高一数学质量检测试题
2024-2025学年黑龙江省哈尔滨市高一上学期期中数学质量检测试卷
2024-2025学年黑龙江省哈尔滨市高一上学期期中数学质量检测试卷考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟;第Ⅰ卷(选择题,共58分)一、单选题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则(){M x y ==(],2N =-∞M N = A.B.C. D. [)1,+∞[]1,2R∅2. 已知函数,则( )()1,13,1xx x f x x ⎧-≤=⎨>⎩()3f f -=⎡⎤⎣⎦A. 0 B. 1 C. 3 D. 93. 若函数,则( )()211f x x +=-()f x =A. B. 22x x +21x -C. D. 22x x -21x +4. 已知,,,则a ,b ,c 的大小关系是( )20.1a =2log 2b =0.12c =A. B. c a b >>c b a >>C. D. b a c >>b c a>>5. 已知函数是定义在上的奇函数,当时,.则当时,()f x R 0x ≥()()1f x x x =-0x <( )()f x =A. B. ()1x x +()1x x -C.D.()1x x -+()1x x -6. 函数的单调递增区间为( )()f x =A.B.()0,2(),2-∞C .D.()2,4()2,+∞7. 若函数满足对任意不相等的两个实数,都有(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩1x 2x ,则实数a 的取值范围是( )()()()12120f x f x x x -->⎡⎤⎣⎦A.B.C.D.[)4,8-[)4,8()4,8()1,88. 关于x 的方程有负根的一个充分不必要条件是( )33245xa a +⎛⎫=⎪-⎝⎭A .B. 344a <<354a <<C. D. 364a <<2334a -<<二、多选题:共3小题,每小题6分,共18分在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知,,且,则下列选项正确的是( )0x >0y >31x y +=A. y 的范围为 B. xy 的最大值为10,3⎛⎫ ⎪⎝⎭112C. 的最小值为16D. 的最小值为213x y +229x y +10. 在同一平面直角坐标系中,函数,(且)图象可能是21:aC y x -=2:xC y a=0a >1a ≠( )A. B.C. D.11. 下列命题中正确的是( )A. 函数,的值域是()2x f x x=+[]1,2x ∈[]3,6B. 函数的值域是()1421x x f x +=++[)1,+∞C. 函数的值域是()211f x x x =++40,3⎛⎤ ⎥⎝⎦D. 函数的值域是()2125x f x x x +=++11,44⎡⎤-⎢⎥⎣⎦第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12. 函数在区间上的最大值为________.()21f x x =-[]2,413. 已知函数的数据如下表,则该函数可能的一个解析式为________.()f x x012345…()f x 3612244896…14. 设函数,则是________函数(从“奇”、“偶”、()()()4e 166x f x x x x =+--<<()f x “既奇又偶”、“非奇非偶”中选一个恰当答案填入),关于x 的不等式的解集为________.()()()31213f x f f x ++-<-四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,,求下列各式的值:102m=105n=(1);210m n-(2);m n +(3).1125mn+16. 已知幂函数在上单调递增.()()21af x a a x =+-()0,∞+(1)求解析式;()f x(2)若在上的最小值为,求m 的值.()()22g x x f x mx m=⋅-+[]0,22-17. 中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经研究:把茶水放在空气中冷却,如果茶水开始的温度是,室温是,那么t min 后茶水的温度θ(单位:℃)1θ℃0θ℃可由公式求得,其中k 是常数.为了求出这个k 的值,某数学建模兴()()010e ktt θθθθ-=+-趣小组在25℃室温下进行了数学实验,先用95℃的水泡制成95℃的茶水,利用温度传感器,测量并记录从开始每一分钟茶水的温度,多次实验后搜集整理到了如下的数据:0t =t min012345(℃)θ95.0089.1984.7581.1978.1975.00(1)请你仅利用表中的一组数据,,求k 的值,并求出此时的解析式;5t =75.00θ=()t θ(2)在25℃室温环境下,王老师用95℃的水泡制成的茶水,想等到茶水温度降至45℃时再饮用,根据(1)的结果,王老师要等待多长时间?(参考数据:,,,e 是自然对数的底数.)ln 20.7≈ln 5 1.6≈ln 7 1.9≈18. 已知函数为奇函数.()e 1e 1x xa f x -=+(1)求a 的值;(2)利用定义证明在上单调递增;()y f x =R (3)若存在实数,使得成立,求k 的取值范围.[]1,3x ∈()()4320x x f k f ⋅-+>19. 对于定义在区间D 上的函数,若存在闭区间和常数c ,使得对任意()f x [],a b D⊆,都有,且对任意,当时,恒成立,则称[]1,x a b ∈()1f x c=2x D ∈[]2,x a b ∉()2f x c >函数为区间D 上的“卷函数”.()f x (1)判断函数是否为上的“卷函数”?并说明理由:()11g x x x =++-R (2)设是(1)中的“卷函数”,若不等式对()g x ()2344222x t t t t g ---≤+++-恒成立,求实数x 的取值范围;t ∀∈R(3)若函数是区间上的“卷函数”,求的值.()h x mx =+[)3,∞-+m n。
2024-2025学年天津市和平区高一上学期第一次月考数学质量检测试题(含解析)
本训练分第Ⅰ卷和第Ⅱ卷两部分,满分150分,训练时间1002024-2025学年天津市和平区高一上学期第一次月考数学质量检测试题分钟.第Ⅰ卷 选择题(60分)一.选择题(本题共12小题,每小题5分,共60分)1. 设集合{}{}{}1,0,11,3,5,0,2,4A B C =-==,,则()A B C ⋂⋃=( )A. {}0B. {0,1,3,5}C. {0,1,2,4}D. {0,2,3,4}【答案】C 【解析】【分析】根据交集并集的定义即可求出.【详解】 {}{}{}1,0,11,3,5,0,2,4A B C =-==,,{}1A B ∴⋂=,{}()0,1,2,4A B C ⋂⋃=∴.故选:C.2. 命题“2R,240x x x ∀∈-+≥”的否定为( )A. 2R,240x x x ∃∈-+≥ B. 2R,240x x x ∃∈-+<C. 2R,240x x x ∀∉-+≥ D. 2R,240x x x ∃∉-+<【答案】B 【解析】【分析】全称量词命题的否定是存在量词命题.【详解】命题“2R,240x x x ∀∈-+≥”的否定为“2R,240x x x ∃∈-+<”.故选:B.3. 已知不等式240x ax ++<的解集非空,则实数a 的取值范围是( )A. ()4,4- B. ()(),44,∞∞--⋃+C. ()(),22,∞∞--⋃+ D. ()2,2-【答案】B 【解析】【分析】利用一元二次不等式、函数、方程的关系计算即可.【详解】由题意可知2440a ∆=-⨯>,解之得()(),44,a ∈-∞-⋃+∞.故选:B 4. 若,,a b c R ∈,且满足a b c >>,则下列不等式成立的是A.11a b< B.2211a b >C.2211a bc c >++ D. a c b c>【答案】C 【解析】【分析】通过反例可依次排除,,A B D 选项;根据不等式的性质可判断出C 正确.【详解】A 选项:若1a =,2b =-,则11a b>,可知A 错误;B 选项:若1a =,12b =,则2211a b <,可知B 错误;C 选项:210c +> 2101c ∴>+又a b > 2211a bc c ∴>++,可知C 正确;D 选项:当0c =时,a c b c =,可知D 错误.本题正确选项:C【点睛】本题考查不等式性质的应用,解决此类问题通常采用排除法,利用反例来排除错误选项即可,属于基础题.5 已知全集{}0U x x =>,集合{}12A x x =≤<,则U A =ð( )A. {|1x x ≤-或}2x ≥B. {|01x x <<或}2x ≥C. {|1x x <-或x >2}D. {|01x x <<或x >2}【答案】B 【解析】【分析】根据全集和补集的概念可直接得结果.【详解】因为{}0U x x =>,{}12A x x =≤<,所以U A =ð{|01x x <<或}2x ≥..故选:B6. 已知,R a b ∈,若集合{}2,,1,,0b a a a b a ⎧⎫=-⎨⎬⎩⎭,则a b +的值为( )A. 1-B. 0C. 1D. 2【答案】A 【解析】【分析】利用集合相等,求出0b =,再根据互异性求出a 的取值情况并检验即可.【详解】根据题意,0a ≠,故0ba=,则0b =,则{a ,0,21}{a =,a ,0},由集合的互异性知0a ≠且1a ≠,故{a ,0,21}{a =,a ,0},则21a =,即1a =-或1a =(舍),当1a =-,0b =时,{1-,0,1}{1=,1-,0},符合题意,所以1a b +=-.故选:A .7. 已知0a >,0b >,132a b+=,则a b +的最小值为( )A. 2B. 3C. 2D. 2+【答案】D 【解析】【分析】利用基本不等式中“常数”代换,即可求得.【详解】0,0a b >> ,132a b+=,11313()()(4)22b a a b a b a b a b ∴+=++=++1(422≥+=,当且仅当3b a a b =,即a b ==.故选:D .8. 满足{}{}1,2,31,2,3,4,5A = 的集合A 的个数是( )A. 4 B. 5C. 7D. 8【答案】D 【解析】【分析】根据并集、子集知识求得正确答案.【详解】因为{}{}1,2,31,2,3,4,5A ⋃=,所以4,5A ∈,所以集合A 是集合{}4,5与集合{}1,2,3的子集的并集所得,集合{}1,2,3的子集共有328=个,所以集合A 有8个.故选:D9. 设集合{}13A x x =->,{}2B x x a =<,若A B A = ,则实数a 的取值范围是( )A. {}4a a ≤- B. {}1a a ≤- C. {}1a a ≥ D. {}4a a ≥【答案】A 【解析】【分析】先根据不等式解集表示出,A B ,然后将A B A = 转化为B A ⊆,由此列出不等式完成求解.【详解】由13x ->解得4x >或2x <-,所以{2A x x =<-或}4x >,由2x a <解得2ax <,所以2a B x x ⎧⎫=<⎨⎬⎩⎭,又因为A B A = ,所以B A ⊆,所以22a≤-,所以4a ≤-,即a 的取值范围是{}4a a ≤-,故选:A.10. 若“11x -<<”是“()()30x a x a ---<”的充分不必要条件,则实数a 的取值范围是( )A. {|1a a ≤或2}a ≥ B. {}21a a -<<C. {}21a a -≤≤- D. {|2a a ≤-或1}a ≥-【答案】C 【解析】【分析】求得不等式的()()30x a x a ---<解,由已知可得131a a ≤-⎧⎨+≥⎩(两个等号不能同时成立),求解即可.【详解】因为()()30x a x a ---<,所以3a x a <<+,因为“11x -<<”是“()()30x a x a ---<”的充分不必要条件,的所以131a a ≤-⎧⎨+≥⎩(两个等号不能同时成立),解得21a -≤≤-,所以实数a 的取值范围是{}|21a a -≤≤-.故选:C.11. 已知0x >,0y >,且26xy x y ++=,则2x y +的最小值为( ).A. 4 B. 6C. 8D. 12【答案】A 【解析】【分析】利用基本不等式和消元思想对本题目进行求解.【详解】解:已知00x y >>,,且xy +2x +y =6,y =621x x -+2x +y =2x +621x x -+=2(x +1)8441x +-≥+,当且仅当()821,11x x x +==+时取等号,故2x +y 的最小值为4.故选:A12. 关于x 的不等式2(1)0x a x a -++<的解集中恰有2个整数,则实数a 的取值范围( )A. (1,0][2,3)-⋃ B. [2,1)(3,4]-- C. ()(]2,13,4--⋃ D. [1,0)(2,3]- 【答案】B 【解析】【分析】首先解出不等式,根据不等式的解分类讨论可得.【详解】不等式2(1)0x a x a -++<化为(1)()0x x a --<,当1a =时,不等式无解,当1a <时,不等式解为1<<a x ,这里有且只有2个整数,则21a -≤<-,当1a >时,不等式解为1x a <<,这里有且只有2个整数,则34a <≤,综上a 的取值范围是[2,1)(3,4]-- .故选:B .【点睛】方法点睛:本题考查解一元二次不等式,对于含有参数的一元二次不等式需要分类讨论才能求解.分类标准有三个层次:一是二次项系数的正负,二是相应一元二次方程的判别式∆的正负,三在方程有解时,讨论解的大小,以得出不等式的解.第Ⅱ卷 非选择题(90分)二.填空题(本题共8小题,每小题5分,共40分)13. 函数()f x =______.【答案】[)(]2,11,2- 【解析】【分析】根据二次根式的被开方数非负和分式的分母不为零,列不等式组求解即可.【详解】由题意得2010x x ⎧-≥⎨-≠⎩,解得21x x ⎧≤⎨≠⎩,即221x x -≤≤⎧⎨≠⎩,所以()f x 的定义域为[)(]2,11,2- ,故答案为:[)(]2,11,2- .14. 设{|2}A x x ==,{|2}B x ax ==,若B A ⊆,则实数a 的值为_________.【答案】0或1-或1【解析】【分析】根据B A ⊆,对集合{|2}B x ax ==进行分类讨论,即可求得a 的值.【详解】因{|2}A x x ==,则{2,2}A =-,因为{|2}B x ax ==,当0a =时,则B =∅,满足B A ⊆,当0a ≠时,则2{}B a =,因为B A ⊆,所以22a =或22a=-,则1a =或1a =-,综上,0a =或1a =-或1a =.为故答案为:0或1-或1.15. 若2a >-,则162a a ++的最小值为________.【答案】6【解析】【分析】根据基本不等式直接求最值.【详解】1616222622a a a a +=++-≥-=++当且仅当162,22a a a +==+时取等号故答案为:6【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属基础题.16. 已知全集R U =,集合{}Z 03M x x =∈≤≤与集合{}*21,N N x x k k ==+∈的关系如图所示,则阴影部分所表示的集合中元素的个数为______.【答案】3【解析】【分析】由图形可以看出,阴影部分所示的集合是()U N M ð,故先化简两个集合,即可求解.【详解】由题意{}{}Z 030,1,2,3M x x =∈≤≤=, {}{}*21,N 3,5,7,,N x x k k ==+∈= 故{}()0,1,2U N M ⋂=ð,集合有3个元素,故答案为:317. 已知13a b -<+<且24a b <-<,则23a b +的取值范围是______.【答案】913,22⎛⎫- ⎪⎝⎭【解析】【分析】设()()23a b x a b y a b +=++-,求出,x y ,结合不等式性质可求结论.【详解】设()()23a b x a b y a b +=++-,则()()23a b x y a x y b +=++-,所以2,3x y x y +=-=,故52x =,12y =-,所以()()512322a b a b a b +=+--,因为13a b -<+<,24a b <-<,所以()5515222a b -<+<,()1212a b -<--<-,所以9132322a b -<+<,所以23a b +取值范围是913,22⎛⎫-⎪⎝⎭.故答案为:913,22⎛⎫-⎪⎝⎭.18. 已知集合{}12A x x =-<≤,{}12B x m x m =-≤<+.若A B =∅ ,则实数m 的取值范围是______.【答案】{3m m >或}3m ≤-【解析】【分析】由A B =∅ ,有12m ->或21m +≤-,解不等式可得.【详解】显然集合{}12B x m x m =-≤<+非空,要使A B =∅ ,应有12m ->或21m +≤-,解得3m >或3m ≤-,故答案为:{3m m >或}3m ≤-19. 若两个正数,x y 满足92xy x +=,且不等式212x m m y+>-恒成立,则实数m 取值范围是______.【答案】(1-+【解析】【分析】由条件适当变形,再结合均值不等式求出1x y +的最小值,只需2min 12()m m x y-<+,解出实数m 的范围即可.【详解】解:因为,x y 为正数且满足92xy x +=,的的所以92y x+=,所以1111111()()(2)2)2222x y x xy y x y xy +=++=++≥+=当且仅当192xy xy xy x ⎧=⎪⎨⎪+=⎩,即515x y =⎧⎪⎨=⎪⎩时等号成立.因为不等式212x m m y+>-恒成立,所以只需222m m -<,即2220m m --<,所以11m -<<+,即实数m的取值范围是(1-+.故答案为:(1-+.20. 设,,a b c 是两两不相等的正整数,已知集合{},,A a b b c c a =+++,集合()(){}()222*,1,2N B n n n n =++∈,若A B =,则222ab c ++的最小值是______.【答案】1297【解析】【分析】不妨设a b c <<,由条件可得()2142n a --=,()2122n b ++=,()2342n c +-=,由此证明n 为奇数且3n >,证明5n =时,,,a b c 都最小,由此可得结论.