂,调节和维护复杂,耗费时间和经费,以及分析过程中也容易受到干扰。

II. 用途1. 环境监测电感耦合等离子体原子发射光谱(ICP-AES)技术可以用于环境样品的分析,快速准确地测定出被测样品的成分,用于环境的基础监测,监测土壤中营养元素和有害元素。

2. 工业实验室分析电感耦合等离子体原子发射光谱(ICP-AES)技术在工业实验室分析中也广泛应用,如可以分析广泛工程材料、金属、有机、无机混合物,以及钽、放射性元素等物质。

3. 药物和生物分析电感耦合等离子体原子发射光谱(ICP-AES)技术也可用于药物和生物分析,它可以用于药物的成分检测,测定活性成份,进行食品安全性的检测,以及分析生物体内有用元素的含量等。

电感耦合等离子发射光谱定量分析实验讲义

电感耦合等离子发射光谱定量分析实验讲义

实验三电感耦合等离子发射光谱定量分析一、实验目的1.初步掌握电感耦合等离子发射光谱仪的使用方法。

2.学会用电感耦合等离子发射光谱法定性判断试样中所含未知元素的分析方法。

3.学会用电感耦合等离子发射光谱法测定试样中元素含量的方法。

二、实验原理原子发射光谱法是根据处于激发态的待测元素的原子回到基态时发射的特征谱线对待测元素进行分析的方法。

各种元素因其原子结构不同,而具有不同的光谱。

因此,每一种元素的原子激发后,只能辐射出特定波长的光谱线,它代表了元素的特征,这是发射光谱定性分析的依据。

电感耦合等离子发射光谱仪是以场致电离的方法形成大体积的ICP 火焰,其温度可达10000 K,试样溶液以气溶胶态进入ICP 火焰中,待测元素原子或离子即与等离子体中的高能电子、离子发生碰撞吸收能量处于激发态,激发态的原子或离子返回基态时发射出相应的原子谱线或离子谱线,通过对某元素原子谱线或离子谱线的测定,可以对元素进行定性或定量分析。

ICP 光源具有ng/mL 级的高检测能力;元素间干扰小;分析含量范围宽;高的精度和重现性等特点,在多元素同时分析上表现出极大的优越性,广泛应用于液体试样(包括经化学处理能转变成溶液的固体试样)中金属元素和部分非金属元素(约74种)的定性和定量分析。

三、仪器与试样仪器:ICP OES-6300 电感耦合等离子发射光谱仪试样:未知水样品(矿泉水)四、实验内容1.每五位同学准备一水样品进行定量分析,熟悉测试软件的基本操作,了解光谱和数据结果的含义。

2.观摩定量分析操作,学会分析标准曲线的好坏,掌握操作要点和测试结果的含义。

五、实验步骤1.样品处理(1)自带澄清水溶液20 mL,要求无有机物,不含腐蚀性酸、碱,溶液透明澄清无悬浮物,离子浓度小于100 μg/mL。

(2)将待测液倒入试管。

2.谱线扫描(1)参照附录2“ICP OES-6300型电感耦合等离子发射光谱仪的使用”,并在教师指导下学会电感耦合等离子发射光谱的操作。

电感耦合等离子体发射光谱法ppt课件(1)

电感耦合等离子体发射光谱法ppt课件(1)

7
h7
5)基体干扰少 在ICP-AES中,试样溶液通过光源的中心通道而受热蒸发、分解和 激发,相当于管式炉间接加热,加热温度高达5000-7000K,因此化 学干扰和电离干扰都很低。可直接用纯水配制标准溶液,不需添加 抗干扰试剂,或者几种不同基体的试样溶液采用同一套标准溶液来 测试。 6)可进行定性分析 利用标准谱线库进行定性和半定量分析
35
h
仪器特点:
(1) 测定每个元素可同时选用多条谱线; (2) 可在一分钟内完成70个元素的定量测定; (3) 可在一分钟内完成对未知样品中多达70多元素的定性; (4) 1mL的样品可检测所有可分析元素; (5) 扣除基体光谱干扰; (6) 全自动操作; (7) 分析精度:CV 0.5%。
36
13
h
ICP光源:高频发生器、炬管、高频感应线圈
ICP光源作用:试样蒸发、解离、原子化、激发、跃迁产生光辐射
原理:当高频发生器接通电源后,高频电流I通过 感应线圈产生交变磁场(绿色)。 开始时,管内为Ar 气,不导电,需要用高压电火花触发,使气体电离 后,在高频电磁场的作用下,带电粒子高速运动, 碰撞,形成“雪崩”式放电,产生等离子体气流。 在垂直于磁场方向将产生感应电流(涡电流,粉色 ),其电阻很小,电流很大(数百安),产生高温。 又将气体加热、电离,在管口形成稳定的等离子体 焰炬。
分光:用光谱仪器把光源发射的光分解为按波长排列的光谱,也叫色散 入射狭缝、分光元件、光学镜片、出射狭缝
分光元件: 光栅
28
h
检测系统
照相法-感光板 光电检测法-以光电倍增管或电荷耦合器件(CCD)作为接收与记录光 谱的主要器件。
29
h
一、感光板
由照相乳剂均匀涂在玻璃板上而成。测量感光板上照相乳剂感光后 变黑的程度(照相法)。

