阀控式密封铅酸蓄电池验收运行管理强条

阀控式密封铅酸蓄电池验收运行管理强条
阀控式密封铅酸蓄电池验收运行管理强条

阀控式密封铅酸蓄电池运行维护管理规定

第一章总则

为保证变电站阀控式密封铅酸蓄电池及其高频开关电源(以下简称直流设备)保持良好的运行状态,延长使用寿命,保证变电站直流母线保持合格电压和蓄电池的放电容量,特制定本规定。

第二章安装要求

2.1直流设备通风应良好,运行环境温度应保持在5℃~35℃,安装地点应装设温度调节装置。

2.2直流系统可采用单、双充电器、电池组和电源母线。220kV变电站可采用双电池组,500kV变电站应采用双电池组、双母线方式。

2.3独立的蓄电池室应有充足的照明,并采用防爆灯具。

2.4蓄电池采用串联接线,蓄电池之间应保持2cm以上距离,若电池安装在柜内,上下层之间距离不应小于15cm。蓄电池应保持清洁,极板、极柱接触应良好,连接螺丝应牢固,不得有放电现象。

第三章交接验收项目及标准

3.1检查蓄电池容量。对电池组进行三次充放电试验,放电终止电压根据制造厂的规定,2V蓄电池为1.8V。其中一只蓄电池防到了终止电压,应停止放电。在三次充放电循环之内,若达不到额定容量值的100%,此组蓄电池不合格。

3.2测量电池的绝缘电阻。220V电池组的绝缘电阻不小于0.2MΩ,1 10V电池组的绝缘电阻不小于0.1MΩ。

3.3测量充电设备的稳流精度不大于±(0.5%-1%),稳压精度不大于±(0.1%-0.5%),及直流母线纹波系数不大于(0.2%-0.51%)。

3.4测量每只电池端电压符合厂家规定。

3.5检查厂方提供的安全阀开启闭合试验报告,闭阀压力应在1kPa~10kPa范围内,开阀压力应在10kPa~49kPa范围内。

第四章运行维护要求

4.1为提高蓄电池的使用寿命,要做好初充电(一般初充电由厂方进行)。

4.2蓄电池组在正常运行中以浮充电方式运行,浮充电电压宜控制在(2.23-2.28)V×N,均衡充电电压宜控制在(2.30-2.35)V×N。

4.3运行中主要监视蓄电池组的端电压值,浮充电流值,每只蓄电池的电压值,蓄电池组及直流母线的对地电阻值和绝缘状况。

4.4蓄电池一般3个月进行一次补充充电,充电装置应自动或手动进行一次恒流限压充电→恒压充电→浮充电。使蓄电池组随时具有满容量,确保运行安全可靠。

4.5投运后的蓄电池组,每2-3年应进行一次核对性充放电试验,运行6年以后的蓄电池组,每年应进行一次核对性放电试验。

4.5.1一组蓄电池。站内只有一组蓄电池,不能退出运行、也不能做全核对性放电,只能用I10电流恒流放出额定容量的50%,在放电过程中,蓄电池组端电压不得低于2V×N。放电后应立即用I10电流

进行恒流限压充电→恒压充电→浮充电,反复充放2-3次,恢复蓄电池组容量,查找蓄电池组存在的缺陷。

4.5.2两组蓄电池。站内若有两组蓄电池,可相对其中一组蓄电池进行全核对性放电,用I10电流恒流放出,当蓄电池端电压下降到1.8 V×N时,停止放电,铬1-2小时后,再用I10电流进行恒流限压充电→恒压充电→浮充电,反复充放2-3次,恢复蓄电池组容量,查找蓄电池组存在的缺陷。若经过3次全核对性放电,蓄电池容量均达不到额定容量的80%以上,可认为此组蓄电池使用年限已到,应安排更换。

4.5.3充放电记录

(1)充放电电流;

(2)电池组电压;

(3)电池端电压;

(4)环境温度;

(5)充放电时间;

4.6日常运行检查

4.6.1应建立健全运行检查记录,一般由值班人员随班检查,主要内容有:

(1)控制母线电压、电流;

(2)合闸母线电压;

(3)充电电压、浮充电流;

(4)蓄电池端电压;

(5)环境温度;

(6)电池外观、卫生及连接情况

4.6.2定期检查记录

蓄电池定期检查由检修人员进行,每季度一次,主要内容有:

(1) 控制母线电压、电流;

(2) 合闸母线电压;

(3) 充电电压、浮充电流;

(4) 蓄电池端电压;

(5) 蓄电池开路电压;

(6) 蓄电池内阻;

(7) 环境温度;

(8) 电池是否渗液

(9) 电池外壳是否有凹凸、裂纹破碎现象;

(10)电池联接螺丝是否松动;

(11)蓄电池柜(室)卫生情况;

以上记录均应有工作人员签名长期保存,以便于对蓄电池运行情况进行分析。

4.7故障处理

4.7.1如发现电池极柱上有硫化现象应将其清除,必要时涂抹凡士林。

4.7.2放电时,如发现个别电池电压低于最低电压应将其解除放电。必要时应单独对其进行过充电处理直至恢复容量。

4.7.3如发现电池组有落后电池,而无法恢复容量时应及时进行更换。发现多只电池容量落后而无法恢复,影响到直流母线电压时,应更换电池组。如到使用年限应加强对其监视,发现问题及时更换。