【详解】不妨设a b c <<,则a b a c b c +<+<+,因为A B =,{},,A a b b c c a =+++,()(){}222,1,2B n n n =++,所以2a b n +=,()21a c n +=+,()22b c n +=+,所以()22365a b c n n ++=++,所以23652n n a b c ++++=,所以()()22214365222n n n a n --++=-+=,()()22212365122n n n b n ++++=-+=,()2223436522n n n c n +-++=-=,因为,,a b c 为正整数,N n *∈,所以1n -,1n +,3n +都为奇数,12n ->,故n 为大于等于5的奇数,又当5x ≥时,函数()2142x y --=,()2122x y ++=,()2342x y +-=都随x 的增大而增大,所以当5n =时,,,a b c 同时取最小值,此时222a b c ++取最小值,当5n =时,6a =,19b =,30c =,222363619001297a b c ++=++=,所以222a b c ++的最小值是1297.故答案为:1297.【点睛】关键点点睛:本题解决的关键在与通过假设a b c <<,由此求出,,a b c 的表达式,结合整除知识,证明n 为大于等于5的奇数.三.解答题(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)21. 已知非空集合{}121P x a x a =+≤≤+,{}25Q x x =-≤≤.(1)若3a =,求()R P Q ð;(2)若“x ∈Q ”的充分条件是“x P ∈”,求实数a 的取值范围.【答案】(1){}|24x x -≤< (2)02a ≤≤【解析】【分析】(1)根据补集、交集的知识求得正确答案.(2)根据充分条件列不等式,由此求得a 的取值范围.【小问1详解】3a =时,P ={x |4≤x ≤7},{|4P x x =<R ð或}7x >,因为{}25Q x x =-≤≤,所以(){}R |24P Q x x ⋂=-≤<ð.【小问2详解】若“x ∈Q ”的充分条件是“x P ∈”,则P Q ⊆,所以12112215a a a a +≤+⎧⎪+≥-⎨⎪+≤⎩,解得02a ≤≤,所以实数a 的取值范围是02a ≤≤.22. 设命题:R p x ∀∈,不等式2102mx mx ++>恒成立:命题1:13m q m m m ⎧⎫+∈≥⎨⎬-⎩⎭.(1)若p 为真命题,求实数m 的取值范围;(2)若命题p 、q 有且只有一个是真命题,求实数m 的取值范围.【答案】(1)02m ≤<(2)01m <<或23m ≤<【解析】【分析】(1)对m 进行分类讨论,由此列不等式来求得m 的取值范围.(2)根据p 真q 假或p 假q 真,列不等式来求得m 的取值范围.【小问1详解】对于命题:R p x ∀∈,不等式2102mx mx ++>恒成立,当0m =时,102>恒成立.当0m ≠时,则需20Δ20m m m >⎧⎨=-<⎩,解得02m <<.综上所述,m 的取值范围是02m ≤<.【小问2详解】由113m m +≥-得1132210333m m m m m m m++-+--==≥---,所以()()223030m m m ⎧--≥⎨-≠⎩,解得13m ≤<.若p 真q 假,则“02m <<”且“1m <或3m ≥”,则01m <<.若p 假q 真,则“0m ≤或2m ≥”且“13m ≤<”,则23m ≤<.综上所述,m 的取值范围是01m <<或23m ≤<.23. 已知函数()()()21,f x ax a x b a b =-++∈R .(1)若关于x 的不等式()0f x <的解集为()1,3-,求不等式240bx ax -+<的解集;(2)若1b =,求关于x 的不等式()0f x >的解集.【答案】(1)()4,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭(2)答案见解析【解析】【分析】(1)根据题意可得0a >,且1-,3是方程2(1)0ax a x b -++=的两个实数根,利用韦达定理得到方程组,求出a ,b ,进一步可得不等式240bx ax -+<等价于2340x x --+<,即2340x x +->,最后求解不等式即可;(2)当0b =时,0a >时,不等式等价于1(1)0x x a -->,从而分类讨论1a >,1a =,01a <<三种情况即可求出不等式所对应的解集.【小问1详解】若关于x 的不等式()0f x <的解集为(1,3)-,则1-和3是方程()210ax a x b -++=的两根,且0a >,由韦达定理得123a a b a+⎧=⎪⎪⎨⎪=-⎪⎩,解得1,3a b ==-,所以不等式()()22403403410bx ax x x x x -+<⇔--+<⇔+->,解得43x <-或1x >,所以不等式240bx ax -+<的解集为()4,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭.【小问2详解】若1b =,则()()()()20110110f x ax a x ax x >⇔-++>⇔-->,1)当0a =时,由()10x -->解得1x <;2)当0a ≠时,方程()()110ax x --=的两根为1,1a,当0a <时,11a <,解不等式()()110ax x -->得11x a<<;当01a <<时,11a >,解不等式()()110ax x -->得1x <或1x a >;当1a >时,11a <,解不等式()()110ax x -->得1x >或1x a <;当1a =时,由2(1)0x ->得1x ≠.综上,当0a =时,不等式解集为(),1-∞;当0a <时,不等式解集为1,1a ⎛⎫ ⎪⎝⎭;当01a <<时,不等式解集为()1,1,a ⎛⎫-∞+∞⎪⎝⎭ ;当1a >时,不等式解集为()1,1,a ⎛⎫-∞+∞ ⎪⎝⎭;当1a =时,不等式解集为()(),11,-∞+∞ .24. 设二次函数2y x mx =+.(1)若对任意实数[]0,1,0m y ∈>恒成立,求实数x 的取值范围;(2)若存在[)04,0x ∈-,使得函数值04y ≤-成立,求实数m 的取值范围.【答案】(1)()(),10,-∞-⋃+∞(2)[)4,+∞【解析】【分析】(1)转化m 自变量,x 为参数,根据已知条件列方程式即可求解;(2)若存在[)04,0x ∈-,使得04y ≤-成立,经变形后()004x m x -+≤-,只需要其最小值满足条件即可,根据不等式性质求出最小值,即可求出m 的取值范围.【小问1详解】对任意实数[]()0,1,0m f x ∈>恒成立,即()20g m xm x =+>对任意实数[]0,1m ∈恒成立,因为()2g m xm x =+是关于m 的一次函数, 所以()()220010g x g x x ⎧=>⎪⎨=+>⎪⎩001x x x ≠⎧⎨><-⎩或所以实数x 的取值范围是()(),10,-∞-⋃+∞;【小问2详解】存在[)04,0x ∈-,使得()04f x ≤-成立,即2004x mx +≤-,只需()004x m x -+≤-成立,即需00min 4x m x ⎛⎫-+ ⎪-⎭≤⎝成立,因为(]00,4,x -∈所以0044x x -+≥=-(当且仅当02x =-时等号成立),则00min 44x m x ⎛⎫-+=≤ ⎪-⎝⎭,所以4≥m ,综上得实数m 的取值范围是:[)4,+∞.。
2023—2024学年安徽省部分学校高一上学期期末质量检测数学试卷
2023—2024学年安徽省部分学校高一上学期期末质量检测数学试卷一、单选题(★) 1. 已知集合,则()A.B.C.D.(★) 2. 已知幂函数的图象经过点,则()A.B.C.D.(★★) 3. 若,则为()A.第一、二象限角B.第二、三象限角C.第一、三象限角D.第一、四象限角(★★) 4. 已知函数是奇函数,则()A.B.1C.D.2(★★) 5. 函数的值域为()A.B.C.D.(★★★) 6. “学如逆水行舟,不进则退:心似平原跑马,易放难收”(明·《增广贤文》)是勉励人们专心学习的.假设初始值为1,如果每天的“进步率”都是,那么一年后是;如果每天的“退步率"都是,那么一年后是.一年后“进步者”是“退步者”的倍.照此计算,大约经过()天“进步者”是“退步者"的2倍(参考数据:,)A.33B.35C.37D.39(★★) 7. 已知函数,则()A.4047B.4048C.4049D.4050(★★★) 8. 已知数若且,则的取值范围是()A.B.C.D.二、多选题(★★) 9. 已知,则下列结论成立的是()A.B.若.则C.若,则D.(★★★) 10. 下列计算结果正确的是()A.B.C.若,则D.若,则(★★★)11. 函数的部分图象如图所示,则下列说法正确的是()A.B.的一个单调递增区间为C.函数的图象关于点对称D.若函数在上没有零点,则(★★★) 12. 高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,有一个用其名字命名的“高斯函数”;设,用表示不超过x的最大整数,则称为高斯函数.例如,则下列说法正确的是()A.是周期函数B.函数在区间上单调递增C.关于x的不等式的解集为D.若函数,则函数的值域是三、填空题(★) 13. 已知集合,,若,则的取值范围是 ______ .(★★) 14. 已知实数m,n满足,则 _________ .(★★) 15. 已知,则 _________ .(★★★) 16. 已函数则函数的零点个数为 _________ .四、解答题(★★★)17. 设函数的定义域为集合A,集合.(1)求;(2)设函数的值域为集合C,若“”是“”的必要不充分条件,求m的取值范围.(★★★) 18. 已知,角的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边经过点.(1)求(2)设函数,求的最小正周期.(★★★) 19. (1)已知正数a,b满足,若.求的最小值;(2)求的解集.(★★★) 20. 已知函数分别为定义在上的奇函数和偶函数,且满足.(1)求的解析式;(2)设函数,求在上的最小值,并求对应的的值.(★★★) 21. 对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减,②存在区间,使在上的值域为.则我们把称为闭函数,且区间称为的一个“好区间”,其中.(1)若是函数的好区间,求实数m,n的值;(2)若函数为闭函数,求实数k的取值范围.(★★★) 22. 已知函数在区间上单调递增,且直线和为函数的图象的两条对称轴.(1)求的一个解析式;(2)将的的象先向左平移个单位长度,再把所得图象上各点的横坐标伸长为原来的2倍,得到函数的图象,若对任意的,不等式恒成立,求实数p的取值范围.。
安徽省合肥市部分学校2024—2025学年高一上学期第二次教学质量检测数学试题
安徽省合肥市部分学校2024—2025学年高一上学期第二次教学质量检测数学试题一、单选题1.已知集合{}1,1,2,3M =-,{}1,1N =-,则M N ⋃=()A .{}1,1,2,3-B .{}1,1-C .{}2,3D .{}1,2,32.下列函数与函数y x =是同一函数的是()A .y x=B .y =C .y =D .2v y v =3.若两个正实数x ,y 满足4x y xy +=,且存在这样的x ,y 使不等式234y x m m +<+有解,则实数m 的取值范围是()A .14-<<m B .41m -<<C .4m <-或1m >D .3m <-或0m >4.命题“2x ∃≥,25x <”的否定是()A .2x ∃≥,25x ≥B .2x ∃<,25x ≥C .2x ∀≥,25x ≥D .2x ∀<,25x ≥5.已知02a b >>,,且21a b ab +=+,则2+a b 的最小值是()A .5+B .3C .3D .5-6.已知函数()f x 的定义域为(),1f x -R 为奇函数,()2f x +为偶函数,则()()()1216f f f =+++L ()A .0B .16C .22D .327.已知全集{}10,N U x x x =<∈,A U ⊆,B U ⊆,(){}U 1,9A B = ð,()(){}U U 4,6,7A B = 痧,{}3A B ⋂=,则下列选项不正确的为()A .8B ∈B .A 的不同子集的个数为8C .{}9A⊆D .()U 6A B ∉ ð8.若函数()f x 在定义域[],a b 上的值域为()(),f a f b ⎡⎤⎣⎦,则称()f x 为“Ω函数”.已知函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,则实数m 的取值范围是()A .[]4,10B .[]4,14C .[]10,14D .[)10,+∞二、多选题9.不等式20ax bx c -+>的解集是{}21x x -<<,则下列选项正确的是()A .0b <且0c >B .不等式0bx c ->的解集是{}2x x >C .0a b c ++>D .不等式20ax bx c ++>的解集是{}12x x -<<10.已知全集{0,1,2,3,4,5}U =,A 是U 的非空子集,当x A ∈时,1x A -∉且1x A +∉,则称x 为A 的一个“孤立元素”,则下列说法正确的是()A .若A 中元素均为孤立元素,则A 中最多有3个元素B .若A 中不含孤立元素,则A 中最少有2个元素C .若A 中元素均为孤立元素,且仅有2个元素,则这样的集合A 共有9个D .若A 中不含孤立元素,且仅有4个元素,则这样的集合A 共有6个11.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设R x ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,如[][3.24]3, 1.52=-=-.设函数()[]f x x x =-,则下列说法错误的是()A .()f x 的图象关于y 轴对称B .()f x 的最大值为1,没有最小值C .1ff +>D .()f x 在R 上是增函数三、填空题12.已知函数()8f x x=,[]1,2x ∈,()21g x ax a =+-,[]1,3x ∈-.对于任意的[]11,2x ∈,存在[]21,3x ∈-,使得()()12f x g x ≥,则a 的取值范围是.13.已知集合{}{}2680,40A xx x B x mx =-+==-=∣∣,若B A B =I ,且B ≠∅,则实数m 所取到的值为或.14.已知方程2620x x a -+=的两根分别为1212,,x x x x ≠,若对于0t ∀>,都有()212214t x x t t+≤-++成立,则实数a 的取值范围是.四、解答题15.已知集合204x A x x ⎧⎫+=<⎨⎬-⎩⎭,{}0B x x m =-<.(1)若3m =,全集U A B =⋃,试求U A B ⋂ð;(2)若A B =∅ ,求实数m 的取值范围;(3)若A B A = ,求实数m 的取值范围;16.已知函数2y ax bx c =++.(1)若2b a =-,21c a =-,函数的最小值为0,求a 的值;(2)若0,1,2c a b c >==--,不等式20ax bx c ++<有且仅有四个整数解,求实数c 的取值范围;(3)当0b <时,对R x ∀∈,0y ≥,若存在实数m 使得()()11230m a m b c -+++=成立,求m 的最小值.17.已知0,0a b ≥>,且21a b +=(1)求ab 最大值(2)求1aa b+最小值(3)若不等式22131m m a b+≥-+恒成立,求实数m 的取值范围.18.已知方程()220,x mx n m n -+-=∈R (1)若1m =,0n =,求方程220x mx n -+-=的解;(2)若对任意实数m ,方程22x mx n x -+-=恒有两个不相等的实数解,求实数n 的取值范围;(3)若方程()2203x mx n m -+-=≥有两个不相等的实数解12,x x ,且()2121248x x x x +-=,求221221128x x x x x x +-+的最小值.19.若函数()f x 的定义域为D .集合M D ⊆,若存在非零实数t 使得任意x M ∈都有x t D +∈,且()()f x t f x +>,则称()f x 为M 上的t 增长函数.(1)已知函数()g x x =,函数()2h x x =,判断()g x 和ℎ是否为区间−1,0上的32-增长函数,并说明理由:(2)已知函数()f x x =,且()f x 是区间[]4,2--上的n -增长函数,求正整数n 的最小值;(3)如果()f x 的图像关于原点对称,当0x ≥时,()22f x x a a =--,且()f x 为R 上的4-增长函数,求实数a 的取值范围.。
天津市第一中学滨海学校2024-2025学年高一上学期第一次质量检测数学试题
【详解】由 x -1 > 3 解得 x > 4 或 x < -2 ,所以 A = {x x < -2 或 x > 4} ,
由 2x
<
a
解得
x
<
a 2
,所以
B
=
ìíx î
【详解】Q A = {-1,0,1},B = {1,3,5}, C = {0, 2, 4} ,
\ A Ç B = {1},\(A Ç B) È C = {0,1, 2, 4} .
故选:C. 2.B 【分析】全称量词命题的否定是存在量词命题.
【详解】命题“ "x Î R, x2 - 2x + 4 ³ 0 ”的否定为“ $x Î R, x2 - 2x + 4 < 0 ”. 故选:B. 3.B 【分析】利用一元二次不等式、函数、方程的关系计算即可.
故 2x+y 的最小值为 4.
故选:A
12.B 【分析】首先解出不等式,根据不等式的解分类讨论可得. 【详解】不等式 x2 - (a +1)x + a < 0 化为 (x -1)(x - a) < 0 , 当 a = 1 时,不等式无解,
答案第41 页,共22 页
当 a < 1 时,不等式解为 a < x < 1 ,这里有且只有 2 个整数,则 -2 £ a < -1 , 当 a > 1 时,不等式解为1 < x < a ,这里有且只有 2 个整数,则 3 < a £ 4 , 综上 a 的取值范围是[-2, -1) U (3, 4] .
