混凝土支撑轴力测定及计算的相关问题探讨
钢筋混凝土支撑轴力监测相关问题的研究
后开始卸载 , 共 5级 卸载 , 第一 次卸 载 3 0 0 k N, 之 后每
级6 0 0 k N, 每次卸载后维持 2 0 a r i n , 直 至卸载至 0 。
表 1 传感器信息详细统计 表
再良 、 鲁智 明 均基于实 际人工 监测数据 , 引入“ 温 度补偿 系数 ” 考虑温度应力对支撑轴力 的影响 。
些 问题进行系统的试验研究。 1 试 验简介
系
图 3为进 口钢筋 应力计 的试 验结 果 图 , 图 中实 线 为所测的支撑轴力 , 虚线为对应 的温度 ( 温差 ) 变化 曲
本次试验 的钢筋 混 凝 土支 撑 长 5 m, 截 面 尺寸 为 8 0 0 m m× 8 0 0 m m, 对称配置 2 4根 2 5钢筋。在 两个截 面处布置 了不 同 厂家 的钢 筋应 力计 及混 凝 土应 变计 ( 图1 ) , 传感器的具体截面位 置见 图 2 , 各个传感 器的
[ 6 ] 李 志伟 . 软土地区深基坑开挖对 邻近建筑物影响 的三维有 限 元分析[ D ] . 天津 : 天津大学 , 2 0 1 1 .
[ 收稿 日期] 2 0 1 3 — 1 1 — 2 6 [ 作者简介] 高 超 ( 1 9 8 6一 ) , 男, 辽宁鞍 山人 , 硕 士研究 生 , 从事
混凝土支撑轴内力计算公式
混凝土支撑轴内力计算公式在工程设计中,混凝土支撑是一种常见的结构形式,用于支撑建筑物或其他结构的重量。
为了确保混凝土支撑的安全性和稳定性,需要对其轴内力进行计算和分析。
本文将介绍混凝土支撑轴内力计算的公式和相关知识。
混凝土支撑轴内力计算的基本原理是根据支撑的几何形状和受力情况,利用静力学原理和材料力学知识,通过计算得出支撑内部的受力情况。
在进行轴内力计算时,需要考虑支撑的受力情况、材料的强度和变形等因素,以确保支撑的安全性和稳定性。
混凝土支撑轴内力计算的公式主要包括以下几种:1. 混凝土支撑的受力分析公式:在进行混凝土支撑轴内力计算时,首先需要对支撑的受力情况进行分析。
根据支撑的几何形状和受力情况,可以利用静力学原理和受力平衡条件,得出支撑的受力分布情况。
一般来说,混凝土支撑主要受到压力和弯矩的作用,因此需要分别计算支撑的轴向力和弯矩。
2. 混凝土支撑轴向力计算公式:混凝土支撑的轴向力是支撑内部受力的重要参数之一,通常用来表示支撑的承载能力和稳定性。
在进行轴向力计算时,需要考虑支撑的几何形状、受力情况和材料的强度等因素。
一般来说,混凝土支撑的轴向力可以通过以下公式进行计算:N = A f。
其中,N表示支撑的轴向力,A表示支撑的截面积,f表示混凝土的抗压强度。
通过这个公式,可以计算出支撑的轴向力,从而评估支撑的承载能力和稳定性。
3. 混凝土支撑弯矩计算公式:除了轴向力外,混凝土支撑还可能受到弯矩的作用。
在进行弯矩计算时,需要考虑支撑的几何形状、受力情况和材料的强度等因素。
一般来说,混凝土支撑的弯矩可以通过以下公式进行计算:M = f S。
其中,M表示支撑的弯矩,f表示混凝土的抗压强度,S表示支撑的受力臂长。
通过这个公式,可以计算出支撑的弯矩,从而评估支撑的承载能力和稳定性。
4. 混凝土支撑轴内力综合计算公式:在实际工程中,混凝土支撑的轴内力往往是轴向力和弯矩的综合作用。
因此,为了全面评估支撑的承载能力和稳定性,需要综合考虑轴向力和弯矩的作用。
基坑轴力监测
基坑工程混凝土支撑轴力监测方法的讨论2014-01-18 13:52 来源:中国岩土网阅读:1060 通过现场试验,探讨混凝土支撑轴力监测过程中的问题及解决方法。
基坑工程混凝土支撑轴力监测方法的讨论1.混凝土支撑轴力监测的问题及现状国内明挖基坑工程的监测中,混凝土支撑系统的轴力监测结果异常(轴力监测值过大,但实际工程结构中并非内力过大或不稳定;如:一根C35 1m×1m截面的钢筋混凝土支撑,有时轴力监测值会达到20000~30000kN,而依然处于正常工作状态)问题普遍地存在着,时常会对监测结果分析及工程施工的进行造成不必要的阻碍。
如苏州轨道交通一号线广济路站基坑混凝土支撑轴力监测数据,在实际监测过程中发现随着基坑开挖深度的加深,基坑支撑的监测轴力值变化较快并远大于设计值,有的甚至好几倍,以标准段8-2道混凝土支撑轴力为例,最大监测轴力值接近15000kN,远远超过该段8700kN的设计值。
广州地铁五号线员村站基坑工程,在D101监测点处支撑横断面下表面钢筋所测应力为负值,即为拉应力,说明斜撑在土压力的作用下已向下弯曲,且下表面混凝土拉应力为2.51 MPa,超过了混凝土的设计抗拉强度,就现场观看支撑上表面有细微裂缝,而轴力平均值才达到1440.44 kN,还远未达到轴力设计报警值3000 kN。
广州某地铁基坑工程混凝土支撑系统的轴力监测结果起初均为负值,随着基坑的开挖轴力值持续增大,一直到基坑开挖结束,最大值达到设计允许值的6倍,而支撑系统一直处于正常工作的状态。
天津某轨道换乘中心⑩轴~⑩轴工程截至2009年8月6日,⑦轴轴力值为18247 kN,占设计值204%;⑦轴轴力值为18994 kN,占设计值213%;已大大超过支撑的安全报警值,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象。
上海虹桥国际商城基坑开挖深度13.70m,3道混凝土支撑,第2道支撑(C351200mm×l000mm)轴力监测值最大处曾达到30500kN,已大大超过支撑的安全报警值,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象,直至支撑拆除;南京地铁指挥中心基坑开挖深度15.40m,4道钢筋混凝土支撑,施工过程中第3道支撑(C35 1200mm×1000mm)轴力监测值最大处达到21000kN,已超出轴力安全报警值,但并未出现不安全工作的迹象,直至支撑拆除。
