电磁感应计算题类型大全
电磁感应题型 超全
电磁感应计算题集锦7.位于坐标原点处的波源A沿y轴做简谐运动,A刚好完成一次全振动时,在介质中形成的简谐横波的波形如图所示,B是沿波传播方向上介质的一个质点,则A.波源A开始振动时的运动方向沿y轴负方向B.此后14周期内回复力对波源A一直做负功C.经半个周期时间质点B将向右迁移半个波长D.在一个周期时间内A所受回复力的冲量为零4.在匀强磁场中,一矩形金属线框绕与磁感线垂直的转轴匀速转动,如图1所示,产生的交变电动势的图象如图2所示,则A.t =0.005s时线框的磁通量变化率为零B.t =0.01s时线框平面与中性面重合C.线框产生的交变电动势有效值为311VD.线框产生的交变电动势的频率为100Hz5.板间距为d的平行板电容器所带电荷量为Q时,两极板间的电势差为U1,板间场强为E1。
现将电容器所带电荷量变为2Q,板间距变为12d,其他条件不变,这时两极板间电势差为U2,板间场强为E2,下列说法正确的是A.U2 = U1,E2 = E1 B.U2 = 2U1,E2 = 4E1C.U2 = U1,E2 = 2E1D.U2 = 2U1,E2 = 2E111.(18分)如图所示,两根足够长的光滑金属导轨MN、PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角。
完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。
取g=10m/s2,问:(1)通过cd棒的电流I是多少,方向如何?(2)棒ab受到的力F多大?(3)棒cd每产生Q=0.1J的热量,力F做的功W是多少?6、(12分)如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ。
初三电磁感应练习题及答案
初三电磁感应练习题及答案练习题1:1. 一个导线以2.0m/s的速度从一个均匀磁场中通过,磁感应强度为0.4T,导线长度为0.5m。
求导线所受的感应电动势大小。
2. 一个长度为3.0m的导线以10m/s的速度垂直通过一个磁感应强度为1.5T的磁场,求导线两端之间的感应电势差。
3. 一个矩形导线框架的长边长度为2.0m,短边长度为0.5m,框架的整体电阻为6.0Ω。
当磁感应强度为0.8T时,框架被拉动,导线切割磁力线的速度恒定为3.0m/s。
求在导线上出现的电动势大小。
答案:1. 感应电动势的大小与磁感应强度、导线长度和导线在磁场中的速度有关。
根据公式E = B*d*l*v,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,v为导线长度。
将已知值代入计算,得到E = 0.4T * 0.5m * 2.0m/s = 0.4V。
故导线所受的感应电动势大小为0.4V。
2. 感应电势差的大小取决于磁感应强度、导线长度和导线在磁场中的速度之积。
根据公式∆V = B*l*v,其中B为磁感应强度,l为导线长度,v为导线在磁场中的速度。
将已知值代入计算,得到∆V = 1.5T * 3.0m * 10m/s = 45V。
导线两端之间的感应电势差为45V。
3. 在导线上出现的电动势大小取决于磁感应强度、导线长度、导线在磁场中的速度和导线的电阻之积。
根据公式E = B*d*l*v/R,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,R为导线的电阻。
将已知值代入计算,得到E = 0.8T * 3.0m * 2.0m * 0.5m/s / 6.0Ω = 0.8V。
在导线上出现的电动势大小为0.8V。
练习题2:1. 一个磁感应强度为0.5T的磁场垂直于一个半径为0.2m的圆环,圆环的电阻为2.0Ω。
圆环以5rad/s的角速度绕垂直磁场线旋转,求圆环上出现的感应电动势大小。
2. 一个长度为4.0m的直导线绕过一个半径为2.0m的圆形电感线圈,电感线圈中有100个匝。
初中电磁感应专题练习(含详细答案)
初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。
三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。
2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。
3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。
4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。
电磁感应习题