2024-2025学年山东省枣庄市高一上学期期中数学质量检测试题(含解析)
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求2024-2025学年山东省枣庄市高一上学期期中数学质量检测试题.1. 已知集合{}3,2,1,0A =---,12,1,0,2B ⎧⎫=--⎨⎬⎩⎭,则A B ⋂的非空子集个数为( )A. 7B. 8C. 15D. 16【答案】A【解析】【分析】求出交集再根据子集的概念得出结论.【详解】由题意{2,1,0}A B =-- ,因此它有8个子集,其中非空子集有7个.故选:A .2. 命题.“230,1x x x ∃<+>”的否定是( )A. 230,1x x x ∀≥+≤ B. 230,1x x x ∀<+≤ C. 230,1x x x ∃<+≤ D. 230,1x x x ∃≥+≤【答案】B【解析】【分析】利用特称命题的否定形式回答即可.【详解】根据特称命题的否定形式可知命题.“230,1x x x ∃<+>”的否定是“230,1x x x ∀<+≤”.故选:B3. 对于实数x ,“1x <”是“1x <”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要【答案】A【解析】【分析】根据充分、必要条件的知识确定正确答案.【详解】当1x <时,显然有1x <成立,但是由1x <,未必有1x <,如21x =-<,但1x >,故前者是后者的充分不必要条件.故选:A4. 下列函数中,在定义域上既是奇函数又是减函数的为( )A. 1y x =+ B. 1y x =C. []()31,2y x x =-∈- D. y x x=-【答案】D【解析】【分析】根据奇偶函数的定义及单调性的定义逐项判断即可.【详解】对于A ,对于()1y f x x ==+,()1()f x x f x -=-≠,且()1()f x x f x -=-≠-,故函数1y x =+是非奇非偶函数,不满足题意;对于B ,函数()1y f x x ==,满足()()f x f x -=-是奇函数,但在定义域内不具有单调性,不满足条件;对于C ,函数的定义域为[1,2]-,不具有对称性,故不具有奇偶性,不满足题意;对于D ,对于函数()y f x x x ==-,定义域为R ,满足()()f x f x -=-,是奇函数,当0x >时,()2f x x =-,则()f x 在()0,∞+上单调递减;当0x <时,()2f x x =,则()f x 在(),0-∞上单调递减;又当0x =时,22x x -=,所以()f x 在R 上单调递减,满足题意.故选:D.5. 已知幂函数()()223m m f x xm +-=∈Z 是偶函数,且()f x 在(),0∞-上是增函数,则m =( )A. 2- B. 1- C. 0 D. 3【答案】B【解析】【分析】由函数()f x 是偶函数且在(),0∞-上是增函数,可知函数()f x 在(0,+∞)上单调递减,由幂函数的性质可得2230m m +-<,结合m ∈Z ,即可解出2m =-或1m =-或0m =,分别代入函数()f x ,结合()f x 是偶函数即可得出答案.【详解】因为函数()f x 是偶函数且在(),0∞-上是增函数,所以函数()f x 在(0,+∞)上单调递减,所以2230m m +-<,即(1)(3)0m m -+<,解得31m -<<,又因为m ∈Z ,所以2m =-或1m =-或0m =,当0m =或2m =-时,()3f x x -=,此时()f x 为奇函数,不满足题意;当1m =-时,()4f x x -=,此时()f x 为偶函数,满足题意;所以1m =-.故选:B6. 若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是( )A. {31}mm -<<∣ B. {3mm <-∣或1}m > C. {13}m m -<<∣ D. {1m m <-∣或3}m >【答案】C【解析】【分析】利用基本不等式和常值代换法求得28x y+的最小值,依题得到不等式2236m m -+<,解之即得.【详解】因3x y +=,由28128()()3x y x y x y+=++1281(10)(10633y x x y =++≥+=,当且仅当28y x x y =时取等号,即当1,2x y ==时,28x y+取得最小值6.因不等式22823m m x y+>-+恒成立,故2236m m -+<,即2230m m --<,解得13m -<<.故选:C.7. 已知()()()1f x x x b =+-是偶函数,且其定义域为[]21,a a -,则a b +的值是 ( )A. 13- B. 43 C. 23 D. 23-【答案】B【解析】【分析】利用偶函数的定义和性质,即可求得,a b 的值.【详解】()()21f x x b x b =+--,因为函数是偶函数,所以满足()()f x f x -=,得1b =,偶函数的定义域关于原点对称,所以210a a -+=,得13a =,所以43a b +=.故选:B8. 某位同学经常会和爸爸妈妈一起去加油,经过观察他发现了一个有趣的现象:爸爸和妈妈的加油习惯是不同的.爸爸每次加油都说:“师傅,给我加250元的油”,而妈妈则说“师傅帮我把油箱加满”.这位同学若有所思,如果爸爸、妈妈都加油两次,两次的加油价格不同,妈妈每次加满油箱;爸爸每次加250元的油,我们规定谁的平均单价低谁就合算,那么请问爸爸、妈妈谁更合算呢?( )A. 妈妈B. 爸爸C. 一样D. 不确定【答案】B【解析】【分析】由题意,先计算爸爸和妈妈两次加油的平均单价,再作差法比较大小,即可得解.【详解】由题意,设第一次加油单价为x 元,第二次为y 元,油箱加满为a 升,则妈妈两次加油共需付款()a x y +元,爸爸两次能加250250250()x y x y xy++=升油,设爸爸两次加油的平均单价为M 元/升,妈妈两次加油的平均单价为N 元/升,则5002(),250()22xy a x y x y M N x y x y a xy++====++,且x y ≠,,0x y >,所以22()022()x y xy x y N M x y x y +--=-=>++,即N M >,所以爸爸的加油方式更合算.故选:B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 十六世纪中叶,英国数学家雷科德在《励智石》一书中首先把“=”作为等号使用,后来英国数学家哈里奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若R a b c ∈,,,则下列说法不成立的是( )A. 若0ab ≠且a b <,则11a b > B. 若01a <<,则3a a <C. 若0a b >>,则11b b a a+<+ D. 若c b a <<且0ac <,则22cb ab <【答案】ACD【解析】【分析】A 项,通过设出a 和b 的值,即可得出结论;B 项,通过作差后与0比较,即可得出结论;C 项,通过作差后与0比较,即可得出结论;D 项,通过分析已知条件得出a 和c 与0的关系,讨论b 的取值,即可得出结论.【详解】由题意,A 项,当2a =-,1b =时,满足a b <,但11a b <,∴A 错误,B 项,∵01a <<,∴()()()321110a a a a a a a -=-=+-<,∴3a a <,∴B 正确,C 项,∵0a b >>,∴()1011b b a b a a a a +--=>++,∴C 错误,D 项,∵c b a <<,0ac <,∴0a >,0c <,b ∈R ,当0b =时,则22cb ab =,∴D 错误,故选:ACD.10. 已知函数21,0()2,0x x f x x x ⎧+≤=⎨>⎩,若()10f x =,则x 的取值可以是( )A. 3B. 20C. 3-D. 5【答案】CD【解析】【分析】讨论0x ≤和0x >两种情况利用解析式即可求出.【详解】当0x ≤时,2()110f x x =+=,解得3x =(舍去)或3x =-,当0x >时,()210f x x ==,解得5x =,符合,综上,3x =-或5.故选:CD.11. 已知函数()y f x =是定义在R 上的偶函数,当0x ≤时,()()1f x x x =+,则下列说法正确的是( )A. 函数()f x 有3个单调区间B. 当0x >时,()()1f x x x =-C. 函数()f x 有最小值14-D. 不等式()0f x <的解集是()1,1-【答案】BC【解析】【分析】利用奇偶性求出()y f x =的表达式,再逐项求出单调区间、最值以及不等式的解集即可判断.【详解】解:当0x >时,0x -<,因为0x ≤时,()()1f x x x =+所以()()1f x x x -=--+,又因为()y f x =是定义在R 上的偶函数所以0x >时,()()21f x x x x x=--+=-即()()()2200x x x f x x x x ⎧->⎪=⎨+≤⎪⎩如图所示:对A ,由图知,函数()f x 有4个单调区间,故A 错误;对B ,由上述分析知,当0x >时,()2=-f x x x ,故B 正确;对C ,由图知,当11212x =-=-⨯或11212x -=-=⨯时,函数()f x 取得最小值()111224min f x f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭-,故C 正确;对D ,由图知,不等式()0f x <的解集是()()1,00,1-U ,故D 错误.故选:BC.三、填空题:本题共3小题,每小题5分,共15分12. 树德中学对高一强基班的学科培优进行了调查.调查结果显示:参加物理培优的有60人,参加数学培优的有80人,参加化学培优的有50人,三科培优都参加的有24人,只选择两科培优参加的有22人,不参加其中任何一科培优的有15人,则接受调查的高一强基班学生共有_____________人.【答案】135【解析】【详解】利用文恩图的辅助求解即可.【分析】由文恩图可得;参加培优的人数为()60+80+5022224120--⨯=,又不参加其中任何一科培优的有15人,所以接受调查的高一强基班学生共有12015135+=.故答案为:135.13. 函数()f x =______.【答案】(]3,00,12⎡⎫-⎪⎢⎣⎭【解析】分析】依题意可得230100x x x +≥⎧⎪-≥⎨⎪≠⎩,求解即可.【详解】依题意可得230100x x x +≥⎧⎪-≥⎨⎪≠⎩,解得312x -≤≤且0x ≠.所以函数()f x 的定义域为(]3,00,12⎡⎫-⎪⎢⎣⎭.故答案为:(]3,00,12⎡⎫-⎪⎢⎣⎭.14. 若02a <<,则122a a a +-的最小值是__________【答案】54【解析】【分析】将122a a a +-变形,得到141122422a a a a a+=-++--,利用基本不等式“1”的妙用,求解最小值.【详解】因为02a <<,所以420a ->,(42)24a a -+=,所以12141112222422a a a a a a a+=-++=-++---41(42)21()4224a a a a -+=-++⨯-14281514115424244a a a a ⎛-⎛⎫=-++++-++= ⎪ -⎝⎭⎝…,当且仅当428242a a a a -=-,即23a =时等号成立.故答案为:54.四.解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15. 设全集R ,集合{}36A x x =≤<,{}29B x x =<<.(1)分别求A B ⋂,R ()B A ð;(2)已知{}1C x a x a =<<+,若C B B = ,求实数a 的取值范围.【答案】(1){|36}A B x x =≤< ,R ()B A = ð{|2x x ≤或36x <≤或9}x ≥; (2)28a ≤≤.【解析】【分析】(1)应用集合交并补运算求集合;(2)根据题设有C B ⊆且集合C 非空,进而列不等式组求参数范围.【小问1详解】由题设{|36}A B x x =≤< ,且R {|2B x x =≤ð或9}x ≥,所以R ()B A = ð{|2x x ≤或36x <≤或9}x ≥.【小问2详解】由题意C B ⊆,显然集合C 非空,所以219a a ≥⎧⎨+≤⎩,可得28a ≤≤.16. (1)已知54x <,求函数14145y x x =-+-的最大值,并求出此时x 的值;(2)已知,0x y >,且191x y+=,求x y +的最小值,并求出此时,x y 的值;(3)已知0,0a b >>,且2212b a +=,求的最大值,并求出此时,a b 的值.【答案】(1)1x =时函数有最大值为2;(2)4,12x y ==时目标式最小值为16;(3)a =b =.【解析】【分析】(1)根据对勾函数最值的求法求函数最大值,并确定取值条件;(2)应用基本不等式“1”的代换求目标式的最小值,并确定取值条件;(3)由222(1)b a -=代入目标式,结合基本不等式求最大值,并确定取值条件.为【详解】(1)由题意540x ->,则11454[(54)]44554y x x x x =-++=--++--42≤-+=,当且仅当1x =时等号成立,所以1x =时函数有最大值为2;(2)199()()101016y x x y x y x y x y +=++=++≥+=,当且仅当3y x =,即4,12x y ==时取等号,所以4,12x y ==时目标式最小值为16;(3)由222(1)b a -=,则01a <<,所以222322a a +-=≤=,a =⇒=b =所以a =b =.17. 已知二次函数()f x 满足()()142f x f x x +=-+,且()01f =.(1)求()f x 的解析式;(2)若两个不相等的正数m ,n 满足()()f m f n =,求41m n +的最小值.【答案】(1)2()241,R f x x x x =-++∈ (2)9.2【解析】【分析】(1)设出二次函数()f x 的解析式,运用待定系数法容易得到答案;(2)根据对称性先求出正数m ,n 的关系,然后运用“1”的妙用求41m n+的最小值.【小问1详解】设二次函数()()20f x ax bx c a =++≠,因为()01f c ==,所以2()1f x ax bx =++..由()()142f x f x x +=-+,得()22(1)11142a x b x ax bx x ++++=++-+,得22(2)1(4)3ax a b x a b ax b x +++++=+-+,所以24,13a b b a b +=-⎧⎨++=⎩得24a b =-⎧⎨=⎩,故2()241,R f x x x x =-++∈.【小问2详解】因为()f x 图象的对称轴为直线()4122x =-=´-,所以由()()f m f n =,得2m n +=,即()112m n +=,又0,0,m n >>所以()411411419552222m n m n m n m n n m ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4m n n m =,即423m n ==时,等号成立.故41m n +的最小值为9.218. 某乡镇为了打造“网红”城镇发展经济,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约15元/千克,且销售畅通供不应求,记该水果单株利润为()f x (单位:元)(1)写单株利润()f x (元)关于施用肥料x (千克)的关系式;(2)当施用肥料为多少千克时,该水果单株利润最大?最大利润是多少?【答案】(1)27530225,02()75030,251x x x f x x x x x ⎧-+≤≤⎪=⎨-<≤⎪+⎩; (2)当施用肥料为4千克时,单株利润最大,最大利润是480元.【解析】【分析】(1)根据给定的函数关系,直接求出()f x 的解析式.(2)结合二次函数最值、基本不等式求最值,分段求出函数()f x 的最大值,再比较大小即可.【小问1详解】依题意,()15()1020f x W x x x =--,又()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,所以27530225,02()75030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩.【小问2详解】当02x ≤≤时,2()7530225f x x x =-+,其图象开口向上,对称轴为15x =,因此()f x 在1[0,5上单调递减,在1[,2]5上单调递增,()f x 在[0,2]上最大值为()2465f =;当25x <≤时,()()()7501750750307503013011x f x x x x x+-=-=--++++25780301780304801x x ⎛⎫=-++≤-⨯= ⎪+⎝⎭,当且仅当2511x x=++时,即4x =时等号成立,而465480<,则当4x =时,max ()480f x =,所以当施用肥料为4千克时,单株利润最大,最大利润是480元.19. 已知函数()21x f x bx a+=+是奇函数,且()12f -=-,()22g x x x -=+.(1)求函数()f x 的解析式;(2)判断并证明函数()f x 在()0,∞+上的单调性;(3)令()()()()2,0h x g x mf x m =-<,若对任意的121,,22x x ⎡⎤∈⎢⎥⎣⎦都有()()12114h x h x -≤,求实数m 的取值范围.【答案】(1)1()f x x x=+ (2)()f x ()0,1上单调递减,()1,+∞上单调递增,证明见解析(3)1,02⎡⎫-⎪⎢⎣⎭【解析】的在【分析】(1)由()f x 是奇函数,可知()12f -=-,()12f =,进而列出关系式,求出,a b ,即可得到函数()f x 的解析式;(2)根据题意,利用定义法,可判断并证明函数()f x 在()0,∞+上的单调性;(3)由对任意的1x ∀,21,22x ⎡⎤∈⎢⎥⎣⎦都有()()12114h x h x -≤恒成立,可得()()max min 114h x h x -≤,求出()()max min ,h x h x ,进而可求出m 的取值范围.【小问1详解】()12f -=- ,且()f x 是奇函数,()12f ∴=,2222b a b a⎧=-⎪⎪-+∴⎨⎪=⎪+⎩,解得01a b =⎧⎨=⎩,()1xf x x ∴=+.【小问2详解】证明如下:任取1x ,()20,1x ∈,且12x x <,则()()()121212*********x x f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()12,0,1x x ∈ ,且12x x <,120x x ∴-<,1201x x <<,∴1210x x -<,()()120f x f x ∴->,即()()12f x f x >,函数()f x 在()0,1上单调递减.同理可证明函数()f x 在()1,+∞上单调递增.【小问3详解】由题意知()22112h x x m x x x ⎛⎫ ⎪=⎝++⎭-,令1z x x=+,222y z mz =--,由(1)可知函数1z x x =+在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增,52,2z ⎡⎤∴∈⎢⎥⎣⎦,函数222y z mz =--的对称轴方程为0z m =<,函数222y z mz =--在52,2⎡⎤⎢⎥⎣⎦上单调递增,当2z =时,222y z mz =--取得最小值,min 42y m =-+;当52z =时,222y z mz =--取得最大值,max 1754y m =-+.所以()min 42h x m =-+,()max 1754h x m =-+,又对任意的1x ∀,21,22x ⎡⎤∈⎢⎥⎣⎦都有()()12114h x h x -≤恒成立,()()max min 114h x h x ∴-≤,即()171154244m m -+--+≤,解得12m ≥-,又0m < ,m ∴的取值范围是102m -≤<.。
北京市朝阳区2023-2024学年高一上学期期末质量检测数学试题含答案
