四川大学数学分析-2001答案

合集下载

(详细解析)2001年普通高等学校招生全国统一考试数学试题及答案(理)

(详细解析)2001年普通高等学校招生全国统一考试数学试题及答案(理)

2001年普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第I 卷(选择题 60分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写 在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一、选择题:本大题共12小题;第每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若0cos sin >θθ,则θ在A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限 【答案】B【解析】0cos sin >θθ,则sin θ与cos θ同号,B 正确.2.过点(1,1)(1,1)A B --,且圆心在直线02=-+y x 上的圆的方程是 A .()()41322=++-y x B .()()41322=-++y xC .()()41122=-+-y x D .()()41122=+++y x【答案】C【解析】显然过A B ,两点的直线与已知直线平行,过A B ,两点分别作,x y 轴的垂线,与已知直线相交于点(1,1)M ,则(1,1)M 为圆心,半径为2,C 正确.3.设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 A .1 B .2 C .4 D .6 【答案】B【解析】由已知得12312313212,48,2a a a a a a a a a ++==+=,解得12a =.4.若定义在区间(10)-,内的函数()2log (1)a f x x =+满足0)(>x f ,则a 的取值范围是 A .1(0,)2 B .1(0,]2C .1(,)2+∞ D .(0,)+∞【答案】A【解析】当(10)x ∈-,,则1(0,1)x +∈,由0)(>x f ,则021a <<,则1(0,)2a ∈.5.极坐标方程)4sin(2πθρ+=的图形是【答案】C【解析】化为直角坐标方程为2222((122x y -+-=,只有C 正确.6.函数)0(1cos ≤≤-+=x x y π的反函数是A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π 【答案】A【解析】∵0x π-≤≤,∴02y ≤≤,又0x π≤-≤,∴1cos cos()y x x -==-, ∴cos(1)x arc y -=-,即cos(1)x arc y =--,反函数为)20)(1arccos(≤≤--=x x y .7.若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为 A .43 B .32 C .21 D .41 【答案】C【解析】易知椭圆的中心为(2,0),且2,1a c ==,则12c e a ==.8.若0,sin cos ,sin cos 4a b παβααββ<<<+=+=,则A .b a <B .b a >C .1<abD .2>ab 【答案】A【解析】由题设sin(),sin()44a b ππαβ=+=+,又4442ππππαβ<+<+<,所以b a <.9.在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小为A .60︒B .90︒C .105︒D .75︒【答案】B则【解析】如图,取11A B 的中点D ,连接1,BD C D ,若12AB BB =,1111,,AB BD AB C D BD C D D ⊥⊥=,∴1AB ⊥平面1C DB ,而1C B ⊂面1C DB ,∴11AB C B ⊥,故答案为90︒.10.设()()f x g x ,都是单调函数,有如下四个命题:①若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增; ②若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增; ③若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减; ④若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减; 其中,正确的命题是A .①③B .①④C .②③D .②④ 【答案】C【解析】若)(x g 单调递减,则()g x -单调递增,所以)()(x g x f -单调递增,②正确;同理③正确.11.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为123P P P ,,.若屋顶斜面与水平面所成的角都是α,则A .123P P P >>B .123P P P =>C .123P P P >=D .123P P P ==【答案】D【解析】本题考查平面图形在另一平面内的射影理解与有关计算,其斜面与房屋的底面所成的角都是α,又有cos S S α=底斜,故有123P P P ==.【编者注】此公式《新课标》不作要求.12.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为A .26B .24C .20D . 19 【答案】D【解析】从A 到B 有四条线路,从上到下记为1234,,,l l l l ,且123412,12l l l l +≤+≤,在单位时间内可以通过的最大信息量分别为3,4,6,6,D 正确.第II 卷(非选择题 90分)注意事项:1. 第II 卷共7页,用钢笔或圆珠笔直接答在试题卷中. 2. 答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上.13.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 . 【答案】2π【解析】由已知可得圆锥的的底面半径和母线长分别为1和2,侧面积为2rl ππ=.14.双曲线116922=-y x 的两个焦点为12F F ,,点P 在双曲线上.若12PF PF ⊥,则点P 到x 轴的距离为 .【答案】516 【解析】方法一:设(,)P x y ,12(5,0)(5,0)F F -,,由12PF PF ⊥得00155y y x x --⋅=-+-,即 2225x y +=,与双曲线方程联立得225625y =,则165y =. 方法二:设12,PF m PF n ==,由抛物线定义和题设222126,100m n m n FF -=+==,可得32mn =,利用面积相等关系12121122P PF PF F F y ⋅=⋅得165y =.15.设{}n a 是公比为q 的等比数列,n S 是它的前n 项和.若{}n S 是等差数列,则=q . 【答案】1【解析】若{}n S 是等差数列,则1322S S S +=,11231223()2()a a a a a a a a +++=+⇒=,所以1q =.16.圆周上有2n 个等分点(1>n ),以其中三个点为顶点的直角三角形的个数为 . 【答案】2(1)n n -【解析】由题意知,只有三角形的一条边过圆心,才能组成直角三角形,∵圆周上有2n 个等分点,∴共有n 条直径,每条直径可以和除去本身的两个定点外的点组成直角三角形, ∴可做22n -个直角三角形,根据分步计数原理知共有(22)2(1)n n n n -=-.三、解答题:本大题共6小题;共74分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)如图,在底面是直角梯形的四棱锥ABCD S -中,∠90=ABC °,SA ⊥面ABCD ,11,2SA AB BC AD ====. (Ⅰ)求四棱锥ABCD S -的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值.【解】本小题考查线面关系和棱锥体积计算,以及空间想象能力和逻辑推理能力.满分12分.(I )直角梯形ABCD 的面积是()110.531224M BC AD AB +=+⋅=⨯=底面, ……2分 ∴四棱推ABCD S -的体积是113113344V SA M =⨯⨯=⨯⨯=底面.……4分(II )延长,BA CD 相交于点E ,连结SE ,则SE 是所求二面角的棱. ……6分∵//,2AD BC BC AD =,∴EA AB SA ==,∴SE SB ⊥. ∵SA ⊥面ABCD ,得面AEB ⊥面EBC ,EB 是交线, 又BC EB ⊥,∴BC ⊥面SEB ,故SB 是CS 在面SEB 上的射影,∴CS SE ⊥,所以BSC ∠是所求二面角的平面角. ……10分222,1,SB SA AB BC BC SB ∴=+==⊥.2tan 2BC BSC SB ∴∠==. 即所求二面角的正切值为22. ……12分18.(本小题满分12分)已知复数31)1(i i z -=. (Ⅰ)求1arg z 及1z ;(Ⅱ)当复数z 满足1=z ,求1z z -的最大值.【解】本小题考查复数的基本性质和基本运算,以及分析问题和解决问题的能力.满分12分.(Ⅰ)31(1)22z i i i =-=-, ……3分将1z 化为三角形式,得⎪⎭⎫⎝⎛+=47sin 47cos 221ππi z ,∴47arg 1π=z ,221=z . ……6分 (Ⅱ)设cos sin z i αα=+,则1(cos 2)(sin 2)z z i αα-=-++,()()22212sin 2cos ++-=-ααz z942sin()4πα=+-, ……9分当sin()14πα+=时,21z z -取得最大值249+.从而得到1z z -的最大值为122+. ……12分19.(本小题满分12分)设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于A B ,两点. 点C 在抛物线的准线上,且//BC x 轴. 证明直线AC 经过原点O .【解】本小题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.满分12分. 证明一:因为抛物线)0(22>=p px y 的焦点为(,0)2pF ,所以经过 点F 的直线AB 的方程可设为2p my x +=, 代人抛物线方程得2220y pmy p --=,若记1122(,),(,)A x y B x y ,则12,y y 是该方程的两个根,所以212y y p =-.因为BC ∥x 轴,且点C 在准线2p x =-上,所以点C 的坐标为2(,)2py -, 故直线CO 的斜率为111222x y y p p y k ==-=即k 也是直线OA 的斜率,所以直线AC 经过原点O . 证明二:如图,记x 轴与抛物线准线l 的交点为E ,过A 作AD l ⊥,D 是垂足.则////AD FE BC .……2分 连结AC ,与EF 相交手点N ,则||||||||||,||||||||||EN CN BF NF AF AD AC AB BC AB === ……6分根据抛物线的几何性质,||||,||||AF AD BF BC == ……8分||||||||||||||||AD BF AF BC EN NF AB AB ⋅⋅∴===,即点N 是EF 的中点,与抛物线的顶点O 重合,所以直线AC 经过原点O .…12分20.(本小题满分12分)已知n m i ,,是正整数,且n m i <≤<1.(Ⅰ)证明:in i i m i P m P n <; (Ⅱ)证明:mn n m )1()1(+>+.【解】本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.满分12分.(Ⅰ)证明:对于1i m <≤有(1)im p m m i =⋅⋅-+,⋅-⋅=m m m m m p i i m 1…mi m 1+-⋅, 同理 11...i n i p n n n i n n n n--+=⋅⋅⋅…, ……4分由于m n <,对整数1,2,,1k i =-,有mkm n k n ->-, 所以 i im i i n mp n p >,即im i i n i p n p m >. ……6分(Ⅱ)证明:由二项式定理有()inni inCm m ∑==+01,()i mmi i mCn n ∑==+01, ……8分由(Ⅰ)知i n i p m >(1)i im n p i m n <≤<,而 !i p C i m im=,!i p C i n in =, ……10分所以,(1)i i i in m m C n C i m n ><≤<.因此,∑∑==>mi im i mi i niC n Cm 22. 又 10000==m n C n C m ,mn nC mC m n ==11,()n i m C m in i ≤<>0.∴∑∑==>mi im i ni i niC n Cm 0. 即(1)(1)nmm n +>+. ……12分21.(本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41.(Ⅰ)设n 年内(本年度为第一年)总投入为n a 万元,旅游业总收入为n b 万元.写出n n b a ,的表达式;(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?【解】本小题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力.满分12分.(I )第1年投入为800万元.第2年投入为1800(1)5⨯-万元,……,第n 年投入为11800(1)5n -⨯-万元.所以,n 年的总收入为111111800800(1)800(1)800(1)555n n k n k a --==+⨯-+⋅⋅⋅+⨯-=⨯-∑44000[1()]5n =⨯-. ……3分第1年旅游业收入为 400万元,第 2年旅游业收入为 1400(1)4⨯+万元,……,第n 年旅游业收人为11400(1)4n -⨯+万元.所以,n 年内的旅游业总收入为111111400400(1)400(1)400(1)444n n k n k b --==+⨯++⋅⋅⋅+⨯+=⨯+∑51600[()1]4n =⨯-. ……6分(Ⅱ))设至少经过年旅游业的总收入才能超过总投入,由此0n n b a ->,即541600[()1]4000[1()]045n n ⨯--⨯-> 化简得455()2()7054n n ⨯+⨯->, ……9分设4()5n x =,代入上式得25720x x -+>,解此不等式,得2,15x x <>(舍去).即 42()55n <,由此得 5n ≥.答:至少经过5年旅游业的总收入才能超过总投入. ……12分22.(本小题满分14分)设)(x f 是定义在R 上的偶函数,其图象关于直线1=x 对称,对任意]21,0[,21∈x x ,都有1212()()()f x x f x f x +=⋅,且0)1(>=a f .(Ⅰ)求)21(f 及)41(f ; (Ⅱ)证明)(x f 是周期函数; (Ⅲ)记)212(nn f a n +=,求)(ln lim n n a ∞→.【解】本小题主要考查函数的概念、图象,函数的奇偶性和周期性以及数列极限等基础知识;考查运算能力和逻辑思维能力,满分14分.(Ⅰ)因为对121,[0,]2x x ∈,都有1212()()()f x x f x f x +=+,所以()()()0,[0,1]22x xf x f f x =⋅≥∈.∵211111(1)()()()[()]22222f f f f f =+=⋅=,2111111()()()()[()]244444f f f f f =+=⋅=. ……3分0)1(>=a f ,∴112411(),()24f a f a ==. ……6分(Ⅱ)证明:依题设()y f x =关于直线1x =对称,故()(11)f x f x =+-,即()(2),f x f x x R =-∈, ……8分 又由()f x 是偶函数知()(),f x f x x R -=∈,∴()(2),f x f x x R -=-∈, 将上式中x -以x 代换,得()(2),f x f x x R =+∈.这表明()f x 是R 上的周期函数,且2是它的一个周期. ……10分 (Ⅲ)由(Ⅰ)知()0,[0,1]f x x ≥∈.∵111111()()((1))()((1))222222f f n f n f f n n n n n n =⋅=+-⋅=⋅-⋅ 111()()()222f f f n n n ==⋅⋅⋅1[()]2n f n=,121()2f a =,资料内容仅供您学习参考,如有不当之处,请联系改正或者删除 ----完整版学习资料分享---- ∴121()2n f a n=. ∵()f x 的一个周期是2, ∴11(2)()22f n f n n+=,因此12n n a a =, ……12分 ∴1lim(ln )lim(ln )02n n n a a n→∞→∞==. ……14分。