4.7.4如有鼓肚、裂纹时应及时更换。

阀 控 式 密 封 铅 酸 蓄 电 池

阀控式密封铅酸蓄电池 1.1. UPS系统常用的储能装置 碱性镉镍蓄电池(Alkaline Cd-Ni batteries) 碱性蓄电池是以KOH,NaOH的水溶液做为电解质的,镉镍蓄电池是碱性蓄电池,碱性镉镍 蓄电池相对于铅酸蓄电池是长寿命、高倍率、,可以做到密封。IEC285、IEC623标准规定循环寿命500—1000次可以工作5-10年,高低温性能好,高倍率(5-10倍率)放电性能好,除有记忆效应,制造工艺复杂,组成镉镍蓄电池的材料昂贵短缺外,其它各方面都优于铅酸蓄电池,其价格是铅蓄电池的几十倍,单体电压低(1.25V)。一般UPS系统不宜选用镉镍蓄电池,尤其是大功率UPS系统用镉镍蓄电池造价非常可观。 阀控铅酸蓄电池AGM体系(Valve-reguleted lead-acid batteries Absorptive glass mat) 组成蓄电池材料资源丰富,价格便宜,单体电压高(2V),经过阀控达到密封,现在工艺都很成熟,大电流高倍率放电性能基本满足UPS系统工作要求,工作其间对环境没有污染,价格相对镉镍蓄电池便宜很多,尤其是大功率UPS系统所用电池。是目前UPS系统首选的蓄电池。 富液免维护铅酸蓄电池Freedom体系(最早以美国Delco公司命名为依据Vented lead acid battery) 富液免维护铅酸蓄电池国外也称Flooded Sealed Maintenance Free lead acid batteries,其工作原理除氧气阴极复合不如AGM、,其化学反应机理相同。由于将AGM体系的贫液式改为富液式Freedom体系,用PE (polythylene)隔板、富液密封,能克服AGM贫液体系所产生的热失控、干涸、内阻大等缺点。由于该体系的流动性大、低温内阻小,从电化学动力学的理论分析,高速放电传质速度优于AGM体系和gel体系。由于采用过剩电解液气体可以自由进出,通过特殊的复合盖结构设计 通过分子筛性质的滤气安全阀,实现了对电池的完全密封,永不漏液。由于生产工艺简单单体电容易实现一致,电液量高于AGM, Gel体系1.2倍,使用寿命5--10年。根据以上几点分析和比较能,目前为UPS系统配套首选VRLA蓄电池和Flooded体系和Gel胶体蓄电池。 关于胶体密封铅酸蓄电池(Gel electrolyte sealed lead-acid batteries) 1.2. 关于硅胶体(Gelled)

阀控式铅酸蓄电池

阀控式铅酸蓄电池 构成阀控铅酸蓄电池的主要部件是正负极板、电解液、隔膜、电池壳和盖、安全阀,此外还一些零件如端子、连接条、极柱等。 阀控式铅酸蓄电池的设计 1 板栅合金的选择 参加电池反应的活性物质铅和二氧化铅是疏松的多孔体,需要固定在载体上。通常,用铅或铅基合金制成的栅栏片状物为载体,使活性物质固定在其中,这种物体称之为板栅。它的作用是支撑活性物质并传输电流。 1.1正板栅合金 阀控电池是一种新型电池,使用过程中不用加酸加水维护,要求正板栅合金耐腐蚀性好,自放电小,不同厂家采用的正板栅合金并不完全相同,主要有:铅—钙、铅—钙—锡,铅—钙—锡—铝、铅—锑—镉等。不同合金性能不同,铅—钙。铅—钙—锡合金具有良好的浮充性能,但铅钙合金易形成致密的硫酸铅和硫酸钙阻挡层使电池早期失效,合金抗蠕变性差,不适合循环使用。铅-钙-锡-铝、铅-锑-镉各方面性能相对比较好,既适合浮充使用,又适合循环使用。 1.2负板栅合金 阀控电池负板栅合金一般采用铅-钙合金,尽量减少析氢量。 2板栅厚度 正极板厚度决定电池寿命,极板厚度与电池预计寿命的关系见下表: 安全阀 安全阀具有防爆、减压之功能,可释放内部产生过多之气体,并防止酸气外泄、能抗酸、耐撞击,安全阀开启压力值14kPa至18kPa。 当内压上升并高於限定值时,安全阀会自动释放过多的气体,当内压降低并恢复至所设定正常值时,安全阀会密封并严紧以防气体泄漏。 1.2 阀控铅酸蓄电池失效模式 一、电池失水 铅酸蓄电池失水会导致电解液比重增高、导致电池正极栅板的腐蚀,使电池的活性物质减少,从而使电池的容量降低而失效。 铅酸蓄电池密封的难点就是充电时水的电解。当充电达到一定电压时(一般在2.30V/单体以上)在蓄电池的正极上放出氧气,负极上放出氢气。一方面释放气体带出酸雾污染环境,另一方面电解液中水份减少,必须隔一段时间进行补加水维护。阀控式铅酸蓄电池就是为克服这些缺点而研制的产品,其产品特点为: 1、采用多元优质板栅合金,提高气体释放的过电位。即普通蓄电池板栅合金在2.30V/单体(25℃)以上时释放气体。采用优质多元合金后,在2.35V/单体(25℃)以上时释放气体,从而相对减少了气体释放量。 2、让负极有多余的容量,即比正极多出10%的容量。充电后期正极释放的氧气与负极接触,发生反应,重新生成水,即 O2 + 2Pb→2PbO PbO + H2SO4 →H2O +PbSO4

铅酸蓄电池制造工艺流程

铅酸蓄电池制造工艺流程 1、极板的制造 包括:铅粉制造、板栅铸造、极板制造、极板化成等。 ⑴铅粉制造设备铸粒机或切段机、铅粉机及运输储存系统; ⑵板栅铸造设备熔铅炉、铸板机及各种模具; ⑶极板制造设备和膏机、涂片机、表面干燥、固化干燥系统等; ⑷极板化成设备充放电机; ⑸水冷化成及环保设备。 2、装配电池设备 汽车蓄电池、摩托车蓄电池、电动车蓄电池、大中小型阀控密封式蓄电池装配线、电池检测设备(各种电池性能检测)。 ⑴典型铅酸蓄电池工艺过程概述 铅酸蓄电池主要由电池槽、电池盖、正负极板、稀硫酸电解液、隔板及附件构成。 ⑵工艺制造简述如下 铅粉制造:将1#电解铅用专用设备铅粉机通过氧化筛选制成符合要求的铅粉。 板栅铸造:将铅锑合金、铅钙合金或其他合金铅通常用重力铸造的方式铸造成符合要求的不同类型各种板板栅。 极板制造:用铅粉和稀硫酸及添加剂混合后涂抹于板栅表面再进行干燥固化即是生极板。 极板化成:正、负极板在直流电的作用下与稀硫酸的通过氧化还原反

应生产氧化铅,再通过清洗、干燥即是可用于电池装配所用正负极板。装配电池:将不同型号不同片数极板根据不同的需要组装成各种不同类型的蓄电池。 3、板栅铸造简介 板栅是活性物质的载体,也是导电的集流体。普通开口蓄电池板栅一般用铅锑合金铸造,免维护蓄电池板栅一般用低锑合金或铅钙合金铸造,而密封阀控铅酸蓄电池板栅一般用铅钙合金铸造。 第一步:根据电池类型确定合金铅型号放入铅炉内加热熔化,达到工艺要求后将铅液铸入金属模具内,冷却后出模经过修整码放。 第二步:修整后的板栅经过一定的时效后即可转入下道工序。板栅主要控制参数:板栅质量;板栅厚度;板栅完整程度;板栅几何尺寸等; 4、铅粉制造简介 铅粉制造有岛津法和巴顿法,其结果均是将1#电解铅加工成符合蓄电池生产工艺要求的铅粉。铅粉的主要成份是氧化铅和金属铅,铅粉的质量与所制造的质量有非常密切的关系。在我国多用岛津法生产铅粉,而在欧美多用巴顿法生产铅粉。 岛津法生产铅粉过程简述如下: 第一步:将化验合格的电解铅经过铸造或其他方法加工成一定尺寸的铅球或铅段; 第二步:将铅球或铅段放入铅粉机内,铅球或铅段经过氧化生成氧化铅;

