医用气体管道系统的氧气浓缩器供气系统
医用氧气的浓度区别与法规标准
医用氧气的浓度区别与法规标准Company number:【0089WT-8898YT-W8CCB-BUUT-202108】医疗用氧的浓度区别与法规标准医疗氧气是医院疾病预防与治疗必不可少的组成部分,也是医院用气量最大的医用气体,是生命支持系统的重要构成。
因氧气对人体的重要作用,尤其是在医疗急救上的应用,医疗氧气的供气方式与氧源方式逐步演变与发展。
供气方式由起初的分散性供氧到如今的集中性供氧,医院供氧系统氧源方式也从单一的瓶装氧到如今的液氧、分子筛制氧三足鼎立,医院中心供氧整体朝着安全、自主、现代化不断更迭,泰瑞医疗等一批先进的氧业单位技术也在不断革新。
人体与临床氧浓度需求氧是人体生理代谢的基本元素,构成人类形状的细胞和生命现象的中轴存在——大脑﹑心脏﹑肺以及维持它们的血液,离开氧气都无法继续活动。
而且氧气含量的高低对人体的影响是非常直接、明显的。
现今空气中的氧气含量在21%左右,当氧气含量过低时,人体会出现缺氧状态,严重缺氧时会危及生命;而当氧气含量过高时,也会对人体产生一定的损害,如果人呼吸的是纯氧,会引起“氧中毒”现象。
所以从人体生理角度考虑,并不需要吸入高浓度氧气,一般吸入的是稀释后的氧气。
据泰瑞医疗了解,临床上对使用医疗氧气有着不同的需求,根据临床用氧的特点,可分为普通病床用氧、高压氧舱用氧、麻醉机呼吸机以及ICU病房用氧。
普通病床用氧一般是在常压状态下吸氧,多采用鼻塞给氧,有严重呼吸功障碍患者则采用面罩给氧、鼻导管给氧。
主要用于疾病的治疗与预防,普通病人吸氧量为min,氧气浓度一般控制在24%-35%。
高压氧舱是在加压状态下吸氧,以介质来说医用有两种:(1)氧气加压舱:用高浓度氧,稳压后病人直接呼吸舱内的氧,氧浓度一般是在80%以上。
(2)空气舱:用空气加压,稳压后根据病情,病人通过、氧帐,直至吸氧,氧浓度需控制在25%以下。
高压氧舱氧源的选择在临床上没有明确限定,主要是要求瞬时用氧量大,氧气压力高。
IGC氧气管道系统
文档大全文档大全可免积分在线阅读和下载文档∙文档大全∙工作范文∙求职职场∙表格模板∙总结汇报∙经管营销∙高等教育∙高中教育∙初中教育∙小学教育∙外语考试∙资格考试∙教学研究∙游戏攻略您的位置:所有分类工程科技能源/化工 IGC氧气管道系统IGC氧气管道系统氧气管路安装和清洁度要求都是非常高的,希望各位同行多注意。
EIGA氧气管道系统IGC DOC 13/02/E 全球协调文件替代文件DOC 13/82欧洲工业气体协会页下一页文档免费下载:IGC氧气管道系统(共77页,当前第1页)IGC氧气管道系统的相关文档搜索∙氧气管道施工方案∙氧气管道脱脂∙氧气管道流速∙氧气管道∙高压氧气管道∙氧气管道用阀门∙氧气管道泄漏性试验∙氧气管道技术条件IGC氧气管道系统相关文档∙IGC_13_02_E-2002_氧气管线系统规范(英文版)IGC_13_02_E-2002_氧气管线系统规范(英文版)_能源/化工_工程科技_专业资料。
OXYGEN PIPELINE SYSTEMS IGC Doc 13/02/E GLOBALLYHARMONISED DOCUMENT Replaces ...∙用于医用气体管道系统的氧气浓缩器供气系统IGC氧气管道系统 77页 1下载券热水、医用气体系统等管... 暂无评价 2页 ...用于医用气体管道系统的氧气浓缩器供气系统标准条款号标准条款内容 4.1.1 在...∙中心管道给氧法中心管道给氧流程 2页免费氧气管道脱脂 8页免费管道法 10页免费氧管道安全 8页免费IGC氧气管道系统 77页 1下载券氧气管道安全措施 10页 1下载券...∙氧气系统氧气乙炔系统 2页免费IGC氧气管道系统 77页 2财富值喜欢此文档的还喜欢...氧气系统由以下子系统组成: 驾驶舱固定氧气系统客舱固定氧气系统手提式氧气系统...∙EIGA IGC Doc 33 97 标准Internet : IGC Doc 33/97/E 氧气使用设备的清洁关键字 ? ? ? ? ? ? ? 清洁压缩机环境医疗的氧气管路系统预防不承诺的...∙IAPMO IGC 154标准淋浴屏国际协会的管道和机械的官员标准 IAPMO 指南浴缸和淋浴板或淋浴外壳被选送 ...组装不能包含部件,如提供连接器、管道、淋浴头、身体喷雾剂和淋浴门外壳系统。
浅述医用氧和富氧空气的区别
浅述医用氧和富氧空气(93% 氧)的异同薛菊霞1陶建伟21 三门峡市中心医院(三门峡 472000)2 三门峡市食品药品监督管理局(三门峡 472000)内容提要:目的:对医用氧和富氧空气(93%氧)进行分析,提出临床用氧意见。
方法:从医用氧和富氧空气(93%氧)质量标准、制备原理和方法、临床应用的分析,进一步明确了医用氧的标准、使用和监管。
结果与结论:医用氧是按药品管理的特殊商品,富氧空气(93%氧)药品标准实施,进一步明确了医用氧和富氧空气(93%氧)两个不同制备方法生产的氧气,按照药品进行管理,必须加强监管。
关键词:医用氧富氧空气(93%氧)氧气浓缩器The Smilarities and Differences Between Medical Oxygen and Oxygen Enriched Air (percent 93 oxygen)Xue JuXia1TaoJianWei21 San men xia Central Hospital (Sanmenxia 472000)2 Sanmenxia Food and Drug Administration (Sanmenxia 472000)Abstract: Objective: Analysis for the medical oxygen and oxygen enriched air (oxygen 93 percent),after that give the suggestion for clinical to use oxygen. Methods: Form the analysis of the ways and the clinical application ,the quality standard and the principle of preparation of the medical oxygen and oxygen enriched air (oxygen 93 percent) to clear and definite that. Results: and conclusion According to the drug administration, the medical oxygen is a special goods. For the implementation of the oxygen enriched air (oxygen 93 percent)’s drug standards, to further clarify the differences of the oxygen which was produced by different preparation methods between the medical oxygen and oxygen enriched air (oxygen 93 percent). So we must strengthen supervision and carried out in accordance with the drug administration .Key words: medical oxygen, oxygen enriched air(oxygen 93 percent), oxygen concentrator医用氧是一种特殊的商品,临床上主要用于患者缺氧的预防和治疗,在医疗救护中具有十分重要的作用。
医用气体系统(两篇)
引言:医用气体系统是医疗设施中至关重要的一部分,用于提供给患者所需的氧气、氮气等各种气体。
本文将继续探讨医用气体系统的相关内容,包括气体储存与供应、气体输送管道、供氧系统、排气系统以及安全措施等五个大点。
概述:正文内容:一、气体储存与供应1. 气体储存设施的选择:包括液化气体储罐和气体压缩机等,需考虑储存容量、安全性及易于维护等因素。
2. 气体供应系统的建设:包括气体输送管道、管道连接件和自动控制系统,以确保气体供应的连续性和稳定性。
3. 气体质量控制:对氧气等医用气体进行监测和控制,确保其符合相关标准和纯度要求。
二、气体输送管道1. 管道材料的选择:需要具备耐腐蚀性、耐压性和易于清洁等特性,常用材料包括不锈钢和铜管等。
2. 管道布局与设计:根据医疗设施的需求和气体的类型,合理规划管道布局,确保管道安全可靠,并避免交叉污染的发生。
3. 管道维护与保养:定期检查管道的安全性和通畅性,并采取相应的清洁和维护措施,以保证其正常使用。
三、供氧系统1. 氧气供应的需求:根据医疗设施的需求和分类,确定氧气供应的方式和容量,包括气瓶和中央供氧系统等。
2. 氧气输送的安全性:建立氧气输送管道和系统,确保氧气输送的安全可靠,并防止漏气和爆炸等危险事件的发生。
3. 氧气使用的控制:设置氧气分配和控制装置,能够根据病情和需求实现氧气的定量供应和控制。
四、排气系统1. 气体排放管道设计:合理规划排气管道的布局和设计,确保气体的安全排放,并避免对环境和人员产生危害。
2. 排气过滤和处理:设置适当的过滤和处理设备,对气体进行过滤和净化,以去除有害物质和异味,保证排气的安全性和环保性。