2001考研数学一试题及答案解析.doc

2001考研数学一试题及答案解析.doc

2001考研数学一试题及答案解析2001 年全国硕士研究生入学统一考试数学一试题一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上.)(1)设 y= e x (C1 sin x + C2 cos x) ( C1 , C2 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________. (2)设 r= x 2 + y 2 + z 2 ,则 div(gradr)(1, ?2 , 2 )=_____________.(3)交换二次积分的积分次序: (4)设矩阵 A 满足 A (5) 设随机变量2∫0 ?1dy ∫1? y 2f ( x, y )dx =_____________.+ A ? 4 E = 0 ,其中 E 为单位矩阵,则 ( A ? E ) ?1 =_____________.X 的方差是 2 ,则根据切比雪夫不等式有估计yP{ X ? E ( X ) ≥ 2} ≤_____________. 二、选择题(本题共 5 小题每小题 3 分,满分 15 分.) 本题共小题,每小题满分 (1)设函数则yf ( x) 在定义域内可导, y = f ( x) 的图形如右图所示,Ox= f ′( x) 的图形为(2)设 (A)f ( x, y ) 在点 (0, 0) 附近有定义,且 f x′ (0,0) = 3, f y′ (0,0) = 1 ,则d z |(0,0) = 3dx + dy .(B) 曲面 z= f ( x, y ) 在 (0, 0, f (0, 0)) 处的法向量为{3,1,1}.(C) 曲线 ?? z = f ( x, y ) 在 (0, 0, f (0, 0)) 处的切向量为{1,0,3}. ? y=0 ? z = f ( x, y ) 在 (0, 0, f (0, 0)) 处的切向量为{3,0,1}. ? y=0(D) 曲线 ?(3)设 (A)f (0) = 0 ,则 f (x) 在 x =0 处可导的充要条件为1 f (1 ? cosh) 存在. h →0 h2 1 (C) lim 2 f ( h ? sinh) 存在. h →0 h lim1 f (1 ? eh ) 存在. h →0 h 1 (D) lim [ f (2h) ? f (h)] 存在. h →0 h(B)lim?1 ?1 (4)设 A = ? ?1 ? ?11 1 1? ?4 ? ?0 1 1 1? ,B = ? ?0 1 1 1? ? ? 1 1 1? ?00 0 0? 0 0 0? ?,则 A与 B 0 0 0? ? 0 0 0?(B) 合同但不相似. (D) 不合同且不相似.(A) 合同且相似. (C) 不合同但相似.(5)将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数, 则 X 和 Y 的相关系数等于 (A)-1. (B) 0. (C)1 . 2(D) 1.三、(本题满分 6 分) 求arctan e x ∫ e 2 x dx .四、(本题满分 6 分) 设函数 z= f ( x, y ) 在点 (1,1) 处可微,且 f (1,1) = 1 ,.?f ?f |(1,1) = 2 , |(1,1) = 3 , ? ( x) = f ( x, ?x ?y f ( x, x)) .求d 3 ? ( x) dxx =1五、(本题满分 8 分)∞ ? 1+ x arctan x, x ≠ 0, (?1) n 设 f (x ) = ? x 将 f (x ) 展开成 x 的幂级数,并求级数∑的和. 2 x = 0, 1, n =1 1 ? 4 n ?2六、(本题满分 7 分) 计算 I 面= ∫ ( y 2 ? z 2 )dx + (2 z 2 ? x 2 )dy + (3x 2 ? y 2 )dz ,其中 L 是平面 x + y + z = 2 与柱Lx + y = 1 的交线,从 Z 轴正向看去, L 为逆时针方向.七、(本题满分 7 分) 设f ( x) 在 (?1,1) 内具有二阶连续导数且 f ′′( x) ≠ 0 ,试证:(1)对于 (?1,1) 内的任一 x ≠ 0 ,存在惟一的θ ( x ) ∈ (0,1) ,使 f (x ) = f (0) + xf ′(θ ( x ) x ) 成立; (2) lim θ ( x ) =x →01 . 2八、(本题满分 8 分) 设有一高度为 h(t ) ( t 为时间)的雪堆在融化过程,其侧面满足方程 z= h(t ) ?2( x 2 + y 2 ) (设 h(t )长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为 0.9),问高度为 130(厘米)的雪堆全部融化需多少小时? 九、(本题满分6 分) 设α 1 , α 2 , ? , α s 为线性方程组 Ax = 0 的一个基础解系, β1= t1α1 + t2α 2 , β 2 = t1α 2 + t2α 3 ,? ,β s = t1α s + t2α1 ,其中 t1 ,t 2 为实常数.试问 t1 ,t 2 满足什么条件时, β 1 , β 2 ,?, β s 也为 Ax = 0 的一个基础解系. 十、(本题满分 8 分) 已知 3 阶矩阵 A 与三维向量 x ,使得向量组x, Ax, A (1)记 P =( x, Ax, A (2)计算行列式22x 线性无关,且满足 A3 x = 3 Ax ? 2 A 2 x .x ),求 3 阶矩阵 B ,使 A = PBP ?1 ; A+ E .十一、(本题满分 7 分)设某班车起点站上客人数X 服从参数为λ ( λ &gt; 0 )的泊松分布,每位乘客在中途下车的概率为p ( 0 &lt; p &lt; 1 ),且中途下车与否相互独立.以 Y 表示在中途下车的人数,求:(1)在发车时有 n 个乘客的条件下,中途有 m 人下车的概率; (2)二维随机变量( X , Y ) 的概率分布.十二、(本题满分 7 分) 设总体X 服从正态分布 N ( ? , σ 2 ) ( σ &gt; 0 ), 从该总体中抽取简单随机样本n 1 2n ∑ X i ,求统计量 Y = ∑ ( X i + X n+i ? 2 X ) 2 的 2n i =1 i =1X 1 , X 2 , ? , X 2n ( n ≥ 2 ),其样本均值为 X =数学期望 E (Y ) .2001 年考研数学一试题答案与解析一、填空题 (1)【分析】由通解的形式可知特征方程的两个根是 r1 , r2= 1 ± i ,从而得知特征方程为(r ? r1 )(r ? r2 ) = r 2 ? (r1 + r2 )r + r1r2 = r 2 ? 2r + 2 = 0 .由此,所求微分方程为y &#39;&#39; ? 2 y &#39; + 2 y = 0 .(2)【分析】先求 grad gradr. gradr= grad ?? ?r ?r ?r ? ? x y z ? , , ? = ? , , ?. ? ?x ?y ?z ? ? r r r ?? x ? y ? z ( )+ ( )+ ( ) ?x r ?y r ?z r 1 x2 1 y2 1 z2 3 x2 + y 2 + z 2 2 ? 3 )+( ? 3 )+( ? 3) = ? = . r r r r r r r r3 r再求divgrad gradr= grad=(于是divgrad (1, ?2,2) = gradr| grad2 2 |(1,?2,2) = . r 3y ≤0时(3)【分析】这个二次积分不是二重积分的累次积分,因为 ?1 ≤1 ? y ≤2 .由此看出二次积分∫ dy ∫?121? yf ( x, y )dx 是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为∫0 ?1dy ∫21? yf ( x, y )dx = ∫∫ f ( x, y )dxdy .D由累次积分的内外层积分限可确定积分区域 D :?1 ≤ y ≤ 0,1 ? y ≤ x ≤ 2 .见图.现可交换积分次序原式= ?0 ?1 2 2 0 2 1? x∫dy ∫1? yf ( x, y )dx = ? ∫ dx ∫11? xf ( x, y )dy = ∫ dx ∫1f ( x, y )dy .(4)【分析】矩阵 A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法. 因为故按定义知( A ? E )( A + 2 E ) ? 2 E = A2 + A ? 