电感耦合等离子体原子发射光谱分析讲课件

电感耦合等离子体原子发射光谱分析讲课件

火焰 光源
略低
10005000 好
溶液、碱金属、 碱土金属
2024/8/8
感耦等离子体原子发射光谱分析
14
等离子体光源
最常用的等离子体光源是直流等离子焰 (DCP)、感耦高频等离子炬(ICP)、容耦微波等离 子炬(CMP)和微波诱导等离子体(MIP)等。
2024/8/8
感耦等离子体原子发射光谱分析
在氩气为工作气体时,氩气是单原子分子, 不存在分子的解离。在10000 K的氩气等离子体 成分中,Ar、Ar+和e占主要成分,Ar2+的浓度很 低。
在氮气为工作气体时,存在氮分子的解离。 在更高的温度下,还会产生N2+和N3+,因此在氮 气等离子体成分中,存在N2、N、e、N+、N2+和 N3+。
2024/8/8
2024/8/8
感耦等离子体原子发射光谱分析
10
直流电弧
优点:电极头温度相对比较高(40007000K, 与其它光源比),蒸发能力强、绝对灵敏度 高、背景小;
缺点:放电不稳定,且弧较厚,自吸现象严 重,故不适宜用于高含量定量分析,但可 很好地应用于矿石等的定性、半定量及痕 量元素的定量分析。
交流电弧
18
紫铜管(内通冷却水) 绕成的高频线圈
由三层同心石 英管构成,直 径为2.53cm
2024/8/8


感耦等离子体原子发射光谱分析
19
常温下氩气是不导电的,所以不会有感应电流,因而也就不会 形成ICP炬焰。但如果此时引入很少的电子或离子。这些电子或离 子就会在高频电场的作用下作高速旋转,碰撞气体分子或原子并 使之电离,产生更多的电子和离子。瞬间可使气体中的分子、原 子、电子和离子急剧升温,最高温度达到上万度,如此高的温度 足可以使气体发射出强烈的光谱来,形成像火焰一样的等离子体 炬。当发射出的能量与由高频线圈引入的能量相等时,电荷密度 不再增加,等离子体炬维持稳定。

电感耦合等离子体原子发射光谱法讲解

电感耦合等离子体原子发射光谱法讲解

南昌大学信息工程学院
Information school of nanchang university
@骑着炮弹进城作品
(二) ICP-AES发展历程
IRIS Advantage1000 型电感耦合等离子体发射光谱仪(ICP-AES)
—1998-10
南昌大学信息工程学院
Information school of nanchang university
1928年,Lundegardh(伦德加特)应用启动喷雾器和空气乙炔火焰建立了定量分析的线性关系,出现了火焰光度分 析法
20世纪40年代,电火花和电弧为光源为电源的光电直读发 射光谱仪出现,克服了火焰发射光谱法只能用于少数几种 元素溶液分析的局限性
20世纪60年代,原子吸收光谱法的建立,发射光谱法在分 析化学中的作用下降
着不断运动的电子。每个电子处在一定的能级上,具有一定的能量。在正常的情况
下,原子处于稳定状态,它的能量是最低的,这个状态被称为基态。当原子在外界 能量的作用下转变成气态原子,并使气态原子的外层电子激发至高能态。当从较高 的能级跃迁到较低能级时,原子将释放出多余的能量而发射出特征谱线。对所产生 的辐射经过摄谱仪器进行色散分光,按波长顺序记录在感光板上,就可呈现出有规
温度:10000K 稳定性:很好
电感耦合等离子体(ICP) 微波诱导等离子体(MIP)
温度:6000-8000K 稳定性:很好
火花 交流电弧 直流电弧
温度:10000K,稳定性:好 温度:4000-7000K,稳定性:好 温度:4000-7000K,稳定性:差
火焰
温度:2000-3000K,稳定性:很好
南昌大学信息工程学院
Information school of nanchang university