3. 排气管道的通畅性:定期检查和清理排气管道,保持其通畅,防止积存的气体引发安全隐患。
五、安全措施1. 管道漏气报警系统:建立管道漏气报警系统,能够及时发现和报警管道漏气情况,以避免安全事故的发生。
2. 系统监测与维护:建立气体系统的监测和维护机制,定期检查和保养设备,确保其正常运行和安全性。
医学中央供氧系统分类
医学中央供氧系统分类医学中央供氧系统是指通过管道输送氧气到医疗机构的系统,被广泛应用于医院、诊所和其他医疗机构的各种科室。
根据不同的需求和功能,医学中央供氧系统可以分为以下几类。
1. 医用集中供氧系统医用集中供氧系统是医疗机构中最常见的供氧系统。
它由一个或多个氧气发生器、气源压缩装置、气源净化装置、氧气储存装置和输送管道等组成。
医用集中供氧系统广泛应用于手术室、急诊科、重症监护室等需要高浓度氧气的科室。
2. 医疗气体管网系统医疗气体管网系统是指将氧气、氧化亚氮、可吸入麻醉气体等各种气体通过管道输送到不同科室的系统。
除了供氧系统外,医疗气体管网系统还包括各类气体净化设备、气体监测设备和气体分配设备等。
这种系统适用于麻醉科、产科、儿科等需要使用不同气体的科室。
3. 氧气产生装置氧气产生装置是通过将空气中的氮气和其他杂质去除,使气体纯度达到医用标准的装置。
这种装置通常由压缩空气进气装置、空气净化装置、分离装置和储气装置组成。
氧气产生装置广泛应用于内科、外科和急诊科等科室,为患者提供氧气治疗。
4. 液氧供应系统液氧供应系统是将液态氧输送到医疗机构的系统,液态氧经过蒸发器变为气态氧后供给患者。
液氧供应系统通常由液氧储存装置、蒸发器和输氧管道等组成。
这种系统主要适用于需长时间使用氧气的慢性呼吸衰竭患者。
5. 家庭中央供氧系统家庭中央供氧系统是指将氧气通过管道供给患者居住的家庭中的系统。
这种系统通常由集中供氧装置、输氧管道和各种配套设备组成,能够满足慢性疾病患者长期使用氧气的需求。
总结:医学中央供氧系统根据不同的功能和需求可分为医用集中供氧系统、医疗气体管网系统、氧气产生装置、液氧供应系统和家庭中央供氧系统等。
这些供氧系统在医疗机构和家庭中发挥着重要作用,为患者提供所需的氧气治疗,提高了治疗效果和患者的生活质量。
医学中央供氧系统的不断发展和创新将进一步促进医疗技术的进步和医疗服务的提升。
医用气体管道系统(Medicalgaspipelinesystems)
医用气体管道系统(Medical gas pipeline systems)F91Design of medical gas pipeline systemEast China Architectural Design & Research Institute Co., Ltd. Mao Yafang Lin ZaihaoAbstract: This paper introduces the design and points for attention of the medical gas pipeline system project, in order to improve the social and economic benefits of the hospital.Keywords: medical gas, central workstation, gas terminal.Abstract:, The, design, of, medical, use, of, gas, piping, CentralNetwork, engineering, work, is, introduced, in, this, paper., SomeIssues, should, be, pay, attention, on, it, to, improve,, the, social, andEconomical benefits of hospital.Summary:Medical gas pipeline supply system is part of a modern hospital important and necessary, it includes medical oxygen system, vacuum suction system, compressed air system, nitrous oxide (N2O), nitrogen system and carbon dioxide system and centerworkstation etc.. Through the rational design of the medical gas pipeline system project, the hospital can obtain a powerful gas supply system with lower investment to ensure the efficient operation of the hospital medical system.First, the basic types and uses of medical gases1. basic types of medicinal gases for medical oxygen, suction, compressed air, nitrogen, nitrous oxide (N2O) and carbon dioxide gas.Oxygen is mainly used for general patient oxygen, oxygen inhalation (ventilator) and emergency patients for drug atomization; the main suction sputum, pus and blood use; compressed air for dental equipment and ventilator as power (gas mixtures); nitrogen gas as power operation started out; nitrous oxide (N2O) used as anesthetic gas at the time of surgery. Carbon dioxide gas was used for peritoneal insufflation and laboratory cultures of bacteria.Two. Setting up medical gas pipeline system and central workstation (gas source)Medical gas pipeline systems refers to the medical use of oxygen, suction, compressed air, nitrogen, nitrous oxide, carbon dioxide concentration, emission and supply piping system. Medical gas settings are wards, operation room, 1CU, resuscitation room, emergency room, observation room, hyperbaric oxygen chamber, gynecological flow room, Department of Stomatology and other medical places. In order to ensure the stable and continuous medical gas supply system of gas supply,the central piping system centralized management center workstation settings (including oxygen station, vacuum pump, air compressor, etc.) connected with the hospital each gas terminal through the pipeline.2. central oxygen supply systemTwo1 the central oxygen supply system is composed of central oxygen supply station, pipeline, valve and terminal oxygen supply plug. The oxygen gas source is concentrated in the central oxygen supply station, and the air source and oxygen are transported to the terminal of the operation room, resuscitation room, therapeutic room and each ward through the pressure reducing device and pipeline for medical use.2.2 central oxygen supply stationThe oxygen supply modes of central oxygen