4 E = 0 , ( A ? E )( A + 2 E ) = 2 E ,即 ( A ? E ) ?1 = 1 ( A + 2E) . 2 ( A ? E) ? A + 2E = E. 2(5)【分析】根据切比雪夫不等式P{ X ? E ( X ) ≥ε } ≤于是D( x)ε 2,P{ X ? E ( X ) ≥ 2} ≤D( x) 1 = . 22 2二、选择题 (1)【分析】当 x &lt; 0 时, f ( x ) 单调增 ? f ( x) ≥ 0 ,(A),(C)不对;&#39;当 x &gt; 0 时, f ( x ) :增——减——增 ? f ( x ) :正——负——正,(B)不对,(D)对.&#39;应选(D). (2)【分析】我们逐一分析.关于(A),涉及可微与可偏导的关系.由微.因此(A)不一定成立. 关于(B)只能假设 Bf ( x, y ) 在(0,0)存在两个偏导数 ? f ( x, y ) 在(0,0)处可f ( x, y ) 在(0,0)存在偏导数?f (0, 0) ?f (0, 0) , ,不保证曲面 z = f ( x, y ) 在 ?x ?y? ? ?f (0, 0) ?f (0, 0) (0, 0, f (0, 0)) 存在切平面.若存在时,法向量 n= ± ? ,, 1? = ± {3,1,-1}与{3,1,1}不 ? 与 ?y ? ?x ?共线,因而(B)不成立.? x = t, ? 关于(C),该曲线的参数方程为 ? y = 0, ? z = f (t , 0), ?{t &#39;, 0,因此,(C)成立.它在点 (0, 0, f (0, 0)) 处的切向量为d f (t , 0)} |t = 0 = {1, 0, f x&#39; (0, 0)} = {1, 0,3} . dt(3)【分析】当f ( x) f ( x) f ( x) ? ? lim = lim ?. x →0 x →0+ x →0 ? x x x 1 f (1 ? cos h) 1 ? cos h 1 f (t ) 关于(A): lim 2 f (1 ? cos h) = lim ? t = 1 ? cos h lim , 2 h →0 h h → 0 1 ? cos h h 2 t →0 + t 1 由此可知 lim 2 f (1 ? cos h) ? ? f +&#39; (0) ? . h →0 h f (0) = 0 时, f &#39; (0) = lim 若f ( x) 在 x = 0 可导 ? (A)成立,反之若(A)成立 ? f +&#39; (0)&#39;? ? f &#39; (0)? .如 f ( x) =| x | 满足(A),但 f (0) 不 ? . 关于(D):若 f ( x ) 在 x = 0 可导, ?1 f (2h) f (h) lim [ f (2h) ? f (h)] = lim[2 ? ] = 2 f &#39; (0) ? f &#39;(0) . h →0 h h →0 2h h? (D)成立.反之(D)成立 ? lim( f (2h) ? f (h)) = 0 ? f ( x) 在 x = 0 连续, ? f ( x) 在 x = 0 可h →0导.如 f ( x ) = ? 再看(C):? 2 x + 1, x ≠ 0 x=0 ? 0,满足(D),但 f ( x ) 在 x = 0 处不连续,因而 f (0) 也不 ? .&#39;lim1 h ? sin h f (h ? sin h) h ? sin h f (t ) f (h ? sin h) = lim ? = lim ? (当它们都 ? 时).2 2 h →0 h h →0 h →0 h h ? sin h h2 t注意,易求得 limh ? sin h f (t ) = 0 .因而,若 f &#39; (0) ? ? (C)成立.反之若(C)成立 ? lim (即 2 h →0 t →0 h t f (t ) &#39; f &#39; (0) ? ).因为只要有界,任有(C)成立,如 f ( x ) =| x | 满足(C),但 f (0) 不 ? . t因此,只能选(B).(4)【分析】由| λ E ? A |= λ 4 ? 4λ 3 = 0 ,知矩阵 A 的特征值是 4,0,0,0.又因 A 是实对称矩阵, A必能相似对角化,所以 A 与对角矩阵 B 相似. 作为实对称矩阵,当 A ?B 时,知 A 与 B 有相同的特征值,从而二次型 xT Ax 与 xT Bx 有相同的正负惯性指数,因此 A 与 B 合同. 所以本题应当选(A). 注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如?1 0 ? ?1 0 ? A=? ? 与 B = ?0 3 ? , ?0 2? ? ?它们的特征值不同,故 A 与 B 不相似,但它们的正惯性指数均为 2,负惯性指数均为 0.所以 A 与 B 合同.(5)【分析】解本题的关键是明确 X 和 Y 的关系: X+ Y = n ,即 Y = n ? X ,在此基础上利用性质:相关系数ρ XY 的绝对值等于 1 的充要条件是随机变量 X 与 Y 之间存在线性关系,即 Y = aX + b (其中 a, b 是常数),且当 a &gt; 0 时, ρ XY = 1 ;当 a &lt; 0 时, ρ XY = ?1 ,由此便知ρ XY = ?1 ,应选(A). 事实上, Cov ( X , Y ) = Cov ( X , n ? X ) = ? DX , DY = D ( n ? X ) = DX ,由此由相关系数的定义式有ρ XY =Cov( X , Y ) = DX DY? DX = ?1 . DX DY三、【解】1 1 ?2 x de x x ?2 x x ] 原式= ? ∫ arctan e d (e ) = ? [e arctan e ? ∫2 x 2 2 e (1 + e 2 x )1 ?2 x de x de x x = ? (e arctan e ? ∫ 2 x + ∫ ) 2 e 1 + e2 x=?1 ?2 x (e arctan e x + e ? x + arctan e x ) + C . 2四、【解】求先求 ? (1) =f (1, f (1,1)) = f (1,1) = 1 .d 3 ? ( x) |x =1 = 3? 2 (1)? &#39; (1) = 3? &#39; (1) ,归结为求 ? &#39;(1) .由复合函数求导法 dx d ? &#39; ( x) = f1&#39; ( x, f ( x, x)) + f 2&#39; ( x, f ( x, x)) f ( x, x) , dx? &#39; (1) = f1&#39; (1,1) + f 2&#39; (1,1)[ f1&#39; (1,1) + f 2&#39; (1,1)] .注意f1&#39; (1,1) =?f (1,1) ?f (1,1) = 2 , f 2&#39; (1,1) = =3. ?x ?y,因此? &#39; (1) = 2 + 3(2 + 3) = 17d 3 ? ( x) |x =1 = 3 ×17 = 51 . dx2五、【分析与求解】关键是将 arctan x 展成幂级数,然后约去因子 x ,再乘上 1 + x 并化简即可. &#39;直接将 arctan x 展开办不到,但 (arctan x ) 易展开,即(arctan x)&#39; =x∞ 1 = ∑ (?1) n x 2 n , | x |&lt; 1 , 1 + x 2 n =0①积分得arctan x = ∫ (arctan t )&#39; dt = ∑ (?1) n ∫ t 2 n dt = ∑x 0 n =0 0∞(?1) n 2 n +1 x , x ∈ [?1,1] . ② n = 0 2n + 1∞因为右端积分在 x = ±1 时均收敛,又 arctan x 在 x = ±1 连续,所以展开式在收敛区间端点x = ±1 成立. 1 + x2 现将②式两边同乘以得 x∞ 1 + x2 (?1) n 2 n ∞ (?1)n 2 n ∞ (?1) n x 2 n + 2 arctan x = (1 + x 2 )∑ x =∑ x +∑ x 2n + 1 n = 0 2n + 1 n = 0 2n + 1 n =0(?1) n 2 n ∞ (?1)n ?1 2 n x +∑ x =∑ n = 0 2n + 1 n = 0 2n ? 1∞=1 +∑ (?1) ( 2n + 1 ? 2n ? 1) xn n =1∞112n= 1+ ∑(?1) n 2 2 n x 2 n =1 1 ? 4n∞,x ∈ [?1,1] , x ≠ 0上式右端当 x = 0 时取值为 1,于是f ( x) = 1 + ∑∞(?1) n 2 2 n x , x ∈ [?1,1] . 