北京市朝阳区2023~2024学年度第一学期期末质量检测高一数学(答案在最后)(考试时间120分钟满分150分)本试卷分为选择题(共50分)和非选择题(共100分)两部分第一部分(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}{}2,1,2,3,2,Z A B x x k k =-==∈∣,则A B = ()A.{2,1}-B.{2,2}- C.{1,2}D.{2,3}【答案】B 【解析】【分析】根据题意,结合集合交集的概念,即可求解.【详解】由集合{}{}2,1,2,3,2,Z A B xx k k =-==∈∣,集合B 由,所有偶数构成,集合A 中只有-2,2两个偶数,故{2,2}A B =- .故选:B.2.命题“x ∀∈R ,都有||0x x +≥”的否定为()A.x ∃∈R ,使得||0x x +<B.x ∃∈R ,使得||0x x +≥C.x ∀∈R ,都有||0x x +≤D.x ∀∈R ,都有||0x x +<【答案】A 【解析】【分析】根据全称命题的否定知识即可求解.【详解】由“x ∀∈R ,使得0x x +≥”的否定为“x ∃∈R ,使得0x x +<”,故A 正确.故选:A.3.已知,,a b c ∈R ,且a b >,则下列不等式一定成立的是()A.22a b >B.ac bc> C.22a b> D.11a b<【答案】C 【解析】【分析】根据题意,利用不等式的基本性质,以及特例法,结合指数函数的单调性,逐项判定,即可求解.【详解】对于A 中,例如1,2a b ==-,此时满足a b >,但22a b <,所以A 错误;对于B 中,当0c =时,ac bc =,所以B 不正确;对于C 中,由指数函数2x y =为单调递增函数,因为a b >,可得22a b >,所以C 正确;对于D 中,例如1,2a b ==-,此时满足a b >,但11a b>,所以D 不正确.故选:C.4.设x ∈R ,则“x >1”是“2x >1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【详解】试题分析:由1x >可得21x >成立,反之不成立,所以“1x >”是“21x >”的充分不必要条件考点:充分条件与必要条件5.已知0x 是函数3()e x f x x =+的一个零点,且()()00,,,0a x b x ∈-∞∈,则()A.()0,()0f a f b <<B.()0,()0f a f b >> C.()0,()0f a f b >< D.()0,()0f a f b <>【答案】D 【解析】【分析】判断出()f x 的单调性,根据0x 是函数()f x 的一个零点求出()f x 的值域可得答案.【详解】因为3e ,x y y x ==为x ∈R 上的单调递增函数,所以3()e x f x x =+为x ∈R 上的单调递增函数,又因为0x 是函数3()e x f x x =+的一个零点,所以()0,x x ∈-∞时()0f x <,()0,x x ∈+∞时()0f x >,若()()00,,,0a x b x ∈-∞∈,则()0,()0f a f b <>.故选:D.6.已知112223211,,log 332a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则()A.a b c <<B.c a b<< C.b a c<< D.c b a<<【答案】C 【解析】【分析】根据幂函数和对数函数的单调性比较大小即可.【详解】因为幂函数12y x =在[)0,∞+上单调递增,12133<<,所以112212133⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即1b a <<,因为对数函数23log y x =在()0,∞+单调递减,1223<,所以223312log log 123>=,即1c >,所以b a c <<,故选:C.7.已知函数ππ()2sin()0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图象如图所示,则()A.π1,4ωϕ==- B.π1,4ωϕ==C.π2,4ωϕ==-D.π2,4ωϕ==【答案】B 【解析】【分析】结合三角函数的周期性求ω,利用特殊点的相位求ϕ的值.【详解】由图可知:7π3ππ244T =-=⇒2πT =,由2π2πω=⇒1ω=.由3ππ4ϕ+=⇒3πππ44ϕ=-=.故选:B8.函数()|sin |cos f x x x =+是()A.奇函数,且最小值为 B.C.偶函数,且最小值为 D.【答案】D【解析】【分析】根据题意,结合函数的奇偶性,判定A 、B 不正确;再结合三角函数的图象与性质,求得函数()f x 的最大值和最小值,即可求解.【详解】由函数()|sin |cos f x x x =+,可得其定义域x ∈R ,关于原点对称,且()|sin()|cos()|sin |cos ()f x x x x x f x -=-+-=+=,所以函数()f x 为偶函数,因为()()()()2πsin 2πcos 2πsin cos f x x x x x f x +=+++=+=,所以2π为()y f x =的一个周期,不妨设[0,2π]x ∈,若[0,π]x ∈时,可得π()sin cos )4f x x x x =+=+,因为[0,π]x ∈,可得ππ5π[,]444x +∈,当ππ42x +=时,即π4x =时,可得max ()f x =;当π5π44x +=时,即πx =时,可得min ()1f x =-;若[]π,2πx ∈,可得π()sin cos )4f x x x x =-+=+,因为[π,2π]x ∈,可得π5π9π[,]444x +∈,当π2π4x +=时,即7π4x =时,可得max ()f x =;当π5π44x +=时,即πx =时,可得()min 1f x =-,综上可得,函数()f x ,最小值为1-.故选:D.9.已知函数()f x 的图象是在R 上连续不断的曲线,()f x 在区间项[1,)+∞上单调递增,且满足()()20f x f x -+=,()23f =,则不等式3(1)3f x -<+<的解集为()A.(2,2)- B.(1,1)- C.(0,2)D.(1,3)【答案】B 【解析】【分析】通过条件分析函数具有的性质,再把函数不等式转化为代数不等式求解.【详解】由()()2f x f x -=-得:()f x 的图象关于点()1,0对称;()23f =⇒()03f =-;又()f x 在R 上连续不断,且在[)1,+∞上单调递增,所以()f x 在R 上单调递增.()313f x -<+<⇒012x <+<⇒11x -<<.故选:B10.在一定通风条件下,某会议室内的二氧化碳浓度c 随时间t (单位:min )的变化规律可以用函数模型0etc c δλ-=+近似表达.在该通风条件下测得当0,5,10t t t ===时此会议室内的二氧化碳浓度,如下表所示,用该模型推算当15t =时c 的值约为()t 0510c0.15%0.09%0.07%A.0.04%B.0.05%C.006%.D.0.07%【答案】C 【解析】【分析】根据题意知建立方程组分别求出51e3δ-=,0.09%λ=,从而可求解.【详解】由题意得:当0t =时,0000.15%c c ec δλλ-=+=+=①,当5t =时,5e0.09%c c δλ-=+=②,当10t =时,10e0.07%c c δλ-=+=③,由-①②得51e 0.06%δλ-⎛⎫-= ⎪⎝⎭④,由-②③得55e1e 0.02%δδλ--⎛⎫-= ⎪⎝⎭⑤,由⑤④得51e 3δ-=⑥,所以00.09%3c c λ=+=⑦,由-①⑦得20.06%3λ=,解得0.09%λ=,所以当15t =时,315555001e eee0.15%0.09%0.09%0.0633%3c c c δδδδλλ----⎛⎫=+=+⨯⨯=-+⨯≈ ⎪⎝⎭,故C 正确.故选:C.第二部分(非选择题共100分)二、填空题(本大题共6小题,每小题5分,共30分)11.函数()()lg 1f x x =+的定义域为_________________.【答案】()1-+∝,【解析】【分析】根据对数的真数大于零,列出不等式解出即可.【详解】由10x +>得1x >-,则函数()()lg 1f x x =+的定义域为()1-+∝,.故答案为:()1-+∝,12.若1x >,则11x x +-的最小值是_____.【答案】3【解析】【分析】111111x x x x +=-++--,利用基本不等式可得最值.【详解】∵1x >,∴11111311x x x x +=-++≥=--,当且仅当111x x -=-即2x =时取等号,∴2x =时11x x +-取得最小值3.故答案为:3.13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,若角α的终边经过点43,55P ⎛⎫- ⎪⎝⎭,角β的终边与角α的终边关于原点对称,则sin α=__________,cos β=__________.【答案】①.35②.45【解析】【分析】根据角α终边经过点43,55P ⎛⎫- ⎪⎝⎭,从而可求出sin α,cos α,再根据角β的终边与角α的终边关于原点对称,从而可求解cos β.【详解】对空①:由点43,55P ⎛⎫- ⎪⎝⎭在角α的终边上,所以445cos 5α-=-,335sin 5α==.对空②:由角β的终边与角α的终边关于原点对称,所以4cos cos 5a β=-=.故答案为:35;45.14.已知函数()21x f x a =⋅-的图象过原点,则=a __________;若对x ∀∈R ,都有()f x m >,则m 的最大值为__________.【答案】①.1②.1-【解析】【分析】根据函数()f x 过原点,从而求出a 的值;对于()f x m >,只需求出()min f x m >,从而可求解.【详解】对空①:由函数()·21xf x a =-过原点,即()00·210f a =-=,得1a =;对空②:由函数()21xf x =-在定义域上单调递增,且()211xf x =->-恒成立,所以m 的最大值为1-.故答案为:1;1-.15.将函数()sin 2f x x =的图象向左平移(0)ϕϕ>个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于y 轴对称,则ϕ的一个取值为__________.【答案】π4(答案不唯一)【解析】【分析】根据图象平移变换得到()g x 的解析式,结合图象关于y 轴对称,令()01g =±,求出ϕ的值.【详解】函数()sin 2f x x =的图象向左平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,则()()sin 2g x x ϕ=+,因为函数()g x 的图象关于y 轴对称,则()()0sin 201g ϕ=+=±,即sin 21ϕ=±,所以π2π2k ϕ=+,即π1π42k ϕ=+,N k ∈,所以ϕ的一个取值为π4,故答案为:π4(答案不唯一).16.已知函数()2f x x b =+,()g x 为偶函数,且当0x ≥时,2()4g x x x =-,记函数()()()()()()(),,f x f x g x T x g x f x g x ⎧≥⎪=⎨<⎪⎩,给出下列四个结论:①当0b =时,()T x 在区间[2,)-+∞上单调递增;②当8b =-时,()T x 是偶函数;③当0b <时,()T x 有3个零点;④当8b ≥时,对任意x ∈R ,都有()0T x >.其中所有正确结论的序号是__________.【答案】①③【解析】【分析】根据题意,结合函数()(),f x g x 的解析式,利用函数的新定义,结合函数的图象、函数的零点的定义,逐项判定,即可求解.【详解】因为()g x 为偶函数,且当0x ≥时,2()4g x x x =-,当0x <时,可得()2()4g x g x x x =-=+,所以224,0()4,0x x x g x x x x ⎧-≥=⎨+<⎩,对于①中,当0b =时,()2f x x =,令()()f x g x =,解得0,2,6x x x ==-=,如图所示,()224,22,224,2x x x T x x x x x x ⎧+<-⎪=-≤≤⎨⎪->⎩,结合图象,可得函数()T x 在区间[2,)-+∞上单调递增,所以①正确;对于②中,当8b =-时,可得()28f x x =-,令2428x x x -=-,即2680x x -+=,解得2x =或4x =,当2x <时,可得()()T x g x =;当24x ≤≤时,可得()()T x f x =;当4x >时,可得()()T x g x =,即2224,04,02()28,244,4x x x x x x T x x x x x x ⎧+<⎪-≤<⎪=⎨-≤<⎪⎪-≥⎩,其中()()33,32f f -=-=-,所以()()33f f -≠,所以当8b =-时,函数()T x 不是偶函数,所以②不正确;对于③中,当0b <时,令()0f x =,即20x b +=,解得02bx =->,当0x <时,令()0g x =,即240x x +=,解得4x =-,当0x ≥时,令()0g x =,即240x x -=,解得0x =或4x =,若042b <-<时,函数()T x 有三个零点,分别为4x =-,0x =和2b x =-;若42b-=时,即8b =-时,函数()T x 有三个零点,分别为4x =-,0x =和4x =;若42b->时,即8b <-时,函数()T x 有三个零点,分别为4x =-,0x =和4x =;综上可得,当0b <时,函数()T x 有三个零点,所以③正确;对于④中,当0x <时,令()0g x =,即240x x +=,解得4x =-,将点(4,0)-代入函数()y f x =,可得2(4)0b ⨯-+=,解得8b =,如图所示,当8b ≥时,函数()0T x ≥,所以④不正确.故答案为:①③.三、解答题(本大题共5小题,共70分.解答应写出文字说明,演算步骤或证明过程)17.已知集合{}2340,{0}A xx x B x x a =--≤=->∣∣.(1)当4a =时,求A B ⋃;(2)若()A B =∅R ð,求实数a 的取值范围.【答案】(1){}1A B x x ⋃=≥-(2)1a <-【解析】【分析】(1)化简集合,A B ,直接利用并集运算求解即可;(2)化简集合,根据交集运算结果求解参数.【小问1详解】由题知,{}{}234014A xx x x x =--≤=-≤≤∣,{}{0}B x x a x x a =->=>∣,因为4a =,所以{}4B x x =>,所以{}1A B x x ⋃=≥-.【小问2详解】因为()A B =∅R ð,且{}14A x x =-≤≤,{}R B x x a =≤ð,所以1a <-.18.已知,αβ为锐角,21sin ,tan()102ααβ=+=.(1)求tan α和tan β的值;(2)求2αβ+的值.【答案】(1)1tan 7α=,1tan 3β=(2)π4【解析】【分析】(1)先根据同角三角函数平方关系求出cos α,再根据商数关系和两角和正切公式化简得结果;(2)根据二倍角公式得sin 2,cos 2ββ,,再根据两角和余弦公式得()cos 2αβ+,最后根据范围求结果.【小问1详解】因为,αβ为锐角,2sin 10α=,所以cos 10α==,所以2sin 110tan cos 77210ααα==,又因为tan tan 1tan()1tan tan 2αβαβαβ++==-,所以1tan 3β=,【小问2详解】因为,αβ为锐角,1tan 3β=,所以22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩,解得sin 10cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩,所以sin 22sin cos 3101052βββ==⨯=⨯,24cos 212sin 5ββ=-=,所以()43cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=,又因为,αβ为锐角,所以3π022αβ<+<,所以π24αβ+=.19.设函数()2()log 4(1)x f x m m =+>-.(1)当0m =时,求(1)f 的值;(2)判断()f x 在区间[0,)+∞上的单调性,并用函数单调性的定义证明你的结论;(3)当[0,)x ∈+∞时,()f x 的最小值为3,求m 的值.【答案】(1)2(2)()f x 在区间[0,)+∞上的单调递增,证明见解析(3)7【解析】【分析】(1)求出函数()f x 的解析式,进而求出(1)f 的值;(2)利用函数单调性的定义证明单调性;(3)由(2)的单调性,可得()()min 03f x f ==,求出m 的值.【小问1详解】当0m =时,222()log 4log 22x x f x x ===,所以(1)2f =.【小问2详解】()f x 在区间[0,)+∞上的单调递增,证明如下:在[0,)+∞上任取12,x x ,且12x x <,则()()()()1122122224log 4log 4log 4x x x x m m m m f x f x =++--+=+,因为120x x ≤<,1m >-,所以12144x x ≤<,所以12044x x m m <+<+,即121440x x m m <+<+,所以12204log 4x x m m++<,即()()120f x f x -<,所以()()12f x f x <,即()f x 在区间[0,)+∞上的单调递增.【小问3详解】[0,)x ∈+∞时,由(2)可得()f x 在[)0,∞+上单调递增,所以()()()()022min 0log 4log 13f x f m m ==+=+=,所以3217m =-=.20.设函数2()2cos cos (0)f x x x x m ωωωω=++>,且(0)1f =.(1)求m 的值;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求ω的值及()f x 的零点.条件①:()f x 是奇函数;条件②:()f x 图象的两条相邻对称轴之间的距离是π;条件③:()f x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,在区间ππ,63⎡⎤⎢⎥⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)1m =-(2)选择①,不存在;选择②,12ω=,ππ,Z 6k k -+∈;选择③,1ω=,ππ,Z 122k k -+∈【解析】【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据(0)1f =,即可求解;(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【小问1详解】2()2cos cos f x x x x mωωω=++πcos 212sin 216x x m x m ωωω⎛⎫=++=+++ ⎪⎝⎭,又1(0)2112f m =⨯++=,所以1m =-.【小问2详解】由(1)知,()π2sin 26f x x ω⎛⎫=+⎪⎝⎭,选择①:因为()f x 是奇函数,所以()00f =与已知矛盾,所以不存在()f x .选择②:因为()f x 图象的两条相邻对称轴之间的距离是π,所以π2T =,2πT =,2π21Tω==,12ω=则()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭,令()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭,解得ππ,Z 6k x k -+∈=.即()f x 零点为ππ,Z 6k k -+∈.选择③:对于()π2sin 26f x x ω⎛⎫=+⎪⎝⎭,0ω>,令πππ2π22π,Z 262k x k k ω-+≤+≤+∈,ππ3π2π22π,Z 262k x k k ω+≤+≤+∈,解得ππππ,Z 36k k x k ωωωω-+≤≤+∈,ππ2ππ,Z 63k k x k ωωωω+≤≤+∈,即()f x 增区间为ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦,()f x 减区间为ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦,因为()f x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,在区间ππ,63⎡⎤⎢⎥⎣⎦上单调递减,所以0k =时符合,即()f x 在ππ,36ωω⎡⎤-⎢⎥⎣⎦上单调递增,在π2π,63ωω⎡⎤⎢⎣⎦上单调递减,所以π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩且2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩,解得1ω=,则()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,所以令()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭,解得ππ,Z 122k x k =-+∈,即()f x 零点为ππ,Z 122k k -+∈.21.已知集合{}12,,,n A a a a = ,其中*n ∈N 且*4,(1,2,,)i n a i n ≥∈=N ,非空集合B A ⊆,记()T B 为集合B 中所有元素之和,并规定当B 中只有一个元素b 时,()T B b =.(1)若{1,2,5,6,7,8},()8A T B ==,写出所有可能的集合B ;(2)若{}{}1233,4,5,9,10,11,,,A B b b b ==,且()T B 是12的倍数,求集合B 的个数;(3)若{1,2,3,,21}(1,2,,)i a n i n ∈-=L L ,证明:存在非空集合B A ⊆,使得()T B 是2n 的倍数.【答案】21.{}8,{}1,7,{}2,6,{}1,2,522.423.证明见详解【解析】【分析】根据条件,可列出(1)(2)中所有满足条件的B ;对(3),分情况讨论,寻找使()T B 是2n 倍数的集合B .【小问1详解】所有可能的集合B 为:{}8,{}1,7,{}2,6,{}1,2,5.【小问2详解】不妨设:123b b b <<,由于123311b b b ≤<<≤,且123,,b b b A ∈,所以()123345123091011T B b b b ++=≤=++≤=++.由题意,()T B 是12的倍数时,()12T B =或()24T B =.当()12T B =时,因为12334512b b b ++≥++=,所以当且仅当{}3,4,5B =时,()12T B =成立,故{}3,4,5B =符合题意.当()24T B =时,若311b =,则1213b b +=,故{}3,10,11B =或{}4,9,11B =符合题意;若310b =,则1214b b +=,故{}5,9,10B =符合题意;若39b =,则12345918b b b ++≤++=,无解.综上,所有可能的集合B 为{}3,4,5,{}3,10,11,{}4,9,11,{}5,9,10.故满足条件的集合B 的个数为4.【小问3详解】(1)当n A ∉时,设12···n a a a <<<,则1212,,···,,2,2,···,2n n a a a n a n a n a ---∈{}1,2,3,···,1,1,···,21n n n -+-,这2n 个数取22n -个值,故其中有两个数相等.又因为12···n a a a <<<,于是1222···2n n a n a n a ->->>-,从而12,,···,n a a a 互不相等,122,2,···,2n n a n a n a ---互不相等,所以存在μ,ν{}1,2,···,n ∈使得2a n a μν=-.又因a n μ≠,a n ν≠故μν≠.则{},B a a μν=,则()2T B a a n μν=+=,结论成立.(2)当n A ∈时,不妨设n a n =,则121,,···,n a a a -(4n ≥),在这1n -个数中任取3个数,i j k a a a <<.若j i a a -与k j a a -都是n 的倍数,()()2k i k j j i a a a a a a n -=-+-≥,这与(],,0,21i j k a a a n ∈-矛盾.则,,i j k a a a 至少有2个数,它们之差不是n 的倍数,不妨设()2121a a a a ->不是n 的倍数.考虑这n 个数:1a ,2a ,12a a +,123a a a ++,···,121···n a a a -+++.①若这n 个数除以n 的余数两两不同,则其中必有一个是n 的倍数,又1a ,22a n <且均不为n ,故存在21r n ≤≤-,使得()12···N*r a a a pn n +++=∈.若p 为偶数,取{}12,,···,r B a a a =,则()T B pn =,结论成立;若p 为奇数,取{}12,,···,,r n B a a a a =,则()()1T B pn n p n =+=+,结论成立.②若这n 个数除以n 的余数中有两个相同,则它们之差是n 的倍数,又21a a -,1a 均不是n 的倍数,故存在21s t n ≤<≤-,使得()()()1212······N*t s a a a a a a qn q +++-+++=∈.若q 为偶数,取{}12,,···,s s t B a a a ++=,则()T B qn =,结论成立;若q 为奇数,取{}12,,···,,s s t n B a a a a ++=,则()()1T B qn n q n =+=+,结论成立.综上,存在非空集合B A ⊆,使得()T B 是2n 的倍数.T B是2n的倍数是问题的关键.【点睛】关键点点睛:如何找到非空集合B,使得()。