1、选择题1、一个电阻为R,自感系数为L的线圈,将它接在一个电动势为的交变电源上,设线圈的自感电动势为,则通过线圈的电流为(B)A、B、C、D、2、面积为S和2S的两个线圈A和B的中心垂直轴相同,通有相同的电流I,由线圈A中电流产生通过线圈B的磁通量为,由线圈B中电流产生通过线圈A的磁通量为,则的关系为(C)A、=2B、=/2 C、=D、>3、下列那种情况下,不会出现位移电流( A )A、电场不随时间变化B、电场随时间变化C、交流回路D、在接通直流电路的瞬时4、一长为l的螺线管,原来用细导线单层密绕而成,如换用直径比原来的大一倍的导线绕制,则螺线管的自感系数为(C)A、增加到原来的两倍B、减少为原来的二分之一C、减少为原来的四分之一D、增加到原来的四倍2、填空题1、边长为a的正方形线圈放在一根长直导线旁,线圈与直导线共面,其中心距长直导线为3a/2,线圈的一组边与直导线平行,此时,正方形线圈与长直导线的互感系数为,若将线圈垂直于长直导线方向的两条边向外侧延长一倍而成矩形,此时的互感系数为。
2、两根直径为d的平行长直导线的中心轴线相距为l(l>>d),此时这两根长直导线单位长度上的自感系数为。
3、有两个自感线圈,线圈Ⅰ的自感系数为L1,电阻为R1,线圈Ⅱ的自感系数为L2,电阻为R2,且L2=2L1,R2=2R1。
若把两线圈串联后接在电源上,两自感线圈中储存的磁能W1:W2= 1:2 ,若把两线圈并联后接在电源上,两自感线圈中储存的磁能W1:W2= 2:1 ,4、一长为l,总匝数为N的细长密绕螺线管内,通有变化的电流(a、I0都为常数),则螺线管内距螺线管的轴线为r处一点的磁感应强度的大小为,电场强度的大小为。
5、有两个线圈,自感系数分别为L1=3mH、L2=5mH,串联成一个线圈后测得自感系数L=11mH,则两线圈的互感系数M= 1.5mH 。
3、计算题1、如图所示,两条长直平行输电导线和一矩形线圈共面,长直导线在无限远处相接,求线圈和两条导线的互感系数。
电磁感应综合-导轨模型计算题(26题 含答案详解)
电磁感应综合-导轨模型计算题1.(9分)如图所示,两根间距L=1m 、电阻不计的平行光滑金属导轨ab 、cd 水平放置,一端与阻值R =2Ω的电阻相连。
质量m=1kg 的导体棒ef 在外力作用下沿导轨以v=5m/s 的速度向右匀速运动。
整个装置处于磁感应强度B=0.2T 的竖直向下的匀强磁场中。
求:(1)感应电动势大小; (2)回路中感应电流大小; (3)导体棒所受安培力大小。
【答案】(1)V 1=E (2)0.5A I = (3)0.1N F =安【解析】 试题分析:(1)导体棒向右运动,切割磁感线产生感应电动势BLv E = 代入数据解得:V 1=E(2)感应电流RE I =代入数据解得:A 5.0=I(3)导体棒所受安培力BIL F =安 代入数据解得:N 10.F =安考点:本题考查了电磁感应定律、欧姆定律、安培力。
2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小.(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8 W ,求该速度的大小.(3)在上问中,若R =2 Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)【答案】(1)4m/s 2(2)10m/s (3)0.4T 【解析】试题分析:(1)金属棒开始下滑的初速为零,由牛顿第二定律得:mgsin θ-μmgcos θ=ma ①由①式解得:a=10×(0.6-0.25×0.8)m/s 2=4m/s 2②;(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F , 棒在沿导轨方向受力平衡:mgsin θ一μmgcos0一F=0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率:Fv=P ④ 由③、④两式解得:s m s m F P v /10/)8.025.06.0(102.08=⨯-⨯⨯==⑤ (3)设电路中电流为I ,两导轨间金属棒的长为l ,磁场的磁感应强度为B , 感应电流:RBlvI =⑥ 电功率:P=I 2R ⑦ 由⑥、⑦两式解得:T T vl PR B 4.011028=⨯⨯==⑧ 磁场方向垂直导轨平面向上;考点:牛顿第二定律;电功率;法拉第电磁感应定律. 3.(13分)如图,在竖直向下的磁感应强度为B 的匀强磁场中,两根足够长的平行光滑金属轨道MN 、PQ 固定在水平面内,相距为L 。
根据电磁感应定律计算题专题训练
根据电磁感应定律计算题专题训练
根据电磁感应定律的计算题是物理学研究中的一个重要内容。
掌握这些计算方法可以帮助我们更好地理解电磁感应现象及其应用。
以下是一些根据电磁感应定律的计算题专题训练。
计算题一:导线在磁场中的感应电动势
题目描述:一根导线以速度v在垂直于磁场B的方向上运动,
在导线的两端形成感应电动势ε,请计算导线的长度l。
解题思路:
