数字信号处理(第三版)课后习题答案(全) PPT

合集下载

数字信号处理(第三版)课后习题答案全

数字信号处理(第三版)课后习题答案全


因此
d X ( e j ) FT[ nx( n)] j d
第2章
时域离散信号和系统的频域分析
6. 试求如下序列的傅里叶变换: (1) x1(n)=δ(n-3) (2) x2 (n) δ(n 1) δ(n) δ(n 1) (4) x4(n)=u(n+3)-u(n-4) 解 (1)
0.5ቤተ መጻሕፍቲ ባይዱ 2 n
n<0时, c内有极点0.5、 2、 0, 但极点0是一个n阶极点,
改成求c外极点留数, 可是c外没有极
点, 因此 x(n)=0 最后得到
x(n)=(0.5n-2n)u(n)
第2章
时域离散信号和系统的频域分析
19. 用部分分式法求以下X(z)的反变换:
(1)
1 1 z 1 3 X ( z) , 1 2 5z 2 z 2

7 7 j j e 2 (e 2 1 1 j j e 2 (e 2 7 j e 2 ) 1 j e 2 )
e j3
7 sin( ) 2 1 sin( ) 2
第2章
时域离散信号和系统的频域分析
14. 求出以下序列的Z变换及收敛域: (1) 2-nu(n) (5) δ(n-1) 解 (1) ZT[2 n u(n)]
n n

n 1

2n z n z 1 2
2z 1 1 2 z 1 2 1 z 1 (5) ZT[δ(n-1)]=z-10<|z|≤∞
第2章
16. 已知
时域离散信号和系统的频域分析
3 2 X ( z) 1 1 1 2 z 1 1 z 2
求出对应X(z)的各种可能的序列表达式。

《数字信号处理》第三版课后习题答案

《数字信号处理》第三版课后习题答案

数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

《数字信号处理》第三版课后习题答案

《数字信号处理》第三版课后习题答案

数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

《数字信号处理》第三版课后答案

《数字信号处理》第三版课后答案

数字信号处理(西电科大第三版)课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数; (2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

数字信号处理课后答案+第3章(高西全丁美玉第三版)PPT课件

数字信号处理课后答案+第3章(高西全丁美玉第三版)PPT课件

所以
DFT[X(n)]=Nx(N-k) k=0, 1, …, N-1 5. 如果X(k)=DFT[x(n)], 证明DFT的初值定理
x(0)
1
N 1
X (k)
证: 由IDFT定义式
N k0
x(n)
1 N
N 1
X (k )WNkn
k 0
n 0, 1, , N 1
可知
x(0)
1
N 1
X (k)
教材第3章习题与上机题解答
1. 计算以下序列的N点DFT, 在变换区间0≤n≤N-1内,
(1) x(n)=1
(2) x(n)=δ(n) (3) x(n)=δ(n-n0) (4) x(n)=Rm(n)
0<n0<N 0<m<N
j2π mn
(5) x(n) e N , 0 m N
(6) x(n) cos 2π mn, 0 m N N
sin
(0
2π N
k
)
/
2
k 0, 1, , N 1

1 e j0N
X
7
(k
)
1
e
j(0
2 N
k)
(8) 解法一 直接计算:
k 0, 1, , N 1
x8 (n)
sin(0n)
RN
(n)
1 [e j0n 2j
e j0n ]RN
(n)
X8(n)
N 1
x8 (n)WNkn
n0
1
N 1
[e j0n
1 WNk
j π (m1)k
e N
sin
π N
mk
sin
π N

数字信号处理(第三版)-课后习题答案全-(原题+答案+图)

数字信号处理(第三版)-课后习题答案全-(原题+答案+图)
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离散信号和时域离散系统
8. 设线性时不变系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}

《数字信号处理》第三版课后习题答案

《数字信号处理》第三版课后习题答案

《数字信号处理》第三版课后习题答案数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-??=≤≤其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列;(3)令1()2(2)x n x n =-,试画出1()x n 波形;(4)令2()2(2)x n x n =+,试画出2()x n 波形;(5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14;(2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

数字信号处理西安电子高西全丁美玉第三版课后习题答案全1-7章

数字信号处理西安电子高西全丁美玉第三版课后习题答案全1-7章
所以 T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)]
第 1 章 时域离散信号和时域离散系统
(2) 令输入为
输出为
x(n-n0)
y′(n)=2x(n-n0)+3 y(n-n0)=2x(n-n0)+3=y′(n) 故该系统是非时变的。 由于
T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
第 1 章 时域离散信号和时域离散系统
题2解图(四)
第 1 章 时域离散信号和时域离散系统
3. 判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1) x(n)Acos3πn A是常数
7 8
(2)
j(1n )
x(n) e 8
解: (1) 因为ω= 列, 周期T=14
π, 所以3 7
, 这是2 π有理1数4, 因此是周期序 3
第 1 章 时域离散信号和时域离散系统
题4解图(一)
第 1 章 时域离散信号和时域离散系统
题4解图(二)
第 1 章 时域离散信号和时域离散系统
题4解图(三)
第 1 章 时域离散信号和时域离散系统
(4) 很容易证明: x(n)=x1(n)=xe(n)+xo(n)
上面等式说明实序列可以分解成偶对称序列和奇对称序列。 偶对称序列可 以用题中(2)的公式计算, 奇对称序列可以用题中(3)的公式计算。
(4) 令x1(n)=xe(n)+xo(n), 将x1(n)与x(n)进行比较, 你能得