基坑支护结构混凝土支撑轴力计算方法及报警值设置浅析王幼明1张鹏宇2吴清3
基坑支护结构混凝土支撑轴力计算方法及报警值设置浅析王幼明1 张鹏宇2 吴清3发布时间:2023-05-31T07:16:18.862Z 来源:《工程建设标准化》2023年6期作者:王幼明1 张鹏宇2 吴清3 [导读] 针对厚层软土地区深基坑工程混凝土支撑轴力监测数据报警情况,为科学研判基坑支护结构稳定性,对基坑监测中常用的混凝土支撑轴力计算方法进行分析。
指出了采用混凝土线性本构关系计算混凝土支撑轴力的不足之处,采用了更加符合客观情况的混凝土非线性本构关系计算混凝土支撑轴力。
同时,提出了考虑混凝土压应变发展水平的混凝土支撑轴力报警值设置原则。
深圳市建研检测有限公司深圳市 518049摘要:针对厚层软土地区深基坑工程混凝土支撑轴力监测数据报警情况,为科学研判基坑支护结构稳定性,对基坑监测中常用的混凝土支撑轴力计算方法进行分析。
指出了采用混凝土线性本构关系计算混凝土支撑轴力的不足之处,采用了更加符合客观情况的混凝土非线性本构关系计算混凝土支撑轴力。
同时,提出了考虑混凝土压应变发展水平的混凝土支撑轴力报警值设置原则。
提高了混凝土支撑轴力监测数据对研判基坑支护结构的可靠性。
关键词:基坑监测;混凝土支撑;支撑轴力;本构关系;基坑支护1 引言随着我国城市建设的发展,各大城市涌现出大量高层及超高层建筑,相应的地下空间开发展迅速。
因此涌现了大量的深基坑工程项目。
由于岩土性质的复杂多变性和和计算模型的局限性,基坑工程需要根据施工过程的工况变化和监测信息实行动态设计和信息化施工[1-2]。
软土地区因其不良地质条件以及周边环境的复杂性,深基坑工程面临的诸多挑战。
因此,基坑工程的信息化施工具有举足轻重的作用。
基坑监测数据作为基坑工程信息化施工的要素,受到了相关领域的专家及学者的关注。
其中,王卫东等[3]对上海软土地区基坑典型案例进行了研究分析,安关峰等[4]对广州地区深基坑监测数据进行分析。
混凝土支撑作为深基坑支护结构常用的关键构件,其轴力监测数据是研判基坑安全的关键信息之一。
混凝土支撑轴力监测分析精选文档
混凝土支撑轴力监测分析精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-混凝土支撑轴力监测分析摘 ?要:结合广州地铁某基坑工程的设计和施工方案,对混凝土支撑轴力监测的原理进行介绍。
在对基坑施工过程中轴力监测数据变化进行分析的基础上,对其形成原因进行了探讨,得到一些经验性规律,供类似工程参考。
关键词:钢筋混凝土;支撑轴力;监测;分析引言我国基础建设的快速发展,深基坑工程的建设也越来越多,在深基坑施工过程中,深基坑的支护起着举足轻重的作用。
只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,支撑结构轴力的监测是基坑工程现场监测的主要内容之一。
通过对轴力的监测,可准确掌握支护结构的受力状况,从而对基坑的安全性状进行分析,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计方案,从而保证基坑 ????? 本身和周围建筑物、构筑物的安全,以确保工程的顺利进行。
结合广州地铁某基坑工程的设计方案和监测数据,对基坑的混凝土支撑轴力变化进行初步分析。
1工程概况该工程包括盾构始发井兼轨排井及后明挖段,设计为 1~3 跨的闭合框架结构,其中盾构始发井基坑开挖深度约为 m,明挖段基坑开挖深度约 m;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。
基坑设计采用 800 mm 厚的地下连续墙+内支撑的围护结构体系。
内支撑采用 3 道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为Ф 600、 t=14 的钢管,在灌梁和斜撑上共埋设 13 个钢筋混凝土支撑轴力监测点。
基坑监测点平面位置见图1。
由于基坑开挖深度较大且附近有一级公路高架桥和铁路双线桥,属于一级基坑,必须通过监测随时掌握土层和支护结构的内力变化情况,将监测数据与设计预估值进行分析对比,以判断前一步施工工艺和施工参数是否符合预期值,以确定优化下一步施工参数,以此达到信息化施工的目的,确保工程安全。
深基坑混凝土支撑轴力监测探讨
深基坑混凝土支撑轴力监测探讨摘要:深基坑轴力监测是一项很重要的监测项目,但其受混凝土收缩、徐变、温度及初始值选取等因素的影响较大,我们可以通过一些手段减少一些误差,使轴力监测结果更为可靠,为工程安全提供参考,更需要结合其他监测手段,对整个工程安全进行评估,保证工程安全可控。
关键词:深基坑监测;支撑轴力;误差分析前言随社会经济快速发展,大城市人口剧增,土地资源紧张,为解决这些问题,现代建筑越来越注重对地下空间的开发利用,于是出现了很多深基坑工程。
在市中心区、软土地区,为控制基坑开挖过程中水平位移,保证深基坑工程安全性,往往会设计混凝土支撑,并对混凝土支撑进行轴力监测。
但在笔者经历的几个基坑工程监测项目中,支撑轴力均超过了其设计值,其中最大支撑轴力峰值接近于设计值的两倍。
然而混凝土支撑却未发现严重变形,其他的监测项目如水平位移、沉降位移、深层水平位移等仍在控制值内。
由此可见测试的混凝土支撑轴力应当是比实际受力偏高。
本文就混凝土支撑轴力监测中一些问题进行探讨,希望能对同行有所启发。