2 n =1 1 ? 4n∞上式中令 x = 1 ?(?1) n 1 1 ππ 1 ∑ 1 ? 4n2 = 2 [ f (1) ? 1] = 2 (2 × 4 ? 1) = 4 ? 2 . n =1y+ z = 2上L所六、【解】用斯托克斯公式来计算.记 S 为平面 x +为围部分.由 L 的定向,按右手法则 S 取上侧, S 的单位法向量n = (cos α , cos β , cos γ ) =于是由斯托克斯公式得1 (1,1,1) . 3cos γ ? ?z 3x 2 ? y 2 dScos α I = ∫∫Scos β ? ?y 2 z 2 ? x2? ?x y2 ? z2=∫∫ [(?2 y ? 4 z )S1 1 1 + ( ?2 z ? 6 x ) + (?2 x ? 2 y ) ]dS3 3 3=?2 2 ∫∫ (4 x + 2 y + 3z )dS (利用x + y + z = 2) ?3 ∫∫ (6 + x ? y)dS .3 S S于是&#39;2 &#39;2 1+ Zx + Z y = 1+1+1 = 3 .按第一类曲面积分化为二重积分得I =?2 ∫∫ (6 + x ? y ) 3dxdy = ?2∫∫ (6 + x ? y)dxdy ,3 D D | x | + | y |≤ 1 (图).由 D 关于 x, y 轴的对称性及被积函数的奇其中 D 围 S 在 xy 平面上的投影区域偶性得∫∫ ( x ? y)dxdy = 0D?I = ?12∫∫ dxdy = ?12( 2) 2 = ?24 .D七、【证明】 (1)由拉格朗日中值定理, ? x ∈ (1, ?1) ,x ≠ 0 , ? θ∈ (0,1) ,使f ( x) = f (0) + xf &#39; (θ x)(θ与x 有关);又由 f &#39;&#39; ( x) 连续而 f &#39;&#39; ( x) ≠ 0 , f&#39;&#39; ( x) 在 (1, ?1) 不变号, f &#39; ( x) 在 (1, ?1) 严格单调, θ唯一. (2)对f &#39; (θ x) 使用 f &#39;&#39; (0) 的定义.由题(1)中的式子先解出 f &#39; (θ x) ,则有f &#39; (θ x) =再改写成f ( x) ? f (0) . x f ( x) ? f (0) ? xf &#39; (0) . xf &#39; (θ x)? f &#39; (0) =f &#39; (θ x) ? f &#39; (0) f ( x) ? f (0) ? xf &#39; (0) , ?θ = x2 θx解出θ ,令 x → 0 取极限得1 &#39;&#39; f (0) 1 f ( x) ? f (0) ? xf (0) f (θ x) ? f (0)2 lim θ= lim / lim = &#39;&#39; = . 2 x →0 x →0 x→0 2 x f (0) θx&#39; &#39; &#39;八、【解】先求(1)设 t 时刻雪堆的体积为 V (t ) ,侧面积为S (t ) . t 时刻雪堆形状如图所示S (t ) 与 V (t ) .侧面方程是z = h(t ) ?2( x 2 + y 2 ) h 2 (t ) (( x, y ) ∈ Dxy : x 2 + y 2 ≤ ). 2 h(t ) ??z 4 x ?z 4y =? , =? . ?x h(t ) ?y h(t )?S (t ) = ∫∫Dxy?z 2 ?z 2 h 2 (t ) + 16( x 2 + y 2 ) 1 + ( ) + ( ) dxdy = ∫∫ dxdy . ?x ?y h(t ) Dxy作极坐标变换: x = r cos θ , y = r sin θ ,则Dxy : 0 ≤θ≤ 2π , 0 ≤ r ≤1 h(t ) . 2S (t ) =?1 h (t ) 1 2π dθ∫2 h 2 (t ) + 16r 2 rdr ∫0 0 h(t )3 h (t ) 2π 12 13π 2 ? [h (t ) + 16r 2 ] 2 |0 2 = h (t ). h(t ) 48 12 1=用先二后一的积分顺序求三重积分V (t ) = ∫h(t )dz∫∫ dxdy ,D( x)其中 D ( z ):2( x 2 + y 2 ) 1 ≤ h(t ) ? z (t ) ,即 x 2 + y 2 ≤ [h 2 (t ) ? h(t ) z ] . h(t ) 2V (t ) = ∫h (t )?π2[h 2 (t ) ? h(t ) z ]dz =π1 π [h3 (t ) ? h(t )3 ] = h3 (t ) .2 2 4 dV = ?0.9 S dt(2)按题意列出微分方程与初始条件.dV ,它与侧面积成正比(比例系数 0.9),即 dt π 2 dh 13π 2 将 V (t ) 与 S(t ) 的表达式代入得 3h (t ) = ?0.9 h (t ) ,即 4 dt 12 dh 13 =? . dt 10 体积减少的速度是 ?①②h(0) = 130 .(3)解①得 h(t ) = ? 令 h(t ) = 0 ,得 t13 t +C . 10由②得C = 130 ,即 h(t ) = ?13 t + 130 . 10= 100 .因此,高度为 130 厘米的雪堆全部融化所需时间为 100 小时.九、【解】由于β i (i= 1, 2? s ) 是α1 , α 2 ,?α s 线性组合,又α1 , α 2 ,?α s 是 Ax = 0 的解,所以根据齐次线性方程组解的性质知β i (i = 1, 2? s ) 均为 Ax = 0 的解. 从α1 , α 2 ,?α s 是 Ax = 0 的基础解系,知 s = n ? r ( A) . 下面来分析β1 , β 2 ,? β s 线性无关的条件.设 k1β1 + k 2 β 2 + ?? k s β s = 0 ,即(t1k1 + t2 ks )α1 + (t2 k1 + t1k2 )α 2 + (t2 k2 + t1k3 )α 3 + ? + (t2 ks ?1 + t1k s )α s = 0 .由于α1 , α 2 ,?α s 线性无关,因此有?t1k1 + t2 k s = 0, ?t k + t k = 0, ?2 1 1 2 ? ?t2 k2 + t1k3 = 0, ? ? ? ?t2 ks ?1 + t1k s = 0. ?因为系数行列式(*)t1 0 0? 0 t2 t2 t1 0 ? 0 0s 0 t2 t1 ? 0 0 = t1s + (?1) s +1 t2 ,? ? ? ?? 0 0 0? t2 t1所以当 t1s s + (?1) s +1 t2 ≠ 0 时,方程组(*)只有零解 k1 = k2 = ? = ks = 0 . 从而β1 , β 2 ,? β s 线性无关.十、【解】(1)由于 AP= PB ,即A( x, Ax, A2 x) = ( Ax, A2 x, A3 x) = ( Ax, A2 x,3 Ax ? 2 A2 x)?0 0 0 ? = ( x, Ax, A x) ?1 0 3 ? , ? ? ?0 1 ? 2 ? ? ?2?0 0 0 ? ? ? . 所以 B = 1 0 3 ? ? ? ?0 1 ? 2 ? ?(2)由(1)知 A ?B ,那么 A + E ? B + E ,从而1 0 0 | A + E |=| B + E |= 1 1 3 = ?4 . 0 1 ?1m = m | X = n} = Cn p m (1 ? p )n ? m , 0 ≤ m ≤ n, n = 0,1, 2,? . 十一、【解】 (1) P{Y (2) P{ X= n, Y = m} = P{ X = n}P{Y = m | X = n}=λnn!m e ? λ ? Cn p m (1 ? p )n ? m , 0 ≤ m ≤ n, n = 0,1, 2,?.十二、【解】易见随机变量 ( X 1 +X n +1 ) , ( X 2 + X n + 2 ) , ? , ( X n + X 2 n ) 相互独立都服从正态分布N (2 ? , 2σ 2 ) .因此可以将它们看作是取自总体 N (2 ? , 2σ 2 ) 的一个容量为 n 的简单随机样本.其样本均值为1 n 1 2n ( X i + X n +i ) = ∑ X i =2 X , ∑ n i =1 n i =1 1 n 1 ∑ ( Xi + X n +i ? 2 X ) 2 = n ? 1 Y . n ? 1 i =11 Y ) = 2σ2 ,即 E (Y ) = 2(n ? 1)σ 2 . n ?1样本方差为因样本方差是总体方差的无偏估计,故 E (。