station include oxygen bottle group, oxygen supply, liquid oxygen supply, combined oxygen supply with liquid oxygen and gas bottle, and oxygen supply by oxygen generator.Oxygen supply in oxygen bottle group consists of high pressure oxygen cylinder, busbar, pressure reducing device, pipeline and alarm device. Oxygen sets and oxygen supply lines must be divided into two groups (or more groups) for alternate oxygen supply, automatic or manual switching. Oxygen bottles can be supplied in bulk or in box type bottles. The total number of cylinders shall not exceed 20 bottles when using the exhaustmanifold. The ground floor of the bottled bus should be in accordance with the height of the vehicle. It should be more than 600mm above the surface of the field. The box type set shall have a rail guided crane for preventing sparks from occurring.Liquid oxygen supply consists of liquid oxygen tank, vaporizer, pressure reducing device, pipeline and alarm device. Liquid oxygen tanks larger than 500L should be placed outdoors, and the distance between outdoor liquid oxygen tanks and offices, wards, public places and busy roads should be greater than 7.5m. There should be no combustibles and asphalt pavement in the range of 5m around the LOX tank.The central oxygen supply system consists of PSA oxygen generator, high efficiency air compressor, cooling and drying filtration system, bacterial filter and oxygen concentration display device. PSA oxygen generator adopts PSA (Pressure)Swing(Adsorption) advanced technology, the use of molecular sieve pressure transfer adsorption methods to remove nitrogen and other substances in the air, to high-purity (93% + 3) of oxygen for medical useThe calculation of gas storage is determined by the amount of gas consumed and the time (or gas filling cycle) of the gas container. The replacement time of the gas container is related to the nature and management method of the hospital. It is usually 3~7 days.2.3 central oxygen supply system1) medium pressure transportation center oxygen supply station: 0.8~1.0MPa oxygen after two stage decompression, with 0.3~0.5MPa (adjustable) to the medical oxygen terminal. According to the requirements of the wards, the end pressure value can be adjusted, and the medium pressure gas can be conveyed at the same time. The relative pipe is thinner.2) low pressure transportation center oxygen supply station: 0.5~0.6MPa oxygen passes through the gas valve box (including gas pressure gauge, gas pressure contactor, gas pressure sensor and alarm control system) 0.2~0.4MPa for all medical oxygen terminals.2.4 central oxygen supply system technical requirementsIn order to ensure the normal oxygen supply of the system, there should be an alarm device for oxygen supply under pressure.When the oxygen supply system pressure is lower than the alarm pressure, Ying Yousheng and light simultaneously alarmFC1;Sound alarm is required in the 55dB (A) noise environment, which can be heard within the range of 1.5m. The oxygen pipeline must be reliably grounded and the grounding resistance is less than 100 ohms.All oxygen pipes, fittings, instruments, valves, and all other attachments to oxygen must be degreased in advance. After degreasing, pipes are dried with oil-free gas.3. negative pressure suction system3.1 negative pressure suction system consists of central suction station, suction pipeline, negative pressure suction terminal, etc.. The negative pressure source system is attracting center to attract vacuum pump station, the vacuum pump suction to suction system to reach the required value of negative pressure pipe, suction generated in the terminal at the operation room, resuscitation room, therapeutic room and each ward, to provide medical use.3.2 center attraction stationThe central suction station consists of a vacuum pump, a bacterial filter, a control cabinet, a dirt receiver and a vacuum buffer tank (a negative pressure tank). The vacuum pump must be in reserve and can be switched automatically.General medical vacuum pump has reciprocating