1.混凝土支撑轴力监测方法目前对混凝土支撑轴力的测量采用的是间接法测量,即通过测量支撑内混凝土或钢筋微应变,利用钢筋、混凝土弹性模量及面积,推定支撑轴力。
其中钢筋、混凝土的弹性模量和面积可查阅相关资料获得,故支撑轴力测量实际上就是变形测量。
目前运用的最多的混凝土应变计和钢筋应变计,前者是安装于混凝土内部,测量混凝土微应变,后者安装于支撑主筋上,测量主筋微应变。
由于混凝土应变计相对于钢筋应变计安装方便,笔者所经历的几个基坑监测项目均为混凝土应变计。
2.混凝土支撑轴力监测主要误差分析由轴力监测方法可知其误差主要来源是混凝土的形变测量,在混凝土支撑轴力计算中,我们假定测定的应变是由于支撑受力而引起的,但实际上我们测定的应变除了支撑受力外还有其他因素,结合笔者的一些工程实践及其他同行的一些相关研究,大体上认为支撑轴力测量误差主要来源于下面几个方面:2.1混凝土收缩及徐变混凝土在凝结硬化过程中会发生体积缩小的现象,其包含了塑性收缩、温度收缩、碳化收缩、干燥收缩自生收缩等,对混凝土支撑来说其主要应变来源于混凝土的干燥收缩。
混凝土支撑轴力监测分析
混凝土支撑轴力监测分析摘要:结合广州地铁某基坑工程的设计和施工方案,对混凝土支撑轴力监测的原理进行介绍。
在对基坑施工过程中轴力监测数据变化进行分析的基础上,对其形成原因进行了探讨,得到一些经验性规律,供类似工程参考。
关键词:钢筋混凝土;支撑轴力;监测;分析引言我国基础建设的快速发展,深基坑工程的建设也越来越多,在深基坑施工过程中,深基坑的支护起着举足轻重的作用。
只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,支撑结构轴力的监测是基坑工程现场监测的主要内容之一。
通过对轴力的监测,可准确掌握支护结构的受力状况,从而对基坑的安全性状进行分析,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计方案,从而保证基坑本身和周围建筑物、构筑物的安全,以确保工程的顺利进行。
结合广州地铁某基坑工程的设计方案和监测数据,对基坑的混凝土支撑轴力变化进行初步分析。
1工程概况该工程包括盾构始发井兼轨排井及后明挖段,设计为 1~3 跨的闭合框架结构,其中盾构始发井基坑开挖深度约为 18.9 m,明挖段基坑开挖深度约17.5 m;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。
基坑设计采用 800 mm 厚的地下连续墙+内支撑的围护结构体系。
内支撑采用 3 道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为Ф 600、 t=14 的钢管,在灌梁和斜撑上共埋设 13 个钢筋混凝土支撑轴力监测点。
基坑监测点平面位置见图1。
由于基坑开挖深度较大且附近有一级公路高架桥和铁路双线桥,属于一级基坑,必须通过监测随时掌握土层和支护结构的内力变化情况,将监测数据与设计预估值进行分析对比,以判断前一步施工工艺和施工参数是否符合预期值,以确定优化下一步施工参数,以此达到信息化施工的目的,确保工程安全。
基坑监测中混凝土支撑轴力测量实验探究
基坑监测中混凝土支撑轴力测量实验探究摘要:混凝土支撑轴力是基坑工程常用监测指标,通过测量数据可以判断基坑工程质量。
为此,首先阐述了基坑混凝土支撑轴力测量实验流程,其次以某城市轨道车站主体施工工程为例,分析了混凝土支撑轴力变化、混凝土支撑轴力测量误差原因及实验质量控制措施,以期为混凝土支撑轴力测量实验顺利进行提供保障。
关键词:基坑监测;测量实验;混凝土支撑轴力引言:在基坑监测过程中,如果测量得到的混凝土支撑轴力超过了设计值,表示基坑支护结构可能出现失稳、被破坏等问题,施工团队需要在问题发生前采取必要处理措施。
如果测量得到的混凝土支撑轴力与实际混凝土支撑轴力存在较为明显的误差,表示施工团队需要及时调整混凝土支撑轴力测量实验方法及流程。
1.基坑混凝土支撑轴力测量实验流程1.1埋设混凝土支撑轴力测量点在基坑工程中,一般选择通过钢筋计直接测量得到钢筋应力,随后再通过钢筋与混凝土的变形协调条件计算混凝土支撑轴力[1]。
可见,埋设混凝土支撑轴力测量点指的是埋设钢筋应力测量点。
具体来讲,钢筋应力测量点一般埋设在混凝土支撑1/3位置处,不能埋设在主筋节点位置,通过4条边或4个角形成监测截面。
钢筋计一般通过搭接焊接方式与受力主筋连接,并且保持受力主筋与钢筋计的轴心相对[2]。
搭接焊接温度较高,可能会对传感器正常运行造成不利影响,因此需要采取如下预防措施:将安装钢筋计位置处的主筋截下一段且长度需要超过传感器长度,在被测量主筋上焊接连上连杆的钢筋计,钢筋计连杆长度需要满足搭接焊缝长度需求;在搭接焊接过程中,用湿布包裹传感器并且不断泼洒冷水,一直到钢筋温度冷却到合适值为止;在搭接焊接过程中,不断检测传感器运行频率,确保其运行频率处于正常水平。
在基坑工程实际条件允许的情况下,需要优先搭接焊接连杆和受力钢筋,随后在其上旋上钢筋计,这种方式能够有效规避搭接焊接温度问题,但是很多基坑工程的实际情况并不支撑完成此项操作。
1.2计算混凝土支撑轴力混凝土支撑轴力计算公式为:。
深基坑混凝土支撑轴力监测精确性研究
深基坑混凝土支撑轴力监测精确性研究摘要:随着我国施工技术的不断成熟,深基坑支护体系被研发出来。
深基坑支护体系中常采用混凝土支撑,为了掌握基坑开挖过程中支撑体系安全情况,需要对支撑受力情况进行监测来判断其安全性,但在监测过程中,一些因素会导致支撑轴力实测值和轴力真实值存在一定的偏差。
关键词:深基坑;混凝土;支撑轴力引言目前,国内很多城市为了有效利用地下的土地资源,基坑工程越来越多,并随着现代施工技术的不断提高,基坑面积和深度逐渐增大,使得基坑工程施工的安全性备受人们关注。