电池管理系统BMS---原理篇

电池管理系统(BMS)可根据起动能力对充电状态(SoC)、健康状态(SoH)和功能状态(SoF)进行快速、可靠的监测,以提供必要的信息。因此,BMS能够最大限度地降低因为电池意外失效而导致的汽车故障次数,从而尽可能地提升电池使用寿命和电池效率,并实现CO2减排功能。BMS的关键元件是智能电池传感器(IBS),它可以测量电池的端电压、电流和温度,并计算出电池的状态。 电能管理系统 用来为起停系统供电的典型供电网络包含一个车身控制模块(BCM)、一个电池管理系统(BMS)、一个发电机和一个DC/DC转换器(见图1)。 BMS借助专用的负载管理算法为BCM提供电池状态信息,BCM通过对发电机和DC/DC转换器进行控制来稳定和管理供电网络。DC/DC转换器为汽车内部的各个用电部件分配电能。 通常,铅酸电池的BMS直接安装在电池夹上的智能连接器中。该连接器包括一个低阻值的分流电阻(通常在100μΩ范围内)和一个带有高度集成器件(具有准确测量和处理功能)的小型PCB,称为智能电池传感器(IBS, 见图2)。IBS即便是在最恶劣的条件下以及在整个使用寿命中都能以高分辨率和高精确度测量电池电压、电流和温度,从而正确预测电池的充电状态(SoC)、健康状态(SoH)和功能状态(SoF)。这些参数定期或根据要求通过已获汽车行业认证的车载网络传送至BCM。

除上述功能与参数性能外,对IBS提出的其它关键要求包括低功耗、能够在恶劣的汽车环境中(即EMC、ESD)工作、进行汽车OEM厂商验收的车载通信接口一致性测试(即LIN)、满足汽车等级测试限制(针对被测参数的6σ限制),另外还需符合AEC-Q100标准要求。 电池监控 正如前一段中所提到的,IBS的主要用途是监控电池状态,并根据需要将状态变量传送至BCM或者其他ECU。将测量到的电池电流、电池电压和温度采样值作为电池监控输入。电池监控输出为SoC、SoH和SoF。 1. 充电状态(SoC) SoC的定义非常直观,通常以百分数的形式表示。完全充电的电池SoC为100%,完全放电的电池SoC为0%。SoC值随电池的充电和放电而改变。 This leads to formula (1), where Cr is the remaining (dischargeable) capacity of the battery and Ca is the total available battery capacity: 该值通过公式(1)计算,其中Cr代表电池的剩余(可放电)电量,Ca代表电池的可用总电量: 但是,常常会出现可用电池电量与电池的标称容量(通常标注在电池外壳上)不同的问题。对于一个新电池,它可能比标称容量更高,对于已经使用一段时间的电池来说,可用电量会降低。另一个问题是,实际可用电量很难根据IBS的输入值来确定。 因此,SoC通常用标称容量Cn来评定,它具有多项优点:

铅酸蓄电池的装配过程

第九章铅酸蓄电池的装配过程及质量控制 铅酸蓄电池的装配是指将极板、隔板、槽盖及电解液配合组装形成铅酸蓄电池的过程,装配是铅酸蓄电池制造的最后一道工序,装配后形成成品蓄电池可以实现电能与化学能的相互转换。 第一节铅酸蓄电池零部件及技术要求 一、极板 极板是铅酸蓄电池的主体部件,是由板栅与活性物质(活化的铅膏)构成,按其结构形式极板分为涂膏式极板和管式极板,按其状态可分为普通极板和干荷电极板,按其功效可分为正极板和负极板。极板在铅酸蓄电池中的主要作用是: 1、电化反应的母体 2、电压形成的电极 3、电流形成的转换体 极板的技术要求详见第八章。 二、隔板 隔板是铅酸蓄电池重要的部件,又称“第三极板”,它的质量优劣直接影响到铅酸蓄电池的功能和功效,隔板由微孔橡胶或塑料或玻璃纤维材料制成,其一般以片状或袋状的形式存在于蓄电池中,其主要的作用是: 1、防止正、负极板接触短路并保证正、负极板实现最短的距离。 2、保证电解液中的正、负离子顺利通过参加电极反应。 3、电解液的载体。 4、阻缓正、负极板铅膏物质的脱落及极板受震损伤。 5、阻止一些对电极有害物质通过隔板进行迁移和扩散。 铅酸蓄电池用隔板应具有以下特性: ⑴、在硫酸中的应具有良好耐腐蚀性; ⑵、具有疏松多孔结构且能吸入大量的电解质溶液; ⑶、浸透性好; ⑷、有满足使用的机械强度和弹性; ⑸、具有一定的抗压性; ⑹、具有较小的电阻; ⑺、在一定温度范围内具有一定的耐温性; ⑻、具有一定耐老化性和耐氧化性。 铅酸蓄电池的种类很多,目前常用的有以下几类: 1、微孔橡胶隔板 微孔橡胶隔板是一种用生胶、硅酸以及其它添加剂制成的、具有10μm以下微孔的平板式隔板。它具有使用寿命长、可制厚度较小、电阻较低、没有毛刺和枝节等优点。缺点是被电解液浸渍的速度比较慢,成本较高,且不易制成0.5mm以下的薄板。此隔板多用于工业电池中。 微孔橡胶隔板的技术要求见表9—1 表9—1 微孔橡胶隔板物理化学性能