电感耦合等离子发射光谱仪icpoesppt课件

电感耦合等离子发射光谱仪icpoesppt课件

5、准确度检验:有三种途径检验准确度。
最好用国家标准样品或国际标准样品来 检查测定结果与标准值的符合程度。
用通用的较成熟的其他方法进行数据比 对
加标回收发验证
6、检查回收率:对于样品处理过程比较复 杂,或怀疑样品中有易损失元素时,建 议要检测元素的回收率。
第四节 ICP光谱的应用
一、化学化工产品分析 包括化学试剂和化工产品;催化剂;塑
具体研究内容包括
1)铬鞣过程中,金属元素的蛋白质变性 的影响规律;
2)生物质降解过程,微量元素对催化反 应速率影响规律的定性描述;
3)微量元素对人体健康和环境污染影响 的定量描述。
第三节 ICP光谱分析程序
对结构简单、待测元素浓度较高的样品,可 以直接分析样品。
对较复杂的样品,应建立分析方法。一般程 序如下:
等离子体发射光谱仪
目前最广泛应用的原子发射光谱光源 是等离子体。包括:
电感耦合等离子体(Inductively Coupled Plasma,ICP)
直流等离子体(Direct-current Plasma,DCP) 微波等离子体(Microwave Plasma,MWP)
仪器名称介绍
ICP电感耦合等离子发射光谱仪 等离子体发射光谱仪 全谱直读等离子发射光谱仪
4、分析参数的优化(重要):
主要分析参数是载气流量(或压力)及 高频功率。
对一般的样品可用仪器说明书给出的折 中条件。
对于要求较高的样品可通过优化载气流 量、高频功率、观测高度等。原则是:
选择灵敏度、测量精密度等。
方法的精密度确定:选择有代表性的样 品或国家标准样品,平行测定11次,计 算相对标准偏差。
3、水质样品:饮用水、地表水、废水 4、环境样品:土壤、大气飘尘、粉煤灰 5、地矿样品:地质样品、矿石及矿物 6、化学化工产品:化学试剂、化工产品、

电感耦合等离子体原子发射光谱分析

电感耦合等离子体原子发射光谱分析

2017/5/3
感耦等离子体原子发射光谱分析
8
第四节 等离子体光谱仪的基本组成
2017/5/3
感耦等离子体原子发射光谱分析
9
等离子体光谱仪的分析过程是,试样溶液经 过气动雾化器雾化分散,形成气溶胶,由Ar携带 经过石英炬管的中心管进入环状等离子体炬焰的 中央通道,在等离子体的高温作用下,迅速干燥 、原子化并激发,发射出光谱。这些复合光通过 分光系统分成单色光,最后由检测系统检测所需 要的谱线强度,经过积分、放大、输出。 等离子体光谱仪大致有光源部分、分光部分 和检测部分三部分组成。
2017/5/3 感耦等离子体原子发射光谱分析 2
应的原子谱线(或离子谱线)。 2). 试样原子同工作气体原子或离子碰撞而激 发。 Ar + X → Ar + X*, Ar+ + X → Ar+ + X* Ar+ + X → Ar + X+* 试样原子的电离电位与激发电位之和必须小于Ar 的电离电位 (15.76ev) 才能发生第三式的反应。通 过这些能量交换和反应,产生试样的原子谱线和离 子谱线。 3). 光子激发 X + h → X* 光子将能量交换给试样原子,使其激发(荧光)。
4.1.1 高频发生器
高频发生器是产生等离子体的能量来源。光 谱分析所用频率 为 5~50 MHz , 现在一般商用光 谱仪的频率有 27.12MHz 和 40.68 MHz 两 种,功率为0.75 ~2.0kw 之 间 。 对高频发生器的 要求是:
2017/5/3 感耦等离子体原子发射光谱分析 7
10000K,背景值会升高1%。 3). 韧致辐射 在等离子体中,带电粒子在静电场 作用下发生不接触碰撞(库仑碰撞),引起运动速度 的变化而发射出的电磁辐射,被称为韧致辐射。 实验证明,当等离子体光源的温度T= 8250K 时,韧致辐射是造成背景光谱的主要因素。 但相对于原子吸收来说,背景光谱要小得 多。因为原子吸收火焰中有很多分子光谱。

电感耦合等离子体ppt-2016(1).