基坑工程属于隐蔽工程,具有自身的不确定性,在施工前期,常常很难全面掌握其岩土工程特性。
加之岩土体结构的多样性、施工的隐蔽性、周边环境的复杂性等,基坑垮塌、周边管线爆裂、周边建筑物倾斜或开裂等情况时有发生,造成巨大损失,对社会造成负面影响。
1目前基坑监测普遍存在的问题目前基坑混凝土支撑轴力监测中,大多采用埋设振弦式钢筋应力计,通过手持式数显频率仪现场测试传感器频率,再换算成支撑轴力。
由于受仪器制造精度、安装工艺水平、自然温差等客观敏感因素影响,钢筋应力计测得的数据未必是真实的支撑轴力值。
1.1测量困难对于埋设钢筋应力计的混凝土支撑轴力初始值的测取方法,《建筑基坑工程监测技术标准》(GB50497—2019)第6.7.5条规定:“内力监测宜取土方开挖前连续3d获得的稳定测试数据的平均值作为初始值”。
《标准》虽有规定,但在实际监测操作上尚不统一,还是存在一些理解偏差或争议。
该标准只规定“土方开挖前连续3d获得的稳定测试数据”的单一初始值测取前置条件,笔者认为不够全面明确,没有涉及支撑混凝土的具体强度控制要求。
因为应力计测得的初始值大小与混凝土支撑的浇筑完成时长有着密切关系。
支撑混凝土在前期硬化收缩变形过程中,产生的压应力逐渐增大,混凝土固化稳定前测取获得的支撑轴力,一般都偏大,故初始值测取时间的选择非常重要。
1.2支撑轴控制问题一般设计提供的支撑轴力控制值或报警值存在“模板化、格式化、通用化”,未能真正做到“一井一值”。
实测混凝土支撑轴力受环境温度影响分析
173ECOLOGY区域治理实测混凝土支撑轴力受环境温度影响分析中铁第五勘察设计院集团有限公司 张玉龙摘要:混凝土支撑应用是地铁深基坑围护体系中主要的组成部分。
在深基坑开挖过程中,混凝土支撑轴力监测值受环境温度变化影响较大。
根据某车站深基坑的混凝土支撑轴力监测数据,综合基坑的围护形式、开挖形式和实时工况,分析环境温度变化对混凝土支撑轴力监测数值的影响,同时提出针对在工程中有利于避免受异常结果影响的合理化建议。
关键词:地铁;基坑监测;混凝土支撑轴力;环境温度中图分类号:TU37文献标识码:A文章编号:2096-4595(2020)25-0173-0002数据分析在城市深基坑的施工过程中,混凝土支撑在地铁深基坑支护系统中应用十分广泛。
支撑轴力的监测是为了保证整个地铁施工过程安全,在基坑施工监测中常综合支撑轴力变化情况判断基坑稳定性,但诸多原因导致了支撑实测轴力和设计轴力存在较大的差异。
本文以天津地铁4号线北段工程某车站深基坑的混凝土支撑轴力监测为研究对象,结合设计形式和现场施工工况,分析环境温度对混凝土支撑轴力的影响。
一、工程概况车站主体呈南北-西南走向布置,车站附近场地开阔,车站施工期间不影响现状道路交通。
周边现状为空地,无建筑物。
车站结构多位于粉质黏土、粉砂、粉质黏土层中,基底处于相对均质的地基上。
车站全长198.8m ,标准段总宽度为23.1m ,为地下三层双柱岛式站台车站,中心顶板规划覆土约3m 。
车站主体基坑采用明挖法施工,标准段深度为26.567m ,盾构井段深度28.155m ,采用地下连续墙和内支撑的支护形式。
地下连续墙厚1m ,标准段地下连续墙长度49.4m ,盾构井段地下连续墙长度51.1m ,其中素混凝土墙长3m 。
车站基坑自上到下竖向设6道支撑和2道倒撑,第一道混凝土支撑截面800x1000mm ,混凝土强度等级C30,弹性模量3x104N/mm 2;钢筋采用HRB335,主筋直径16mm ,弹性模量2.1x105N/mm 2。
基坑工程监测中钢筋混凝土支撑轴力测试计算方法
基坑工程监测中钢筋混凝土支撑轴力测试计算方法近年来,在城市化进程加速的背景下,钢筋混凝土支撑在基坑工程中得到了广泛的应用。
由于支撑的安全性关系到基坑工程的整体质量,因此,在建设过程中对支撑轴力进行监测至关重要。
一、钢筋混凝土支撑轴力监测的重要性支撑轴力测试是基坑监测的重要内容之一,其主要目的是确保支撑的受力状态和初始状态相符,并能够掌握支撑的变形状况,从而提高支撑的安全性。
二、钢筋混凝土支撑轴力测试的方法(一)测点布设及标志测点布设应根据支撑的结构形式及其受力状态,选择合适的测点位置,同时测点的位置、编号、类型等均应标记明确。
(二)支撑轴力测试设备进行支撑轴力测试需要用到测力仪、拉力计、称重传感器等设备,在选择使用设备时,需要先明确测试的精度及可靠性等要求。
(三)测试步骤1、在测量前需要确定测试箱,对测试点位置进行标记,同时进行测试前的准备工作。
2、进行测量时,应按照预定的测量点位置依次测试,并将测得的数据记录下来。
3、测试结束后,根据数据计算支撑的轴力,并分析结果的有效性。
三、钢筋混凝土支撑轴力测试计算方法(一)确定支撑轴力计算的方式根据结构形式和受力状态的不同,确定支撑轴力的计算方式,其中影响轴力大小的因素有:支撑的高度、支撑的长度、拉杆的数量、拉杆的直径、底部的支撑面积等。
(二)计算支撑的轴力大小支撑轴力大小的计算公式为:F=Q/M其中,F为支撑轴力大小,单位为kN;Q为支撑的荷载,单位为N;M为轴距,单位为m。
四、总结在建设过程中,对支撑轴力进行监测可以提高工程的质量和安全性。
在进行监测时,需要注意测点的布设及标志、测试设备的选择使用及测试步骤的严密性。
在计算支撑轴力大小时,需要根据结构形式和受力状态的不同,合理确定计算方式,并严格按照公式进行计算。
深基坑混凝土支撑轴力监测影响因素及控制措施研究
测元件的应力平均值作为轴力计算 。但 由于现场施工 原因 , 监测 元 件遭 到破 坏 或 采集 不 到数 据 时 , 会 给监 测
数 据 准确 性造 成 极 大干 扰 。 以镇龙 南 站 东 区第 三道 混