vacuum pump, liquid ring (water ring) vacuum pump, oil lubricated sliding vane vacuum pump.: reciprocating vacuum pump: cheap and durable, but covers a large area, large noise, need cooling water, exhaust pipe must be installed muffler;: liquid ring vacuum pump: small size, small noise, but need to add recycled water. The system needs a water separator, and the ground must be equipped with a water tank.Oil lubricated sliding vane vacuum pump: it has the advantages of air cooling, low noise and little vibration. The internal one-way valve protects the suction system from contamination, and the oil mist separator protects the environment and reduces oil losses. Since the equipment is air cooled, the equipment room must be well ventilated.Auxiliary equipment of negative pressure suction system:: Double bacteria filter: prevent vacuum pump and vacuum tank from being polluted.: uninterrupted airflow replaceable filter: 2 interchangeable particulate filters.: dirt receiver: collects contaminated and liquid, protects the vacuum system to operate normally, does not interrupt the air current, may clean up the pollutant.: vacuum buffer tank: prevent frequent starting ofvacuum pump.3.3 technical requirements of negative pressure suction systemThe negative pressure of the suction system is not higher than 0.02MPa (150mmHg) in atmospheric environment, not less than 0.07MPa (525mmHg), and can be adjusted arbitrarily in this range. The vacuum meters with the accuracy of not less than 1.5 shall be fitted in each ward and operation room of the hospital. If the infectious ward and the general ward share a set of suction systems, the infectious ward system shall be provided with a vacuum tank and filter to be isolated from it. An alarm device shall be provided at the center attraction station,When the negative pressure value is higher than 0.019MPa (140mmHg) or less than 0.073When MPa (550mmHg), in the 55dB (A) noise environment, audible alarm and red light alarm should be heard in the 1.5m range. The air discharged from the exhaust port of the system shall not exceed 500 per cubic meter of bacteria. The indoor noise of the center attraction station is not more than 80dB (A), outdoor not more than 60DB (A). The suction system shall have a reliable grounding device with a grounding resistance of less than 10 ohms.4. medical air system (compressed air system)4.1 medical compressed air is sent to the medical department terminal by compressed air room for use.4.2 compressed air stationThe compressed air station is composed of an air compressor, an air tank, an air dryer, a three stage filter and a control cabinet.Air tank: prevent air compressor from starting frequently.Dryer: air drying, so that the air pressure dew point is +5 degrees, even if the low temperature environment is not as air droplets.Filter: meets standard for medical gas use.4.3 the compressed air shall be sterile, dry and oil-free. The intake air is clean air outside, and the suction port must be far away from all kinds of air vent.5. other medical gases (N2O, CO2, N2) systems5.1 other medical gases (N2O, CO2 and N2) are supplied by air source station, and then fed to medical terminal after decompression by double channel bus.5.2 gas supply stationBecause N2O, CO2 and N2 use less gas, the gas source can be supplied by a steel cylinder. The gas station is made up of cylinder gas and busbar, and the cylinder gas is composed of two sets. The location of the small gas station can be closeto the gas point, such as the operation room, technical mezzanine and so on. The room should be ventilated.Three. Common parameters of medical gas1. oxygen: single nozzle calculation flow is 5 l/min, breathing machine calculation flow is 10~20 l/min, oxygen terminal pressure is 0.2~0.4MPa.Simultaneous use factor: the whole ward is 0.2-0.4, the horizontal dry tube is 0.4-0.5, and the branch pipe of each ward is 1.Negative pressure suction: the flow rate of the single nozzle is 0.25 l/s, and the negative pressure of the operation table is 