根据电磁感应定律,感应电动势ε等于导线在磁场中的磁感应
强度B与导线长度l以及导线运动速度v的乘积。
因此,我们可以
得到以下公式:
ε = B * l * v
根据题目给出的已知条件,我们可以代入数值进行计算。
计算题二:磁通量的变化率引起的感应电动势
题目描述:一个导线圈在磁场中的磁通量Φ发生变化,导线圈中感应出电动势ε,请计算导线圈的匝数N。
解题思路:
根据电磁感应定律,感应电动势ε等于磁通量Φ的变化率与导线圈的匝数N的乘积。
因此,我们可以得到以下公式:
ε = dΦ/dt * N
根据题目给出的已知条件,我们可以代入数值进行计算。
计算题三:利用楞次定律计算电流大小
题目描述:一个导体绕过电流为I的直导线做闭合回路,根据楞次定律,导体受力方向与电流方向垂直,受力大小为F,请计算电流I的数值。
解题思路:
根据楞次定律,导体受力的大小F等于导体的长度l、磁感应强度B以及电流I的乘积。
因此,我们可以得到以下公式:
F = B * l * I
根据题目给出的已知条件,我们可以代入数值进行计算。
这里是根据电磁感应定律的计算题专题训练,希望对您的学习有所帮助!。
电磁感应计算题专项训练及答案
电磁感应计算题专项训练【注】该专项涉及规律:感应电动势、欧姆定律、牛顿定律、动能定理1、(2010重庆卷)法拉第曾提出一种利用河流发电的设想,并进行了实验研究。
实验装置的示意图如图所示,两块面积均为S 的矩形金属板,平行、正对、竖直地全部浸在河水中,间距为d 。
水流速度处处相同,大小为v ,方向水平。
金属板与水流方向平行。
地磁场磁感应强度的竖直分量为B ,水的电阻率为ρ,水面上方有一阻值为R 的电阻通过绝缘导线和电键K 连接到两金属板上。
忽略边缘效应,求:(1)该发电装置的电动势; (2)通过电阻R 的电流强度; (3)电阻R 消耗的电功率2、(2007天津)两根光滑的长直金属导轨MN 、M ´N ´平行置于同一水平面内,导轨间距为l ,电阻不计。
M 、M ´处接有如图所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C 。
现有长度也为l ,电阻同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中。
ab 在外力作用下向右匀速运动且与导轨保持良好接触,在ab 在运动距离为s 的过程中,整个回路中产生的焦耳热为Q 。
求:⑴ab 运动速度v 的大小;⑵电容器所带的电荷量q 。
3、(2010江苏卷)如图所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。
一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处由静止释放。
导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I 。
整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。
求:(1)磁感应强度的大小B ;(2)电流稳定后,导体棒运动速度的大小v ; (3)流经电流表电流的最大值I maNN ´4、(2008北京)均匀导线制成的单匝正方形闭合线框abcd ,每边长为L ,总电阻为R ,总质量为m .将其置于磁感强度为B 的水平匀强磁场上方h 处,如图所示.线框由静止自由下落,线框平面保持在竖直平面内,且cd 边始终与水平的磁场边界平行.当cd 边刚进入磁场时,⑴求线框中产生的感应电动势大小; ⑵求cd 两点间的电势差大小;⑶若此时线框加速度恰好为零,求线框下落的高度h 所应满足的条件.5、(2010福建)如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。
电磁感应典型题目(含答案)
电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。
电磁感应经典例题及解析
电磁感应经典例题及解析电磁感应是电磁学中的重要概念,也是我们日常生活中常常会遇到的现象。
在电磁感应的过程中,磁场的变化会导致电场的产生,进而引发电流的产生。
这一原理广泛应用于发电机、变压器等电磁设备中。
下面我们来看一些经典的电磁感应例题,并对其进行解析。
例题1:一个磁感强度为0.2 T的匀强磁场,以2 m/s的速度向垂直于磁场的方向移动,求导体中感应电动势的大小。
解析:根据电磁感应的原理,导体中感应电动势的大小等于磁感强度与导体的速度的乘积,即E = Bv。
将已知数据代入计算,E = 0.2 T × 2 m/s = 0.4 V。
例题2:一个圆形线圈的半径为10 cm,磁感强度为0.5 T的磁场垂直于线圈的平面,在0.2 s内磁场的强度从0.2 T增加到0.6 T,求线圈中感应电流的大小。