2023-2024学年河南省部分学校高一下学期联合教学质量检测数学试卷
2023-2024学年河南省部分学校高一下学期联合教学质量检测数学试卷1.已知向量,,若与垂直,则实数()A.B.C.D.2.设△的内角A,B,C所对边分别为,b,c,若,,,则()A.B.C.或D.或3.已知函数,若的图象的任意一条对称轴与轴交点的横坐标均不属于区间,则的取值范围是()A.B.C.D.4.设四棱台的上、下底面积分别为,,侧面积为,若一个小球与该四棱台的每个面都相切,则()A.B.C.D.5.抛掷两枚质地均匀的骰子1次,记“出现点数之和为偶数”,“出现点数之积为偶数”,则()A.B.C.D.6.样本数据14,16,18,20,21,22,24,28的第三四分位数为()A.16B.17C.23D.247.中国文化中的太极八卦图蕴含了现代哲学中的矛盾对立统一规律,如图1是八卦模型图,其平面图形记为图2中的正八边形,其中,若点P是其内部任意一点,则的取值范围是()A.B.C.D.8.如图,在棱长为2的正方体中,E,F,G分别是,,的中点,点P在线段上,平面,则以下错误的是()A .与所成角为B .点P 为线段的中点C .三棱锥的体积为D .平面截正方体所得截面的面积为9.已知函数,若函数图象的相邻两个对称中心之间的距离为,为函数图象的一条对称轴,则()A .B .C .点是函数图象的对称中心D .将函数的图象向左平移个单位长度后所得函数的图象关于轴对称10.在中,内角所对的边分别为,则下列结论不正确的是()A .若,则B .若,则是锐角三角形C .若,则一定为等腰三角形D .若,则三角形只有1解11.如图,在正方体中,,,,分别是棱,,的中点,是线段上一动点,则下列结论正确的是()A .平面平面B .平面将正方体分成的两个部分的体积比为C .是异面直线与所成的角D.三棱锥的体积为定值12.已知复数,(为虚数单位),若为纯虚数,则实数_________.13.已知单位向量满足,则__________.14.已知三棱锥的四个面是全等的等腰三角形,且,,点为三棱锥的外接球球面上一动点,时,动点的轨迹长度为_______.15.已知角,满足,,且,.(1)求的值;(2)求的大小.16.克罗狄斯·托勒密(Ptolemy)是古希腊天文学家、地理学家、数学家,他在所著的《天文集》中讲述了制作弦表的原理,其中涉及如下定理:任意凸四边形中,两条对角线的乘积小于或等于两组对边乘积之和,当且仅当对角互补时取等号.如图,半圆的直径为2cm,为直径延长线上的点,2cm,为半圆上任意一点,且三角形为正三角形.(1)当时,求四边形的周长;(2)当在什么位置时,四边形的面积最大,并求出面积的最大值;(3)若与相交于点,则当线段的长取最大值时,求的值.17.据报道,2024年4月15日,正值全民国家安全教育日,田湾核电8号机组穹顶球冠吊装成功(如图(1)),标志着国内最重核电机组薄壳钢衬里穹顶吊装工作安全完成,有力推动了我国产业结构和能源结构的调整,助力“双碳”目标顺利实现.报道中提到的球冠是一个空间几何概念,它是指球面被一个平面所截得的一部分(不包含截面),垂直于截面的直径被截得的部分是球冠的高.球冠面积等于截得它的球面上大圆(过球心的截面圆)周长与球冠的高的乘积.和球冠相对应的几何体叫球缺,它是指球体被一个平面所截得的一部分,截面是球缺的底.当球缺的高小于球半径时,我们把球缺与以球缺的底为底、以球心为顶点的圆锥所构成的体,称作“球锥”(如图(2))当一个四面体各顶点都在“球锥”表面上时,称这个四面体内接此“球锥”.如图(2),设一个“球锥”所在球的半径为,其中球冠高为.(1)类比球体积公式的推导过程(可参考图(3)),写出“球锥”的体积公式;(2)在该“球锥”中,当球缺的体积与圆锥的体积相等时,求的值;(3)已知一个棱长为的正四面体内接此“球锥”,并且有一个顶点与球心重合,若满足条件的有且只有一个,求的取值范围.18.为了估计一批产品的质量状况,现对100个产品的相关数据进行综合评分(满分100分),并制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.(1)求图中a的值,并求综合评分的平均数;(2)用样本估计总体,以频率作为概率,按分层随机抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中最多有1个一等品的概率;(3)已知落在的平均综合评分是54,方差是3,落在的平均综合评分为63,方差是3,求落在的总平均综合评分和总方差.19.如图,平面平面是等腰直角三角形,,四边形ABDE是直角梯形,分别为的中点.(1)求证:平面;(2)求直线BO和平面所成角的正弦值;(3)能否在EM上找一点,使得平面ABDE?若能,请指出点的位置,并加以证明;若不能,请说明理由.。
安徽省宿州市省、市示范高中2024-2025学年高一上学期期中教学质量检测数学试题
安徽省宿州市省、市示范高中2024-2025学年高一上学期期中教学质量检测数学试题学校:___________姓名:___________班级:___________考号:___________bÎR,则“a b>>”是“).充分不必要条件.必要不充分条件C.充要条件不充分也不必要条件C .当3m =时,()f x 的图象是中心对称图形D .()f x 恒过定点()11,11.已知全集{0,1,2,3,4,5}U =,A 是U 的非空子集,当x A Î时,1x A -Ï且1x A +Ï,则称x 为A 的一个“孤立元素”,则下列说法正确的是( )A .若A 中元素均为孤立元素,则A 中最多有3个元素B .若A 中不含孤立元素,则A 中最少有2个元素C .若A 中元素均为孤立元素,且仅有2个元素,则这样的集合A 共有9个D .若A 中不含孤立元素,且仅有4个元素,则这样的集合A 共有6个四、解答题15.设集合{}2,3,2A a =+,{}12,2B a =-.(1)若{}1AB =ð,求实数a 的值:(2)若B A Í,求实数a 的取值集合.对于D ,列出符合条件的集合,再判断结论.【详解】对于A ,因为集合{}0,1,{}2,3,{}4,5的并集为U ,且集合{}0,1,{}2,3,{}4,5中任意两个集合的交集都为空集,若A 中的元素个数大于3,则必有两个元素来自集合{}0,1,{}2,3,{}4,5中的一个,此时,集合A 中存在不是孤立元素的元素,故若A 中元素均为孤立元素,则A 中的元素个数小于等于3,又{}0,2,4A =时,A 中元素均为孤立元素,所以若A 中元素均为孤立元素,则A 中最多有3个元素,对于B ,若A 中只有1个元素,则必为孤立元素,又集合{}01A ,=时,A 中不含孤立元素,故B 正确;对于C ,易知这样的集合A 有{0,2},{0,3},{0,4},{0,5};{1,3},{1,4},{1,5};{2,4},{2,5};{3,5}共10个,故C 错误;对于D ,{0,1,2,3,4,5}U =Q ,其中不含“孤立元素”且包含有四个元素的集合有{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5}共6个,故D 正确.故选:ABD.12.3【分析】根据子集、真子集的知识进行列举,从而确定正确答案.【详解】由题意得,{}2,3是集合M 的子集,集合M 是{}2,3,4,5的真子集,则符合题意的集合M 为{}2,3,{}2,3,4,{}2,3,5,共3个.。
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题(含解析)
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C.D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 3. 使 “”成立的必要不充分条件是()2101x x +≥-A .B. 112x -≤≤112x -≤<C.或 D.或12x ≤-1x ≥12x ≤-1x >4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a 最小值85. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B. ac bc>c c a b <C.D. a c ab c b +>+a b b c a c<--6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612xx a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC .D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A. B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.14.对于任意正实数x 、y成立,则k 的范围为______.≤四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 16. 已知正数满足.,a b 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}【正确答案】A【分析】根据集合的含义以及交集的概念即可得到答案.B 【详解】集合,其表示所有的奇数,{21,Z}B xx n n ==+∈∣则.{1,5}A B = 故选:A.2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C. D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 【正确答案】A【分析】根据特称命题的否定是全称命题的知识,选出正确选项.【详解】特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.本小题主要考查全称命题与特称命题的否定,属于基础题.3. 使 “”成立的必要不充分条件是()2101x x +≥-A. B. 112x -≤≤112x -≤<C. 或 D.或12x ≤-1x ≥12x ≤-1x >【正确答案】A【分析】解不等式,求得,根据必要不充分条件的定义即可得出结果.2101x x +≥-112x -≤<【详解】不等式可化为解得2101x x +≥-(1)(21)0,10,x x x -+≤⎧⎨-≠⎩11.2x -≤<则成立,反之不可以.112x -≤<⇒112x -≤≤所以是成立的必要不充分条件.112x -≤≤2101x x +≥-故选:A4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a最小值8【正确答案】C【分析】利用基本不等式及其对勾函数的性质分别判断即可.【详解】对于选项,只有当时,才满足基本不等式的使用条件,则不正确;A 0x >A 对于选项,,By ===+(t t =≥即在上单调递增,则最小值为,(22y t t t =+≥)+∞min y ==则不正确;B 对于选项,,则正确;C ()()22(2)211111x x x x x -=--++=--+≤C 对于选项,当时,,当且仅当D 3a >44333733a a a a +=-++≥=--时,即,等号成立,则不正确.433a a -=-5a =D 故选.C 5. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B.ac bc>c c a b <C.D. a c ab c b +>+a bb c a c<--【正确答案】C【分析】对于AB :根据不等式性质分析判断;对于CD :利用作差法分析判断.【详解】对于选项A :因为,则,所以,故A 错()0,,a b c a b c >>->∈R 0c <ac bc <误;对于选项B :因为,且,()0,,a b c a b c >>->∈R 0c <可得,所以,故B 错误;11a b <c c a b >对于选项C :因为,()()()b a ca c a ab bc ab ac b c b b c b b c b-++---==+++且,,则,()0,,a b c a b c >>->∈R 0c <0,0b a b c -<+>可得,所以,故C 正确;()()0b a ca c abc b b c b-+-=>++a c ab c b +>+对于选项D :因为,()()()()()()22a b a b c a b a ac b bc b c a c b c a c b c a c -+---+-==------且,,则,()0,,a b c a b c >>->∈R 0c <0,0,0,0a b a b c b c a c ->+->->->可得,即,故D 错误;()()()()0a b a b c a bb c a c b c a c -+--=>----a bb c a c >--故选:C.6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>【正确答案】D【分析】根据题意,将所给等式变形,得到,推导出,然后利用作差法2(2)0p n m -=->p n >比较大小,结合二次函数的性质证出,从而得出正确结论.n m >【详解】由,得,210m n ++=211m n =--≤-因为,244m n m p ++=+移项得,244m m p n -+=-所以,2(2)0p n m -=->可得,p n >由,得,210m n ++=21m n =--可得,()2221311024n m n n n n n ⎛⎫-=---=++=++> ⎪⎝⎭可得.n m >综上所述,不等式成立,p n m >>故选:D.7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【正确答案】C【分析】利用集合相等的定义得到关于的方程组,推得充分性成立;再简单证得必要性,a b 也成立即可得解.【详解】因为,{}{}22,1,,1A a a B b b =+=+当时,则有,或,A B =2211a ba b =⎧⎨+=+⎩2211a b a b ⎧=+⎨+=⎩若,显然解得;2211a ba b =⎧⎨+=+⎩a b =若,则,整理得,2211a b a b⎧=+⎨+=⎩()2211b b ++=()()22012b b b b -+++=因为,,22131024b b b ⎛⎫+=-+ ⎝⎭->⎪22172024b b b ⎛⎫+=++ ⎝⎭+>⎪所以无解;()()22012bb b b -+++=综上,,即充分性成立;a b =当时,显然,即必要性成立;a b =A B =所以“”是“”的充分必要条件.A B =a b =故选:C.8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612x x a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232【正确答案】B【分析】先利用基本不等式证得(此公式也可背诵下来),从而由题()()2222m n m n +≥+设条件证得,结合题意得到,利用二次不等式的解法解之即可得2211612a b +≥21212xx ≥+-到正数的最小值.x 【详解】因为()()()22222222222m n m n m n m n mn +-+=+-++,当且仅当时,等号成立,()22220m n mn m n =+-=-≥m n =所以,()()2222m n m n +≥+因为为正实数,所以由得,即,,a b ()410a b a +-=4a b ab +=411b a +=所以,222221161441221a b a b b a ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+≥+=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦当且仅当,且,即时,等号成立,41b a =4a b ab +=2,8a b ==所以,即,2211621a b ⎛⎫+≥ ⎪⎝⎭2211612a b +≥因为对满足的所有正实数a ,b 都成立,22211612x x a b +≥+-()410a b a +-=所以,即,整理得,2n 2mi 211612x x a b ⎛⎫ ⎪⎝⎭+≥+-21212x x ≥+-2021x x --≥解得或,由为正数得,1x ≥12x ≤-x 1x ≥所以正数的最小值为.x 1故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U ,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC.D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð【正确答案】AC【分析】由已知韦恩图分析出了阴影部分所表示的集合的元素满足的条件,进而根据集合运算的定义可得答案.【详解】根据图中阴影可知,符合题意,()()U A B A B ð又,∴也符合题意.()()()U U U A B A B ⋃=⋂ððð()A B ()()U U A B ⎡⎤⎣⎦ ðð故选:AC10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A .B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >【正确答案】ACD【分析】根据二次方程根的大小分类讨论,即可求解二次不等式的解集.【详解】对于一元二次不等式,则;()()10a x a x -+>0a ≠当时,函数开口向上,与轴的交点为,0a >()()1y a x a x =-+x ,1a -故不等式的解集为,故D 正确;()(),1,x a ∈-∞-+∞ 当时,函数开口向下,若,不等式解集为,故A 正确;0a <()()1y a x a x =-+1a =-∅若,不等式的解集为,10a -<<()1,a -若,不等式的解集为,故C 正确.1a <-(),1a -故选:ACD11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232【正确答案】BC【分析】先根据一元二次不等式的解集得到对称轴,然后根据端点得到两个等式和一个不等式,求出的取值范围,最后都表示成的形式即可.a 32a b c ++a 【详解】因为不等式的解集为,()2020ax bx c a ≤++≤>{x |−1≤x ≤3}所以二次函数的对称轴为直线,()2f x ax bx c=++1x =且需满足,即,解得,()()()123210f f f ⎧-=⎪=⎨⎪≥⎩29320a b c a b c a b c -+=⎧⎪++=⎨⎪++≥⎩232b ac a =-⎧⎨=-+⎩所以,所以,123202a b c a a a a ++=--+≥⇒≤10,2a ⎛⎤∈ ⎥⎝⎦所以,故的值可以是和,332326445,42a b c a a a a ⎡⎫++=--+=-∈⎪⎢⎣⎭32a b c ++322故选:BC关键点睛:一元二次不等式的解决关键是转化为二次函数问题,求出对称轴和端点的值,继而用同一个变量来表示求解.