2011年四川大学硕士研究生考试-数学分析

2011年四川大学硕士研究生考试-数学分析

四川大学2011年硕士研究生考试——数学分析一、计算: 1、lim n →∞⎛ ⎝2、211limnn k n k→∞=+∑3、若01lim 1lim arccossin axx x x x→∞→⎛⎫+= ⎪⎝⎭,求a4、()1220lim 3sin 1xxx e x x →++-二、计算下列积分: 1、 求()cos ln x dx ⎰; 2、 411dx x +∞+⎰;3、 求L I y ds =⎰,其中L 是球面2222x y z ++=和平面x y =的交线;4、 求()2I x y y dS ∑=++⎰⎰,其中2222:x y z R ∑++=;5、 已知函数()f x 在 上连续可导,求()()()22211Ly f xy x I dx y f xy dy yy+=+-⎰,其中L 是上半球面()0y >内以()2,3为起点()3,2为终点的有向“分段光滑”曲线。

6、计算2I ∑=⎰⎰∑为下半球面:z =的上侧。

三、函数(),z f x y =有二阶连续偏导数且0y f ≠,证明:对任意实数c ,(),f x y c =是一条直线的充要条件是:()()2220y xx x y xy x yy f f f f f f f -+=四、讨论函数1sin x x和1sinx在()0,+∞上的一致连续性,说明理由。

五、偶函数()f x 的二阶导数()f x ''在0x =的某领域内连续,且()01f =,()02f ''=证明:级数111n f n ∞=⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭∑绝对收敛。

六、函数()[]():0,10,1f x →在[]0,1上可导,且()1f x ''≠,证明:方程()f x x =在()0,1内有唯一的实根。

七、设()f x 在[]0,1上可积,在1x =处连续,证明:()()10lim 1nn n x fx dx f →∞=⎰八、设函数(),f x y 在区域22:1D x y +≤上有二阶连续偏导数且()222222x yf f exy-+∂∂+=∂∂,证明:2D f f I x y dxdy xy e π⎛⎫∂∂=+= ⎪∂∂⎝⎭⎰⎰。

2001年考研数学一试题及完全解析(Word版)

2001年考研数学一试题及完全解析(Word版)

yOx2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设12(sin cos )xy e C x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)设222z y x r++=,则div (grad r ))2,2,1(-=_____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设矩阵A 满足240A A E +-=,其中E 为单位矩阵,则1()A E --=_____________.(5)设随机变量X 的方差是2,则根据切比雪夫不等式有估计≤≥-}2)({X E X P_____________.二、选择题(本题共5小题,每小题3分,满分15分.) (1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示,则)(x f y'=的图形为(2)设),(y x f 在点(0,0)附近有定义,且1)0,0(,3)0,0(='='y x f f ,则(A ) (0,0)|3z d dx dy =+. (B ) 曲面),(y x f z=在(0,0,(0,0))f 处的法向量为{3,1,1}.(C ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{1,0,3}.(D ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{3,0,1}.(3)设0)0(=f ,则)(x f 在x =0处可导的充要条件为(A ) 201lim (1cosh)h f h →-存在.(B )01lim(1)h h f e h →-存在. (C ) 201lim (sinh)h f h h→-存在.(D ) 01lim [(2)()]h f h f h h→-存在.(4)设1111400011110000,,1111000011110000A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则A 与B (A ) 合同且相似. (B ) 合同但不相似. (C ) 不合同但相似.(D ) 不合同且不相似.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 的相关系数等于(A )-1.(B ) 0.(C )12. (D ) 1.三、(本题满分6分)求dx e e xx⎰2arctan .四、(本题满分6分) 设函数),(y x f z=在点(1,1)处可微,且(1,1)1f =,(1,1)|2fx∂=∂,(1,1)|3f y ∂=∂,()(,x f x ϕ=(,))f x x .求13)(=x x dxd ϕ.五、(本题满分8分)设)(x f =210,arctan ,0,1,x x x x x +⎧≠⎨=⎩将)(x f 展开成x 的幂级数,并求级数∑∞=--1241)1(n nn 的和.六、(本题满分7分) 计算dz y x dy x z dx z y I L)3()2()(222222-+-+-=⎰,其中L 是平面2=++z y x 与柱面1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分) 设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:(1)对于(1,1)-内的任一0x ≠,存在惟一的)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立;(2)01lim ()2x x θ→=.八、(本题满分8分)设有一高度为()h t (t 为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)的雪堆全部融化需多少小时?九、(本题满分6分)设s ααα,,,21 为线性方程组0Ax =的一个基础解系,11122t t βαα=+,21223,t t βαα=+,121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21 也为0Ax =的一个基础解系.十、(本题满分8分) 已知3阶矩阵A 与三维向量x ,使得向量组2,,x Ax A x 线性无关,且满足x A Ax x A 2323-=.(1)记P =(x A Ax x 2,,),求3阶矩阵B ,使1-=PBP A ;(2)计算行列式E A +.十一、(本题满分7分)设某班车起点站上客人数X 服从参数为λ(0λ>)的泊松分布,每位乘客在中途下车的概率为p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分) 设总体X 服从正态分布2(,)N μσ(0σ>),从该总体中抽取简单随机样本12,X X ,,2n X (2n ≥),其样本均值为∑==ni i X n X 2121,求统计量∑=+-+=ni i n i X X X Y 12)2(的数学期望()E Y .2001年考研数学一试题答案与解析一、填空题(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 先求grad r .grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭. 再求 div grad r=()()()x y zx r y r z r∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是div grad r|(1,2,2)-=(1,2,2)22|3r -=.(3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即 2()2A EA E E +-⋅=. 按定义知11()(2)2A E A E --=+.(5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤,于是2()1{()2}22D x P XE X -≥≤=.二、选择题(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)【分析】 我们逐一分析.关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面(,)z f x y =在 (0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点(0,0,(0,0))f 处的切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===. 因此,(C )成立.(3)【分析】 当(0)0f =时,'0()(0)limx f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知 201lim (1cos )h f h h→-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃. 关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0lim((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时).注意,易求得20sin lim0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t→(即 '(0)f ∃).因为只要()f t t有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由 43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当AB 时,知A 与B 有相同的特征值,从而二次型T x Ax 与T x Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦, 它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:XY n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即YaX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2xx x x e e e e C ---+++.四、【解】 先求(1)(1,(1,1))(1,1)1f f f ϕ===.求 32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法 '''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意'1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y ∂==∂. 因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=.五、【分析与求解】 关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可.直接将arctan x 展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑=21111(1)()2121n n n x n n ∞=+--+-∑221(1)2114n nn x n ∞=-=+-∑ ,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n∞=-=+∈--∑. 上式中令1x =21(1)111[(1)1](21)1422442n n f n ππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L 的定向,按右手法则S 取上侧,S 的单位法向量(cos ,cos ,cos )3n αβγ==. 于是由斯托克斯公式得222222cos cos cos 23SI dS x y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=[(24(26(22]333Sy z z x x y dS --+--+--⎰⎰=(423)(2)(6)33S Sx y z dS x y z x y dS ++++=-+-利用. 于是'2'211113x y Z Z ++=++=按第一类曲面积分化为二重积分得(6)32(6)3D DI x y dxdy x y dxdy =+-=-+-⎰⎰, 其中D 围S 在xy 平面上的投影区域||||1x y +≤(图).由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x xθθθ---⋅=, 解出θ,令0x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===.八、【解】 (1)设t 时刻雪堆的体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤. ⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒()xyxyD D S t dxdy ==⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r t θπ≤≤≤≤.⇒2(003()22221()()2113[()16]().()4812t t S t d h t h t r h t h t πθππ==⋅+=⎰用先二后一的积分顺序求三重积分()()()h t D x V t dzdxdy =⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-. ⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件.体积减少的速度是dV dt -,它与侧面积成正比(比例系数0.9),即 0.9dVS dt=- 将()V t 与()S t 的表达式代入得 22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-.①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时.九、【解】由于(1,2)i i s β=是12,,s ααα线性组合,又12,,s ααα是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β=均为0Ax =的解.从12,,s ααα是0Ax =的基础解系,知()s n r A =-.下面来分析12,,s βββ线性无关的条件.设11220s s k k k βββ++=,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=.由于 12,,s ααα线性无关,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*)因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-, 所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ====.从而12,,s βββ线性无关.十、【解】 (1)由于AP PB = ,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知AB ,那么A E B E ++,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,mmn mn P Y m X n C p p m n n -===-≤≤=.(2){,}P Xn Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X +相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσ的一个容量为n 的简单随机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑, 样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即2()2(1)E Y n σ=-.。