解析:根据电磁感应的原理,感应电流的大小等于感应电动势与电阻的比值,即I = ε/R。
感应电动势可以通过磁场的变化率来计算,即ε = -dφ/dt。
其中,φ表示磁通量。
磁通量的大小等于磁感强度与线圈面积的乘积,即φ = Bπr^2。
将已知数据代入计算,φ = 0.2 T ×π× (0.1 m)^2 = 0.02π Tm^2。
对磁通量关于时间的导数,即dφ/dt,可以计算为(0.6 T - 0.2 T)/0.2 s = 2 T/s。
因此,感应电动势的大小为ε = -2 T/s。
线圈的电阻需要另外给定,才能计算感应电流的大小。
通过以上例题的解析,我们可以看到,在电磁感应问题中,需要根据已知条件来计算磁通量的变化率,从而得到感应电动势的大小。
最后,根据电路中的电阻情况,可以计算出感应电流的大小。
电磁感应是电磁学中的重要概念,掌握电磁感应的原理和应用,对于理解和应用电磁学的知识具有重要意义。
通过解析经典的电磁感应例题,可以加深对电磁感应原理的理解,提高解决实际问题的能力。
高考复习超经典电磁感应计算难题-含答案
高考复习超经典电磁感应计算难题-含答案(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1、如图所示,半径为a的圆形区域内有匀强磁场,磁感应强度B=0.2T,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=0.4m,b=0.6m.金属环上分别接有灯L1、L2,两灯的电阻均为R0=2Ω.一金属棒MN与金属环接触良好,棒与环的电阻均不计.(1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO′的瞬时,MN中的感应电动势和流过灯L1的电流;(2)撤去中间的金属棒MN,将右面的半圆环OL2O′以OO′为轴向上翻转90°,若此时磁场强度随时间均匀变化,其变化率为=T/s,求L1的功率.2、如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为,下落距离为0.8R时电动势大小为,忽略涡流损耗和边缘效应.关于、的大小和铜棒离开磁场前两端的极性,下列判断正确的是A、>,a端为正B、>,b端为正C、<,a端为正D、<,b端为正3、如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。
长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。
导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。
线框的边长为d(d < l),电阻为R,下边与磁场区域上边界重合。
将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。
电磁感应分类典型例题
电磁感应计算题题型一 法拉第电磁感应定律1、一个200匝、面积为20cm 2在圆形线圈,放在匀强磁场中,磁场的方向与线圈平面成300角,磁感应强度在0.05s 内由0.1T 增加到0.5T 。
在此过程中,穿过线圈的磁通量变化量是多大?磁通量的平均变化率是多大?线圈中感应电动势的大小为少?2、如图10所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm 2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图所示;求: (1)、前4S 内的感应电动势 (2)、前5S 内的感应电动势3、在如图甲所示的电路中,螺线管匝数n = 1500匝,横截面积S = 20cm 2。
螺线管导线电阻r = 1.0Ω,R 1 = 4.0Ω,R 2 = 5.0Ω,C =30μF 。
在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化。
求:(1)求螺线管中产生的感应电动势;E = 1.2V (2)闭合S ,电路中的电流稳定后,求电阻R 1的电功率;P = 5.76×10-2W(3)S 断开后,求流经R 2的电量。
Q = CU = 1.8×10-5C4.一个半径r =0.10m 的闭合导体圆环,圆环单位长度的电阻R 0=1.0×10-2 Ω⋅m -1。
如图19甲所示,圆环所在区域存在着匀强磁场,磁场方向垂直圆环所在平面向外,磁感应强度大小随时间变化情况如图19乙所示。
2图甲R 1CSB图乙t/B /T0.20.4 0.6 O1.02.0 0.8 1.0(1)分别求在0~0.3 s 和0.3 s~0.5s 时间内圆环中感应电动势的大小;(2)分别求在0~0.3 s 和0.3 s~0.5s 时间内圆环中感应电流的大小,并在图19丙中画出圆环中感应电流随时间变化的i -t 图象(以线圈中逆时针电流为正,至少画出两个周期);(3)求在0~10s 内圆环中产生的焦耳热。