0.75~1.0L/s, the attraction pressure is -300mmHg~-600mmHg.Simultaneous use factor: the whole ward is 0.2~0.3, the horizontal dry tube is 0.3~0.4, and the branch pipe of each ward is 1.Compressed air: single nozzle calculation flow is 20~100 l/min, pressure is 0.4~0.5 MPa.Two: single nitrogen oxide flow rate is less than or equal to 30 l/min, the pressure is less than or equal to 0.4MPa.Nitrogen: the flow rate of single nozzle is 10 l/min and the pressure is 0.8~0.9MPa.Carbon dioxide: single nozzle flow calculation is less than 10 l/min, the pressure is 0.4~0.5MPa.2. selection of common gas pipe diameterAE3Calculation formula of oxygen diameter:Style: d=0.0188D - pipe bore (m)V - gas flow rate (m/s)Q - the actual volume of flow (m3/h) of a gas under operating conditionsQ=Q2 - free volume flow (m3/h)T - gas working temperatureP - the absolute pressure (MPa) of the gas working stateThe maximum flow rate in the oxygen pipe shall not exceed the value in the following table:Oxygen working pressure(MPa) 0~0.1, 0.1~0.3, 0.3~0.6, 0.6~1.6, 1.6~3.5, >10Maximum oxygen flow rate(m/s) 20 or less 15121084Vacuum pipe diameter:Because the negative pressure pipeline is not easy and convenient to calculate accurately, it can be referenced by the empirical data of the following table:Suction pipe diameter estimation tablepipe diameter(mm) 152025324050Number of attractive mouths(a) 1221246284140Note: the coefficient of simultaneous use has been taken into account in the table. The diameter of the pipe can be directly measured by the number of nozzles in the design. There is no need to discount any more. But when the computer room is too far from the use place, should enlarge the caliber suitably.3. pipeline laying method in wardThe arrangement of medical gas in the hospital ward can be divided into vertical main pipe transmission, horizontal dry pipe distribution and horizontal main pipe transmission, and vertical dry pipe is distributed to two kinds. Vertical manifold delivery, horizontal dry pipe distribution, has the advantage that two relief boxes or gas valve boxes can be installed in the horizontal dry pipe to make the gas supply adequate and the end pressure stable. Can provide gas supply system operation or normal air pressure gauge for each nursing station, medical personnel, monitoring the dangerous signal alarm; convenient maintenance, less impact: as the center workstation terminal device set up maintenance switch, the system does not stop gas can be repaired. But initial investment costs are slightly higher.The vertical distribution system of horizontal main pipe has the initial investment, but it can not be layered management and maintenance. In the ward, the gas pipeline can be exposed pipes with adjustable groove, groove plate center height 1.45M, terminal and power source beds, special grounding, call and communication, lighting and other centralized combination in the bed, easy to use. The air terminal in operation room and resuscitation room is arranged by hanging and wall.The gas duct layout can be vertical wells in the pipeline (not allowed with the power line laying in the same tube wells), horizontal pipe can be arranged on the ceiling in the loose.4. selection and connection of pipesPipe:* the oxygen pipe material is stainless steel tube and deoxidized copper tube (copper tube for short).* galvanized steel pipe can be used to attract pipe material. High requirements can be made of copper tubes or stainless steel tubes in the ward.* compressed air pipe material can be galvanized steel pipe. High requirements can be made of copper tubes or stainless steel tubes in the ward.* nitrogen, nitrous oxide, carbon dioxide gas pipe is made of stainless steel or brass.Connect:Galvanized steel pipe is threaded and Teflon packing is used.The stainless steel pipe is welded by argon arc welding.The copper tube is brazed by brazing; the solder (solder) can be made of low silver solder or copper phosphorus solder.3, EpilogueThe medical gas supply pipeline system is an important part of modern hospital system engineering, the author as the designers of building engineering equipment, hope that through this article, to exchange with the colleagues, inappropriate looking forword.Zero。