2001年考研数学一试题答案与解析

2001年考研数学一试题答案与解析

2001年考‎研数学一试题‎答案与解析一、(1)【分析】 由通解的形式‎可知特征方程‎的两个根是12,1r r i =±,从而得知特征‎方程为22121212()()()220r r r r r r r r rr r r --=-++=-+=.由此,所求微分方程‎为'''220y y y -+=.(2)【分析】 grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭.再求 divgra‎d r=()()()x y z x r y r z r ∂∂∂++∂∂∂ =222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是 divgra ‎d r|(1,2,2)-=(1,2,2)22|3r -=. (3)【分析】 这个二次积分‎不是二重积分‎的累次积分,因为10y -≤≤时12y -≤.由此看出二次‎积分是二重积‎0211(,)ydy f x y dx --⎰⎰分的一个累次‎积分,它与原式只差‎一个符号.先把此累次积‎分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的‎内外层积分限‎可确定积分区‎域D :10,12y y x -≤≤-≤≤.见图.现可交换积分‎次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵的元素没‎A 有给出,因此用伴随矩‎阵、用初等行变换‎求逆的路均堵‎塞.应当考虑用定‎义法.因为 2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即2()2A E A E E +-⋅=.按定义知11()(2)2A E A E --=+. (5)【分析】 根据切比雪夫‎不等式2(){()}D x P X E X εε-≥≤, 于是2()1{()2}22D x P XE X -≥≤=. 二、(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x>时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)关于(A ),涉及可微与可‎偏导的关系.由(,)f x y 在(0,0)存在两个偏导‎数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面在‎(,)z f x y =(0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数‎方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点处的切‎(0,0,(0,0))f 向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===.因此,(C )成立. (3)【分析】 当(0)0f =时,'0()(0)lim x f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知201lim (1cos )h f h h →-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃.关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0l i m ((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但在处不连续‎()f x 0x =,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时). 注意,易求得20sin lim 0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t →(即 '(0)f ∃).因为只要有界‎()f t t ,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由43||40E A λλλ-=-=,知矩阵的特征‎A 值是4,0,0,0.又因是实对称‎A 矩阵,A 必能相似对角‎化,所以与对角矩‎A 阵B 相似.作为实对称矩‎阵,当A B 时,知与有相同的‎A B 特征值,从而二次型与‎T x Ax T x Bx 有相同的正负‎惯性指数,因此A 与B 合同.所以本题应当‎选(A ).注意,实对称矩阵合‎同时,它们不一定相‎似,但相似时一定‎合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值‎不同,故A 与B 不相似,但它们的正惯‎性指数均为2‎,负惯性指数均‎为0.所以A 与B 合同.(5)【分析】 解本题的关键‎是明确和的关‎XY系:X Y n +=,即Y n X =-,在此基础上利‎用性质:相关系数的绝‎XY ρ对值等于1的‎充要条件是随‎机变量与之间‎XY存在线性关系‎,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系‎数的定义式有‎(,)1XY Cov X Y DXDX DY DX DYρ-===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xx xde e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x x x xde de e e e e---++⎰⎰=21(arctan arctan )2x x x xe e e e C ---+++. 四、【解】先求(1)(1,(1,1))(1,1)1f f f ϕ===.求32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求‎导法'''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意 '1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y∂==∂.因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=. 五、【分析与求解】关键是将展成‎arctan x 幂级数,然后约去因子‎x ,再乘上并化简‎21x +即可. 直接将展开办‎arctan x不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分‎在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在‎收敛区间端点‎1x =±成立.现将②式两边同乘以‎21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n n n n x x n n -∞∞==--++-∑∑ =21111(1)()2121nnn x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑,[1,1]x ∈-,0x ≠上式右端当时‎0x=取值为1,于是221(1)2()1,[1,1]14n nn f x x x n ∞=-=+∈--∑.上式中令1x =21(1)111[(1)1](21422442n n f nππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公‎式来计算.记为平面上所‎S2x y z ++=L为围部分.由L的定向,按右手法则取‎S 上侧,S 的单位法向量‎1(cos ,cos ,cos )(1,1,1)3n αβγ== .于是由斯托克‎斯公式得222222cos cos cos 23SI dSx y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=111[(24)(26)(22)]333Sy z z x x y dS --+--+--⎰⎰ =22(423)(2)(6)33S Sx y z dS x y z x y dS -++++=-+-⎰⎰⎰⎰利用.于是'2'211113x y Z Z ++=++=.按第一类曲面‎积分化为二重‎积分得2(6)32(6)3D DI x y dxdy x y dxdy =-+-=-+-⎰⎰⎰⎰,其中围在平面‎D S xy 上的投影区域‎||||1x y +≤(图).由关于轴的对‎D ,x y 称性及被积函‎数的奇偶性得‎()0Dx y dxdy -=⎰⎰⇒ 21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中‎值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对使用的定义‎'()f x θ''(0)f .由题(1)中的式子先解‎出'()f x θ,则有'()(0)()f x ff x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=, 解出θ,令x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===. 八、【解】(1)设时刻雪堆的‎t 体积为()V t ,侧面积为()S t .t 时刻雪堆形状‎如图所示,先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤.⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒ 22222()16()()1()()()xyxyD D z z h t x y S t dxdy dxdy x y h t ∂∂++=++=∂∂⎰⎰⎰⎰.作极坐标变换‎:cos ,sin x r y r θθ==,则1:02,0()2xy D r h t θπ≤≤≤≤. ⇒12()2220013()222221()()16()2113[()16]|().()4812h t h t S t d h t r rdr h t h t r h t h t πθππ=+=⋅+=⎰⎰用先二后一的‎积分顺序求三‎重积分()0()()h t D x V t dz dxdy=⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微‎分方程与初始‎条件. (3)体积减少的速‎度是dVdt-,它与侧面积成‎正比(比例系数0.9),即将与的表达‎0.9dV S dt =-()V t ()S t 式代入得22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-. ①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130‎厘米的雪堆全‎部融化所需时‎间为100小‎时. 九、【解】由于是线性组‎(1,2)i i s β= 12,,s ααα 合,又12,,s ααα 是0Ax =的解,所以根据齐次‎线性方程组解‎的性质知均为‎(1,2)i i s β= 0Ax =的解.从是的基础解‎12,,s ααα 0Ax =系,知()s n r A =-.下面来分析线‎12,,s βββ 性无关的条件‎.设11220s s k k k βββ++= ,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++= .由于线性无关‎12,,s ααα ,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*) 因为系数行列‎式1221121122100000000(1)000s s st t t t t t t t t t +=+-,所以当112(1)0s s st t ++-≠时,方程组(*)只有零解120s k k k ==== .从而线性无关‎12,,s βββ .十、【解】(1)由于AP PB =,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知A B ,那么A E B E ++ ,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,m mn m n P Y m X n C p p m n n -===-≤≤= .(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量‎11()n X X ++,22()n X X ++,2,()n n X X + 相互独立都服‎从正态分布2(2,2)N μσ.因此可以将它‎们看作是取自‎总体的一个容‎2(2,2)N μσ量为的简单随‎n 机样本.其样本均值为‎21111()2n ni n i i i i X X X X n n +==+==∑∑,样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是‎总体方差的无‎偏估计,故21()21E Y n σ=-,即.2()2(1)E Y n σ=-。

数学二解析2001

数学二解析2001

2001年数学(二)真题解析一、填空题(1)【答案】72T【解】方法一i . 丿3 —工—%/ ] + g lim X-*l x 2 x 一 21. %/3 — x — V 1 ~F lim —----——--------x->i (jc + 2) (jc 一1)lim --------------- ]------ ----Li (x + 2)(丿3 — 工 + 丿1 + 工)2(1 ―工)x 一 1方法二lim = lim -4-7工~* 1 x + 工一2工一1 + 111x 2 x 一 2 a /3 — x 2 丿]+ 匚(2)【答案】夕=*工+1.【解】e 2x+y — cos xy = e — 1两边对x 求导得严•+ sin xy •夕+熄) = 0,将X =0,y = 1代入得字I = — 2 ,ckr 丨 z=o则法线方程为夕一1 = *(久一0),即夕=*広+ 1-(3)【答案】 v-O【解】方法一sin 2 x cos 2 x dx — 2 sin 2 x cos 2 x dr4 J 。