电磁感应大题题型总结
电磁感应大题题型总结一、导体棒切割磁感线产生感应电动势类1. 单棒平动切割磁感线- 题目示例:- 如图所示,在一磁感应强度B = 0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h = 0.1m的平行金属导轨MN与PQ,导轨的电阻忽略不计。
在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L =0.2m,每米长电阻r = 2.5Ω/m的金属棒ab,金属棒与导轨正交,交点为c、d。
当金属棒以速度v = 4.0m/s向左做匀速运动时,求:- (1)金属棒ab中感应电动势的大小;- (2)通过金属棒ab的电流大小;- (3)金属棒ab两端的电压大小。
- 解析:- (1)根据E = BLv,这里L = h = 0.1m(有效切割长度),B = 0.5T,v = 4.0m/s,则E=Bh v = 0.5×0.1×4.0 = 0.2V。
- (2)金属棒的电阻R_ab=Lr = 0.2×2.5 = 0.5Ω。
电路总电阻R_总=R +R_ab=0.3+0.5 = 0.8Ω。
根据I=(E)/(R_总),可得I=(0.2)/(0.8)=0.25A。
- (3)金属棒ab两端的电压U = E - IR_ab=0.2 - 0.25×0.5 = 0.075V。
2. 双棒切割磁感线- 题目示例:- 如图所示,两根足够长的平行金属导轨固定在倾角θ = 30^∘的斜面上,导轨电阻不计,间距L = 0.4m。
导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B = 0.5T。
在区域Ⅰ中,将质量m_1=0.1kg,电阻R_1=0.1Ω的金属条ab放在导轨上,ab刚好不下滑。
然后,在区域Ⅱ中将质量m_2=0.4kg,电阻R_2=0.1Ω的光滑导体棒cd置于导轨上,由静止开始下滑。
电磁感应计算题集锦
电磁感应计算题集锦九、电场1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;十、恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r +R)或E=Ir+ IR (纯电阻电路);E=U内 +U外;E=U外 + I r ;(普通适用){I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路和非纯电阻电路8.电源总动率P总=IE;电源输出功率P出=IU;电源效率η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联:串联电路(P、U与R成正比) 并联电路(P、I与R成反比)10.欧姆表测电阻11.伏安法测电阻1、电压表和电流表的接法2、滑动变阻器的两种接法注:(1)单位换算:1A=103mA=106μA;1kV=103V=106mV;1MΩ=103kΩ=106Ω(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;半导体和绝缘体的电阻率随温度升高而减小。
电磁感应现象练习题解决电磁感应现象的数值计算
电磁感应现象练习题解决电磁感应现象的数值计算电磁感应是指当磁场发生变化时,会在磁场附近产生感应电流的现象。
根据法拉第电磁感应定律,当磁通量变化时,感应电动势的大小与磁通量变化率成正比。
本文将通过解决电磁感应现象的数值计算来深入探讨该现象。
1. 电磁感应数值计算基本公式根据法拉第电磁感应定律,感应电动势可以通过以下公式计算:ε = -dΦ/dt其中,ε为感应电动势,Φ为磁通量,t为时间。
2. 计算绕线磁场感应电动势假设有一半径为R、匝数为N的螺线管,匝面与磁场相互垂直。
当磁场的磁感应强度为B,变化率为dB/dt时,螺线管中感应电动势可通过以下公式计算:ε = -N * dΦ/dt = -N * πR² dB/dt其中,N为匝数,dΦ/dt为磁通量变化率。
由于螺线管截面积S=πR²,代入公式后,可以得到感应电动势ε。
3. 计算闭合电路中感应电动势当磁场的磁感应强度为B,变化率为dB/dt时,闭合电路中感应电动势可通过以下公式计算:ε = -dΦ/dt = -BS * cosθ * dl/dt其中,S为电路所包围的面积,θ为磁场方向与电路法向的夹角,dl/dt为电路边缘向磁场运动的速度。
4. 计算感应电流及感应电磁场感应电动势引起感应电流的产生,进而引起磁场的变化。
根据安培环路定理,感应电动势可以用感应电流产生的磁通量Φ_m表达,而感应电流的大小与感应电动势成正比。
Φ_m = μ₀NI其中,Φ_m为感应电流所产生的磁通量,N为匝数,I为感应电流。
因此,可以通过计算感应电动势得到感应电流的数值。