数字信号处理(第三版)课后习题答案全

数字信号处理(第三版)课后习题答案全

| z |
| z | 1 2

1 5 7 z n 1 F ( z ) X ( z ) z n 1 z (1 0.5 z 1 )(1 2 z 1 ) 5z 7 zn ( z 0.5)( z 2)
n≥0时, 因为c内无极点,x(n)=0; n≤-1时, c内有极点 0 , 但z=0是一个n阶极点, 改为求圆外极点留数, 圆外极点有z1=0.5, z2=2, 那么
0.5n 2 n
n<0时, c内有极点0.5、 2、 0, 但极点0是一个n阶极点,
改成求c外极点留数, 可是c外没有极
点, 因此 x(n)=0 最后得到
x(n)=(0.5n-2n)u(n)
第2章
时域离散信号和系统的频域分析
19. 用部分分式法求以下X(z)的反变换:
(1)
1 1 z 1 3 X ( z) , 1 2 5z 2 z 2
0

jn
令n′=n-n0, 即n=n′+n0, 则
FT[ x(n n0 )]
n
x(n)e
j ( n n0 )
e jn0 X (e j )
第2章
(2)
时域离散信号和系统的频域分析
FT[ x (n)]
(6) 因为
n


x ( n ) e jn
j 3 j n n n 3


n 0
3
e
jn

n 1

3
e
j n


n 0
3
e
jn


n 1
3
e j n

数字信号处理-西安电子科技大学出版(_高西全丁美玉)第三版_课后习题答案(全)

数字信号处理-西安电子科技大学出版(_高西全丁美玉)第三版_课后习题答案(全)

18
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
28
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
第 1 章 时域离散信号和时域离散系统
解法(二) 采用解析法。 按照题7图写出x(n)和h(n)的表达式分别为
5. 设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系统输入和输 出, 判断系统是否是线性非时变的。
(1)y(n)=x(n)+2x(n-1)+3x(n-2) (2)y(n)=2x(n)+3 (3)y(n)=x(n-n0) n0 (4)y(n)=x(-n)
15
第 1 章 时域离散信号和时域离散系统
非零区间如下:
0≤m≤3 -4≤m≤n
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0

数字信号处理-西安电子科技大学出版(_高西全丁美玉)第三版_课后习题答案(全)

数字信号处理-西安电子科技大学出版(_高西全丁美玉)第三版_课后习题答案(全)

π, 所以3 7
, 这是2 π有理1数4, 因此是周期序 3
(2) 因为ω=
,
所以
1
8
=16π, 这是无理数, 因此是非周期序列。

第 1 章 时域离散信号和时域离散系统
* 4. 对题1图给出的x(n)要
1
2 1
求:
2
(1) 画出x(-n)的波形;
A
10
第 1 章 时域离散信号和时域离散系统
7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,
要求画出y(n)输出的波形。
解: 解法(一)采用列表法。
y(n)=x(n)*h(n)=
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
A
28
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn( m) )
m 0
解: (1) 令输入为
输出为x(n-n0) Nhomakorabeay′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
题2解图(三)
A
7
第 1 章 时域离散信号和时域离散系统
题2解图(四)
A
8
第 1 章 时域离散信号和时域离散系统
3. 判断下面的序列是否是周期的; 若是周期的, 确定其周期。

数字信号处理第3版课后答案市公开课一等奖百校联赛优质课金奖名师赛课获奖课件

数字信号处理第3版课后答案市公开课一等奖百校联赛优质课金奖名师赛课获奖课件
(1)在h(n)尾部加L-N个零点, 在x(n)尾部加L-M个零
(2)计算L点H(k)=FFT[h(n)]和L点X(k)=FFT[x(n)];
(3) 计算Y(k)=H(k)X(k) (4) 计算Y(n)=IFFT[Y(k)], n=0,1,2,3,…,L-1。 但当h(n)和x(n)中任一个长度很长或者无限长时, 需用书 上介绍重合相加法和重合保留法。
说明: 如上计算过程中DFT和IDFT均采取FFT算法时,
才称为快速算法, 不然比直接在时域计算循环卷积运算量
大3倍以上。
13/157
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
3.3.2 线性卷积快速计算——
序列h(n)和x(n)长度分别为N和M, L=N+M-1, 求 y(n)=h(n)*x(n)方法以下:
ze N
n
ze N
n
所以
~xN (n)
1 N
N
x(m)e
j
2π N
km
k 0 n
j2π k(nm)
eN
x(m)
m
1 N
N 1 j2π k (nm)
eN
k 0
19/157
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
因为
1
N
N 1 j2π k (nm)
eN
k 0
1 0
m n rN, r为整数 其它m
2X (0) [x(n) x(N 1 n)] 0
n0
23/157
所以
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
X(0)=0 (2) 因为x(n)=x(N-1-n), 所以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
令n′=n-n0, 即n=n′+n0, 则