第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.【正确答案】[)1,+∞【分析】由为的真子集,列出关于的不等式,求出不等式的解集即可.B A a 【详解】因为B A ,所以.1a ≥故[)1,+∞13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.【正确答案】1,2⎛⎤-∞⎥⎝⎦【分析】对和分类讨论求解,结合一元二次方程的根与系数的关系即可求解.0m =0m ≠【详解】当时,方程为,有一个负根,0m =220x +=当时,为一元二次方程,0m ≠2220mx x ++=关于的方程至少有一个负根,设根为,,x 2220mx x ++=1x 2x 当时,即时,方程为,解得,满足题意,480m ∆=-=12m =212202x x ++=2x =-当,即时,且时,480m ∆=->12m <0m ≠若有一个负根,则,解得,1220=<x x m 0m <若有两个负根,则,解得,12122020x x m x x m ⎧+=-<⎪⎪⎨⎪=>⎪⎩102m <<综上所述,则实数的取值范围是,,m (-∞1]2故,.(-∞1214.对于任意正实数x 、y 成立,则k 的范围为______.≤【正确答案】⎫+∞⎪⎪⎭≤2k ≥最大值即可.【详解】易知,,k>k≤.2k ∴≥令,分式上下同除y ,0t =>则,则即可,222221141121221t t t k t t +++⎛⎫≥=+ ⎪++⎝⎭22max 1411221t k t +⎛⎫≥+ ⎪+⎝⎭令,则.411u t =+>14u t -=可转化为:,24121t t ++()28829292u s u u u u u ==≤-++-于是,.()21411311222122t t +⎛⎫+≤+= ⎪+⎝⎭∴,即时,不等式恒成立(当时等号成立).232k ≥k ≥40x y =>故⎫+∞⎪⎪⎭四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 【正确答案】(1)[)1,-+∞(2)(],2-∞-【分析】(1)分和两种情况讨论求解即可;A =∅A ≠∅(2)由题意得,从而可求出的取值范围.351a a -+≥⎧⎨≤-⎩a 【小问1详解】①当时,,∴,∴.A =∅AB =∅ 3a a >-+32a >②当时,要使,必须满足,解得.A ≠∅A B =∅ 32351a a a ⎧≤⎪⎪-+≤⎨⎪≥-⎪⎩312a -≤≤综上所述,的取值范围是.a [)1,-+∞【小问2详解】∵,,或,A B =R {}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >∴,解得,351a a -+≥⎧⎨≤-⎩2a ≤-故所求的取值范围为.a (],2-∞-16. 已知正数满足.,ab 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--【正确答案】(1)8 (2)3+(3)18【分析】(1)根据题意直接利用基本不等式即可得最值;(2)由题意可得,利用乘“1”法结合基本不等式运算求解;211a b +=(3)由题意可得,化简整理结合基本不等式运算求解.()()212a b --=【小问1详解】因为,且,0,0a b >>2a b ab +=则.2ab a b =+≥8ab ≥≥当且仅当,即时等号成立,24a b ==4,2a b ==所以的最小值为8.ab 【小问2详解】因为,且,则,0,0a b >>2a bab +=211a b +=可得,()2122133b a a b a b a b a b ⎛⎫+=++=+++≥+=+ ⎪⎝⎭当且仅当,即,即时等号成立,2b aa b =a=21a b =+=+所以的最小值为.a b +3+【小问3详解】因为,且,所以,0,0a b >>2a b ab +=()()212a b --=可得,()()2248182848101018212121a b a b a b a b a b -+-++=+=++≥+=------当且仅当,即时等号成立,4821a b =--3a b ==所以的最小值为18.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m 【正确答案】(1)[]4,0-(2)4≥m 【分析】(1)依题意可得是真命题,分和两种情况讨论;()R,0x f x ∀∈≤0m =0m ≠(2)依题意参变分离可得存在使得成立,则只需,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭,利用基本不等式求出即可得解.()4,0x ∈-min 4x x ⎛⎫-- ⎪⎝⎭【小问1详解】若命题:是假命题,则是真命题,()R,0x f x ∃∈>()R,0x f x ∀∈≤即在上恒成立,210mxmx -≤-R 当时,,符合题意;0m =10-<当时,需满足,解得;0m ≠20Δ40m m m <⎧⎨=+≤⎩40m -≤<综上所述,的取值范围为.m []4,0-【小问2详解】若存在成立,()()()24,0,13x f x m x ∈-≥++即存在使得成立,故只需,,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭()4,0x ∈-因为,所以,则,()4,0x ∈-()0,4x -∈()444x x x x--=-+≥=-当且仅当,即时取等号,4x x -=-2x =-所以,所以.min44x x ⎛⎫- ⎪⎝⎭=-4≥m 18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =【正确答案】(1)采用方案二;理由见解析 (2)24【分析】(1)列出两种方案的总费用的表达式,作差比较,即可求解;(2)根据题意,得到,利用换元法和基本不等式,即可214((4S S x a a -=-⋅+-求解.【小问1详解】解:方案一的总费用为(元);1S ax by =+方案二的总费用为(元),2S bx ay =+由,21()()()()()S S bx ay ax by a y x b x y y x a b -=+-+=-+-=--因为,可得,所以,4,4y x b a >>>>0,0y x a b ->-<()()0y x a b --<即,所以,所以采用方案二,花费更少.210S S -<21S S <【小问2详解】解:由(1)可知,()()(1244S S y x b a x a a ⎛⎫-=--=-⋅+ ⎪-⎝⎭令,t =24x t =+所以,当时,即时,等号成立,2224(1)33x t t t -=-+=-+≥1t =5x =又因为,可得,4a >40a ->所以,44(4)44844a a a a +=-++≥=--当且仅当时,即时,等号成立,444a a -=-6,14a b ==所以差的最小值为,当且仅当时,等号成立,S 2483=⨯5,8,6,14x y a b ====所以两种方案花费的差值最小为24元.S 19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈【正确答案】(1)集合不具有“包容”性,集合具有“包容”性{}1,1,2,3-{}1,0,1,2-(2)1(3),,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭【分析】(1)根据“包容”性的定义,逐一判断即可;(2)根据“包容”性的定义,能得到,分类讨论,得出a 和b 的值,即可得出结{}01,,a b ∈果;(3)由集合C 的子集有64个,推出集合C 中共有6个元素,且,再由条件,推0C ∈1C ∈出集合中有正数也有负数,将这几个元素设出来,再通过对正数负数个数的讨论,即可求出结果.【小问1详解】(Ⅰ)集合中的,,{}1,1,2,3-{}3361,1,2,3+=∉-{}3301,1,2,3-=∉-所以集合不具有“包容”性.{}1,1,2,3-集合中的任何两个相同或不同的元素,相加或相减,得到的两数中至少有一个属{}1,0,1,2-于集合,所以集合具有“包容”性.{}1,0,1,2-{}1,0,1,2-【小问2详解】(Ⅱ)已知集合具有“包容”性,记,则,{}1,,B a b ={}max 1,,m a b =1m ≥易得,从而必有,{}21,,m a b ∉{}01,,a b ∈不妨令,则,且,0a ={}1,0,B b =0b ≠1b ≠则,{}{}1,11,0,b b b +-⋂≠∅且,{}{}1,11,0,b b b +-⋂≠∅①当时,若,得,此时具有包容性;{}11,0,b b +∈10b +=1b =-{}1,0,1B =-若,得,舍去;若,无解;11b +=0b =1b b +=②当时,则,由且,可知b 无解,{}11,0,b b +∉{}{}1,11,0,b b b --⊆0b ≠1b ≠故.{}1,0,1B =-综上,.221a b +=【小问3详解】(Ⅲ)因为集合C 的子集有64个,所以集合C 中共有6个元素,且,又,且C 0C ∈1C ∈中既有正数也有负数,不妨设,{}1112,,,,0,,,,k k l C b b b a a a ---- 其中,,,5k l +=10l a a <<< 10k b b <<<L 根据题意,1111{,,}{,,,}l l l k k a a a a b b b ----⊆---L L且,1112112{,,,}{,,,}k k l b b b b b b a a a ----⊆L L 从而或.()(),2,3k l =()3,2①当时,,()(),3,2k l ={}{}313212,,b b b b a a --=并且由,得,由,得,313212{,}{,}b b b b b b -+-+=--312b b b =+2112{,}a a a a -∈212a a =由上可得,并且,2131322111(,)(,)(,)(2,)b b b b b b a a a a =--==31213b b b a =+=综上可知;{}111113,2,,0,,2C a a a a a =---②当时,同理可得.()(),2,3k l =11111{2,,0,,2,3}C a a a a a =--综上,C 中有6个元素,且时,符合条件的集合C 有5个,1C ∈分别是,,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭关键点点睛:本题是新定义题型,对于此类问题,要先弄清楚新定义的性质,按照其要求,严格“照章办事”,逐条分析验证。
2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷
2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,则()(){}(){},3,,1A x y x y B x y x y =+==-=∣∣A B = A. B.C.D.2,1x y ==()2,1(){}2,1{}2,12. 已知,,,均为实数,则下列说法正确的是( )a b c d A. 若,,则 B. 若,,则a b >c d >a c b d +>+a b >c d >a c b d ->-C. 若,,则 D. 若,则a b >c d >ac bd>ac bc >a b >3. 下列函数中,与函数是同一函数的是()2y x =+A .B.22y =+2y =+C.D.22x y x =+y =4. 已知p : q :,则p 是q 的( )0a b >>2211ab <A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件5. 已知函数为R 上的奇函数,当时,,则等于(()f x 0x <()2f x x =+()()03f f +)A. B. C. 1D. 33-1-6.若,则( )0x <1x x +A .有最小值 B. 有最大值−2−2C. 有最小值2 D. 有最大值27. 已知函数的图象由如图所示的两条曲线组成,则( )()fx A. B.是单调增函数()()35f f -=()f x C.的定义域是D.的值域是()f x (][],02,3∞-⋃()f x []1,58. 若定义域为的奇函数在上单调递减,且,则满足R ()f x (),0-∞()20f =的的取值范围是( )20)(x f x x ≥x A. B. [][)2,02,-⋃+∞][3,10,1⎡⎤--⋃⎣⎦C.D.[)[)2,02,-⋃+∞[)(]2,00,2-U 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列函数既是偶函数,又在上单调递增的是()()0,∞+A.B.y =2y x =C.D. y 1y x=10. 下列关于幂函数的说法正确的是( )y x α=A. 幂函数的图象都过点,()0,0()1,1B. 当时,幂函数的图象都经过第一、三象限1,3,1α=-C. 当时,幂函数是增函数1,3,1α=-D. 若,则幂函数的图象不过点0α<()0,011. 下列结论正确的是()A. 函数的最小值是221x y x +=B. 若,则0ab >2b aa b +≥C. 若,则的最小值为2x ∈R 22122x x +++D. 若0,0a b >>22a b ++≥12. 已知函数的定义域为A ,若对任意,存在正数M ,使得成立,()f x x A ∈()f x M≤则称函数是定义在A 上的“有界函数”.则下列函数是“有界函数”的是()()f x A.B.3()4xf x x+=-()f x =C.D.25()22f x x x =-+(f x 三、填空题:本题共4小题,每小题5分,共20分.13. 已知命题:,,则为______.p x ∀∈Q x N ∈p ⌝14. 函数的定义域为_____________.()1f x x =15. 已知函数满足下列3个条件:()f x ①函数的图象关于轴对称;()f x y ②函数在上单调递增;()f x ()0,∞+③函数无最值.()f x 请写出一个满足题意的函数的解析式:______.()f x16. 已知函数,则不等式的解集是____________.()21x f x x=+()211f x -<四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 设全集,集合,.U =R {}2680A x x x =-+=31B x x ⎧⎫=<⎨⎬⎩⎭(1)求;()U A B ⋃ð(2)设集合,若恰有2个子集,求的值.(){}233,C x x a a x a =+=+∈ZA C a 18. 已知函数.()1f x x x =+(1)求证:在上单调递减,在上单调递增;()f x ()0,1()1,+∞(2)当时,求函数的值域.1,22x ⎡⎤∈⎢⎥⎣⎦()f x 19. 设函数.()223y ax b x =+-+(1)若关于的不等式的解集为,求的解集;x 0y >{}13x x -<<4y ≥(2)若时,,求的最小值.1x =2,0,0y a b =>>14a b +20. 已知集合,.(){}40A x x x =-≥{}121B x a x a =+<<-(1)若,均有,求实数的取值范围;x A ∀∈x B ∉a (2)若,设:,,求证:成立的充要条件为.2a >p x B ∃∈x A ∉p 23a <<21. 某市财政下拨专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数(单位:百1y 万元):,处理污染项目五年内带来的生态收益可表示为投放资金x (单位:百12710xy x =+万元)的函数(单位:百万元).设分配给植绿护绿项目的资金为x (单位:百2y 20.3y x =万元),两个生态项目五年内带来的生态收益总和为(单位:百万元).y (1)将表示成关于x 的函数;y(2)为使生态收益总和最大,对两个生态项目的投资分别为多少?y 22. 设函数 .()()2*1488,,N f x mx m mn x m m n =+-++∈(1)若为偶函数,求的值;()f x n (2)若对,关于的不等式有解,求的最大值.*N n ∀∈x ()0f x ≤m。
浙江省杭州市2024-2025学年高一上学期10月教学质量检测数学试题含答案
杭州联谊学校2024年10月教学质量检测高一数学试题(答案在最后)一、单选题(每小题4分,共计32分)1.已知集合,则()A. B. C. D.【答案】B【解析】【分析】根据交集的定义求解即可.【详解】因为,则.故选:B.2.命题“,”的否定是()A.,B.,C.,D.,【答案】C【解析】【分析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.3.已知函数的对应关系如下表,函数的图象如图,则的值为()123230A.3B.0C.1D.2【答案】B【解析】【分析】根据的图像可知,,根据表格即可求得.【详解】根据的图像可知,,根据表格可知,.故选:B4.若,则下列命题正确的是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】【分析】根据的取值情况判断各个选项的对错即可得到答案.【详解】选项A,若,则结论错误,故选项A错误;选项B,根据糖水不等式可知,,故选项B错误;选项C,当时,,故选项C错误;选项D,可知,,故选项D正确.故选:D5.若不等式对一切实数都成立,则实数的取值范围为()A. B.C. D.【答案】D【解析】【分析】分和两种情况,结合不等式恒成立求参数的取值范围.【详解】当时,不等式为对一切实数都成立,符合题意,当时,要使得不等式对一切实数都成立,则,解得,综上所述,的取值范围为.故选:D.6.若函数的定义域为,值域为,则的取值范围为().A. B. C. D.【答案】C【解析】【分析】根据二次函数的性质结合条件即得.【详解】∵,∴对称轴为直线,当时,.∵时,,由二次函数的对称性可知另一个的对应的值为,∴的取值范围是.故选:.7.已知,其中,若,则正实数t取值范围()A.或B.或C.或D.或【答案】A【解析】【分析】根据给定条件,分段求解不等式即可.【详解】令,解得,当时,,,即,且,解得;当时,,,即,且,解得,当时,,,而为正实数,则此种情况无解,所以正实数的取值范围为或.故选:A8.已知函数,若,对均有成立,则实数的取值范围为()A. B. C. D.【答案】B【解析】【分析】将问题转化为对都恒成立,结合二次函数以及一次的性质即可求解.【详解】,对均有成立,在上单调递增,,依题意有对均有成立,即在时恒成立,∴,解得,∴实数的取值范围是.故选:B.二、多选题(每小题6分,共计18分)9.若是的必要不充分条件,则实数的值可以为()A. B. C. D.【答案】BC【解析】【分析】解方程,根据题意可得出关于实数的等式,即可解得实数的值.【详解】由,可得或.对于方程,当时,方程无解,符合题意;当时,解方程,可得.由题意知,,此时应有或,解得或.综上可得,或.故选:BC.10.若正实数满足,则下列说法正确的是()A.有最大值为B.有最小值为C.有最小值为D.有最大值为【答案】ABC【解析】【分析】直接利用不等式即可求解AC,利用乘“1”法即可求解B,利用不等式成立的条件即可求解D.【详解】对于A:因为,则,当且仅当,即时取等号,故A正确,对于B,,当且仅当,即时取等号,故B正确,对于C:因为,则,当且仅当,即时取等号,故C正确,对于D:因为,当且仅当,即,时取等号,这与均为正实数矛盾,故D错误,故选:ABC.11.下列说法正确的是()A.若的定义域为,则的定义域为B.和表示同一个函数C.函数的值域为D.函数满足,则【答案】AD【解析】【分析】根据抽象函数的定义域的求法求解可判断A;利用同一函数得定义判断B;利用换元法,结合二次函数的性质求得其值域,判断C;利用方程组法求解函数解析式判断D.【详解】对于A,因为的定义域为,对于函数,则,解得,即的定义域为,故A正确;对于B,定义域为,定义域为,所以和不是同一个函数,故B错误;对于C,令,则,所以,因为,所以在上单调递减,所以,所以函数的值域为,故C错误;对于D,因为,所以,两边同乘以2得,两式相加得,解得,故D正确.故选:AD.三、填空题(每小题4分,共计12分)12.若,则______.【答案】2【解析】【分析】根据元素与集合的关系,集合元素的互异性求得正确答案.【详解】依题意,当时,,此时,不符合题意.当时,(舍去)或,当时,,符合题意.综上所述,的值为.故答案为:13.已知,,则的取值范围是__________.【答案】【解析】【分析】根据同向不等式相加不等号方向不变的性质求解即可.【详解】因为,所以,又,由不等式的可加性得,所以的取值范围是.故答案为:.14.已知关于的一元二次不等式的解中有且仅有3个正整数解,则实数的取值范围是__________.【答案】【解析】【分析】将化为,分,,三种情况讨论即可求.【详解】由可得,当时,不等式的解集为,不符合题意,舍,当时,不等式的解集为,其正整数解至多有1个,不符合题意,舍,当时,不等式的解集为,因为有且仅有3个正整数解,故整数解为,所以,.综上,实数的取值范围是.故答案:四、解答题(共计58分)15.已知集合,集合.(1)当时,求;(2)若,求实数a的取值范围.【答案】(1);(2).【解析】【分析】(1)由,求得集合B,再与A,利用并集运算求解.