进一步,可以利用比奥萨伐尔定律计算感应电流产生的磁场。
5. 应用举例假设有一个半径为0.1m的螺线管,匝数为100,其上通过的磁感应强度突然从0.5T降为0T,变化耗时0.1s。
我们来计算在这个过程中螺线管中感应电动势的数值。
首先,需要计算磁通量的变化率。
根据公式,可以得到:dΦ/dt = πR² * (dB/dt) = π * 0.1² * (0 - 0.5) / 0.1 = -0.05πT·m²/s代入公式,计算感应电动势:ε = -N * dΦ/dt = -100 * (-0.05π) = 5πV因此,在这个过程中,螺线管中感应电动势的数值为5πV。
根据磁感应定律计算题专题训练
根据磁感应定律计算题专题训练
根据磁感应定律(法拉第电磁感应定律),当导体中的磁通量
发生变化时,会在导体中产生感应电动势。
根据该定律,我们可以
通过一系列计算题来加深对该定律的理解和应用。
以下是一些根据磁感应定律的计算题目,供您进行专题训练:
1. 题目:一个半径为 10cm 的圆形线圈,其平面与一个磁感应
强度为 0.05 T 的均匀磁场垂直,线圈有 1000 个匝。
求当线圈绕过
磁场中心轴转动 20 圈时,线圈中的感应电动势的变化量。
2. 题目:一个磁感应强度为0.1 T 的均匀磁场与一条导线垂直,导线的长度为 2 m。
如果导线以 10 m/s 的速度从垂直于磁场的位置
移动到与磁场平行的位置,求导线两端的感应电动势。
3. 题目:一个磁感应强度为 0.2 T 的均匀磁场与一条导线夹角
为 30°,导线的长度为 5 m。
当导线上的电流为 2 A 时,求导线两
端的感应电动势。
以上题目需要根据磁感应定律进行计算,您可以使用法拉第电磁感应定律的公式来求解。
请确保在计算过程中注意单位的转换和计算的准确性。
通过解答这些题目,您可以进一步熟练地应用磁感应定律进行计算和分析。
祝您训练顺利,希望以上信息对您有所帮助!。
电磁感应实验练习题计算磁场变化引起的感应电动势
电磁感应实验练习题计算磁场变化引起的感应电动势对于电磁感应实验中计算磁场变化引起的感应电动势,我们需要首先了解电磁感应的基本原理。
根据法拉第电磁感应定律,当磁场的变化穿过一定的导体回路时,会产生感应电动势。
感应电动势的计算公式为:ε = -N ∆Φ/∆t其中,ε表示感应电动势,N表示线圈的匝数,∆Φ表示磁通量的变化量,∆t表示磁场变化的时间。
下面,我们通过练习题来计算磁场变化引起的感应电动势。
练习题一:一个螺线管有100个匝,截面积为0.01平方米。
当磁感应强度从0.2特斯拉增加到0.6特斯拉,变化所用的时间为2秒。
求在这个过程中产生的感应电动势。
解答一:根据感应电动势的计算公式,我们可以得到:N = 100A = 0.01平方米∆B = 0.6特斯拉 - 0.2特斯拉 = 0.4特斯拉∆t = 2秒感应电动势ε = -N ∆Φ/∆t而磁通量Φ可以表示为磁感应强度B乘以面积A,即∆Φ = BΔA ∆Φ = ∆B * A = 0.4特斯拉 * 0.01平方米 = 0.004特斯拉·平方米代入计算公式,得到:ε = -N ∆Φ/∆t= -100 * 0.004特斯拉·平方米 / 2秒= -0.2伏特答案:在这个过程中,产生的感应电动势为0.2伏特。
练习题二:一个平行板电容器的板间距离为0.02米,两个平行板上的电压为5伏特。
当板间的磁感应强度发生变化时,感应电动势为多少?解答二:根据感应电动势的计算公式,我们可以得到:N = 1(由于只有一对平行板)A = 0.02平方米∆B = 变化后的磁感应强度 - 变化前的磁感应强度 = B2 - B1∆t = 1秒(假设变化所用的时间为1秒)感应电动势ε = -N ∆Φ/∆t在这个情况下,磁通量Φ仍然可以表示为磁感应强度B乘以面积A,即∆Φ = BΔA∆Φ = ∆B * A = (B2 - B1) * 0.02平方米代入计算公式,得到:ε = -N ∆Φ/∆t= -(B2 - B1) * 0.02平方米 / 1秒= -0.02(B2 - B1)伏特答案:在这个过程中,感应电动势为-0.02(B2 - B1)伏特。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应易错题1.如图所示,边长L=0.20m的正方形导线框ABCD由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0Ω,金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电阻r=0.20Ω。
导线框放置在匀强磁场中,磁场的磁感应强度B=0.50T,方向垂直导线框所在平面向里。
金属棒MN与导线框接触良好,且与导线框对角线BD垂直放置在导线框上,金属棒的中点始终在BD连线上。