1混凝土支撑轴 力监测原理
混 凝 土支 撑 一般 采 用钢 筋 应力 计 进行 监 测 ,钢 筋 应 力计 监测 混凝 土支 撑轴 力计算 公 式 为
频率 、 环境 温 度 、 环境 荷 载 、 混 凝 土 收缩 徐 变 等 方 面 的
2 影响 因素探究及控制措施
2 . 1监 测元 件精 度
监 测元 件 分 辨率 越 高表 明可 以监 测 出微 小 的轴 力 变 化 ,但 同 时受 外界 环 境 的干 扰也 越 大 ,数 据 杂质 较 多 。在实 际监 测工 作 中 , 如何 系统 的选 取监 测元 件是 监
影响I 3 一。同时部分学者也给出相应的解决办法和控制 措施 。
本 文 在前 人基 础 上 ,以广 州 市轨 道交 通 二 十一 号 线 施 工 十 四标 镇 龙 南 站 深 基 坑工 程 现 场 实 际情 况 , 结 合 广州 地 铁 、 成 都 地 铁监 测 管理 模 式 , 对混 凝 土支 撑 轴 力 监测 影 响 因素 及控 制措 施 进 一步 探 究 ,论 文 补充 了 监 测 元 件个 数 、 监测控制值 、 混 凝 土 支 撑扭 矩 、 基 坑 周
轴 力监 测 数 据异 常 , 对 影 响 轴 力监 测 的 各 个 因素 进行 系统 分 析 并采 取 相 应控
制措 施 来提 高轴 力数据 的 准确性 。
【 关键词 】 : 深基坑 ; 混凝土; 支撑 ; 轴力; 监测; 影响 因素; 控制措施
建筑基坑混凝土支撑轴力监测方法探讨
钢筋计布置需截断受力钢筋 ,将 钢筋计两端的延长段与断 开的钢筋焊接 , 最好使用对焊, 使钢筋计代替主筋轴 向受力 。焊 接时要注意热传递使钢筋计失效。 混凝土应变计埋设需将 应变计绑扎固定在 同一横 截面 的钢 筋上。两种埋设方法都要注意通迅线的保护 , 一般是将线引出模 板外 , 用钢筋绑 扎标 记 , 在 浇筑完混凝土 后, 将通讯 线引至基坑
1混凝土支撑轴力常用的监测方法
现 使 用 最 多 的 是钢 弦式 应 力 计 , 是 通 过 建 立 钢 弦 的 震 动 频 率 与 应 力 之 间 的关 系 ,钢 弦 随 着 拉 伸 前 后 震 动 频 率 的变 化 得 出
点应考虑受力的方向。计算式 : ( 副撑 1 + 副撑 2 ) x c o s a + 主撑 2 ( 支
图 2 支 撑 受 力 模 型
3 应力计的计算 方法
3 . 1 钢 筋计量 测混凝 土支撑 轴 力
计算公式 :
N = I Y ( L
F
t
o
一
+ At )
1
f : 2 [ k(
j
,
i-
 ̄ o ) / A j ]
式中: N — — 支 撑轴 力 ( k N ) ;
k——钢弦式钢筋计常数 ( k N / H z : ) ; £ : ——钢筋计测量 自振频率 ( H z ) ; f n ——钢筋计测量 ( 初次)自振频率 ( H z ) ;
A ——第 j 个 钢 筋 计截 面 积 ( m m2 ) 。
3 . 2 应变 计量测 混凝 土支撑轴 力
护 结 构) 一主撑 1 ( 中立 柱 ) 。
的应 力也发生相应 的变化 。而钢弦式应力计也分两种 :①钢筋 计, 通过测得钢筋 的应力再换算成混凝土所受 的应力。② 混凝土
混凝土支撑轴力的监测方法与研究
混凝土支撑轴力的监测方法与研究摘要:结合东莞地铁基坑监测的实际情况,阐述混凝土支撑轴力的监测方法,并结合工程实例对监测中出现的问题进行探讨与研究。
关键词:混凝土支撑;轴力;计算公式;钢筋计;温度影响;报警值东莞轨道交通R2线是东莞市建设的第一条地铁线路,在地铁基坑支护结构中,普遍采用第一、第二道为混凝土支撑,第三道为钢支撑的支护体系。
根据>(GB50497-2009)的要求,混凝土支撑轴力的监测为一级基坑的应测项目,东莞R2线地铁基坑混凝土支撑监测点较多。
本文结合东莞R2线地铁基坑混凝土支撑轴力的实际监测情况,分析混凝土支撑轴力的监测方法,对出现的相应问题进行分析。
混凝土支撑轴力监测点的埋设东莞R2线混凝土支撑监测布点间距为15-20米,比一般地方的布点要密。
传感器采用钢筋计,监测断面选定在混凝土支撑三分之一处。
监测断面选定后,在四条边或者四个角上,分别埋设与主筋相匹配的四个钢筋计。
钢筋计与受力主筋一般通过连杆电焊的方式连接,在焊接过程中,为了避免高温对钢筋计产生不利影响,我们采用两种方法进行焊接:其一, 有条件时应先将连杆与受力钢筋碰焊对接(或碰焊),然后再旋上钢筋计。
其二, 在安装钢筋计的位置上先截下一段不小于传感器长度的主筋,然后将连上连杆的钢筋计焊接在被测主筋上焊上。
钢筋计连杆应有足够的长度,以满足规范对搭接焊缝长度的要求。
在焊接时,为避免传感器受热损坏, 要在传感器上包上湿布并不断浇冷水,直到焊接完毕后钢筋冷却到一定温度为止。
在焊接过程中还应不断测试传感器,看看传感器是否处于正常状态。
监测方法及计算公式的推导一般采用频率接收仪作为钢筋计的二次接收仪器。
将频率接收仪的红、黑线夹分别夹住钢筋计数据传输线的红、黑线,从仪表中直接读取频率作为轴力监测的原始数据。
从仪器中直接读取的是频率,单位为赫兹,需要进一步计算才能转化为需要的轴力(单位KN),计算公式推导如下:首先,根据材料力学原理轴向受力表示为:对于钢筋混凝土杆件,我们先把它看做是理想压杆,即钢筋与混凝土共同工作、变形协调,它的轴向受力计算公式可以表示为:钢筋混凝土支撑轴力计算:式中:—支撑轴力(kN);—钢筋应力(kN/);—钢筋计监测平均应力(kN/) ;—第j个钢筋计标定系数(kN/);—第j个钢筋计监测频率(Hz);—第j个钢筋计安装后的初始频率(Hz);—第j个钢筋计截面积(mm2);—混凝土弹性模量(kN/);—钢筋弹性模量(kN/) ;—混凝土截面积();= - —支撑截面积();—钢筋总截面积()。