FT[x(n n0 )] x(n)e j(nn0 ) e jn0 X (e j )
n
第2章
时域离散信号和系统的频域分析
(2) FT[x(n)]

x (n)e jn



x(n)e jn
3
(2) 因为ω=
,
所以
1
8
=16π, 这是无理数, 因此是非周期序列。


第 1 章 时域离散信号和时域离散系统
5. 设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系统输入和输 出, 判断系统是否是线性非时变的。
(1)y(n)=x(n)+2x(n-1)+3x(n-2) (2)y(n)=2x(n)+3 (5)y(n)=x2(n)
14. 求出以下序列的Z变换及收敛域:
第 1 章 时域离散信号和时域离散系统
(5) y(n)=x2(n)
令输入为
输出为
x(n-n0)
y′(n)=x2(n-n0) y(n-n0)=x2(n-n0)=y′(n) 故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=[ax1(n)+bx2(n)]2 ≠aT[x1(n)]+bT[x2(n) =ax21(n)+bx22(n)
n
第2章
时域离散信号和系统的频域分析
(2)
X 2 (e j )


x2 (n)e jn
n

1 2
e j
1
1 2
e j
1 1 (e j e j ) 1 cos
2 (4)
X 4 (e j )

[u(n 3) u(n 4)]e jn
第2章
时域离散信号和系统的频域分析
2.5 习题与上机题解答
1. 设X(ejω)和Y(ejω)分别是x(n)和y(n)的傅里叶变换, 试求下面序列的傅里
叶变换:
(1) x(n-n0) (2) x*(n) (6) nx(n)
解:(1) FT[x(n n0 )]

x(n n0 )e jn
因此系统是非线性系统。
第 1 章 时域离散信号和时域离散系统
6. 给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明 理由。
(2) y(n)=x(n)+x(n+1) (4) y(n)=x(n-n0) (5) y(n)=ex(n)
解:(2) 该系统是非因果系统, 因为n时间的输出还和n时 间以后((n+1)时间)的输入有关。如果|x(n)|≤M, 则 |y(n)|≤|x(n)|+|x(n+1)|≤2M,
d
第2章
时域离散信号和系统的频域分析
6. 试求如下序列的傅里叶变换: (1) x1(n)=δ(n-3)
(2)
x2
(n)

1 2
δ(n
1)

δ(n)

1 2
δ(n
1)
(4) x4(n)=u(n+3)-u(n-4)
解 (1) X1(e j )

δ(n 3) e jn e j3
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n -n0-2)
y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n -n0-2)
=y′(n)
第 ห้องสมุดไป่ตู้ 章 时域离散信号和时域离散系统
故该系统是非时变系统。 因为 y(n)=T[ax1(n)+bx2(n) =ax1(n)+bx2(n)+2[ax1(n-1)+bx2(n-1)] +3[ax1(n-2)+bx2(n-2)] T[ax1(n)]=ax1(n)+2ax1(n-1)+3ax1(n-2) T[bx2(n)]=bx2(n)+2bx2(n-1)+3bx2(n-2)
(4)假设n0>0, 系统是因果系统, 因为n时刻输出只和 n时刻以后的输入有关。 如果|x(n)|≤M, 则|y(n)|≤M, 因此系统
(5) 系统是因果系统, 因为系统的输出不取决于x(n)的 未来值。 如果|x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM, 因此系统是 稳定的。

e j3 e j4 1 e j

1 e j7 1 e j
e j3

j7 j7
e 2 (e 2
j7
e 2 ) e j3

sin(7 ) 2
j1 j1
j1
e 2 (e 2 e 2 )
sin(1 ) 2
第2章
时域离散信号和系统的频域分析
3
e jn
n
n3
3
3
3
3
e jn e jn e jn e jn
n0
n1
n0
n1
1 e j4 1 e j
1 e j3 1 e j
e j

1 e j4 1 e j

1 1

e j3 e j
所以 T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)]
第 1 章 时域离散信号和时域离散系统
(2) 令输入为
输出为
x(n-n0)
y′(n)=2x(n-n0)+3 y(n-n0)=2x(n-n0)+3=y′(n) 故该系统是非时变的。 由于
T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。


X
(e j
)
n
n

(6) 因为

X (e j ) x(n)e jn
n
对该式两边ω求导, 得到
因此
dX (e j ) j nx(n)e jn jFT[nx(n)]
d
n
FT[nx(n)] j dX (e j )
第 1 章 时域离散信号和时域离散系统
3. 判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1) x(n) Acos 3 πn A是常数
7 8
(2)
j( 1 n )
x(n) e 8
解: (1) 因为ω= 列, 周期T=14
π, 所以3 7
, 这是2π有理1数4, 因此是周期序
相关文档
最新文档