新能源汽车动力电池及其管理系统试卷A

新能源汽车动力电池及其管理系统试卷A 汽运19-301(26人) 一、【单选题】(每题2分共20分) 【单选题】 1、可逆电池的定义是:外接电源电压(A)电池装置电动势。(2分) A.大于 B.等于 C.小于 D.不一定 【单选题】 2、以下电池中不作为电动汽车动力电池的是(D)。(2分) A.铅酸电池 B.锂离子电池 C.镍氢电池 D.锌银电池 【单选题】 3、关于蓄电池的检测,下列说法正确的是(D)。(2分) A.外观检查时,只检查蓄电池接线柱、电缆和托架固定架是否有腐蚀即可。 B.外观检查时,只检查蓄电池周围无漏液,壳体和桩柱无破损裂纹即可。 C.用万用表检测蓄电池电压,只要在12.6V以上就一定可以用。 D.万用表检测的蓄电池端电压,只能作为检测的参考因素。 【单选题】 4、(B)电池性能比较高,可以快速充电、高功率放电、能量密度高,且循环寿命长,但高温下安全性能差。(2分) A.镍氢电池 B.锂离子电池 C.铅酸电池 D.锌银电池 【单选题】 5、动力电池包衰减诊断故障代码在下列(B)情况下可能出现。(2分) A.电池组已经退化到需要进行更换 B.电池组已经退化到只有原电池容量的20%左右 C.车辆的动力电池包电压为0伏 D.这些诊断故障代码是根据汽车的行驶里程设定的 【单选题】 6、动力电池的能量储存与输出都需要模块来进行管理,即动力电池能量管理模块,也称为动力电池管理系统,或动力电池能量管理系统,简称(C) 。(2分) A.BBC B.ABS C.BMS D.EPS 【单选题】 7、集中式动力电池管理系统的特征是(D)。(2分) A.电池管理系统与电池包分开 B.电池信息采集器与电池管理控制器分开 C.电池信息采集器与电池模组分开 D.信息采集器和管理器集合在一起

小型阀控式密封铅酸蓄电池的标准

小型阀控式密封铅酸蓄电池的标准 1 范围 本标准规定了小型阀控式密封铅酸蓄电池(以下简称蓄电池)的产品分类、技术要求、试验方法、检验规则以及标志、包装、运输和贮存。 本标准适用于应急照明设备、不间断电源、移动测量设备、通讯设备和电力系统直流电源柜等额定容量在40Ah以下的各种直流用蓄电池。 2 引用标准 GB/T5781-2000 六角头螺栓-全螺纹-C级 JB/T2599-1993 铅酸蓄电池产品型号编制办法 JB3076-1999 铅酸蓄电池槽 JB/-1998 铅酸蓄电池超细玻璃纤维隔板 GB/T1227-1986 精密压力表 JB/T9461-1999 动槽水银气压表技术条件 GB/T12805-1991 实验室玻璃仪器滴定管 3 符号 C20 — 20小时率额定容量(Ah); Ce — 20小时率实际容量(Ah); I20 — 20小时率放电电流(A), 电流值为C20/20(A); R—蓄电池自放电容量损失百分数,%。 4 产品分类与命名 蓄电池的型号按JB/T2599的方法编制。 5 技术要求 蓄电池的工作环境 蓄电池在环境温度为-15℃-+45℃条件下应能正常使用。 电池结构 一般结构 蓄电池由正极板、负极板、隔板、蓄电池槽、蓄电池盖、电解液、端子、安全阀等组成。蓄电池槽 蓄电池槽应符合JB3076标准规定或与用户商定。

蓄电池隔板 蓄电池隔板应符合JB/T 标准要求。 端子 蓄电池端子应能够用接插件或螺栓和螺母连接,使用的螺栓应符合GB/T5781标准规定。蓄电池尺寸及允差 蓄电池外形尺寸应符合表1中尺寸的要求,外型尺寸允差为±2mm。 外观 蓄电池外观不应有裂纹、裂痕、明显变形及污迹,且标志应清晰。 容量 蓄电池20小时率额定容量C20应符合表1中容量的要求。 蓄电池按条试验时,实际容量Ce在第三次或之前的试验应不低于。 27min率放电 蓄电池按条试验时,放电持续时间应不低于27min。 最大放电电流 蓄电池按条试验时,导电部件不应熔断,外观不得出现异常现象。 过放电 蓄电池按条试验时,实际容量应不低于。 过充电 蓄电池按条试验时,实际容量应不低于,外观不得出现异常现象。 密封反应效率 蓄电池按条试验时,密封反应效率不低于95%。 限压阀要求 蓄电池按条试验时,安全阀应能在1~60kPa的压力范围内可靠的开闭阀。 安全性 蓄电池按条试验时,外观不得出现漏液等异常现象。 自放电 蓄电池按条试验时,三个月容量损失百分数R不得超过15%。 耐振动性 蓄电池按条试验时,端电压不得低于额定电压。外观不得出现漏液等异常现象。 自由跌落

DJ200固定型阀控式密封铅酸蓄电池及

第一节、DJ200固定型阀控式密封铅酸蓄电池及 直流220伏RPZL智能型交频开关电源装置 一、蓄电池 一、蓄电池技术规范 型号:DJ200 额定电压:2V 额定容量:200安时 工作温度:﹣40~+60℃ 蓄电池数量:108只 直流控母电压:220伏 直流合母电压:243伏 生产厂家:深圳理士奥电源技术有限公司 二、充电 1、蓄电池充电方式以恒压限流为宜。25℃环境温度条件下:浮充使用时,充电电压为2.23-2.30V/单格,最大电流不限;循环使用时,充电电压为2.40-2.50V/单格;均充电压为2.35-2.40V/单格。最大电流为0.3C10A(C10为10小时率放电额定容量)。 2、使用蓄电池时,根据使用环境温度变化,充电电压相应调整,浮充使用时温度补尝系数为-3mv/(℃单格)即环境温度每升高1℃,充电电压降低3mv/单格;反之环境温度每降低1℃。充电电压提高3mv/单格;循环使用时为了5mv/(℃单格)均充时为;-4mv/(℃单格)。 第二节蓄电池的检查和运行维护以及注意事项 一、蓄电池、直流盘、充电装置等设备,每班检查一次。 二、蓄电池检查项目: 1、室内温度和通风及照明情况是否正常,室内无异味; 2、蓄电池有无渗漏,无物理性损伤(如壳、盖无裂纹或变形); 3、蓄电池连接条螺栓是否坚固,各连接导线是否松动; 4、室内是否清洁; 5、电池有无异常。 三、蓄电池的维护