,三=2 I 2 sin 2 j; • (1 一 sin 2 jc )dz = 2(12 — I 4 )2” (z 3 + sin 2 jc )cosx dx =方法二(x 3 + sin 2 )cos 2jc dj?=2 sin 2 x cos 2 jc dj? J 0丄72 sin 2 d(2工)=*sin 2x djro2 J 0 o(4)【答案】j/arcsin x = x【解】方法一丄由 j/arcsin x H — …一 =19得(jyarcsin x Y = 19解得 j/arcsin x = x + C 9J \ — 2因为曲线经过点(j,0),所以C=-y,故所求曲线为jarcsin x =x ----.方法二jy'arcsin x ~\-------------= 1 化为 y' ~\—,… ------------y =-----\-----,71-x 2 Jl —/arcsin z arcsln 工f d~r _ f 1 丄解得夕=([——?——e +C )e =(工 +c )・ ———\J arcsin x / arcsin x 因为曲线经过点(y,o ),所以C=-y,1x 2故所求曲线为—丄arcsin x因为r (A ) y^r (A ),所以方程组无解;(5)【答案】—2.a11【解】由题意得1a 1=(a + 2) (a 一 1 )2=0,解得 a = — 2 ,或 a = 1,11a /I 111 \I 1111 \当a =1时,才=b11100—3 ,\i11—2丿'o0 '当 a = — 2 时,A =_2111 \1-2111-2—2)因为r (A )=r (A )=2 V 3,所以a = —2时方程组有无数个解.二、选择题(6)【答案】(E ).【解】y[y (z )] = ]'9丨心)丨€1,丨心)丨>1,而 I /(J7 ) | ^ 1 (一°°<工 <+ °°),故 /[/(J : )] = 1 ,从而 f)]} =1,应选(E ).(7)【答案】(E ).1 2【解】(1 — cos x )ln ( 1 + z 2)〜—x 4 , x sin 工”〜x n+i , e" — 1 ~ j ?2 , 由题意得2 < n+l<4,解得n =2,应选(E ).(8)【答案】(C ).【解】<‘ = C ; • 2(工一3)2+© • 2(工一1) • 2(工一 3) +C ; • 2(工一I )?,令夕"=4 (3工 $ — 12_z + 11) = 0,得工 16+V336 — 4^3工2当工<C X 1时当久1 •< X X 2时j/'<0,当鼻 > 工2时j/‘>0,故曲线有两个拐 点,应选(C ).(9) 【答案】(A ).【解】 由拉格朗日中值定理得/(工)一/(1)= /'(£)(工一1),其中e 介于1与工之间,当工 6 (1-^,1)时 HVWV 1,再由 f'(x )单调递减得 > /(I ) =1,于是 y z ($)(— 1)<工一1,即 y (x )•— 1<久一1,或 f (兀)<工;当工e (1,1十厂 时1 vw <工,再由单调递减得1 =y'(i )>/"(£),于是 — 1) <工一1,即/•(#) — 1 V# — 1,或/(工)<工,应选(A ).(10) 【答案】(D ).【解】 从题设图形可见,在夕轴的左侧,曲线夕=/■&)是严格单调增加的,因此当工<0时,一定有于'(工)〉0,对应夕=于'(工)的图形必在工轴的上方,由此可排除(A ),(C ); 又的图形在y 轴右侧有三个零点,因此由罗尔中值定理可知,其导函数y=f\x )的图形在y 轴右侧一定有两个零点,进一步可排除(E ).应选(D ).三、解答题(11)【解】djr(2jc 12 + 1)丿兴 + ]1(]___\ 2 3_(1 + j//2 ) 2 ' 4工丿 (4jc + 1) 2Z )= 肿一 I = ~~2'sec 21(2tan 2i + 1 )sec tdtr cos tJ 2sinS + cosL弓豐將=arctan(sin/)+C=arctan .- + C.Jx 2 + 1(12) 【解】f(x ) =Sin "B ,nr = lim [(1 + $1叮一 sm ”)t-~x 'sin x / L 、 sin x /fCx)的间断点为工=kit (k e z),由lim/(j?) = e 得工=0为/(j :)的可去间断点;•z —*0由f (n — Q) — + °°,/(7r + 0) = 0得工=7T 为第二类间断点,同理工=kn(k 6 Z 且怡H0)为第二类间断点.(13) 【解】“=士,『=—— ,2 V j c 4工』工4«zdp _ dp / dj? ds ds / dr131••4( 4 工 +1)2--------------- ---------=6 J~x , 丿4无+ ]2 J~x6d 2 p d ( 6 \/~t ) /dj?2 \[x 6& $ ds/dx g + 1+ 12则^兽-伴)(4h +l)72一;… 一 — 36 无=9.J 4 无 + ](14)【解】gCt)dt x 2e 两边求导,得g[_f (j? )]/,(jc ) = (jc 2 +2工)『9 即) = (e + 2)e° 9积分得 /(^) = (h +1)『+ C9由 /(O) = 0 得 C = — 1,故/'(z ) = («z + 1)『一1.(15)【解】 由 g"Q ) = 2e J 一厂(2 )得 g 〃(H ) + g(z ) = 2e J ,解得 g (工)=C] cos x + C 2 sin x + e r ・ 由 g (0)=2 得 Ci = 1 ;由 g'(0) = 2 — /(0) = 2 得 C 2 = 19从而 g (jc ) = cos x + sin jr + e * 9 于是 fCx)= sin jc — cos 无 + e° ,rg(H )1 + zg (工)/(j ?)_1+乂 (1 + )2dj : +/(j : )d土)J 0g&) 1, fCx )i+7d " +TT7lo _Jg (#)1 +Ax_/(7T )_e n + 1= i + tt = 7t + r(16)r 解】(i )丨 op |=好 +$2,切线方程为Y —y =j/(X —乂),令X = 0,则切线在y 轴上的截距为Y = y — xy',由题意得y — xy' = Jx 2 + j^2,整理得字=2 — /1 + (―),dr jc \ \戈丿令u =—,则"+ z 学 =u — \/1 + z/2,变量分离得 d ----=——工 山 丿1 + / 工______ ______ 「积分得 ln(“ + \/m 2 + 1 ) = In C — In x ,即"+ a /m 2 + 1 = 一,x 再由 -“ + vV +1 =咅得“=*岸-咅),或$=*9 -青),因为曲线经过点(*,0),所以C=y,故所求曲线为夕=土一工2.(H)曲线汁* —在第一象限与两坐标轴所围成的面积为设切点为P1X 22) 9切线为y —=一 2a (jc 一 a ) 9令夕=0得z =二 + #;令工=0得,=++/oa z 4切线与L 及两个坐标轴围成的位于第一象限的面积为4a112 5Sa • 4a令s'++斜4a 2T + fl24a 24)=°得「古所求的切线方程为丿—(土―召),整理得(17)[解】 设/时刻雪堆的半径为r(Z ),r(0) =r 0,v 2 3 Q 9 2 dV 2 "V = —nr , o = Z7tr 9 -7— = Z7ir • —3 dt dtdV" d 厂由题意得不=TS,整理得不=T,解得")=f+c°,由厂(0)=厂 ° 得 C =r Q= —kt +r 09再由 r (3) = #•得怡=¥•,故 r ⑺=----t + r 0 ,Z令r (?) =0得t =6,故雪堆全部融化需要6小时.(18) ( I )【解】/(^)的带拉格朗日余项的一阶麦克劳林公式为/(J?) = /(0) + /''(0)工 + I ;£)乂2= /,(0)jf + [『力2,其中£介于0与工之间.(II )【证明】/(j : ) =/,(0)j' +食,)工2两边在[—a ,a ]上积分得[/(jc)dj- = _1_[ /7,($)2d:r ,J —au J —a因为f'\x )在[—a ,a ]上连续,所以f'\x )在[—a ,a ]上取到最小值m 和最大值M,由W */"(£)広2 C yMjr 2 得扌a 3 C yj 厂(£)工'dr < y-a 3 ,m ra m 3 f a即百^3 W /(工)clr W —a 3 9或 Tzz — /(j : )djc M ,3 J —a 3 a J —a由介值定理,存在少E [—a,a],使得/'"(可)=弓[/'(工)山,a J —a故 a "/■"(”)=3〕/ ( jc ) d j ?.(19)【解】 由 AXA +BXB =AXB + BXA + E 得(A -B)XCA -B) =E,解得 X = [(A -B)2]"1 ,/I — 1 — 1而A - B = 0 1 一 1'o 0 1/!-1一1\J 1(AB)2=01-11 0'001丿'0I 1_ 2-110°\I 1由01-2010 -* 0'0100J'0-1-1I 1-2一1\1-1=01-201/'o 01 100125\10012|得0100/]25\X =-012 •、00J(20)【解】0] ,p 2,“3,04为AX =0的基础解系的充分必要条件是01 ,庆,/h ,力线性无关,1t0100t '而(01 902 9 03,04)=(。

2001-数二真题、标准答案及解析

2001-数二真题、标准答案及解析

(A)1.
(B)2.
(C)3.
(D)4. 【】
【答】 应选(B).
【详解] 由题设,知
( ) (1− cos x) ln 1+ x2
lim
x→0
x sin xn
= lim x→0
1 x2 ⋅ x2 2
x ⋅ xn
=
1 lim
2 x→0
1 xn−3
=
1 lim x3−n 2 x→0
= 0.
n应满足 n ≤ 2;
求 f (x).
【详解】 等式两边对 x 求导得
g ⎡⎣ f ( x)⎤⎦ f ' ( x) = 2xex + x2ex

g ⎡⎣ f ( x)⎤⎦ = x,

xf ' ( x) = 2xex + x2ex .
当 x ≠ 0 时,有
f ' ( x) = 2ex + xex
积分得
f ( x) = ( x +1) ex + C
抛物线上介于点
A(1,1) 与
M
之间的弧长,计算 3ρ
d2ρ ds2

⎛ ⎜⎝
dρ ds
⎞2 ⎟⎠
的值.(在直角坐标系下曲
y ''
率公式为 K =

3
( ) 1+ y'2 2
【详解】 y' = 1 , y'' = − 1 ,
2x
4 x3
抛物线在点 M ( x, y)( x ≥ 1) 处三维曲率半径
3
【】
于是
f ⎡⎣ f ( x)⎤⎦ = 1,
{ } 从而 f f ⎡⎣( x)⎤⎦ = 1.

数学分析课本-习题及答案01

数学分析课本-习题及答案01

第一章 实数集与函数习题§1实数1、 设a 为有理数,x 为无理数。

证明:(1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。

2、 试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。

3、 设a 、b ∈R 。

证明:若对任何正数ε有|a-b|<ε,则a = b 。

4、 设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。

5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。

6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。

证明 |22b a +-22c a +|≤|b-c|。

你能说明此不等式的几何意义吗7、 设x>0,b>0,a ≠b 。

证明x b x a ++介于1与ba 之间。

8、 设p 为正整数。

证明:若p 不是完全平方数,则p 是无理数。

9、 设a 、b 为给定实数。

试用不等式符号(不用绝对值符号)表示下列不等式的解:(1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|<b 。

§2数集、确界原理1、 用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6; (3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<c );(4)sinx ≥22。

2、 设S 为非空数集。

试对下列概念给出定义:(1)S 无上界;(2)S 无界。

3、 试证明由(3)式所确定的数集S 有上界而无下界。

4、 求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n21,n ∈+N }。

最新川大版高等数学(第一册)部分课后题答案[1]

最新川大版高等数学(第一册)部分课后题答案[1]

川大版高等数学(第一册)部分课后题答案[1]高数第一册 第一章习题1.1«Skip Record If...»(4)«Skip Record If...»«Skip Record If...»(8)«Skip Record If...»«Skip Record If...»(10)«Skip Record If...»7.«Skip Record If...»(6)«Skip Record If...»(7)«Skip Record If...»)(8)«Skip Record If...»(9)«Skip Record If...»13.(1)«Skip Record If...»(2)«Skip Record If...»(3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.«Skip Record If...»习题1.22。

(1) «Skip Record If...»,解不等式«Skip Record If...»,得«Skip Record If...»(2) «Skip Record If...»,解不等式«Skip Record If...»,得«Skip Record If...»(3) «Skip Record If...»,解不等式«Skip Record If...»,得«Skip Record If...»当«Skip Record If...»时,«Skip Record If...»(4) «Skip Record If...»,解不等式«Skip Record If...»,得«Skip Record If...»3.证:«Skip Record If...»«Skip Record If...»,有«Skip Record If...»。