(2)将,转化为B A,再分和两种情况讨论求解.,详解】(1)当时,集合,又集合,所以;(2)因为,所以B A,当时,,解得,当时,,解得,综上:实数a取值范围【点睛】本题主要考查集合的运算以及集合的关系的应用,还考查了运算求解的能力,属于基础题.16.(1)已知,求函数的最大值;(2)已知,且,求的最小值.【答案】(1);(2)【解析】【分析】(1)易知,由基本不等式计算可得的最小值为6,即可得解;(2)依题意,利用基本不等式中“1”妙用计算可得答案.详解】(1)由可得,所以,当且仅当即时取等号;所以函数的最大值为.(2)根据题意,且,则,当且仅当,时取等号,所以的最小值为.17.某公司带来了高端智能家属产品参展,供购商洽谈采购,并决定大量投放中国市场已知该产品年固定研发成本50万元,每生产一台需另投入60元.设该公司一年内生产该产品x万台且全部售完,每万合的销售收入为G(x)万元,.(1)求年利润s(万元)关于年产量x(万台)的函数解析式;(利润=销售收入-成本)(2)当年产量为多少万台时,该公司获得的利润最大?并求出最大利润.【答案】(1);(2)当年产量为29万台时,该公司获得的最大利润万元.【解析】【分析】(1)根据题意,每万台的销售收入是一个分段函数,分和两种情况讨论,根据生产产品的数量求出对应的解析式即可求解;(2)分段讨论函数的最值,最后比较大小得出结果.【小问1详解】当时,;当时,,所以函数解析式为.【小问2详解】当时,因为,又因为函数在上单调递增,所以当时,取最大值,;当时,(当且仅当,即时等号成立)因为,所以时,的最大值为万元.所以当年产量为29万台时,该公司获得的最大利润万元.18.已知函数.(1)若f(x)<k的解集为{x|﹣3<x<﹣2},求实数k的值;(2)若∀x1∈[2,4],都∃x2∈[2,4],使f(x1)≥g(x2)成立,求实数m的取值范围.【答案】(1);(2)【解析】【分析】(1)由f(x)<k,整理得:kx2﹣x+6k>0,然后,利用韦达定理进行求解(2)把题目的成立条件转化为f(x)最小值≥g(x)最小值,进而分别求出,函数f(x)在区间[2,4]上的最小值和函数g(x)在区间[2,4]上的最小值即可【详解】(1)证明:由f(x)<k得:k,整理得:kx2﹣x+6k>0,因为解集为{x|﹣3<x<﹣2},所以k<0,所以方程kx2﹣x+6k=0的根是﹣3,﹣2,∴2+(﹣3),∴k;所以实数k的值是;(2)由题意可得,f(x)最小值≥g(x)最小值,∀x1∈[2,4],f(x)在区间[2,]为增函数,[,4]为减函数,f(2),f(4),所以函数f(x)在区间[2,4]上的最小值是f(4);函数g(x)开口向上,且对称轴x=﹣m,①当﹣m≤2,即m≥﹣2,g(x)最小值=g(2)=4+4m⇒m,解得:﹣2;②当2<﹣m<4,即﹣4<m<﹣2,g(x)最小值=g(﹣m)=m2﹣2m2⇒m≤﹣1或m≥1,所以﹣4<m<﹣2;③﹣m≥4,即m≤﹣4,g(x)最小值=g(4)=16+8m,解得:m,所以m≤﹣4;综上所述,m的取值范围:(﹣∞,].【点睛】关键点睛:本题解题的关键有两点:分别在于:1.把题目的成立条件转化为f(x)最小值≥g(x)最小值,2.通过对进行分类讨论,求出函数g(x)在区间[2,4]上的最小值19.已知二次函数的图象过点(1,13),且函数对称轴方程为.(1)求函数的解析式;(2)设函数,求在区间上的最小值【答案】(1),(2)【解析】【分析】(1)由f(x)的对称轴方程以及图象过点(1,13),求出b、c的值,从而写出f(x)的解析式;(2)化函数g(x)为分段函数,画出函数的图象,结合图象,求出g(x)在区间[t,2]上的最小值H (t).【详解】(1)∵f(x)=x2+bx+c的对称轴方程为,∴b=1;又f(x)=x2+bx+c的图象过点(1,13),∴1+b+c=13,∴c=11;∴f(x)的解析式为f(x)=x2+x+11.(2)∵函数g(x)=[f(x)﹣x2﹣13]•|x|=[(x2+x+11)﹣x2﹣13]•|x|=(x﹣2)•|x|,画出函数图象,如图:令,解得或(舍)∴当1≤t<2时,g(x)min=t2﹣2t;当时,g(x)min=﹣1;当时,.∴综上,H(t).【点睛】本题考查了求函数的解析式以及求函数在某一区间上的最值情况,解题时应结合函数的图象与性质来解答,是易错题.。
2023-2024学年浙江省温州市高一下学期期末教学质量统一检测数学试题(A卷)
2023-2024学年浙江省温州市高一下学期期末教学质量统一检测数学试题(A卷)1.已知向量,若∥,则()A.2B.C.D.32.设是一条直线,、是两个不同的平面,则下列命题一定正确的是()A.若,,则B.若,,则C.若,,则D.若,,则3.复数()A.B.C.D.4.如图,某校数学兴趣小组对古塔AB进行测量,AB与地面垂直,从地面C点看塔顶A的仰角为,沿直线BC前行20米到点D此时看塔顶A的仰角为,根据以上数据可得古塔AB的高为()米.A.B.20C.10D.5.数据:1,1,2,3,3,5,5,7,7,x的分位数为2.5,则x可以是()A.2B.3C.4D.56.在锐角中,角A,B,C所对的边分别为a,b,c,面积为S,且,若,则面积的取值范围是()A.B.C.D.7.已知样本数据的平均数为9,方差为12,现这组样本数据增加一个数据,此时新样本数据的平均数为10,则新样本数据的方差为()A.18.2B.19.6C.19.8D.21.78.已知平面向量满足对任意实数恒成立.若对每一个确定的,对任意实数m,n,有最小值t.当变化时,t的值域为,则()A.B.C.D.9.已知复数z满足,则下列结论正确..的是()A.B.C.的最大值为2D.10.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数中位数众数B.图(2)的平均数<众数<中位数C.图(2)的众数中位数<平均数D.图(3)的平均数中位数众数11.正方体棱长为1,E,F分别为棱,AD(含端点)上的动点,记过C,E,F三点的平面为,记为点B到平面的距离,为点到平面的距离,则满足条件()的是不唯一的.A.B.C.D.12.已知是关于x的实系数方程的一个根,则实数p的值为_______.13.设样本空间含有等可能的样本点,,则_______.14.与多面体的每条棱都相切的球称为该多面体的棱切球.已知四面体ABCD满足,,且四面体ABCD有棱切球,则AC的长为________.15.已知圆台上底面半径为1,下底面半径为2,高为2.(1)求该圆台的体积;(2)求该圆台母线与下底面所成角的余弦值.16.已知是单位向量,满足,记与夹角为.(1)求;(2)若平面向量在上的投影向量为,求.17.如图,绕边BC旋转得到,其中,平面ABC,∥.(1)证明:平面ACD;(2)若二面角的平面角为,求锐二面角平面角的正弦值.18.在中,角A,B,C所对的边分别为a,b,c,过内一点M的直线l与直线AB交于D,记与夹角为.(1)已知,(i)求角A﹔(ii)M为的重心,,求;(2)请用向量方法....探究与的边和角之间的等量关系.19.给定两组数据与,称为这两组数据之间的“差异量”.鉴宝类的节目是当下非常流行的综艺节目.现有n个古董,它们的价值各不相同,最值钱的古董记为1号,第二值钱的古董记为2号,以此类推,则古董价值的真实排序为.现在某专家在不知道古董真实排序的前提下,根据自己的经验对这n个古董的价值从高到低依次进行重新排序为,其中为该专家给真实价值排第i位古董的位次编号,记,那么A与I的差异量可以有效反映一个专家的水平,该差异量越小说明专家的鉴宝能力越强.(1)当时,求的所有可能取值;(2)当时,求的概率;(3)现在有两个专家甲、乙同时进行鉴宝,已知专家甲的鉴定结果与真实价值I的差异量为a,专家甲与专家乙的鉴定结果的差异量为4,那么专家乙的鉴定结果与真实价值I的差异量是否可能为?请说明理由.。
2024-2025学年山东省淄博市高一上学期期中数学质量检测试卷(含解析)
一、单选题1. 已知集合2{|lg()}2A x y y x --==2024-2025学年山东省淄博市高一上学期期中数学质量检测试卷,{|B x y ==,则A B = ( )A. (1,2)- B. [3,+)2∞ C. (0,)+∞ D. R【答案】D 【解析】【分析】根据对数型函数求值域得A ,根据二次函数求得函数定义域得B ,根据交集运算得解.【详解】2{|lg()}2A x y y x --==为函数2(2)lg y x x --=的值域,令2202t x x x =-->⇒>或1x <-,(0,)lg R y t t y ∈+∞⇒=⇒∈,{|B x y ==为函数y =即y =,因为2177(244x -+≥,所以函数y =R ,故R A B = ,故选:D.2. 已知命题2:0,40p x x ax ∀>-+≥,命题2:,10q x x ax ∃∈++=R ,若命题,p q 都是真命题,则实数a 的取值范围是( )A. 24a ≤≤B. 22a -≤≤ C. 2a ≤-或24a ≤≤ D. 2a ≤-【答案】C 【解析】【分析】命题p 可利用参变分离法将原问题转化为min4a x x ⎛⎫≤+⎪⎝⎭,结合基本不等式即可求得a 的范围,命题q 直接利用判别式即可求得a 的范围,取交集即可得答案.【详解】∵愿明天即命题4:0,p x x a x∀>+≥为真命题,min 4a x x ⎛⎫∴≤+ ⎪⎝⎭,又40,4x x x >∴+≥= ,当且仅当4x x =,即2x =时,等号成立,∵命题2:,10q x x ax ∃∈++=R ,为真命题,240,2a a ∴∆=-≥∴≤-或2a ≥,∵命题p ,q 都是真命题,2∴≤-a 或24a ≤≤.故选:C 3. 命题“213R,022x x x a ∃∈+--<”为真命题的一个必要不充分条件是( )A. 0a ≥ B. 1a ≥C. 2a >- D. 3a ≥-【答案】D 【解析】【分析】先由存在量词命题为真求得a 的范围,再根据“必要不充分条件”即可确定选项.【详解】由213R,022x x x a ∃∈+--<,可得21322a x x >+-在R 上能成立,因22131(1)22222x x x +-=+-≥-,故得2a >-.由题意知,()2,-+∞是选项的范围的真子集即可.故选:D.4.函数()f x =的定义域为( )A. [0,+∞)B. (﹣∞,2]C. [0,2]D. [0,2)【答案】D 【解析】【分析】由表达式有意义的条件列不等式组,由此可得函数的定义域.【详解】由题意可得520ln(52)0e 10x x x ->⎧⎪->⎨⎪-≥⎩,解得02x ≤<,故选:D .5. 已知3log 2a =,1215b ⎛⎫= ⎪⎝⎭,13125c ⎛⎫= ⎪⎝⎭,则实数,,a b c 的大小关系正确的是( )A. a b c <<B. b c a <<C. c b a <<D. c a b<<【解析】【分析】利用中间变量法得到a b >,利用构造函数法得到c b <即可.【详解】因为331log 2log 2a =>=,121152b ⎛⎫== ⎪⎝<⎭,所以a b >,而112411525b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,13125c ⎛⎫= ⎪⎝⎭,故我们构造指数函数1()25xf x ⎛⎫= ⎪⎝⎭,得到1()4b f =,1(3c f =由指数函数性质得()f x 在R 上单调递减,因为1143<,所以c b <,综上可得c b a <<,故C 正确.故选:C6. 若函数()()20.5log f x ax x =-在区间()1,0-上单调递增,则a 的取值范围是( )A. (]0,2B. [)2,0- C. [)2,+∞ D. (],2-∞-【答案】D 【解析】【分析】利用复合函数单调性,结合对数函数、二次函数的单调性即可求解.【详解】由于0.5log y x =在()0,∞+上单调递减,令2t x ax =-+,()1,0x ∈-,因为0.5log y t =为减函数,又()()20.5log f x ax x=-在区间()1,0-上单调递增,由复合函数的单调性法则可知,2t x ax =-+在()1,0-上单调递减,且20t x ax =-+>在()1,0-上恒成立,因为2t x ax =-+为二次函数,开口向下,对称轴为2a x =,由2t x ax =-+在()1,0-上单调递减,可得12a≤-,解得2a ≤-,由20t x ax =-+>在()1,0-上恒成立,即2ax x >,()1,0x ∈-,可得a x <在()1,0-上恒成立,则1a ≤-,综上,实数a 的取值范围为(],2.∞--的7. 已知0,0x y >>,且3x y +=,若()2111m x yy x m +≤++-对任意的0,0x y >>恒成立,则实数m 的取值是( )A. (),1-∞ B. [)5,+∞C. ()[),15,-∞⋃+∞ D. (]1,5【答案】C 【解析】【分析】根据题意,问题可转化为()211111m y x y m x y x y++≤=+-++对任意的0,0x y >>恒成立,由题设条件得到(1)4x y ++=,进而得到1111144y y x x y x y ++=++++,接着结合基本不等式求得11y x y++最小值得到514m m ≤-即可求实数m 的取值范围.【详解】因为()2111m x y y x m +≤++-对任意的0,0x y >>恒成立,可得()211111m y x y m x y x y++≤=+-++对任意的0,0x y >>恒成立,又因为3x y +=,可得(1)4x y ++=,则()11111511414444x y y yy x x y x y x y ++++=+=++≥=+++,当且仅当114y x x y +=+即54,33x y ==时等号成立,所以11y x y ++最小值54,所以514m m ≤-,可得()5041m m -≤-,即()5041m m -≥-,所以()()51010m m m ⎧--≥⎨-≠⎩,解得5m ≥或1m <,所以实数m 的取值范围为()[),15,∞∞-⋃+.故选:C.8. 已知定义在R 上的函数()f x 满足()()0f x f x +-=,[)12,0,x x ∀∈+∞,当12x x ≠时,都有为()()12211f x f x x x -<-,则不等式()()2553f x f x x --<-的解集为( )A. 5,03⎛⎫- ⎪⎝⎭B. 50,3⎛⎫ ⎪⎝⎭C. 5,3⎛⎫-∞ ⎪⎝⎭D. 5,3⎛⎫+∞ ⎪⎝⎭【答案】C 【解析】【分析】令()()g x f x x =+,由已知不等式和等式可求得()g x 的奇偶性和单调性,将所求不等式化为()()25g x g x <-,由单调性可得自变量大小关系,进而解得结果.【详解】不妨令210x x >≥,则由()()12211f x f x x x -<-得:()()1122f x x f x x +<+,令()()g x f x x =+,则()g x 在[)0,∞+上单调递增;()()0f x f x +-= ,()()()()0g x g x f x x f x x ∴+-=++--=,()g x ∴为定义在R 上的奇函数,()g x ∴在R 上单调递增;由()()2553f x f x x --<-得:()()2255f x x f x x +<-+-,即()()25g x g x <-,25x x ∴<-,解得:53x <,即不等式()()2553f x f x x --<-的解集为5,3∞⎛⎫- ⎪⎝⎭.故选:C.二、多选题9. 下列运算结果正确的有( )A. ()()14380.06415ππ6--++=-B. ()()21lg5lg8lg1000lg lg0.616++++=C. 32=D. )12123170.027214579--⎛⎫⎛⎫--+⋅-=- ⎪ ⎪⎝⎭⎝⎭【答案】CD 【解析】【分析】根据题意,由指数幂的运算以及对数运算,代入计算,逐一判断,即可得到结果.【详解】对于A ,原式4213116π365535π55=-++-=-+,故A 错误;对于B ,原式()()2lg 53lg 233lg 2lg 6lg 0.6=++-+()()20.613lg 5lg 23lg 53lg 2lg3lg 2lg 5lg 23lg 5lg 610=⋅+++=+++()3lg 23lg 513lg 2lg 512=+-=+-=,故B 错误;对于C,原式11142243lg 3lg 9lg 3lg 313lglg1013lg 322lg 3+-=+=+=+=,故C 正确;对于D ,原式()112323251050.37149145933⎛⎫⨯- ⎪⎝⎭⎛⎫=-+-=-+-=- ⎪⎝⎭,故D 正确;故选:CD10. 对任意两个实数,a b ,定义{},min ,,a a b a b b a b≤⎧=⎨>⎩,若()()224,f x x g x x =-=,下列关于函数()()(){}min ,F x f x g x =的说法正确的是( )A. ()()111F F =-=B. 方程()0F x =有三个解C. 当()0F x >时,有()2,2x ∈-D. 函数()F x 有最大值为2,无最小值【答案】ABD 【解析】【分析】根据题意求出函数()2224,,4,x x F x x x x x ⎧-≤⎪⎪=<<⎨⎪-≥⎪⎩.【详解】当224x x -≤,即x ≤或x ≥时,()24F x x =-,当224x x ->,即x <<时,()2F x x =,则()2224,,4,x x F x x x x x ⎧-≤⎪⎪=<<⎨⎪-≥⎪⎩对于A ,()()11,11F F =-=,故A 正确;对于B,当x ≤或x ≥时,令()240F x x =-=,解得2x =±,当x <<时,令()20F x x ==,解得0x =,方程()0F x =有三个解,故B 正确;对于C,当x ≤或x ≥时,令()240F x x =->,解得2x -<≤2x ≤<,当x <<时,令()20F x x =>,解得0x <<或0x <综上所述,当()0F x >时,有()()2,00,2x ∈- ,故C 错误;对于D,当x ≤或x ≥时,令()242F x x =-≤,无最小值,当x <<时,()202F x x ≤=≤,综上,函数()F x 有最大值2,无最小值,故D 正确.故选:ABD.11. 德国著名数学家狄利克雷在数学领域成就显著,以其命名的函数R 1,Q()0,Q x f x x ∈⎧=⎨∈⎩ð,被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则以下关于狄利克雷函数()f x 的结论中,正确的是( )A. 函数()f x 满足:()()f x f x -=B. 函数()f x 的值域是[]0,1C. 对于任意的x ∈R ,都有()()1ff x =D. 在()f x 图象上不存在不同的三个点、、A B C ,使得ABC V 为等边三角形【答案】AC 【解析】【分析】利用R 1,Q()0,Q x f x x ∈⎧=⎨∈⎩ð,对选项A ,B 和C 逐一分析判断,即可得出选项A ,B 和C 的正误,选项D ,通过取特殊点()0,1,,A B C ⎫⎛⎫⎪ ⎪⎭⎝⎭,此时ABC V 为等边三角形,即可求解.为【详解】由于R 1,Q ()0,Q x f x x ∈⎧=⎨∈⎩ð,对于选项A ,设任意x ∈Q ,则()(),1x f x f x -∈-==Q ;设任意Q x ∈R ð,则()()Q,0x f x f x -∈-==R ð,总之,对于任意实数()(),x f x f x -=恒成立,所以选项A 正确,对于选项B ,()f x 的值域为{}0,1,又{}[]0,10,1≠,所以选项B 错误,对于选项C ,当x ∈Q ,则()()()()1,11f x ff x f ===,当Q x ∈Rð,则()()()()0,01f x f f x f ===,所以选项C 正确,对于选项D ,取()0,1,,A B C ⎫⎛⎫⎪⎪⎭⎝⎭,此时AB AC BC ===,得到ABC V 为等边三角形,所以选项D 错误,故选:AC .三、填空题12. 已知函数3()23f x x x =+,若0m >,0n >,且()()()230f m f n f +-=,则29m n+最小值是______.【答案】323##2103【解析】【分析】确定给定函数的奇偶性及单调性,再求出,m n 的关系等式,并利用基本不等式“1”的妙用求出最小值.【详解】函数3()23f x x x =+定义域为R ,3()2()3()()f x x x f x -=-+-=-,因此函数()f x 是R 上的奇函数,且在R 上单调递增,由()()()230f m f n f +-=,得()(23)(32)f m f n f n =--=-,则23m n +=,所以29129193234132()()(20(2033m n m n m n n m m n +=+=++≥+=+,当且仅当94m n n m =,即39,48m n ==时取等号,所以29m n +最小值是323.故答案为:32313. 已知函数()34f x ax bx =++,若()20242f -=,则()2024f =________.【答案】6【解析】【分析】先证得()g x 为奇函数,所以()20242g -=-,再由奇函数的性质可求出()2024f .【详解】解:令()3g x ax bx =+,()()()()()33g x a x b x ax bx g x -=-+-=-+=-,所以()g x 为奇函数,所以()()2024202442f g -=-+=,所以()20242g -=-,所以()20242g =,所以()()2024202446f g =+=.故答案为:6.14. 已知函数()()222,log 1,x x x af x x x a ⎧->⎪=⎨+≤⎪⎩,给出下列四个结论:①对任意实数a ,函数()f x 总存在零点;②存在实数a ,使得函数()f x 恒大于0;③对任意实数a ,函数()f x 一定存在最小值;④存在实数a ,使得函数()f x 在(),a -∞上始终单调递减.