若金属棒以v=4.0m/s的速度向右匀速运动,当金属棒运动至AC的位置时,求:(计算结果保留两位有效数字)(1)金属棒产生的电动势大小;(2)金属棒MN上通过的电流大小和方向;(3)导线框消耗的电功率。
2.如图所示,正方形导线框abcd的质量为m、边长为l,导线框的总电阻为R。
导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面,cd边保持水平。
磁场的磁感应强度大小为B,方向垂直纸面向里,磁场上、下两个界面水平距离为l。
已知cd边刚进入磁场时线框恰好做匀速运动。
重力加速度为g。
(1)求cd边刚进入磁场时导线框的速度大小。
(2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。
(3)求从线框cd边刚进入磁场到ab边刚离开磁场的过程中,线框克服安培力所做的功。
3.如图所示,在高度差h=0.50m的平行虚线围,有磁感强度B=0.50T、方向水平向里的匀强磁场,正方形线框abcd的质量m=0.10kg、边长L=0.50m、电阻R=0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd边跟磁场下边缘有一段距离。
现用一竖直向上的恒力F=4.0N向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab边恰好出磁场),线框平面在运动中保持在竖直平面,且cd边保持水平。
设cd边刚进入磁场时,线框恰好开始做匀速运动。
(g取10m/s2)求:(1)线框进入磁场前距磁场下边界的距离H。
(2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F做的功是多少?线框产生的热量又是多少? a bdcll4.如图所示,水平地面上方的H 高区域有匀强磁场,水平界面PP '是磁场的上边界,磁感应强度为B ,方向是水平的,垂直于纸面向里。
在磁场的正上方,有一个位于竖直平面的闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R 。
使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP '为止。
从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q 。
求:(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电量是多少? (2)线框是从cd 边距边界PP'多高处开始下落的?(3)线框的cd 边到达地面时线框的速度大小是多少?5.如图所示,质量为m 、边长为l 的正方形线框,从有界的匀强磁场上方由静止自由下落.线框电阻为R ,匀强磁场的宽度为H (l <H ),磁感应强度为B ,线框下落过程中ab 边与磁场边界平行且沿水平方向.已知ab 边刚进入磁场和刚穿出磁场时线框都作减速运动,加速度大小都是31g .求:(1)ab 边刚进入磁场时与ab 边刚出磁场时的速度大小. (2)cd 边刚进入磁场时,线框的速度大小. (3)线框进入磁场的过程中,产生的热量.6.如图所示,竖直平面有一半径为r 、阻为R 1、粗细均匀的光滑半圆形金属环,在M 、 N 处与相距为2r 、电阻不计的平行光滑金属轨道ME 、NF 相接,EF 之间接有电阻R 2,已知 R 1=12R ,R 2=4R 。
在MN 上方及CD 下方有水平方向的匀强磁场I 和II ,磁感应强度大小 均为B 。
现有质量为m 、电阻不计的导体棒ab ,从半圆环的最高点A 处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道中够长。
已知导体棒ab 下落r /2时的速度大小为v 1,下落到MN 处的速度大小为v 2。
(1)求导体棒ab 从A 下落r /2时的加速度大小; (2)若导体棒ab 进入磁场II 后棒中电流大小始终不变,求磁场I 和II 之间的距离h 和R 2上的电功率P 2;(3)若将磁场II 的CD 边界略微下移,导体棒ab 刚进入磁场II 时速度大小为v 3,要使其在外力F 作用下做匀加速直线运动,加速度大小为a ,求所加外力F 随时间变化的关系式。
H h l 2l 1a b c dP P ′ Bb ad cH7. 如图所示,空间存在垂直纸面向里的两个匀强磁场区域,磁感应强度大小均为B ,磁场 Ⅰ宽为L ,两磁场间的无场区域为Ⅱ,宽也为L ,磁场Ⅲ宽度足够大。
区域中两条平行直光 滑金属导轨间距为l ,不计导轨电阻,两导体棒ab 、cd 的质量均为m ,电阻均为r 。
ab 棒静止在磁场Ⅰ中的左边界处,cd 棒静止在磁场Ⅲ中的左边界处,对ab 棒施加一个瞬时冲量, ab 棒以速度v 1开始向右运动。