深基坑内支撑体系轴力监测探讨
深基坑内支撑体系轴力监测探讨【内容提要】针对武汉市轨道交通二号线一期工程循礼门站地铁车站土建工程的基坑支撑体系的轴力监测情况。
在以下本人简单的介绍一下在施工过程中遇到的问题解决办法.【关键词】钢支撑、混凝土支撑、轴力计、应力计1. 工程概况循礼门车站为标准地下两层车站,地下一层为站厅层;地下二层为站台层。
外包总长182m标准段外包宽29m.站台为地下两层岛式站台,主体建筑面积为10191.1m2,出入口通道、风道(风亭)建筑面积为3272.2m2,车站主体建筑面积13463.3m2车站主体结构采用明挖法施工,在跨越京汉大道段采用盖挖顺作法施工。
沿车站长度方向(由解放大道向京汉大道方向)依次分别开挖施工。
车站主体结构采用钢筋混凝土箱型结构,围护结构采用地下连续墙加内支撑,围护结构与主体结构采用复合墙的连接方式。
车站主体设全外包防水层。
盖挖段基坑底部采用旋喷被动区土体加固,加固厚度为坑底 3 米。
本站位于汉口解放大道与京汉大道之间的江汉路正下方,平行于江汉路布设。
基坑东南侧为房地产开发商和记黄埔用地;基坑周边主要建(构)筑物有:基坑西侧的循礼门地下通道、基坑东侧的京汉大道上轻轨1 号线桥梁区间、基坑西南侧大润发商场、基坑西北侧30 层武汉船舶工业公司大楼、基坑东北28层的世纪大厦大楼。
2. 设计背景本车站位于武汉市解放大道与京汉大道之间的江汉路上,江汉路北侧为武汉船舶工业公司用地,后面是一栋30 层的高层建筑,南侧为地面3 层、地下1 层砼框架结构的大润发超市,已建成的轻轨一号线江汉路站位于站位的东北角。
车站所处的位置以北为解放大道,以南为京汉大道,车流量大。
由于该工程基坑所在位置处于闹市区,基坑西南侧大润发商场和轻轨桥墩距离基坑2- 3m周围的高大建筑物距离基坑较近,所以基坑的支撑体系采用了围护结构与内支撑共同作用的体系。
所以在后续的开挖和主体施工过程中,内支撑体系的轴力监测是非常重要的一项内容,尤其是开挖阶段的轴力监测,会为后阶段的施工起到一定的指导作用。
基坑工程混凝土支撑轴力监测方法的讨论
基坑工程混凝土支撑轴力监测方法的讨论1.混凝土支撑轴力监测的问题及现状国内明挖基坑工程的监测中,混凝土支撑系统的轴力监测结果异常(轴力监测值过大,但实际工程结构中并非内力过大或不稳定;如:一根C351m ×1m截面的钢筋混凝土支撑,有时轴力监测值会达到20000~30000kN,而依然处于正常工作状态)问题普遍地存在着,时常会对监测结果分析及工程施工的进行造成不必要的阻碍。
如苏州轨道交通一号线广济·站基坑混凝土支撑轴力监测数据,在实际监测过程中发现随着基坑开挖深度的加深,基坑支撑的监测轴力值变化较快并远大于设计值,有的甚至好几倍,以标准段8-2道混凝土支撑轴力为例,最大监测轴力值接近15000kN,远远超过该段8700kN的设计值。
广州地铁五号线员村站基坑工程,在D101监测点处支撑横断面下表面钢筋所测应力为负值,即为拉应力,说明斜撑在土压力的作用下已向下弯曲,且下表面混凝土拉应力为2.51MPa,超过了混凝土的设计抗拉强度,就现场观看支撑上表面有细微裂缝,而轴力平均值才达到1440.44kN,还远δ达到轴力设计报警值3000kN。
广州某地铁基坑工程混凝土支撑系统的轴力监测结果起初均为负值,随着基坑的开挖轴力值持续增大,一直到基坑开挖结束,最大值达到设计允许值的6倍,而支撑系统一直处于正常工作的状态。
天津某轨道换乘中心⑩轴~⑩轴工程截至2009年8月6日,⑦轴轴力值为18247kN,占设计值204%;⑦轴轴力值为18994kN,占设计值213%;已大大超过支撑的安全报警值,但支撑一直安全工作,δ出现裂缝等不安全、失稳迹象。
上海虹桥国际商城基坑开挖深度13.70m,3道混凝土支撑,第2道支撑(C351200mm×l000mm)轴力监测值最大处曾达到30500kN,已大大超过支撑的安全报警值,但支撑一直安全工作,δ出现裂缝等不安全、失稳迹象,直至支撑拆除;南京地铁指挥中心基坑开挖深度15.40m,4道钢筋混凝土支撑,施工过程中第3道支撑(C351200mm×1000mm)轴力监测值最大处达到21000kN,已超出轴力安全报警值,但并δ出现不安全工作的迹象,直至支撑拆除。
混凝土支撑轴力测定及计算的相关问题探讨
混凝土支撑轴力测定及计算的相关问题探讨摘要:为保证深基坑的安全,需要对基坑进行监测。
本文对采用钢筋计或应变计测定混凝土支撑轴力时,就传统的支撑轴力计算公式的适用范围等问题做了一些探讨。
关键词:钢筋计 支撑轴力 监测 1 引言对于钢筋混凝土支撑,主要采用钢筋计测量钢筋的应力或采用混凝土应变计测量混凝土的应变,然后通过钢筋与混凝土共同工作、变形协调条件反算支撑的轴力。
采用混凝土应变计测量混凝土的应变后反算支撑轴力,其计算公式如下:[]s s c c i A E A E N +=ε对于采用钢筋计测量钢筋应力后反算支撑轴力,传统轴力计算公式为:⎥⎦⎤⎢⎣⎡+=s c s c s i A A E E N σ (1)式中i N —支撑杆件测量轴力;ε-混凝土应变计测量出的混凝土应变均值,∑=nii n /εε;s σ—钢筋计测出的应力平均值,∑=nii s n /σσ或s s E εσ=;n —一个量测断面内布置的钢筋计数目; s c E E 、—混凝土、钢筋的弹性模量;s c A A 、—支撑的混凝土截面面积、钢筋截面面积。
对于由式(1)计算出的轴力,存在以下一些问题:① 当所量测支撑为纯受压杆件或小偏心受压杆件时,采用式(1)计算轴力所得结果较能反映实际轴力值;② 当所量测支撑为大偏心受压杆件时,若支撑混凝土未产生裂缝,利用式(1)计算出的轴力仍能较好地反映实际轴力;若支撑混凝土已经产生裂缝,此时再用式(1)求得的轴力值会与实际轴力值产生较大的差别。