电感耦合等离子体ppt-2016(1).

ICP光谱仪器结构
雾化室
• 去除雾化过程中产生的较大雾滴颗粒,加速气溶胶微
粒在等离子体中去溶、蒸发和原子化的过程;
• 克服因蠕动泵的脉动对雾化所产生的影响,使分离后 的细化雾滴能够平稳的进入等离子体; • 较小的容积,较低的记忆效应,容易清洗; • 典型的雾室:Scott雾化室(双筒形雾化室),旋流雾
元素分析方法概述
电感耦合等离子体发射光谱法的分析特性
• 可以快速地同时进行多元素分析,周期表中多 达73种元素皆可测定; • 测定灵敏度较高,包括易形成难熔氧化物的元 素在内,检出限可达每毫升亚微克级; • 基体效应较低,较易建立分析方法; • 标准曲线具有较宽的线性动态范围; • 具有良好的精密度和重复性。
ICP光谱仪器结构
5.检测系统
• 检测系统核心:检测器;
• 检测器类型: PMT光电倍增管和固体检测器;
• 固体检测器类型:
CID 电荷注入式固态检测器 CCD 电荷耦合固态检测器 • 作用: 实现光电信号转换 • 要求: 灵敏 稳定
ICP光谱仪器结构
光电倍增管
光子入射到光电阴极上产生光电子,光电子通过电子光学输入系统进入 倍增系统,电子得到倍增,最后阳极把电子收集起来形成阳极电流或电压。
元素分析方法概述
ICP光谱仪
ICP光谱仪器结构
ICP-OES结构
R.F 发生器
ICP
分光器
检测器
数据处理
溶液-雾化 光-电信号
发光 结果
元素
ICP光谱仪器结构
ICP-OES结构示意图
ICP光谱仪器结构
1.R.F高频发生器
• 高频发生器即为高频电源或等离子体电源;
• 高频发生器的振荡频率:一般为27.12MHz和 40.68MHz;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19
紫铜管(内通冷却水 )绕成的高频线圈
由三层同心石 英管构成,直 径为2.53cm
2020/11/22