(1)求ab 棒开始运动时的加速度大小; (2)ab 棒在区域Ⅰ运动过程中,cd 棒获得的最大速度为v 2,求ab 棒通过区域Ⅱ的时间; (3)若ab 棒在尚未离开区域Ⅱ之前,cd 棒已停止运动,求:ab 棒在区域Ⅱ运动过程中产生的焦耳热。
8.如图所示,一正方形平面导线框abcd ,经一条不可伸长的绝缘轻绳与另一正方形平面导线框a 1b 1c 1d 1相连,轻绳绕过两等高的轻滑轮,不计绳与滑轮间的摩擦.两线框位于同一竖直平面,ad 边和a 1d 1边是水平的.两线框之间的空间有一匀强磁场区域,该区域的上、下边界MN 和PQ 均与ad 边及a 1d 1边平行,两边界间的距离为h =78.40 cm .磁场方向垂直线框平面向里.已知两线框的边长均为l = 40. 00 cm ,线框abcd 的质量为m 1 = 0. 40 kg ,电阻为R 1= 0. 80Ω。
线框a 1 b 1 c 1d 1的质量为m 2 = 0. 20 kg ,电阻为R 2 =0. 40Ω.现让两线框在磁场外某处开始释放,两线框恰好同时以速度v =1.20 m/s 匀速地进入磁场区域,不计空气阻力,重力加速度取g =10 m/s 2.(1)求磁场的磁感应强度大小.(2)求ad 边刚穿出磁场时,线框abcd 中电流的大小.9.如图所示,倾角为θ=37o 、电阻不计的、间距L =0.3m 且足够长的平行金属导轨处在磁感强度B =1T 、方向垂直于导轨平面的匀强磁场中.导轨两端各接一个阻值R 0=2Ω的电阻.在平行 导轨间跨接一金属棒,金属棒质量m =1kg 电阻r =2Ω,其与导轨间的动摩擦因数μ=0.5。
金 属棒以平行于导轨向上的初速度υ0=10m/s 上滑直至上升到最高点的过程中,通过上端电阻 的电量Δq =0.1C (g =10m/s 2)(1)金属棒的最大加速度;(2)上端电阻R 0中产生的热量。
c d a b LL l Ⅰ Ⅲ Ⅱ R 0 v 010.如图所示,金属框架竖直放置在绝缘地面上,框架上端接有一电容为C 的电容器,框架上有一质量为m 、长为L 的金属棒平行于地面放置,与框架接触良好无摩擦。
离地高为h 、磁感应强度为B 匀强磁场与框架平面相垂直,开始时电容器不带电,自静止起将棒释放,求棒落到地面的时间。
不计各处电阻。
11.如图所示,一直导体棒质量为m 、长为l 、电阻为r ,其两端放在位于水平面间距也为l 的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面。
开始时,给导体棒一个平行于导轨的初速度v 0。
在棒的运动速度由v 0减小至v 1的过程中,通过控制负载电阻的阻值使棒中的电流强度I 保持恒定。
导体棒一直在磁场中运动。
若不计导轨电阻,求此过程中导体棒上感应电动势的平均值和负载电阻上消耗的平均功率。
12.磁悬浮列车运行的原理是利用超导体的抗磁作用使列车向上浮起,同时通过周期性变换磁极方向而获得推进动力,其推进原理可简化为如图所示的模型,在水平面上相距L 的两根平行导轨间,有竖直方向且等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽度都是l ,相间排列,所有这些磁场都以速度v 向右匀速运动,这时跨在两导轨间的长为L 宽为l 的金属框abcd (悬浮在导轨上方)在磁场力作用下也将会向右运动,设直导轨间距L = 0.4m ,B = 1T ,磁场运动速度为v = 5 m/s ,金属框的电阻R = 2Ω。
试问:(1)金属框为何会运动,若金属框不受阻力时金属框将如何运动?(2)当金属框始终受到f = 1N 阻力时,金属框最大速度是多少? (3)当金属框始终受到1N 阻力时,要使金属框维持最大速度,每秒钟需消耗多少能量?这些能量是谁提供的?Bh CB 1B 2vabcdlLlL13.图中虚线为相邻两个匀强磁场区域1和2的边界,两个区域的磁场方向相反且都垂直于纸面,磁感应强度大小都为B ,两个区域的高度都为l 。
一质量为m 、电阻为R 、边长也为l 的单匝矩形导线框abcd ,从磁场区上方某处竖直自由下落,ab 边保持水平且线框不发生转动。
当ab 边刚进入区域1时,线框恰开始做匀速运动;当线框的ab 边下落到区域2的中间位置时,线框恰又开始做匀速运动。
求: (1)当ab 边刚进入区域1时做匀速运动的速度v 1;(2)当ab 边刚进入磁场区域2时,线框的加速度的大小与方向; (3)线框从开始运动到ab 边刚要离开磁场区域2时的下落过程中产生的热量Q 。
14.半径为a 的圆形区域有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径O O '的瞬时(如图所示)MN 中的电动势和流过灯L 1的电流。
(2)撤去中间的金属棒MN 将右面的半圆环O OL '2以O O '为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为ΔB/Δt =(4 /π)T/s ,求L 1的功率。