医用气体设计要点
医用气体设计要点1.医用气体的种类和用途:医用气体主要包括氧气、氮气、氧化亚氮、压缩空气等。
设计前需要明确医院的使用需求,确定需要提供哪些种类的气体以及其用途。
例如,氧气用于给重症患者提供呼吸支持,氮气用于气体冷冻手术等。
2.气体供应系统:医用气体供应系统主要包括气源设备、管道系统和终端设备等。
设计时需要考虑气源设备的选型和容量规划,确保能够满足医院的用气需求。
同时,管道系统的布局和终端设备的设置也需要合理规划,以保证气体传输的安全和高效。
3.安全措施:医用气体的使用具有一定的安全风险,设计时需要考虑采取一系列安全措施来降低风险。
例如,在气源设备上设置安全阀、压力表和漏气报警装置等,确保气体的供应和传输过程中不会发生压力过高或泄漏等意外情况。
4.气体管道系统设计:医用气体的管道系统设计应考虑气体的流动性、压力损失、气体纯度等因素。
管道布局应合理,避免弯曲和阻塞,以提高气体的传输效率。
管道的材料选择也非常重要,应具有较好的耐压、耐腐蚀和耐磨等性能。
5.气体储存和分配:医用气体在医院工程中需要进行储存和分配,以便及时提供给需要的部门和设备。
设计时需要考虑气体储存设备的容量和数量,并设置合适的分配装置,以确保各个部门和设备的用气需求得到满足。
6.监测和报警系统:医用气体的使用过程需要进行监测和报警,及时发现异常情况并采取相应措施。
设计时应考虑设置气体检测仪、压力差仪和报警装置等设备,以实现对气体使用情况的监控和安全管理。
总之,医用气体的设计要点需要综合考虑医院的用气需求、安全性要求和设备的可靠性等因素,以确保医院的医疗服务能够得到必要的气体支持。
设计时需要进行详细的规划和布局,并加强对各个环节的控制和管理,以确保医用气体的供应和使用的安全与可靠。
医用气体系统应用及安全分析
医用气体系统应用及安全分析医用气体系统是现代医院不可或缺的重要设备之一,它在医疗过程中承担输送气体、供应吸入气体和排放废气的重要作用。
医用气体系统包括氧气系统、氮气系统、笑气系统等,这些系统的应用和安全分析对保障医疗工作的顺利进行以及医院患者的生命安全具有重要意义。
首先,医用气体系统的应用主要有以下几个方面:1.氧气系统:氧气是医疗过程中不可或缺的重要气体,用于治疗急性呼吸衰竭、心脑血管疾病等。
医用氧气通过氧气产生装置进行制备,并通过气体管道输送到患者治疗所需位置。
2.氮气系统:氮气主要用于提供氛围和气保护,常见的应用有深呼吸的纯氧混合气,用于潜水员降解氮麻醉。
3.笑气系统:笑气作为一种强力镇定剂,主要用于无痛分娩手术和局部麻醉。
笑气系统通过笑气产生装置制备,并通过管道输送到手术室和分娩室。
4.其他医用气体系统:包括压缩空气系统、负压吸引系统等,用于手术、护理和医疗设备的通用气体供应。
其次,医用气体系统在应用过程中需要注意的安全问题主要有以下几点:1.气体泄漏:医用气体系统中可能发生泄漏,导致气体的浓度不足或者氧气泄漏不能及时发现。
因此,在气体系统设计中要合理设置泄漏报警装置,并对管道进行定期检测和维护。
2.气体过载:气体供应系统中可能发生气体过载,导致气体浓度超标。
为了确保气体浓度稳定,需要在系统设计中设置调节装置,并定期对设备进行校验和维护。
3.气体交叉污染:不同气体系统之间可能发生交叉污染,例如笑气与氧气之间的交叉污染。
为了避免交叉污染,需要合理规划和设计管道系统,以及定期检查和维护设备。
4.气体供应中断:气体供应系统中可能发生供应中断,导致患者治疗受阻。
为了确保气体供应的连续性,需要设置备用气源,并定期检查和维护设备。
5.气体燃烧和爆炸:气体系统中的气体泄漏可能会导致燃烧和爆炸事故。
为了防止燃烧和爆炸,需要采取相应的安全措施,例如设置气体泄漏报警装置、合理布置通风设施等。
综上所述,医用气体系统在医院医疗工作中扮演着至关重要的角色。
医用气体系统
医用气体系统医用气体系统是医疗机构中非常重要的设备之一,它用于为医疗操作提供所需的氧气、氮气等医用气体。
正常运行和管理医用气体系统对于临床治疗、手术室、急救等医疗工作至关重要。
本文将介绍医用气体系统的组成、运行原理以及管理注意事项。
一、组成医用气体系统包括气源系统、输送系统和终端设备。
1. 气源系统:气源系统是医用气体系统的重要基础,主要包括气瓶、气瓶集中区、气瓶自动转换装置等。
气源系统的设计与管理应当符合国家相关标准,确保所提供的气体稳定、纯净,并具备漏气报警、自动切换等安全功能。
2. 输送系统:输送系统是将气源输送到各临床科室和手术室的核心部分,主要包括管道、阀门、压力调节装置等。
管道应具备一定的强度和密封性能,阀门和压力调节装置应准确可靠。
输送系统的设计应确保气体的正常流动和安全输送,避免压力过高或过低对患者造成伤害。
3. 终端设备:终端设备是气体的最终使用工具,主要包括雾化器、吸氧设备、麻醉机等。
这些设备的运行状态应经过严格的检测和维护,确保其正常工作和患者的安全。
二、运行原理医用气体系统的运行原理主要包括气体的供应、输送和利用过程。
1. 供应过程:气源系统中的气瓶通过气瓶自动转换装置,根据压力的变化,自动切换气瓶的使用顺序,确保气体持续供应。
气瓶中的气体通过管道输送至各临床科室和手术室。
2. 输送过程:输送系统中的管道和阀门将气体从气源输送至终端设备。
输送过程中,气体的压力通过压力调节装置进行调整,确保气体的稳定输送。
3. 利用过程:终端设备将气体用于医疗操作,如吸入氧疗、麻醉等。
根据不同的医疗需求,气体可以进一步被雾化、加湿等。
三、管理注意事项为了确保医用气体系统的安全和可靠运行,以下是一些管理注意事项:1. 定期检测和维护:医用气体系统应定期进行检测和维护,确保各部分设备的正常运行状态。
检测包括气源的纯净度和压力、输送系统的泄漏检测、终端设备的工作状态等。
2. 气瓶管理:气瓶的管理非常关键,应按照相关标准进行操作。
我国医用氧气及分子筛制氧设备监管要求和对策
我国医用氧气及分子筛制氧设备监管要求和对策氧气在临床医疗上广泛应用,其质量直接关系着患者的健康和安全。
曾报道医疗机构使用大量工业氧冒充医用氧的事件,国家监管部门从产品注册、使用等方而采取了一系列监管强化措施[2-5]。
目前我国医用氧和供氧源设备按不同类别管理,本文分析医用氧气的管理模式和质量要求,以期合理应用、监管医疗用氧。
1氧气的制备方法一般有化学法、电解法、固体膜分离法、吸附法、冷冻法等。
制造医用氧气常用后两法。
1.1低温空气分离法即深度冷冻法制氧,是将空气加压、冷却而液化,利用氧、氮等沸点的不同(氧气—182.98C%氮气:-195.8C%氮气:-185.7C。
),在精饰塔内经多次冷凝蒸发,高沸点的氧组分不断冷凝进入液相,低沸点的氮组分不断蒸发为气体,达到氧氮分离的目的。
1.2变压吸附法(PSA)以沸石分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离岀氧气。
沸石分子筛表而和内部布满微孔的球形颗粒状吸附剂,对氧气、氮气的分离作用是基于其动力学直径的微小差别,氮气分子在沸石分子筛的微孔中有较快的扩散速率, 被吸附;氧气分子扩散速率较慢,不被吸附;水和二氧化碳的扩散速率与氮气相近。
沸石分子筛吸附量具有随压力变化的特性,改变其压力,可使吸附与解吸交替操作,整个过程周期性地动态循环,最终富集出氧气。
2氧气的质量标准2.1GB/T 3863-2008适用于由深度冷冻法分离空气和电解水等方法制取的气态或液态氧,主要用于冶金、化工、环境、火焰加工等。
技术要求:氧含量(体积分数)分为不小于99.5%和gg.2%两种,均无游离水。
2.2 GB 8982-2009代替GB8982-1998«医用氧》和GB8983-1998«航空呼吸用氧》,适用于由分离空气制取的气态及液态医用氧、航空呼吸用氧。
主要用于医疗、制备潜水呼吸混合气、航空飞行呼吸等。
技术要求:无异味;氧含量(体积分数)不小于99.5%,水分含量(露点)不大于-43C°;二氧化碳含量(体积分数)不大于100x10- 6;一氧化碳含量(体积分数)不大丁5x10-6;总坯含量(体积分数)不大于60x10-6;固体物质粒度不大于100 ym,含量不大于1 mg/m3;气态酸性物质和碱性物质含量、臭氧及其他气态氧化物检验合格。
YY0065—2016眼科仪器裂隙灯微镜等93项医疗器械行业标准解析
附件1YY 0065—2016《眼科仪器裂隙灯显微镜》等93项医疗器械行业标准编号、名称及适用范围一、强制性行业标准(共14项)(一)YY 0065—2016《眼科仪器裂隙灯显微镜》本标准规定了裂隙灯显微镜的要求和试验方法。
本标准适用于通用型裂隙灯显微镜。
本标准不适用于裂隙灯显微镜附件,如照相设备和激光器。
本标准代替YY 0065—2007《眼科仪器裂隙灯显微镜》。
(二)YY 0118—2016《关节置换植入物髋关节假体》本标准规定了部分和全髋关节假体的定义、分类及安全方面的预期性能、设计属性、材料、设计评估、制造、灭菌、包装和制造商提供的信息的要求。
本标准适用于使用标准中所规定材料和工艺制造的部分和全髋关节假体。
本标准代替YY 0118—2005《髋关节假体》。