川大版高等数学(第一册)部分课后题详细答案

川大版高等数学(第一册)部分课后题详细答案

高数第一册 第一章 习题1.13.(1)(,1)(1,)(2){|1,}1(1,1)(1,)(3)(1,1)x x x R -∞-⋃-+∞≠±∈∞-⋃-⋃+∞-或(-,) (4)22903[3,1)(1,3]10x x x x x ⎧⎫-≥⇒-⎪⎪⇒--⋃⎨⎬-⇒⎪⎪⎩⎭≤ ≤3>>1或<-12222(5)(,3)(6)sin 0,,()241(7)114(1),11(1)3x x k x k k z x x x x x x πππ-∞≠≠≠∈⎡⎤≤⇒≤⇒≤+⇒-⎢⎥++⎣⎦(8)0ln 0x x x x x ⎧⎫⇒⇒⎨⎬⇒⎩⎭> >0>1>>1(9)[1,2]-(10)21()x x x f x x x x x x x x ⎧⎫⇒⎪⎪⎪⎪=⇒⇒≠⇒∴⎨⎬⎪⎪⎪⎪⇒⎩⎭-1 <00≤≤10即0<<1 < 0和0<≤2e 1≤≤27.(1)(2)(3)(4)(5)奇函数偶函数偶函数偶函数非奇非偶(6)2()()f x f x -=+=偶函数(7)11()lnln ()11x xf x f x x x+--==-=--+奇函数)(8)2112()()2112x xx xf x f x -----===-++奇函数(9)()sin cos f x x x -=--非奇非偶 13.(1)22(())(2)24,(())2,xxxx f x f f x x Rϕϕ====∈(2)11(())(0,1)111x f f x x xx-==≠--(3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.[]22(1)(0)0.(2)0,111111(3)01(4)1lg ,lg 1,lg 1,.1(5)11()(6)1log (16)y x x y x y y x y x x y y y xx y x y y x xy xx x y x x x =≤≤+∞=≥=++===≠-+==-=--=≠-+∞⎧=≤≤∞反函数反函数x=,x-1=,x=1+反函数y ,定义域反函数定义域x >0反函数,定义域(x )-<<1反函数16)<<+⎫⎪⎬⎪⎩⎭习题1.2 2。

2001川大数学分析试题及解答

2001川大数学分析试题及解答


ba 2
,即
1 (b a)2

1 (c a)(c b)
2
有4 ba
f (c) f (c) (b a) (b a )2
(b a) f (c) (c a)(c b)
2
运用 1.结论,有
f (c)
1
b
f ''(x)dx ,即证
(c a)(c b) b a a
lim
n
an

lim
n
bn

.
确界原理:非空有上界的数集必有上确界;非空有下界的数集必有下确界.
存在 M ,使得 x M
若 E 有最大值,则 max E sup E (1)

E
无最大值,取任意
x0

E
,构成闭区间 [ x0
,
属于所有的闭区间
[an
,
bn
]
,且
lim
n
an

lim
n
bn


.
则对于任意 x E ,有 x
对于任意 0 ,存在 N 0 , x1 [aN , bN ] ,使得 x1 ,又对于任意 x E ,有 x
则 为 E 的上确界,有 sup E .(2)
n 1 n1
n1 n1 n 1
n1 n n
n
2
n
左边取极限 lim 1
nk
2n lim
n
lim 1
n
k
2n
1 2xdx
1
n n 1 k1
n n 1 n n k1
0

2001年考研数学试题详解及评分参考

2001年考研数学试题详解及评分参考
郝海龙:考研数学复习大全·配套光盘·2001 年数学试题详解及评分参考
2001 年全国硕士研究生入学统一考试 数学试题详解及评分参考
数 学(一)
一、填空题:(本题共 5 小题,每小题 3 分,满分 15 分) (1) 设 y = e (C1 sin x + C2 cos x) ( C1 , C2 为任意常数)为某二阶常系数线性齐次微分方
-1
(B) 0
(C)
1 2
(D) 1
【答】 应选 (A). 【解法一】 因 X + Y = n ,故 Y = n - X . 由于相关系数 r X ,Y 的绝对值等于 1 的充要条 件是 X 与 Y 之间存在线性关系,即 Y = a + bX (其中 a, b 是常数) ,且当 b > 0 时,
r X ,Y = 1 ;当 b < 0 时, r X ,Y = -1 . 因此 r x , y = -1 ,故选 (A).
æ1 ç1 (4) 设 A = ç ç1 ç è1
1 1 1 1
1 1 1 1
1ö æ4 ÷ ç0 1÷ ,B = ç ç0 1÷ ÷ ç 1ø è0
0 0 0 0
0 0 0 0
0ö 0÷ ÷ ,则 A 与 B 0÷ ÷ 0ø
(C) 不合同但相似 (D) 不合同且不相似
(A) 合同且相似 【答】 应选 (A).
【解法二】 根据相关系数的定义, 有 r x, y =
C ov( X , Y ) . 由于 DY = D ( n - X ) = DX , DX × DY - DX Cov( X , Y ) = Cov( X , n - X ) = -Cov( X , X ) = - DX ,因此 r x , y = = -1 . DX

四川大学数学类基础课程《数学分析

四川大学数学类基础课程《数学分析

四川大学数学类基础课程《数学分析(II)习题课》教学大纲课程名称:数学分析(II)习题课英文名称:Mathematical Analysis-II课程性质:必修课程代码:本大纲主笔人:黄勇面向专业:数学类各专业主讲课教材名称:数学分析(上、下)出版单位:高等教育出版社出版日期:2004年10(第2版)编著:陈纪修於崇华金路习题课指导书名称:数学分析习题课讲义(上、下)出版单位:高等教育出版社出版日期:2004年1月(第1版)编著:谢惠民恽自求等习题课讲义名称:自己编写一、课程学时学分课程总学时:104学时课程总学分:5学分习题课总学时:36学时习题课总学分:2学分二、习题课的地位、作用和目的数学分析是数学专业最重要的一门基础课,是许多后继课程如微分几何,微分方程,复变函数,实变函数与泛函分析,计算方法,概率论与数理统计等课程必备的基础,是数学专业本科一、二年级学生的必修课。

数学分析习题课是数学分析课程的重要组成部分,是学生学习这门课程的一个必要环节。

尤其是各位教师和学生们都应该充分地认识到习题课的重要性,习题课与主讲课同等重要。

数学分析习题课是通过学生自己严格的课堂和课外习题训练,再加上习题课教师对数学分析学习中各类习题的讲解,能使学生加深对课程内容的理解,全面系统地掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。

三、习题课的教学方式与教学要求教学方式:以课堂教学为主,充分利用现代化技术,结合计算机实习与多媒体辅助教学,提高教学效果。

教学要求:习题课的教学是通过学生在课后进行严格的习题训练、在课堂上由习题课老师和学生通过讲、练结合的方式进行。

每次主讲老师讲完教材内容后布置下习题由学生课后训练,并于下次课将所完成的作业本上交由习题课老师批改。

习题课教师通过批改学生的课后作业,可以及时发现学生作业中的问题。

川大版高等数学(第一册)部分课后题详细答案

川大版高等数学(第一册)部分课后题详细答案

高数第一册 第一章 习题1.13.(1)(,1)(1,)(2){|1,}1(1,1)(1,)(3)(1,1)x x x R -∞-⋃-+∞≠±∈∞-⋃-⋃+∞-或(-,)(4)22903[3,1)(1,3]10x x x x x ⎧⎫-≥⇒-⎪⎪⇒--⋃⎨⎬-⇒⎪⎪⎩⎭≤ ≤3>>1或<-12222(5)(,3)(6)sin 0,,()241(7)114(1),11(1)3x x k x k k z x x x x x x πππ-∞≠≠≠∈⎡⎤≤⇒≤⇒≤+⇒-⎢⎥++⎣⎦(8)0ln 0x x x x x ⎧⎫⇒⇒⎨⎬⇒⎩⎭> >0>1>>1(9)[1,2]-(10)21()x x x f x x x x x x x x ⎧⎫⇒⎪⎪⎪⎪=⇒⇒≠⇒∴⎨⎬⎪⎪⎪⎪⇒⎩⎭-1 <00≤≤10即0<<1 < 0和0<≤2e 1≤≤27.(1)(2)(3)(4)(5)奇函数偶函数偶函数偶函数非奇非偶(6)2()()f x f x -=+=偶函数(7)11()lnln ()11x xf x f x x x+--==-=--+奇函数)(8)2112()()2112x xx xf x f x -----===-++奇函数(9)()sin cos f x x x -=--非奇非偶 13.(1)22(())(2)24,(())2,xxxx f x f f x x Rϕϕ====∈(2)11(())(0,1)111x f f x x xx-==≠--(3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.[]22(1)(0)0.(2)0,111111(3)01(4)1lg ,lg 1,lg 1,.1(5)11()(6)1log (16)y x x y x y y x y x x y y y xx y x y y x xy xx x y x x x =≤≤+∞=≥=++===≠-+==-=--=≠-+∞⎧=≤≤∞反函数反函数x=,x-1=,x=1+反函数y ,定义域反函数定义域x >0反函数,定义域(x )-<<1反函数16)<<+⎫⎪⎬⎪⎩⎭习题1.2 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档