1、清扫灰尘保持室内清洁; 2、定期测定每组蓄电池的电压是否符合规定; 3、定期紧固连接螺丝,保证连接良好; 4、系统间隔90天,自动对蓄电池组均充一次。四、注意事项 1、蓄电池应离开热源和火源,其安全距离应大于0.5m ; 2、蓄电池应避免阳光直射,不能置于大量放射性、红外线辐射,紫外线辐射、有机溶剂气体和腐蚀气体的环境中; 3、电池外壳,不能使用有机溶剂清洗,不能使用二氧化碳灭火器扑灭电池火灾,可使用四氯化碳或ABC 这类的灭火器具; 4、脏污的连接条或不紧密的连接均可引起电池打火,甚至损坏电池组,因此要保证连接坚固并保持连接处清洁; 5、由于电池组件电压较高,存在电击危险,在装卸导电连接条时应使用绝缘工具; 6、不同容量、不同型号、不同特性或新旧程度不一的电池不能连接使用。五、直流盘、充电装置检查项目1、U 01监控器正常显示: 控母电压220V 左右 运行状态:浮充、均充、故障合母电压充电电流 2、三块Z22010模块在浮充运行时,电压指示243V 。 在均充运行时,电压指示249V 。 3、各表计指针无抖动,电池电压表(250V )、充放电流表(0A )、控母电流表(1A )、控母电压表(230V )指针是否在额定(规定)的范围内。 4、硅堆手动投入开关在自动位置。 5、交流电源开关、三台模块电源开关、总开关、电池开关全部在投入位置、且信号指示灯在亮的状态。(放电开关在切除位置、信号指示灯灭) 6、直流盘上各开关位置、指示灯是否正常,各元件和连接导线有无过热氧化,有无异味。六、注意事项: 硅堆手动投入开关,正常情况下在自动位置,由PLC 自动控制。无需操作、只有在自动控制故障,母控电压降低到正常时才需人为手动控制来调节母控电压。(每一组硅堆压降7V ,共有4组) ⑴ ⑵

阀控式密封铅酸蓄电池技术规范书

阀控式密封铅酸蓄电池技术资料 1产品总则 1.1本规书为定货合同的附件,并与合同正文具有同等效力。 1.2如果法规和标准的要求低于供方的标准时,供方可以提出意见得到需方的许可, 为了本规书要求的设备成功地和连续运行,供方可以提供技术先进和更新经济的设计或材料。 1.3除本规书的法规和标准之外,供方还必须符合国家和地方的法律、法规和规定。1.4当这些标准、法规或规书之间发生任何明显矛盾的情况下,供方必须以书面形 式向需方提出这些矛盾的解决办法。 1.5本设备技术规书未尽事宜,由需、供双方协商确定。 1.6 本规书适用于XXXX变电站工程阀控式密封铅酸蓄电池的技术和有关方面的要求,其中包括技术指标、性能、结构、试验等要求,还包括资料交付及技术文件要求等。1.7 供方提供的设备的技术规,应与标书文件中规定的要求一致。在规书中提出的只是最低限度的技术要求,并未规定所有的技术要求和适用标准,供方应提供一套满足本规和所列标准要求的高质量产品及其相应服务。 1.7 如供方未对本规书的条文提出异议,则需方将认为供方提供的设备完全满足本协议书的要求。 2 技术要求 2.1法规和标准 2.1.1 所提供的直流电源柜设备必须符合,但不限于下列的到定货日期止有效的所有法规和标准,包括附录。 a)GB193《包装箱储运指示标记》 b)GB1957《形状和位置公差检测规定》 c)JB5777.3《电力系统二次电路用控制及继电保护屏(柜、台)基本试验方法》 d)《电力系统二次电路用控制及继电保护屏(柜、台)产品型号编制方法》 e)DL/T5044-95《火力发电厂、变电所直流系统设计技术规定》

f)GB/T 2900.1—1993 《电工术语基本术语》 y)GB/T 2900.11—1977 《电工术语蓄电池名词术语》 j)GB 4207—1993 《外壳防护等级》 k)GB2406《塑料燃烧性能试验方法》 l)GB2423《电工电子产品基本环境试验规程》 m)JB5777.2《电力系统二次电路用控制及继电保护屏(柜、台)通用技术条件》 n)GB/T 13374—1992 《机电产品包装通用技术条件》 q)DL/T 637—1997 《阀控式密封铅酸蓄电池订货技术条件》 p) DL/T 720—2000 《电力系统继电保护柜、屏通用技术条件》q)DL/T 459—2000 《电力系统直流电源柜订货技术条件》 r)GB 2900.11—77 《蓄电池名词术语》 s)GB 13337.1—91 《固定型防酸式铅酸蓄电池技术条件》 j)JISC 7707—1992 《阴极吸收式密封固定型铅酸蓄电池》 2.2气象特征与环境条件 2.2.1 海拔高度不超过1000m 2.2.4 温度(户外) -5℃~40℃ 2.2.5 地震烈度 7度 水平加速度 0.3g 垂直加速度 0.15g 安全系数 1.67(同时作用) 2.2.6振动:应能承受f≤10HZ振幅为0.3mm及f≥10~150HZ时加速度为1m/s2的振动。 2.2.2 最大月平均相对湿度 90% 2.2.3 最大日平均相对湿度 95% 对蓄电池的要求 2.3.1蓄电池在环境温度-10℃~+45℃条件下应能正常使用,使用的温度为5℃~30℃。 2.3.2蓄电池结构应保证在使用寿命期间,不得渗漏电解液。

阀控式铅酸蓄电池特性

阀控式铅酸蓄电池特性

目录 目录 ............................................................................................................................................... 错误!未定义书签。 1 背景 ........................................................................................................................................... 错误!未定义书签。 2 VRLA电池结构及工作原理 ................................................................................................. 错误!未定义书签。 2.1VRLA电池的电化学反应原理.......................................................................................... 错误!未定义书签。 2.2VRLA电池的氧循环原理.................................................................................................. 错误!未定义书签。 2.3VRLA电池的容量分类...................................................................................................... 错误!未定义书签。 3 特性曲线 ................................................................................................................................... 错误!未定义书签。 3.1充放电曲线 ......................................................................................................................... 错误!未定义书签。 3.2倍率特性 ............................................................................................................................. 错误!未定义书签。 3.3温度特性 ............................................................................................................................. 错误!未定义书签。 3.4循环特性 ............................................................................................................................. 错误!未定义书签。4总结 ............................................................................................................................................ 错误!未定义书签。参考文献 ....................................................................................................................................... 错误!未定义书签。