(三)YY 0299—2016《医用超声耦合剂》本标准规定了医用超声耦合剂的定义、分类、要求、试验方法、检验规则及其包装、标志、运输和贮存。
本标准适用于医用超声耦合剂产品,包括企业作为商品制造、销售的,也包括医疗机构自制自用的。
该产品在超声诊断和治疗操作中用作探头、治疗头与人体组织之间的透声媒质。
本标准代替YY 0299—2008《医用超声耦合剂》。
(四)YY 0315—2016《钛及钛合金牙种植体》本标准规定了钛及钛合金材料制成的不带表面涂层的牙种植体的定义、性能要求和相应的试验方法,并对包装和标识的内容进行了规定。
本标准适用于由化学成分符合GB/T 13810—2007《外科植入物用钛及钛合金加工材》或ISO 5832系列标准、美国ASTM标准中外科植入物用钛及钛合金材料制成的牙种植体。
本标准不适用于种植体附件。
本标准代替YY 0315—2008《钛及钛合金人工牙种植体》。
(五)YY 0502—2016《关节置换植入物膝关节假体》本标准规定了部分和全膝关节假体的定义、分类及安全方面的预期性能、设计属性、材料、设计评估、制造、灭菌、包装和制造商提供的信息的要求。
86项医疗器械强制性行业标准转化为推荐性行业标准列表
YY 1272-2016
透析液过滤器
YY/T1272-2016
52
YY 1273-2016
血液净化辅助用滚压泵
YY/T1273-2016
53
YY 1274-2016
压力控制型腹膜透析设备
YY/T1274-2016
54
YY 1493-2016
重力控制型腹膜透析设备
YY/T1493-2016
55
YY 0091-2013
医疗器械 睡眠呼吸暂停治疗 面罩和应用附件
YY/T0671-2021
48
YY 0893-2013
医用气体混合器独立气体混合器
YY/T0893-2013
49
YY 1741-2021
抗凝血酶Ⅲ测定试剂盒
YY/T1741-2021
50
YY 1271-2016
心肺流转系统一次性使用吸引管
YY/T1271-2016
YY/T0898-2013
13
YY 0900-2013
减重步行训练台
YY/T0900-2013
14
YY 0901-2013
紫外治疗设备
YY/T0901-2013
15
YY 0952-2015
医用控温毯
YY/T0952-2015
16
YY 0003-1990
病床
YY/T0003-1990
17
YY 1057-2016
眼科仪器微型角膜刀
YY/T0788-2010
30
YY 1081-2011
医用内窥镜内窥镜功能供给装置冷光源
YY/T1081-2011
31
YY 1298-2016
用于医用气体管道系统的氧气浓缩器供气系统
6.2
用于医用气体管道系统的氧气浓缩器供气系统
标准条款号 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.4.1 6.4.2 6.4.3 6.4.4 6.5.1 6.5.2 6.5.3 6.5.4 6.6 6.7 7.1.1 标准条款内容 注:一台富氧空气罐可由一个以上氧气浓缩器供气。 应提供一台或多台氧气分析仪以连续测量包含氧气浓缩器单元的每个供气源的氧气浓度。 如果仅安装一台氧气分析仪,应通过风险管理程序决定采取适当措施确保连续供应的氧气浓度符合要求。(参见4.1.1)。 为每个包含氧气浓缩器单元的供气源提供控制措施,以确保当供气源生产的富氧空气浓度低于4.5.1规定时会自动关闭。 每台氧气分析仪都应配有低浓度报警功能。应采取措施避免未授权改变报警设定值。 每台氧气分析仪都应包含温度和大气压变动补偿功能,确保在90%~100%范围内精确到被测值的±1%。 压力泄放阀应符合供气系统制造商的设计规范,考虑国家或地区法规可能存在。制造商应根据需要提供证明。 当过压气体被泄放后所有压力泄放阀都应自动关闭。 氧气或富氧空气储罐上的安全阀应向建筑外排放,排放口应采取措施阻止昆虫、碎片和雨水进入。排放口应远离任何进气口、门窗或建筑内的其它 开口。排放口位置应考虑盛行风向的潜在影响。通过检查检验是否符合要求。 压力泄放阀应直接连接到管道或压力调节器,中间不应被截止阀等隔开。如果因维修需要装设阀门或限流器件,它应在压力释放装置插入时保持全 开。通过检查检验是否符合要求。 供气系统或每个供气源和管道分配系统之间应安装截止阀。 每个供气源都应能够通过截止阀被单独隔离。 不能被锁定在开启或关闭状态的阀门应避免不恰当的操作。 截止阀应仅供授权的人员操作,不能被非授权人员使用。 带有截止阀的取样口应装在紧靠供气系统截止阀之前。 如果安装汇流排和管道压力调节器,应符合ISO 10524-2的要求。 本条款规定了预期连接到符合ISO 7396-1的医用气体管道系统的氧气浓缩器供气系统的操作报警和信息信号的最低要求。 注:ISO 7396-1标准规定了用于医用气体管道系统的4种监测和报警系统分类:操作报警、紧急操作报警、紧急临床报警和信息信号。氧气浓缩器 供气系统所连接的管道系统的状态以及紧急操作报警和紧急临床报警的规定不在本标准范围内。 监控和报警系统应同时连接正常和应急电源并应有独立的电气保护。 听觉和视觉报警信号的特征应符合ISO 7396-1中6.3的要求。 应提供下列操作报警:a) 包括氧气浓缩器单元的供气源故障;b) 氧气浓度低于卫生保健机构的最低要求,考虑氧气分析仪的精度;c) 主要供 气源中的气瓶或低温容器存量不足(若安装);d) 辅助供气源中的气瓶或低温容器存量不足(若安装);e) 辅助供气源在使用中;f) 辅助供 气源中的气瓶或气瓶组或低温容器的液态氧存量低于容积的50%;g) 后备供气源使用中;h) 后备供气源存量低于容量的50%;i) 充瓶系统故 应提供措施,例如通过适当的传感器,使符合ISO 7396-1要求的监控和报警系统指示7.3.1规定的故障。 氧气浓缩器供气系统应提供信息信号来指示正常工作状态。 应提供措施使符合ISO 7396-1要求的监测和报警系统指示正常状态。 氧气浓缩器供气系统的主要、辅助和后备供气源应适当标记为氧气或富氧空气,如适用。注:典型的标记方法包括金属标签、模板印刷、冲压和可 如果富氧空气管道系统与氧气管道系统并存,这两个系统应通过标记加以区分。 氧气浓缩器供气系统应依据本标准和制造商说明书进行安装。 注1:关于安装的地区、国家和地方法规可存在。 注2:附录G包含了安装的建议。 制造商应根据需要提供证明。 应考虑4.1.2中关于供气源连接到应急电源供应系统的风险分析结果。
医用分子筛制氧机产品技术要求zhongchenghangyu
医用分子筛制氧机适用范围:本产品适用于低压氧气的制备1.1 型号命名规则1.2 设备规格表表1 制氧机规格表表2 产品性能1.3 产品组成本产品由2个吸附塔、2个气体缓冲罐、1个控制柜、1个流量计、1个过滤器组成制氧机正常使用条件:a) 环境温度:5℃~ 40℃b) 相对湿度:≤80%;c) 大气压:86kPa~106kPa;d) 无浓蒸气、无灰尘及易燃易爆气体;e) 电源频率:50Hz;f) 电源电压:单相为220V。
2.1 外观及结构2.1.1 面板上的图形符号和字母准确、清晰、均匀,不得有划痕。
2.1.2 制氧设备外表面涂天蓝色油漆,涂层应均匀,不得有气泡、脱层或明显划痕。
2.1.3 所有联接件应联接牢靠,不得有任何松动;各件管路,管汇及阀门应排列整齐,联接处不得漏气。
2.1.4 各调节机构应做到:调整方便,操作灵活,性能可靠。
各仪表应反应灵敏、准确。
2.2 产品气的理化指标表3 氧气理化指标2.3 气密性所有坚固件连接应牢靠,不得有任何松动,各种管路、管汇及阀门排列应整齐,其连接处不得漏气。
2.4 噪声制氧机的噪声声功率,应不大于85dB(A)。
2.5 运行状态制氧机开机后,所有电、气动阀以及压力表、指示灯均应工作正常,并有氧气输出。
2.6 氧产量及氧浓度制氧机开机30min后,其氧产量应达到表1的要求,氧浓度应≥90%。
2.7 指示灯及按钮指示灯及按钮(除以文字数字显示外)的颜色要求应符合YY/T 0298-1998中5.7.1以及5.7.4的颜色要求。
2.8 压力容器应符合YY/T 0298-1998中5.8的要求。
2.9 电气安全性能制氧机的电气安全性能应符合GB9706.1-2007的要求,主要性能见附录A。
2.10 环境试验要求环境试验除应符合GB/T 14710-2009中的气候环境试验Ⅱ组、机械环境试验Ⅰ组的规定外,还应符合表4给出的规定。
表4 环境试验要求补充规定2.11 电磁兼容性能制氧机的电磁兼容性能应符合YY0505-2012《医用电气设备第1-2部分:安全通用要求并列标准:电磁兼容要求和试验》的相应章节的要求。
医用气体管道系统的氧气浓缩器供气系统
附件1关于《用于医用气体管道系统的氧气浓缩器供气系统》行业标准实施有关事宜的通知(征求意见稿)依据医疗器械行业标准制修订计划,我局对YY/T 0298-1998《医用分子筛制氧设备通用技术规范》进行了修订,鉴于修订后的《用于医用气体管道系统的氧气浓缩器供气系统》标准(以下简称新标准)涉及对产品生产、审查、安装、使用等多环节要求,为了保证新标准发布后顺利实施,现将有关要求通知如下:一、医疗器械生产企业是产品第一责任人,应全面贯彻实施新标准,并应依据YY/T 0316中风险管理程序,结合新标准中附录H有关要求,分析产品可能存在的安全方面的危害,采取措施确保产品安全、有效。
二、新标准规范性引用文件中载明的国际标准,如果有相关的国家或医疗器械行业标准,则可按照新标准要求采用相关的国家或医疗器械行业标准。