这样,监测轴力值就不能正确反映支撑的实际受力状态,而且若监测值小于实际值,往往会造成错误的判断,给围护工程的安全带来隐患。
造成这种问题的原因是,在这种情况下,支撑截面上已经出现了比较大的弯矩,混凝土已经产生裂缝,式(1)已不再适用。
2 支撑轴力计算探讨针对以上几个问题,本文做了以下一些探索:① 当实测断面均为压应力时,仍然采用式(1)计算支撑轴力; ② 当实测断面的应力值异号时,可考虑以下处理措施:1)调整测试点位置来监测支撑的安全;对于混凝土支撑沿支撑轴线方向如图1所示的弯矩分布,当测试点布置在a 点附近时,由于此范围的弯矩很小,测得的轴力值能较好地反映实际轴力值;当测试点布置在b 点附近或c 点附近时,由于此范围的弯矩较大,测得的轴力值将存在一定程度的偏差,但此时能测得钢筋的最大应力值,对判断支撑的安全是较为有利的。
支撑轴力监测方法、影响因素及实例分析
内支撑轴力监测方法、影响因素及实力分析1、内支撑轴力监测原理和方法监测元件为钢筋应力计。
支撑应力监测的应力计根据支护结构设计大样图选型,并埋设于各支撑段1/3的位置。
混凝土浇筑前,应将应力计先与主筋对接焊好,对测点编号及应力计标定编号作好记录,将应力计测量导线引出支撑模板外,用保护管将其接至基坑顶部护栏以内,导线端头做好编号标记,以便于监测与导线保护。
采用钢筋计测量钢支撑的应力,预先在支撑内的钢筋笼中间位置各埋设一组钢筋计。
然后通过共同工作、变形协调条件反算支撑的混凝土轴力。
轴力计算公式:cc s c s sE N (A A )E σ=+cj c s sE s(A A )E σ=+js σ=22011[()/]n j ji j js j k f f A n =-∑式中cN —支撑轴力(kN);s σ—钢筋应力(kN/mm2);js σ—钢筋计监测平均应力(kN/mm2) ;jk —第j 个钢筋计标定系数(kN/Hz2);ji f —第j 个钢筋计监测频率(Hz );j f —第j 个钢筋计安装后的初始频率(Hz )。
jsA —第j 个钢筋计截面积(mm2); cE —混凝土弹性模量(kN/mm2); s E —钢筋弹性模量(kN/mm2);cA —混凝土截面积(mm2);sA —钢筋总截面积(mm2)。
2、内支撑轴力监测数据实例分析2、1在基坑开挖施工过程中轴力变化情况广东省人民医院医技综合楼及地下车库基坑位于广州市中山二路广东省人民医院内。
本工程设地下三层,基坑拟开挖深度约为17米, 周长约371米,呈“7”字型。
本基坑东北角采用人工挖孔桩+预应力锚索(四道)的支护型式,其余采用挖孔灌注桩+混凝土支撑(三层)支护型式。
基坑开挖深度范围岩土层自上而下分别为人工填土、淤泥(局部)、粉质粘土及基岩(泥质粉砂岩)。
本场区土层为弱透水层。
建设场地西北侧为医院东病区出入口,西南侧为医院正在使用的1号楼,东南侧为医院正使用的3号楼,西北侧围墙外为体育运动场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土支撑轴力测定及计算的相关问题探讨
摘要:为保证深基坑的安全,需要对基坑进行监测。
本文对采用钢筋计或应变计测定混凝土支撑轴力时,就传统的支撑轴力计算公式的适用范围等问题做了一些探讨。
关键词:钢筋计 支撑轴力 监测 1 引言
对于钢筋混凝土支撑,主要采用钢筋计测量钢筋的应力或采用混凝土应变计测量混凝土的应变,然后通过钢筋与混凝土共同工作、变形协调条件反算支撑的轴力。
采用混凝土应变计测量混凝土的应变后反算支撑轴力,其计算公式如下:
[]s s c c i A E A E N +=ε
对于采用钢筋计测量钢筋应力后反算支撑轴力,传统轴力计算公式为:
⎥⎦
⎤
⎢⎣⎡+=s c s c s i A A E E N σ (1)
式中i N —支撑杆件测量轴力;
ε-混凝土应变计测量出的混凝土应变均值,∑=n
i
i n /εε;
s σ—钢筋计测出的应力平均值,∑=n
i
i s n /σσ或s s E εσ=;
n —一个量测断面内布置的钢筋计数目; s c E E 、—混凝土、钢筋的弹性模量;
s c A A 、—支撑的混凝土截面面积、钢筋截面面积。
对于由式(1)计算出的轴力,存在以下一些问题:
① 当所量测支撑为纯受压杆件或小偏心受压杆件时,采用式(1)计算轴力所得结果较能反映实际轴力值;
② 当所量测支撑为大偏心受压杆件时,若支撑混凝土未产生裂缝,利用式(1)计算出的轴力仍能较好地反映实际轴力;若支撑混凝土已经产生裂缝,此时再用式(1)求得的轴力值会与实际轴力值产生较大的差别。
这样,监测轴力值就不能正确反映支撑的实际受力状态,而且若监测值小于实际值,往往会造成错误的判断,给围护工程的安全带来隐患。
造成这种问题的原因是,在这种情况下,支撑截面上已经出现了比较大的弯矩,混凝土已经产生
裂缝,式(1)已不再适用。
2 支撑轴力计算探讨
针对以上几个问题,本文做了以下一些探索:
① 当实测断面均为压应力时,仍然采用式(1)计算支撑轴力; ② 当实测断面的应力值异号时,可考虑以下处理措施:
1)调整测试点位置来监测支撑的安全;
对于混凝土支撑沿支撑轴线方向如图1所示的弯矩分布,当测试点布置在a 点附近时,由于此范围的弯矩很小,测得的轴力值能较好地反映实际轴力值;当测试点布置在b 点附近或c 点附近时,由于此范围的弯矩较大,测得的轴力值将存在一定程度的偏差,但此时能测得钢筋的最大应力值,对判断支撑的安全是较为有利的。
此方法的缺点是不易确定上述测试点的位置,只能在测试前从理论上分析选取。
2)利用换算得到的混凝土应力值为控制参数,即利用式(2)计算出混凝土的应力值,