阀控式密封铅酸蓄电池测试方法

阀控式密封铅酸蓄电池测试方法 1.总则 1.1 本规范书主要用于对蓄电池运行状况进行检查、测试,以判断蓄电池性能状态。 1.2 本规范书所采用的方法主要依据标准YD/T799-2002《通信用阀控式密封铅酸蓄电池技术要求和检验方法》、JIS C 8702-1995《小型密封铅蓄电池》、DL/T 637-1997《阀控式密封铅酸蓄电池订货技术条件》。 2. 蓄电池外观及运行环境检查 2.1 蓄电池外观检查及处理 (1)电池壳体有无鼓胀变形。 □无;□有,处理方法:更换电池。 (2)有无发生电池槽盖、极柱、安全阀周围电解液渗漏。 □无;□有,处理方法:更换电池。 (3)电池连接处有无松动、腐蚀现象。 □无;□有,处理方法:紧固螺栓,端子除锈,更换连接件(电缆或铜排)。 (4)电池架及防震架防酸漆有无脱落、腐蚀。 □无;□有,处理方法:除锈重新喷漆。 2.2蓄电池运行环境检查 (1)环境温度:记录蓄电池运行环境温度。注意温度过高(45℃以上)会加快水分解及板栅腐蚀速度,严重缩短蓄电池使用寿命,同时由于高温环境下充电蓄电池发热量会增大(发热量Q=3.6×V×I×n,其中V为蓄电池每单格的浮充电压值;I为浮充电流值,常温可按2‰C10估算,高温浮充电流值按实际测量结果;n电池组单格总数;单位kJ/hr);温度过低(-15℃以下)会加速极板(尤其是负极板)硫酸盐化,造成蓄电池性能劣化。若蓄电池运行环境温度全年有1/3超过以上指标,建议对蓄电池运行环境进行必要改善(如安装空调)。

(2)通风换气条件:检查换气状况,保持蓄电池使用环境良好空气流动,避免蓄电池充电过程热量及氢气的积累。若通风换气不良(换气量Q≥C10×n ×5.5‰,其中C10为10小时率容量;n为电池单格数;单位m3/hr),建议加以改善(如安装排气扇)。 (3)防尘条件:检查蓄电池盖子灰尘累积情况,保持蓄电池表面清洁。尘埃积累如遇到潮湿环境,有产生端子之间短路甚至负极接地故障的危险。风沙积尘量较大的机房建议在换气通道加装防尘网。 (4)电源浮充电压检查:测量蓄电池组端电压,并和基准充电电压(厂家规定的单体电池浮充电压×电池个数)对照,如有偏离,对电源输出充电电压进行微调。 3. 蓄电池电气性能检测 3.1 浮充电压一致性检测 (1)检测方法:测量蓄电池组每个电池的端电压。 (2)判断基准:同组电池在运行6个月之后的浮充电压值应保持在100mV(2V); 240mV(6V);480mV(12V)范围内。 (3)处理:超过基准值时,对蓄电池组放电后先均衡充电,再转浮充观察1--2个月,若仍偏离基准值,与供应商联系。 (4)检测周期:每3个月一次。 3.2 核对性放电 (1)检测方法:以实际负载进行核对性放电,断开交流电带负载放电,放出电池额定容量的30~40%。 (2)判断基准:12V电池单只端压应大于11.70V,2V电池单只端压应大于1.95V。 (3)处理:低于基准值时,对蓄电池进行强制均充24小时~48小时,再转浮充观察1--2个月,然后采用3.3全容量检测方法对蓄电池进行放 电,若容量不合格,则应考虑更换。 (4)检测周期:每年一次。 3.3 全容量检测 (1)检测方法:以假负载对蓄电池组进行放电,放电参数如下:

固定型阀控式密封铅酸蓄电池的标准

固定型阀控式密封铅酸蓄电池的标准 1 范围 本标准规定了固定型阀控式密封铅酸蓄电池的产品型号、技术要求、试验方法、检验规则以及标志、包装、运输、贮存。 本标准适用本企业生产的用于电讯、电气设备、应急电源、报警系统、太阳能贮能系统、安全系统等使用的固定型阀控式密封铅酸蓄电池(以下简称蓄电池)。 2 引用标准 GB5781/T-2000 六角头螺栓-全螺纹-C级 JB3076-1999 铅酸蓄电池槽 JB/T2599-1993 铅酸蓄电池产品型号编制办法 JB/-1998 铅酸蓄电池超细玻璃纤维隔板 YD/T799-1996 通信用阀控式密封铅酸蓄电池技术要求和检验方法。 3 符号 C10 — 10小时率额定容量(Ah); C3 — 3小时率额定容量(Ah),数值为; C1 — 1小时率额定容量(Ah),数值为; I10 — 10小时率放电电流(A),电流值为C10/10; I3 — 3小时率放电电流(A),电流值为C3/3; I1 — 1小时率放电电流(A),电流值为C1/1; 4 产品分类与命名 蓄电池的型号编制应符合JB/T2599的规定 5 技术要求 蓄电池的工作环境

蓄电池在环境温度为-15℃~+45℃条件下应能正常使用。 电池结构 一般结构 蓄电池由正极板、负极板、隔板、蓄电池槽、蓄电池盖、电解液、端子、安全阀等组成。 蓄电池槽 蓄电池槽应符合JB3076标准规定或与用户商定。 蓄电池隔板 蓄电池隔板应符合JB/T 标准要求。 蓄电池尺寸 蓄电池外形尺寸应符合表1中尺寸的要求,外型尺寸允差为±2mm。 外形尺寸也可根据用户要求制定。 外观 蓄电池外观不应有裂纹、裂痕、明显变形及污迹,标志应清晰。 气密性 蓄电池应能承受50kPa的正压或负压而不破裂、不开胶,压力释放后壳体无残余变形。 容量 蓄电池按条试验时,10h率容量第一次循环不低%C10,1h率容量、3h率容量应在前5次内达到。放电终止电压应符合表2规定。 最大放电电流 蓄电池按条试验时,导电部件不应熔断,外观不得出现异常现象。 耐过充电能力 蓄电池按条试验时,不应有漏液和明显变形。 荷电保持能力