对于引用的ISO 7396-1《医用气体管道系统第1部分:医用压缩气体和真空用管道》标准,由于我国已发布了《医用气体工程技术规范》(GB 50751-2012),如果医疗机构医用气体管道分配系统符合该规范要求,且也符合该规范中未包含而ISO 7396-1包含的性能指标要求,则可使用氧气浓缩器供气系统。
三、标准条款4.5.2中涉及的ISO 14644-1:1999表1附于本实施通知后,实施时参见本通知附表1。
四、新标准实施后,在实施注册检测时,各相关医疗器械检测机构应按本通知附表2中类别号为A的新标准条款及其备注中要求实施检测。
六、新标准实施后,在申请注册时,除递交法规规定资料外,还应递交富氧空气符合药品质量标准规定的证明材料及新标准中要求生产企业提供的各种证明材料(见本通知附表2中类别号为B的条款规定的资料)。
必要时,各级食品药品监督管理部门可要求企业提供系统安装图、安装作业指导书、维修手册、电气图等涉及对产品安全、有效性进行评价的其他相关技术资料。
已受理注册尚在注册审查期间的产品应按程序补充提交证明产品符合新标准要求上述相关资料和检验报告。
医用氧气的浓度区别与法规标准
医疗用氧的浓度区别与法规标准医疗氧气是医院疾病预防与治疗必不可少的组成部分,也是医院用气量最大的医用气体,是生命支持系统的重要构成;因氧气对人体的重要作用,尤其是在医疗急救上的应用,医疗氧气的供气方式与氧源方式逐步演变与发展;供气方式由起初的分散性供氧到如今的集中性供氧,医院供氧系统氧源方式也从单一的瓶装氧到如今的液氧、分子筛制氧三足鼎立,医院中心供氧整体朝着安全、自主、现代化不断更迭,泰瑞医疗等一批先进的氧业单位技术也在不断革新;人体与临床氧浓度需求氧是人体生理代谢的基本元素,构成人类形状的细胞和生命现象的中轴存在——大脑﹑心脏﹑肺以及维持它们的血液,离开氧气都无法继续活动;而且氧气含量的高低对人体的影响是非常直接、明显的;现今空气中的氧气含量在21%左右,当氧气含量过低时,人体会出现缺氧状态,严重缺氧时会危及生命;而当氧气含量过高时,也会对人体产生一定的损害,如果人呼吸的是纯氧,会引起“氧中毒”现象;所以从人体生理角度考虑,并不需要吸入高浓度氧气,一般吸入的是稀释后的氧气;据泰瑞医疗了解,临床上对使用医疗氧气有着不同的需求,根据临床用氧的特点,可分为普通病床用氧、高压氧舱用氧、麻醉机呼吸机以及ICU病房用氧;普通病床用氧一般是在常压状态下吸氧,多采用鼻塞给氧,有严重呼吸功障碍患者则采用面罩给氧、鼻导管给氧;主要用于疾病的治疗与预防,普通病人吸氧量为min,氧气浓度一般控制在24%-35%;高压氧舱是在加压状态下吸氧,以介质来说医用有两种:1氧气加压舱:用高浓度氧,稳压后病人直接呼吸舱内的氧,氧浓度一般是在80%以上;2空气舱:用空气加压,稳压后根据病情,病人通过、氧帐,直至吸氧,氧浓度需控制在25%以下;高压氧舱氧源的选择在临床上没有明确限定,主要是要求瞬时用氧量大,氧气压力高;麻醉机呼吸机以及ICU病房用氧对氧气供应的时间和压力要求相对较为严格;医药行业标准YY 0042-2007高频喷射呼吸机中规定呼吸机最高氧浓度是85%;为防止在治疗和抢救的过程,因吸入“纯氧”发生氧中毒,所有的呼吸机和麻醉机氧含量调整范围为21%-90%;不论是从人体氧浓度还是临床氧浓度需求分析,医疗用氧的氧含量只要≧90%就可以满足缺氧的治疗与预防,因为瓶氧液氧与分子筛制氧的制氧原理不同,所以国家食品药品监督管理局对医用氧与富氧空气的质量标准不同,标准主要是规范两大方面,一个是对于氧浓度的规定,另一个是对于杂质、有毒有害气体含量的规定,必须满足这两点要求,才是合法合规的医疗氧气;医疗用氧的法规标准1955年颁布中国药典之时,“氧气”一词便列入其中,但是对于医疗用氧一直没有明确的规范,随着医疗健康水平的提高以及用氧方式的发展变迁,医疗用氧的法规标准逐步完善;根据制氧原理的不同,目前主要分为两类,一类是针对瓶氧、液氧的医用氧气制定,一类是针对分子筛制氧产出的富氧空气制定;1、GB8982-2009 医用及航空呼吸用氧2009年的最新改版,将GB8982-1998医用氧气与GB8983-1998航空呼吸用氧修订合并,适用于由分离空气制取的气态及液态医用氧、航空呼吸用氧;技术要求:氧含量体积分数不小于%,水分含量露点小于-43℃,二氧化碳含量不大于%,一氧化碳含量不大于5×10-6,固体物质的粒度不大于100um、含量不大于1mg/m3,总烃含量体积分数不大于60×10-6,气态酸性物质和碱性物质含量、臭氧及其他氧化物按照要求检验合格;2、YY 1468-2016 用于医用气体管道系统的氧气浓缩器供气系统由于分子筛制氧运用越来越广泛,国家法规监管也越发规范化,经多轮研讨后送审,正式发布用于医用气体管道系统的氧气浓缩器供气系统;规范中指出氧气浓缩器如分子筛制氧系统制取的氧气富氧空气,93%氧可以用于医用气体管道系统,作为医用氧气如中国药典中的“氧”的替代品,并可与含有100%医用氧气的供气源即氧气瓶或低温容器组合使用;标准中明确氧气浓缩器制取的氧气可以用于在医疗机构中的医用气体管道系统,并没有适用范围的限定;技术要求:氧气浓度90%-96%,水分含量不大于%,一氧化碳浓度不大于%,二氧化碳浓度不大于%,氮氧化物不大于%,其他气态氧化物质溶液应无色;医用分子筛制氧设备在常温低压的状态下制取氧气,相对瓶氧液氧而言安全可靠、自主方便,其所产氧气中的有害成分含量比深冷法制取的氧气更低,符合国家含量标准,有些有害成分根本不存在,在临床上的应用与瓶氧液氧的氧气也并无不同;因为自身具备的不可比拟优势所以分子筛制氧成为瓶氧液氧的替代品,使用更加广泛,分子筛制氧技术也从“国外引进”到“中国智造”,泰瑞医疗随着技术不断成熟与先进,以创新研发第四代智能医用制氧系统的泰瑞医疗为典型代表的一批企业,正在推动中国制氧技术的发展;未来,更多的医院甚至是乡镇卫生医院等基层医疗机构都将用上这种现代化的制氧方式;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附件1
关于《用于医用气体管道系统的氧气浓缩器供气系统》行业标准实施有关事宜的通知(征求意见稿)
依据医疗器械行业标准制修订计划,我局对YY/T 0298-1998《医用分子筛制氧设备通用技术规范》进行了修订,鉴于修订后的《用于医用气体管道系统的氧气浓缩器供气系统》标准(以下简称新标准)涉及对产品生产、审查、安装、使用等多环节要求,为了保证新标准发布后顺利实施,现将有关要求通知如下:
一、医疗器械生产企业是产品第一责任人,应全面贯彻实施新标准,并应依据YY/T 0316中风险管理程序,结合新标准中附录H有关要求,分析产品可能存在的安全方面的危害,采取措施确保产品安全、有效。
二、新标准规范性引用文件中载明的国际标准,如果有相关的国家或医疗器械行业标准,则可按照新标准要求采用相关的国家或医疗器械行业标准。
对于引用的ISO 7396-1《医用气体管道系统第1部分:医用压缩气体和真空用管道》标准,由于我国已发布了《医用气体工程技术规范》(GB 50751-2012),如果医疗机构医用气体管道分配系统符合该规范要求,且也符合该规范中未包含而ISO 7396-1包含的性能指标要求,则可使用氧气浓缩器供气系统。
三、标准条款4.5.2中涉及的ISO 14644-1:1999表1附于
本实施通知后,实施时参见本通知附表1。
四、新标准实施后,在实施注册检测时,各相关医疗器械检测机构应按本通知附表2中类别号为A的新标准条款及其备注中要求实施检测。
六、新标准实施后,在申请注册时,除递交法规规定资料外,还应递交富氧空气符合药品质量标准规定的证明材料及新标准中要求生产企业提供的各种证明材料(见本通知附表2中类别号为B的条款规定的资料)。
必要时,各级食品药品监督管理部门可要求企业提供系统安装图、安装作业指导书、维修手册、电气图等涉及对产品安全、有效性进行评价的其他相关技术资料。
已受理注册尚在注册审查期间的产品应按程序补充提交证明产品符合新标准要求上述相关资料和检验报告。
七、新标准实施后,在进行质量管理体系检查时,省级食品药监监督管理部门应结合质量管理体系检查要求,一并检查本通知附表2中类别号为C的新标准条款要求是否在产品生产过程中得以贯彻实施,并在质量管理体系考核报告后注明相关标准条款检查结果。
有关条款要求作为重点考核项目,如其不符合标准要求,则应参照《医疗器械生产企业质量体系考核办法》中重点考核项目不符合情况处理。
八、新标准实施后,使用氧气浓缩器供气系统的医疗机构应按照新标准相关条款(见本通知附表2中类别号为D及E的条款)的要求,做好或配合生产企业做好产品设计、安装、试运行、接
收、维护和保养等工作,保证系统使用过程中的安全。
九、新标准实施前,已投入使用的氧气浓缩器供气系统,医疗机构应和生产企业共同对其风险实施评估,对发现存在安全隐患的,应参照新标准实施整改,整改后产品应符合新标准有关产品主要性能指标要求,其制取的富氧空气质量应符合药品相关质量标准规定。
省级食品药品监督管理部门负责组织对改造后系统及其制取的富氧空气质量进行检查,如产品及富氧空气质量达不到相应要求,将有关情况通报相应卫生行政部门,并立即书面通知医疗机构按应急管理规程进行处理。
十、各级食品药品监管部门及相关单位应认真学习新标准,按照本通知规定并结合实际,统筹协调各相关部门做好有关工作。
附表1
洁净室及洁净区选列的悬浮粒子洁净度等级
附表2
《用于医用气体管道系统的氧气浓缩器供气系统》行业标准条款类别分配表。