再由式(3)来判断断面是否安全:
c i si s
c
ci E E E εσσ==
(2) 式中 si σ-测得的钢筋应力;
ci σ-混凝土应力;
s c E E 、—混凝土、钢筋的弹性模量;
[][]σσ≤ci max ,
()'
y y si f ≤σ (3)
式中
ci σ-混凝土应力; []σ-支撑的设计强度;
()'y y f -钢筋的抗拉、抗压强度设计值。
3)考虑弯矩对钢筋应力的影响,对轴力计算公式进行修正:
钢筋的应力由两个部分组成,即由轴力产生的应力和由弯矩产生的应力。
设轴力N 使钢筋产生的应力为:
s
s c c s
N A E A E NE s
+=
σ (4)
图1 混凝土支撑弯矩分布图
设弯矩为M ,M 的作用使受压钢筋产生的应力为1M σ,使受拉钢筋产生的应力为2M σ,并假定21M M a σσ-=(规定压应力、压应变取正值,拉应力、拉应变取负值)。
文献〔1〕对纯弯作用下梁截面的应力应变进行了实验研究,发现:
a 、 梁下部混凝土产生裂缝前,弯矩对梁截面的应力应变图形的中和轴基本位于梁的中
部(如图2所示),即混凝土产生裂缝前,弯矩对受压钢筋和受拉钢筋产生的应变值近似
相等,固此时取a 值为1,则:
⎩⎨⎧+=+=21
M N M N σσσσσσ拉
压 (5)
解得: a
a N ++=1拉
压σσσ (6)
由式(4)、(6)解得: s
s
s c c E A E A E a
a N +∙
++=
1拉压σσ (7)
把1=a 代入式(7)得:
s
s
s c c E A E A E N +∙
+=
2
拉压σσ (8)
式中
压σ-受压钢筋的应力均值; 拉σ-受拉钢筋的应力均值;
显然,式(8)与传统的计算式(1)是等效的。
b 、 当梁下部混凝土产生裂缝以后,产生裂缝处混凝土退出工作,混凝土原来承担的拉
力,立即由受拉钢筋全部承担,发生明显的应力重分布,拉区混凝土应力图基本消失,压区混凝土压应力不再为三角形,且中和轴上移,如图3所示。
a 应力图
b 应变图
图2 混凝土产生裂缝前梁截面的应力应变图
压σ压
σ拉σ拉
σ压
ε拉
ε压
ε拉
ε
因此,若支撑截面混凝土已经产生裂缝,由测量值拉压、σσ以及由此应力值反算得到
的应变值拉压、εε(s E 压压σε=,s E 拉拉σε=)绘制测量截面的应力图和应变图,如图4所示。
由图4(b )得:
拉
压压εεε+=
h
l 1 (9)
对图4(a )中混凝土的应力图形近似取为三角形,则根据轴线方向力的平衡条件可得
此时的轴力N 为: ()s c s s c A hb E E A b l E N 2
22
2
21拉
压拉压压拉
压压=σσεεεεεε+++++
=
(10)
式中 b h 、-分别为支撑截面的高度和宽度;
根据以上分析可知,在保证测量值符合实际情况的前提下,在混凝土产生裂缝之前,采用轴力计算式(8),即传统的轴力计算式(1),能较好地反算得到支撑的轴力值;但当混凝土产生裂缝以后,由于拉区混凝土退出工作,再采用式(8)计算支撑轴力已经不合适,作者认为此时采用式(10)计算出的支撑轴力更符合实际。
因此,首先要判断支撑梁截面的混凝土是否产生裂缝。
对此,可由拉ε值进行判断:
拉
ε
b 应变图 图4 由实测值绘制的梁截面的应力应变图
b 应变图
图3混凝土产生裂缝后梁截面的应力应变图
a 应力图 压σ压
σ拉σ拉
σ压ε拉ε压
ε拉
ε
a 、 当t c f E >拉ε时(t f 为混凝土的抗拉强度设计值),混凝土已经产生裂缝,取式(10)
计算支撑轴力;
b 、 当t
c f E ≤拉ε时,认为混凝土未产生裂缝,取式(8)计算支撑轴力。
3 补充说明
需要注意的是,实测的钢筋应力值除受荷载影响外,还受到许多非荷载因素的影响,如混凝土干缩和湿胀引起的附加应力、徐变变形的附加应力、温度附加应力等,因此,由此实测钢筋应力值反算出的轴力与实际轴力会产生较大的差异。
对于这些非荷载因素的影响,其定量计算有待进一步的研究。
在工程设计计算中混凝土弹性模量都是从规范中查表得到的,是一个常量。
而实际情况是混凝土的弹性模量是随着龄期增加而增加的一个变量(如图5所示),尤其是早龄期的混 凝土其值比规范规定值小得多,这就使得直接取用规范值算出的轴力值偏离了实际。
因此,利用式(8)或式(10)计算支撑轴力时,对混凝土弹性模量的取值应按混凝土的龄期分别取值。
可通过试验建立混凝土弹性模量与龄期之间的关系曲线,以便对混凝土弹性模量的取值提供参照。
4 结论
根据以上分析作者认为:
(1)在混凝土产生裂缝前,采用传统的轴力计算公式计算出的支撑轴力能较好地反映实际的支撑轴力;
(2)混凝土产生裂缝后,再采用传统的轴力计算公式计算支撑轴力已不合适,作者认为此时采用本文的式(10)计算出的支撑轴力更接近实际值;
(3)应充分考虑监测的原始数据中包含的许多非荷载因素影响,以便更准确地提供支撑轴力计算的原始数据。
(4)利用传统的轴力计算公式或本文的式(10)计算支撑轴力时,对混凝土弹性模量c E 的取值应按混凝土的龄期分别选取。
图5 混凝土弹性模量曲线
参考文献:
1、车宏亚,江见鲸等. 混凝土结构. 中国建筑工业出版社,1999,6
2、中华人民共和国建设部. 混凝土结构设计规范. 中国建筑工业出版社,2002
3、夏才初,李永盛. 地下工程测试理论与监测技术. 同济大学出版社,2002
4、梅英宝,朱向荣. 关于地下结构轴力监测方法的一点看法. 工业建筑,33(2),2003
5、叶万灵. 围护结构中钢筋混凝土支撑轴力和变形的研究. 水运工程,320(9),2000
6、李永盛,夏才初,潘国荣等. 土木工程监测技术. 中国建筑工业出版社,2001。