固定型阀控式密封铅酸蓄电池的标准

固定型阀控式密封铅酸蓄电池的标准 1范围 本标准规定了固定型阀控式密封铅酸蓄电池的产品型号、技术要求、试验方法、检验规则以及标志、包装、运输、贮存. 本标准适用本企业生产的用于电讯、电气设备、应急电源、报警系统、太阳能贮能系统、安全系统等使用的固定型阀控式密封铅酸蓄电池(以下简称蓄电池). 2引用标准 GB5781/T-2000六角头螺栓-全螺纹-C级 JB3076-1999铅酸蓄电池槽 JB/T2599-1993铅酸蓄电池产品型号编制办法 JB/T7630.1-1998铅酸蓄电池超细玻璃纤维隔板 YD/T799-1996通信用阀控式密封铅酸蓄电池技术要求和检验方法. 3符号 3.1C10—10小时率额定容量(Ah); 3.2C3—3小时率额定容量(Ah),数值为0.75C10; 3.3C1—1小时率额定容量(Ah),数值为0.60C10; 3.4I10—10小时率放电电流(A),电流值为C10/10; 3.5I3—3小时率放电电流(A),电流值为C3/3; 3.6I1—1小时率放电电流(A),电流值为C1/1; 4产品分类与命名 蓄电池的型号编制应符合JB/T2599的规定 5技术要求 5.1蓄电池的工作环境 蓄电池在环境温度为-15℃~+45℃条件下应能正常使用. 5.2电池结构 5.2.1一般结构 蓄电池由正极板、负极板、隔板、蓄电池槽、蓄电池盖、电解液、端子、安全阀等组成. 5.2.2蓄电池槽 蓄电池槽应符合JB3076标准规定或与用户商定. 5.2.3蓄电池隔板 蓄电池隔板应符合JB/T7630.1标准要求. 5.3蓄电池尺寸 5.3.1蓄电池外形尺寸应符合表1中尺寸的要求,外型尺寸允差为±2mm. 5.3.2外形尺寸也可根据用户要求制定. 5.4外观 蓄电池外观不应有裂纹、裂痕、明显变形及污迹,标志应清晰.

阀控式密封铅酸蓄电池验收运行管理强条

阀控式密封铅酸蓄电池运行维护管理规定 第一章总则 为保证变电站阀控式密封铅酸蓄电池及其高频开关电源(以下简称直流设备)保持良好的运行状态,延长使用寿命,保证变电站直流母线保持合格电压和蓄电池的放电容量,特制定本规定。 第二章安装要求 2.1直流设备通风应良好,运行环境温度应保持在5℃~35℃,安装地点应装设温度调节装置。 2.2直流系统可采用单、双充电器、电池组和电源母线。220kV变电站可采用双电池组,500kV变电站应采用双电池组、双母线方式。 2.3独立的蓄电池室应有充足的照明,并采用防爆灯具。 2.4蓄电池采用串联接线,蓄电池之间应保持2cm以上距离,若电池安装在柜内,上下层之间距离不应小于15cm。蓄电池应保持清洁,极板、极柱接触应良好,连接螺丝应牢固,不得有放电现象。 第三章交接验收项目及标准 3.1检查蓄电池容量。对电池组进行三次充放电试验,放电终止电压根据制造厂的规定,2V蓄电池为1.8V。其中一只蓄电池防到了终止电压,应停止放电。在三次充放电循环之内,若达不到额定容量值的100%,此组蓄电池不合格。

3.2测量电池的绝缘电阻。220V电池组的绝缘电阻不小于0.2MΩ,1 10V电池组的绝缘电阻不小于0.1MΩ。 3.3测量充电设备的稳流精度不大于±(0.5%-1%),稳压精度不大于±(0.1%-0.5%),及直流母线纹波系数不大于(0.2%-0.51%)。 3.4测量每只电池端电压符合厂家规定。 3.5检查厂方提供的安全阀开启闭合试验报告,闭阀压力应在1kPa~10kPa范围内,开阀压力应在10kPa~49kPa范围内。 第四章运行维护要求 4.1为提高蓄电池的使用寿命,要做好初充电(一般初充电由厂方进行)。 4.2蓄电池组在正常运行中以浮充电方式运行,浮充电电压宜控制在(2.23-2.28)V×N,均衡充电电压宜控制在(2.30-2.35)V×N。 4.3运行中主要监视蓄电池组的端电压值,浮充电流值,每只蓄电池的电压值,蓄电池组及直流母线的对地电阻值和绝缘状况。 4.4蓄电池一般3个月进行一次补充充电,充电装置应自动或手动进行一次恒流限压充电→恒压充电→浮充电。使蓄电池组随时具有满容量,确保运行安全可靠。 4.5投运后的蓄电池组,每2-3年应进行一次核对性充放电试验,运行6年以后的蓄电池组,每年应进行一次核对性放电试验。 4.5.1一组蓄电池。站内只有一组蓄电池,不能退出运行、也不能做全核对性放电,只能用I10电流恒流放出额定容量的50%,在放电过程中,蓄电池组端电压不得低于2V×N。放电后应立即用I10电流

废铅酸蓄电池处理工艺流程及污染控制

废铅酸蓄电池处理工艺流程及污染控制 废铅酸蓄电池的资源再生应先经过预处理后,再采用冶金的方法处理电极板填料等含铅物料。 1)预处理(废铅酸蓄电池预处理过程应在封闭式的构筑物中进行。不得对废铅酸蓄电池进行人工破碎和在露天环境下进行破碎作业)。 一般包括机械打孔、破碎、分离等。 (1)废铅酸蓄电池的机械打孔应采取妥善措施避免二次污染产生。 (2)废铅酸蓄电池破碎工艺应保证电池中的铅板、连接器、塑料盒和酸性电解液等成分在后续步骤中易被分离。 (3)破碎后的铅的氧化物和硫酸盐可通过筛分、水力分选、过滤等方式使其从其他的原料中分离出来。 (4)应对废塑料进行清洗,并应清洗至无污染,基本不含铅后方可进一步回收利用。 (5)预处理过程应积极推进采用自动破碎分选设备进行。 预处理过程产生的塑料、铅电极板、含铅物料、废酸液分别回收、处理;废铅酸蓄电池中的废酸液应收集处理,不得将其排入下水道或排入环境中。 2)铅回收

经预处理后的含有金属铅、铅的氧化物、铅的硫酸盐以及其他金属如钙、铜、银、锑、砷及锡等物质的电池碎片可采取火法冶金法或湿法冶金法把金属铅从混合物中分离出来。 A火法冶金法:包括两种方式,即一种是先预脱硫后高温冶炼还原铅;另一种方法为直接熔炼还原回收铅,同时进行硫的回收处理工艺。 (1)预脱硫过程可通过与碳酸铵或碳酸钠和氢氧化钠的混合物或三氧化二铁和碳酸钙混合物等反应来脱硫,脱硫产生的硫酸钠溶液可进一步纯化生产高纯度的盐。 (2)利用直接熔炼还原回收铅,其冶炼过程应对含二氧化硫烟气进行收集制酸,其尾气应经净化处理后实现达标排放。 (3)火法冶金可采用回转窑、鼓风炉、电炉、旋转窑、反射炉(不含直接燃煤的反射炉)等。应严格控制熔炼介质和还原介质的加入数量,以保证去除电池碎片中所有的硫和其他杂质以及还原所有的铅氧化物。 (4)利用火法冶金工艺进行废铅酸蓄电池资源再生,其冶炼过程应在密闭负压条件下进行,以免有害气体和粉尘逸出,收集的气体应进行净化处理,达标后排放。 B湿法冶金法: 一般包括两种工艺方法,一种是预脱硫-电解沉积工艺,另一种是固相电还原铅工艺。