感耦等离子体原子发射光谱分析
20
常温下氩气是不导电的,所以不会有感应电流,因而也就不会 形成ICP炬焰。但如果此时引入很少的电子或离子。这些电子或离 子就会在高频电场的作用下作高速旋转,碰撞气体分子或原子并 使之电离,产生更多的电子和离子。瞬间可使气体中的分子、原 子、电子和离子急剧升温,最高温度达到上万度,如此高的温度 足可以使气体发射出强烈的光谱来,形成像火焰一样的等离子体 炬。当发射出的能量与由高频线圈引入的能量相等时,电荷密度 不再增加,等离子体炬维持稳定。
2020/11/22
感耦等离子体原子发射光谱分析
5
ICP-AES进入商业应用的几个主要进展
2020/11/22
6
感耦等离子体原子发射光谱分析
2020/11/22
感耦等离子体原子发射光谱分析
7
我国等离子体光谱分析技术研究几乎与世界同时起步。
1974年,北京化学试剂研究所 1977年吉林省铁岭市电子仪器厂生产了我国第一台自激 式等离子体发生器
交流电弧
与直流相比,交流电弧的电极头温度稍低一 些,但弧温较高,出现的离子线比直流电弧 中多。由于有控制放电装置,故电弧较稳定。 广泛用于定性、定量分析中,但灵敏度稍差。 这种电源常用于金属、合金中低含量元素的 定量分析。
2020/11/22
感耦等离子体原子发射光谱分析
13
火花
由于高压火花放电时间极短,故在这一瞬间 内通过分析间隙的电流密度很大(高达 1000050000 A/cm2,因此弧焰瞬间温度 很高,可达10000K以上,故激发能量大, 可激发电离电位高的元素。由于电火花是 以间隙方式进行工作的,平均电流密度并 不高,所以电极头温度较低,且弧焰半径 较小。
2020/11/22
感耦等离子体原子发射光谱分析
11
直流电弧
优点:电极头温度相对比较高(40007000K , 与其它光源比),蒸发能力强、绝对灵 敏度高、背景小;
缺点:放电不稳定,且弧较厚,自吸现象严 重,故不适宜用于高含量定量分析,但可 很好地应用于矿石等的定性、半定量及痕 量元素的定量分析。
但等离子体炬不是通常意义上的火焰,一般的化学火焰是可燃 物剧烈燃烧,产生的热量使气体升温而发光,而等离子体炬中没 有可燃烧的物质,更谈不上燃烧了。它的高温是强大的电流克服 电阻作功而产生的高温。
9
◆FI-ICP-AES 即将流动注射装置与等离子体原子 发射光谱联用,可大大提高ICP-AES对某些 元素的检测能力。
◆ICP-AFS 即将等离子体原子发射光谱与原子荧光 光谱仪联用。现在美国的Baird公司生产这 种设备。
◆LC-ICP-MS 利用LC将样品溶液的组分进行分 离,再利用ICP-MS进行测试。现在美国的 Thermo fisher公司生产这种设备。
[81页]电感耦合等离子体原子发射光谱分析-讲课
ICP发射光谱法包括三个主要的过程
1 由plasma提供能量使样品溶液蒸发、形成 气态原子、并进一步使气态原子激发而产生 光辐射;
2 将光源发出的复合光经单色器分解成按波 长顺序排列的谱线,形成光谱;
3 用检测器检测光谱中谱线的波长和强度。
2.电感耦合等离子体原子发射光谱产生和发展的历史 初期几个主要阶段
1985年北京第二光学仪器厂生产的7502型ICP光量计通 过鉴定。
目前我国已有多家厂商在生产ICP-AES。与国际先进水 平相比国产ICP-AES还有较大差距,主要是高频发生器的 稳定性还有待提高。
2020/11/22
感耦等离子体原子发射光谱分析
8
3. 等离子体的联用技术: ◆LC-ICP 高效液相色谱仪与等离子体原子发射
光谱仪联用,将ICP作为高效液相色谱仪 的检测设备。 ◆GC-ICP 即将气相色谱仪与等离子体原子发射 光谱仪联用。 ◆ICP-MS 即将等离子体光谱仪与质谱仪联用。 将ICP作为质谱仪的离子源,将受光部分 改为质谱仪,不仅能进行高灵敏度的元素 分析,还能进行元素的状态分析。
2020/11/22
感耦等离子体原子发射光谱分析
2020/11/22
感耦等离子体原子发射光谱分析
10
4.发射光谱的产生
4.1 光源
要产生光谱,就必须能提供足够 的能量使试样蒸发、原子化、激发, 产生光谱。
目前常用的光源有高温火焰、直流 电弧(DC arc)、交流电弧(AC arc)、电 火花(electric spark)及电感耦合高频等 离子体(ICP)。
含有中性原子和分子,还含有大量的电子和离子, 因此,等离子体是电的良导体。之所以称之为等 离子体,是因为其中含有的正负电荷密度几乎相 等,从整体上来看整个体系是电中性的。
在近代物理中把电离度大于0.1%的气体称 为等离子体。因为这时气体的导电能力已达到最 大导电能力的一半。按照这个定义,电弧放电和 火光放电的高温部分,太阳和其它恒星的表面电 离层,都是等离子体,而一般的化学火焰,由于 电离度较小,不称之为等离子体。
2020/11/22
感耦等离子体原子发射光谱分析
18
等离子体炬焰
等离子体炬焰的产生
形成稳定的等离子体炬焰必须满足下列三个条件: 高频电磁场、工作气体及能维持气体放电的石英炬 管。
使用单原子惰性气体Ar在于它性质稳定、不与试样 形成难离解的化合物,而且它本身的光谱简单。
2020/11/22Fra bibliotek感耦等离子体原子发射光谱分析
2020/11/22
感耦等离子体原子发射光谱分析
15
等离子体光源
最常用的等离子体光源是直流等离子焰 (DCP)、感耦高频等离子炬(ICP)、容耦微波等离 子炬(CMP)和微波诱导等离子体(MIP)等。
2020/11/22
感耦等离子体原子发射光谱分析
16
等离子体的基本概念
等离子体是指被电离的气体。这种气体不仅
2020/11/22
感耦等离子体原子发射光谱分析
17
等离子体又有高温等离子体和低温等离子
体之分。
高温等离子体:当温度达到106108 K时,几乎所有的 分子和原子都完全离解并电离。 低温等离子体:当温度低于105K时,气体只是部分电离。
本文的ICP放电所产生的等离子体的温度大约为60008000K, 属于低温等离子体。
相关文档
最新文档