(完整版)阀控式免维护铅酸蓄电池充放电试验规程

阀控式免维护铅酸蓄电池充放电试验规程 1 总则 1.1 本通则规定了阀控式免维护铅酸蓄电池的充放电试验内容、要求和周期。 1.2 本通则适用于现场维护人员对蓄电池的充放电试验。 1.3 现场维护人员应具有操作所需要的电工知识,对现场情况熟悉,且具有安全防护能力。 2 阀控式免维护铅酸蓄电池维护要求 2.1 蓄电池应每月进行一次巡视、检查并记录整组电压和各个标示电池电压。 2.2 阀控式免维护铅酸蓄电池核对充放电周期: 新安装的阀控式免维护铅酸蓄电池组,应进行全核对性充放电试验,以后每隔2年进行一次核对性充放电试验,运行了6年以后的阀控蓄电池,应每年做一次核对性充放电试验。 3 阀控式免维护铅酸蓄电池充放电项目 3.1 检查电池表面是否完好无鼓胀变形,电池连接的接触良好,极柱的连接表面无腐蚀。 3.2 准备好充放电工器具,记录表格及开工资料。 3.3 确定电池充放电时间和要求放出容量预测值。充足电后进入放电,以10小时放电率,单体终止电压最低不能低于1.80V。 3.4 在放电过程中每隔1小时记录一次单体电压,总电压,充放电电流;当有电池达到1.90 V后,15分钟记录一次,1.85V时,10分钟记录一次。并检查电池发热,充电装置运行情况。 3.5 充放电工作结束后应进行数据分析,对电池的电压有不正常下降,容量不足的电池应单独进行充电或更换处理。 4 阀控式免维护铅酸蓄电池充放电技术要求 4.1 蓄电池应处在清洁、阴凉及干燥的远离热源和可能产生火花的地方,室温应保持在16℃~30℃的范围内。 4.2 蓄电池室内应通风良好,以防室内的氢气含量超过4%而有爆炸的危险。 4.3 蓄电池不能过电流或过电压充电,亦不能过放电,每次放电完后,应及时充电,需充电的时间在10小时以上。 4.4 阀控式铅酸蓄电池对充电设备及温度等外部环境因素较为敏感。电池的充电电压应随着温度的上升而下降,一般每升高一度,充电电压下降2~4mV。 4.5 检验电池充足电方办法:电池系统恒压充电到后期,电流减少并趋向稳定值,充电电流连续三小时保持稳定,即表示电池系统已充足电。 4.6 新装电池初始容量达到额定值的95%容量即为合格。在用电池容量达到额定值的80%容量为合格。 5阀控式免维护铅酸蓄电池充放电方法和步骤 5.1 充电 5.1.1 检查电池是否完好无损,记录电池的编号。在具备充电情况下开启充电装置。

阀控式密封铅酸蓄电池

阀控式密封铅酸蓄电池(VRLA) VRLA电池的组件结构及其作用 2V系列VRLA电池的结构如下图所示: 各组件的作用如下: 板栅:由铅合金经过模具铸造形成栅格状的物体,用于支撑活性物质、传导电流。 极板:板栅上涂膏后称为极板,它提供电化学反应的活性物质,是电化学反应的场所,电池容量的主要制约者。根据所涂铅膏性质的不同分为正极板和负极板。 隔板:储存电解液;作为氧气复合的气体通道;防止活性物质脱落;防止正负极之间短路。槽盖:盛装极群。 极柱:直接焊接在汇流排上,用以连接连接条,传导电流。 安全阀:安全阀安装在电池盖上,由阀体和安全阀共同组成,使电池保持一定内压,提高密封反应效率;过充电或高电流充电时,安全阀打开排出气体,防止电池变形甚至发生爆炸;防止外界空气进入电池;防止电解液挥发。 关于VRLA电池的容量 电池在一定放电条件下所能给出得电量称为电池的容量,以符号C表示。常用的单位为安培小时,简称安时(A.h)或毫安时(mA.h)。通常在C的下角处标明放电时率,如C10表明10小时率的放电容量;C3表明3小时率的放电容量。 容量分类 电池的容量可分为理论容量、额定容量、设计容量和标称容量。

理论容量是活性物质的质量按法拉第定律计算而得的最高理论值。为了比较不同系列的电池,常用比容量的概念,即单位体积或单位质量电池所能给出的理论电量,单位为A.h/kg 或A.h/L。 实际容量是指电池在一定条件下所能输出的电量。它等于放电电流与放电时间的成绩,单位为A.h,其值小于理论容量。因为组成设计电池时,除活性物质外还包括非反应成分如外壳、导电零件等,同时还与活性物质被有效利用的程度有关。 额定容量是按国家或有关部门颁布的标准,保证电池在一定的放电条件下应该放出的最低限度的容量。 标称容量是用来鉴别电池安时值,只标明电池的容量范围而没有确切值,因为在没有指定放电条件下,电池的容量是无法确定的。 影响实际容量的因素 电池的实际容量主要与电池正、负极活性物质的数量及利用的程度(利用率)有关,而活性物质利用率主要受放电制度、电极的结构、制造工艺等方面的影响。使用过程中影响实际容量的是放电率、放电制度、终止电压和温度。 放电制度指放电速率、放电形式、终止电压和温度。高速率即大电流。低温条件下放电时,将减少电池输出的容量。 放电速率简称放电率,常用倍率和时率表示。 时率是以放电时间表示的放电速率,即以某电流放电至规定终止电压所经历的时间。例如某电池额定容量是10小时率时为500Ah,即以C10为500Ah表示,则电池应以500/10=50A(即I10=50A)的电流放电,连续放电10h为合格。 倍率是指电池放电电流的数值为额定容量数值的倍数。电池放电倍率越高,放电电流越大,放电时间就越短,放出的相应容量越少。如放电电流表示为0.1 C10,对于一个500Ah (C10)的电池,即以0.1×500=50A的电流放电;1C10意指500A的电流放电。C的下脚标表示放电时率。 终止电压指电池放电时电压下降到不宜再继续放电时的最低工作电压。一般在高倍率、低温条件下放电时,终止电压规定得低一些。阀控电池10小时率的终止电压为1.8V/单体。由于铅酸蓄电池本身的特性,即使放电的终止电压继续降低,电池也不会放出太多的容量,但终止电压过低对电池的损伤极大,尤其当放电到较低电压而又不能及时充电时,将大大缩短电池的寿命。

相关文档
最新文档