其中所有正确结论的序号是______.【答案】①④【解析】【分析】根据二次函数以及对数函数的性质即可求解零点,结合函数图象即可求解①,根据0a ≤时,当02x <<时,()220f x x x =-<,以及0a <时,由于()00f =,即可判断②,根据12a ≤<,结合二次函数的性质即可求解③,根据0a ≤时,对数函数的性质即可判断④.【详解】令220x x -=,则0x =或2x =,令()2log 10x +=,则0x =,且22y x x =-和()2log 1y x =+的图象分别如下所示:当2a <时,()()222,log 1,x x x af x x x a ⎧->⎪=⎨+≤⎪⎩的零点有0x =和2x =,当2a ≥时,()()222,log 1,x x x af x x x a ⎧->⎪=⎨+≤⎪⎩的零点有0x =,故①正确,对于②,当0a <时,当02x <<时,()220f x x x =-<,不满足题意,当0a ≥时,由于()00f =,不满足()f x 恒大于0;故不存在实数a ,使得函数()f x 恒大于0,②错误,对于③,当12a ≤<时,()f x 的图象如下所示:此时()f x 不存在最小值;故③错误对于④,当0a ≤,()f x 图象如下:函数()f x 在(),a ∞-上始终单调递减.故④正确故答案为:①④四、解答题15. 设集合{}{}{}2212,40,A x a x a B x x x C y y x B=-≤≤+=-≤==∈(1)是否存在实数a ,使x B ∈是x A ∈的充分不必要条件,若存在,求出实数a 的取值范围;若不存在,请说明理由;(2)若A C C = ,求实数a的取值范围.【答案】(1)存在,2a ≥(2)1a ≤【解析】【分析】(1)根据充分不必要条件列不等式,由此求得a 的取值范围.(2)根据集合A 是否为空集进行分类讨论,由此列不等式来求得a 取值范围.【小问1详解】()2440x x x x -=-≤,解得04x ≤≤,所以{}|04B x x =≤≤,假定存在实数a ,使x B ∈足x A ∈的充分不必要条件,则B A ,A ≠∅,则21220124a a a a -≤+⎧⎪-≤⎨⎪+>⎩或21220124a a a a -≤+⎧⎪-<⎨⎪+≥⎩,解得2a ≥或2a >,因此2a ≥,所以存在实数a ,使x B ∈是x A ∈的充分不必要条件,2a ≥.【小问2详解】当04x ≤≤时,16125x ≤+≤,15≤≤,则{}15C x x =≤≤,由A C C = ,得A C ⊆,当212a a ->+,即13a <时,A =∅,满足A C ⊆,符合题意,则13a <;当212a a -≤+,由A C ⊆,得12125a a ≤-≤+≤,解得113a ≤≤,因此1a ≤,所以实数a 的取值范围是1a ≤.16. 已知函数()()()211,f x ax a x b a b R =-++-∈.(1)若1a =,关于x 的不等式()2f x x ≥在区间[]3,10上恒成立,求b 的取值范围;(2)若0b =,解关于x 的不等式()0f x <.【答案】(1)2b ≤-;(2)答案见解析.【解析】【分析】(1)1a =时不等式化为求241b x x ≤-+在[]3,10x ∈上的最小值可得答案;(2)0b =时不等式为()2110ax a x -++<,讨论0a = 、0a <、0a >时解不等式可得答案.的【详解】(1)1a =,不等式化为2212x x b x-+-≥,[]3,10x ∈,所以()224123b x x x ≤-+=--在[]3,10恒成立,即求()223y x =--在[]3,10x ∈上的最小值为2-,所以2b ≤-.(2)0b =,不等式为()2110ax a x -++<,①当0a =时,10x -+<,1x >不等式解集为()1,+∞;当0a ≠时不等式转化为()110a x x a ⎛⎫--< ⎪⎝⎭,②当0a <时,不等式()110x x a ⎛⎫--> ⎪⎝⎭解集为()11,a ⎛⎫-∞+∞ ⎪⎝⎭ ,;③当0a >时,不等式()0f x <化为()110x x a ⎛⎫--< ⎪⎝⎭,若1a =,不等式解集为∅;若1a >,不等式解集为1,1a ⎛⎫ ⎪⎝⎭;若01a <<,不等式解集为11,a ⎛⎫ ⎪⎝⎭.综上所述:①当0a <时,不等式解集为()11,a ⎛⎫-∞+∞ ⎪⎝⎭ ,;②当0a =时,不等式解集为()1,+∞;③当01a <<时,不等式解集为11,a ⎛⎫ ⎪⎝⎭;④当1a =时,不等式解集∅;⑤当1a >时,不等式解集为1,1a ⎛⎫ ⎪⎝⎭.17. 生物钟(昼夜节律)是生物体内部的一个调节系统,控制着生物的日常生理活动.研究显示,人体的某些荷尔蒙(如皮质醇)在一天中的分泌量会随着时间的不同而发生变化,从而影响人的活力和认知能力.假设人体某荷尔蒙的分泌量()H t (单位:ng /mL )与一天中的时间t (单位:小时,以午夜0点为为起点)的关系可以通过以下分段函数来描述:●在夜间()06t ≤<,荷尔蒙分泌量保持在较低水平,可以近似为常数()H t a =.●在早晨()612t ≤≤,随着人醒来和太阳升起,荷尔蒙分泌量线性增加,其关系为()()6H t b t a =-+,当12t =时,分泌量达到最大值maxH ●在下午和晚上()1224t <≤,荷尔蒙分泌量逐渐降低,可以用指数衰减模型描述,即()()12max e c t H t H --=⋅.已知午夜时荷尔蒙分泌量为5ng /mL ,峰值分泌量为20ng /mL(1)求参数a ,b 和c 的值以及函数()H t 的解析式;(2)求该同学一天内荷尔蒙分泌量不少于10ng /mL 的时长.【答案】(1)5a =, 2.5b =,ln26c =,()()()ln 21265,062.565,61220e ,1224t t H t t t t --⎧≤<⎪⎪=-+≤≤⎨⎪⎪⋅<≤⎩(2)10个小时【解析】【分析】(1)根据()05H =求出a ,再根据()1220H =和()245H =分别求出,b c ,即可得出函数解析式;(2)分612t ≤≤和1224t <≤两种情况解不等式()10H t ≥即可.【小问1详解】根据题意得,午夜时荷尔蒙分泌量()05H =,5a ∴=,在早晨()612t ≤≤,荷尔蒙分泌量满足关系式:()()6H t b t a =-+,当12t =时,分泌量达到峰值即max 20H =,即()()1212620H b a =-+=,解得:15 2.56b ==,因此早晨时段的荷尔蒙分泌量关系为()()()2.565612H t t t =-+≤≤,在下午和晚上()1224t <≤时段,荷尔蒙分泌量满足:()()1220e c t H t --=⋅,所以()()24122420e 5c H --=⋅=,解得ln26c =,所以荷尔蒙分泌量为()()()ln 212620e 1224t H t t --=⋅<≤,综上,荷尔蒙分泌量的函数关系为()())ln 21265,062.565,61220e ,1224t t H t t t t --⎧≤<⎪⎪=-+≤≤⎨⎪⎪⋅<≤⎩;【小问2详解】①当612t ≤≤时,()()2.56510H t t =-+≥,解得8t ≥,所以812t ≤≤,②当1224t <≤时,()()1220e 10c t H t --=⋅≥,()ln 2112ln 621e e 2t --∴≥=,()ln2112ln ln262t ∴--≥=-,126,18t t ∴-≤≤,1218t ∴<≤,综上所述818t ≤≤,该同学一天之内荷尔蒙分泌不少于10ng /ml 的时长为10个小时.18. 已知定义在R 上的奇函数3()31x x m f x -+=+,m ∈R .(1)求m ;(2)判断并证明()f x 在定义域R 上的单调性.(3)若实数a 满足()22122a a f +<-,求a 的取值范围.【答案】(1)1m =(2)函数()f x 在R 上单调递减,证明见解析(3)()(),20,-∞-⋃+∞【解析】【分析】(1)由()f x 是定义在R 上的奇函数,则有()00f =,得出m 后再代回检验即可得;(2)由312()13131x x x f x -+==-+++可判断()f x 为R 上的单调递减函数,结合单调性定义证明即可;(3)结合函数单调性与奇偶性应用即可得.【小问1详解】由题意,函数()f x 是定义在R 上的奇函数,可得()00f =,解得1m =,当1m =时,()3131x x f x -+=+,3131()()3131x x x x f x f x ---+-+-==-=-++,()3131x x f x -+=+是奇函数,故1m =.【小问2详解】()f x 是R 上的单调递减函数,证明如下:任取1x 、2x 且12x x <,则()()()()()1221211221233131313131313x x x x x x x x f x f x --+-+-=-=++++,因21x x >,故12330x x -<,从而有()()210f x f x -<,即()()21f x f x <,所以函数()f x 在R 上单调递减;【小问3详解】由()112f =-,故()()221212a a f f +<-=,即()()2221a a f f +<,由()f x 在R 上单调递减,可得2221a a +>,即220a a +>,解得2a <-或0a >,即实数a 的取值范围()(),20,-∞-⋃+∞.19. 已知函数()2xf x =(x ∈R ).(1)解不等式()()21692xf x f x ->-⨯;(2)若函数ℎ(x )为()f x 的反函数,()26h x ax -+在()2,5上单调,求a 的取值范围;(3)若函数()()()f x g x h x =+,其中()g x 为奇函数,ℎ(x )为偶函数,若不等式()()220ag x h x +≥对任意[]1,2x ∈恒成立,求实数a 的取值范围.【答案】(1)(1,3)(2)(],4∞-(3)17,12⎡⎫-+∞⎪⎢⎣⎭【解析】【分析】(1)由题意可得2221692x x x ->-⨯,换元法求解即可;(2)由题意可得()()222log 66h x ax x ax --=++在()2,5上单调,则260x ax -+>在()2,5上恒成立,且26y x ax =-+在()2,5上单调,结合二次函数分析求解;(3)由函数的奇偶性先求出()g x ,()h x 的解析式,可得111(2(40224x x x x a -++≥,再由换元法与参变分离运算求解.【小问1详解】因为()()21692x f x f x ->-⨯,且()2x f x =,则2221692x x x ->-⨯,设2x t =,则不等式可化为2169t t t ->-,解得28t <<,即228x <<,则13x <<,故原不等式的解集为(1,3).【小问2详解】若函数()h x 为()f x 的反函数,则()2log h x x =,因为()()222log 66h x ax x ax --=++在()2,5上单调,则260x ax -+>在()2,5上恒成立,即6x a x +>,因为6x x +≥=,当且仅当6x x =,即()2,5x =时,等号成立,可得a <,且26y x ax =-+在()2,5上单调,则22a ≤或52a ≥,解得4a ≤或10a ≥;综上所述:a 的取值范围(],4∞-.【小问3详解】由题意得2()()x g x h x =+,则1()()()()2xg x h x g x h x =-+-=-+,即()()21()()2x x g x h x g x h x ⎧+=⎪⎨-+=⎪⎩,解得11()(2)2211()(222x x x x h x g x ⎧=+⎪⎪⎨⎪=-⎪⎩,若不等式()()220ag x h x +≥对任意[]1,2x ∈恒成立,即111(2(40224xx x x a -++≥,可得2111(2)220222x x x x a ⎡⎤⎛⎫-+-+≥⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,令122xx k =-,且12,2xx y y ==-在[]1,2内单调递增,则122x x k =-在[]1,2内单调递增,且当1x =时,32k =;当2x =时,154k =;可知13152,224x x k ⎡⎤=-∈⎢⎥⎣⎦,则不等式可化为21(2)02ak k ++≥对315[,]24k ∈恒成立,可得22k a k +≥-,315[,24k ∈,且32>,由对勾函数性质可知2y k k =+在315[,]24内单调递增,可知当32k =时,2y k k =+取到最小值176,则1726a ≥-,解得1712a ≥-,所以实数a 的取值范围是17,12⎡⎫-+∞⎪⎢⎣⎭.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x >恒成立(即()max a f x >可)或()a f x <恒成立(即()min a f x <可);② 数形结合(()y f x =图象在 ()y g x =上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.。
四川省达州市达州中学2024-2025学年高一上学期第一次质量检测(10月)数学题
四川省达州市达州中学2024-2025学年高一上学期第一次质量检测(10月)数学题一、单选题1.已知集合{}24A x x ==,则下列说法正确的是()A .2A⊆B .{}2A -∈C .{}2A⊆D .A∅∉2.命题“*n ∃∈N ,使得221n n >+”的否定形式是()A .*n ∃∈N ,使得221n n <+B .*n ∀∈N ,使得221n n <+C .*n ∃∈N ,使得221n n ≤+D .*n ∀∈N ,使得221n n ≤+3.若a b c d ,,,为集合M 的四个元素,则以a b c d ,,,为边长的四边形可能为()A .等腰梯形B .菱形C .直角梯形D .矩形4.已知a ,b ,c ,d 均为实数,则下列命题正确的是()A .若a b >,c d >,则a b c d +>+B .若22a b >,则a b -<-C .若0c a b >>>,则a bc a c b>--D .若0a b >>且0m >,则a m ab m b+>+5.“15x ≤≤”是“27100x x -+≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知0a >,0b >,若不等式49m a ba b ab+≤+恒成立,则m 的最大值为()A .25B .169C .5D .67.若a 、b 、c 是互不相等的正数,且222a c bc +=,则下列关系中可能成立的是()A .a b c>>B .c a b>>C .b a c>>D .a c b>>8.设正实数x ,y ,z 满足2240x xy y z -+-=,则当xyz取得最大值时,213x y z +-的最大值为()A .2B .1516C .1D .94二、多选题9.已知a ,b ,R c ∈,则下列结论正确的是()A .若a b <且0ab ≠,则11a b>B .若0a b >>,则22a b >C .若22ac bc >,则a b>D .若0a b <<,则2a ab>10.不等式20ax bx c -+>的解集是{}21x x -<<,则下列选项正确的是()A .0b <且0c >B .不等式0bx c ->的解集是{}2x x >C .0a b c ++>D .不等式20ax bx c ++>的解集是{}12x x -<<11.已知0a >,0b >,3a b +=,则()A .ab 的最大值为94B C .3b ba b++的最小值为4D .2211a b a b +++的最小值为95三、填空题12.已知集合{}{}24,2,4,A m B m =-=,且A B =,则m 的值为.13.已知关于x 的不等式2243x x a a -+≥-在R 上有解,则实数a 的取值范围是.14.已知正实数a 、b 满足122a b +=,则34211a b +--的最小值为.四、解答题15.(1)设0x y >>,试比较()()22x y x y +-与()()22x y x y -+的大小.(2)已知a 、b 、x 、()0,y ∞∈+且11a b >,x y >,求证:x yx a y b>++.16.已知正数x ,y 满足20x y xy +-=.(1)求4912x yx y +--的最小值;(2)若()225x y m m +->+恒成立,求实数m 的取值范围.17.(1)若不等式2120ax bx -->的解集为{6x x >或}2x <-,解关于x 的不等式:()21202b a x a b x b ⎛⎫-++-< ⎪⎝⎭;(2)解关于x 的不等式()2110mx m x +--<.18.2010年上海世博会某国要建一座八边形的展馆区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200m 2的十字型地域.....,计划在正方形MNPQ 上建一座“观景花坛”,造价为4200元/m 2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m 2,再在四个空角(如DQH 等)上铺草坪,造价为80元/m 2.设AD 长为x m ,DQ 长为y m .(1)试找出x 与y 满足的等量关系式;(2)设总造价为S 元,试建立S 与x 的函数关系;(3)若总造价S 不超过138000元,求AD 长x 的取值范围.19.(1)设a 、b 、x 、y 为正实数,证明不等式:()222a b a b x y x y ++≥+;(2)若正实数x 、y 满足:22x y +=,求224122x yy x +++的最小值;(3)若0x ≥,0y ≥,当4x y +=时,求2211x yx y +++的最大值.。
山东省临沂市2024-2025学年高一上学期期中教学质量检测数学试题
山东省临沂市2024-2025学年高一上学期期中教学质量检测数学试题一、单选题1.已知集合{}|14P x x =<<,{}2|10210Q x x x =-+<,则P Q = ()A .{}3|1x x <<B .{}|17x x <<C .{}|34x x <<D .{}|37x x <<2.命题“2,220x x x ∀∈++>R ”的否定是()A .2,220x x x ∃∈++<RB .2,220x x x ∃∈++≤R C .2,220x x x ∀∈++≤R D .2,220x x x ∀∉++>R 3.设函数1,0()1,0x f x x ≥⎧=⎨-<⎩,则方程2(1)9x f x -=-的解为()A .2 x =-B .3x =-C .2x =D .3x =4.已知2()f x ax bx =+是定义在[2,3]a a -上的偶函数,那么a b +的值是()A .13-B .13C .12-D .125.已知命题p :{}12x x x ∃∈<<,0x a -≥,若p ⌝是真命题,则实数a 的取值范围是()A .1a <B .2a >C .2a ≤D .2a ≥6.已知14,233x y x y -≤+≤≤-≤,则48z x y =-的取值范围是()A .[5,13]B .[5,23]-C .[0,22]D .[2,20]7.若函数222,1()(23)4,1x ax x f x a x x ⎧-++>=⎨-+≤⎩的值域为R ,则实数a 的取值范围是()A .2,13⎛⎤⎥⎝⎦B .[1,)+∞C .2,3⎛⎫+∞ ⎪⎝⎭D .2,23⎛⎤⎥⎝⎦8.已知关于x 的不等式2(1)0x a x a -++<恰有5个整数解,则实数a 的取值范围是()A .(6,7]B .[5,4)--C .[5,4)(6,7]--⋃D .(5,4][6,7)--⋃二、多选题9.下列命题正确的是()A .“1a >”是“11a<”的充分条件B .集合4Z,Z 4a a a ⎧⎫∈∈⎨⎬-⎩⎭∣的真子集有8个C .如果x ,y 是无理数,那么x y +是无理数D .函数22()1x x f x x -=-图象的对称中心是(1,0)10.下列说法正确的是().A .不等式211x ≥+的解集是(]-1,1B .若函数()f x 的定义域为[]1,4,则函数()1f x +的定义域为[]0,3C .函数21y x =+在单调递减区间为()()--1-1+∞⋃∞,,D .函数()f x =[]0,111.已知,230a b c a b c >>++=,则()A .0a c +>B .232ab ac +<+C .2c a a c +≤-D .方程220ax bx c +-=有两个实数解三、填空题12.生活中“汤菜加盐,越加越咸”.请将这一事实用0,0a b c >>>表示为一个不等式.13.已知幂函数()y f x =的图象过点(2,,则()9f =.14.已知0,0,31a b a b >>+=,则231ab a +的最大值为⋅四、解答题15.已知集合{}2{12},3100A xa x a B x x x =-≤≤+=-->∣∣.(1)当4a =时,求A B ⋂;(2)若A B B = ,求实数a 的取值范围.16.已知关于x 的不等式2320ax x -+>的解集为{1xx <∣或}x b >.(1)求a ,b 的值;(2)当00,x y >>且满足1a b x y+=时,有222x y k k +≥-+恒成立,求实数k 的取值范围.17.某制造商为拓展业务,引进了一种生产体育器材的新型设备.通过市场分析发现,每月需投入固定成本3000元,生产x 台需另投入成本C (x )元,且210400040()100001004980040100x x x C x x x x ⎧+<<⎪=⎨+-≤≤⎪⎩,,,,若每台售价1000元,且每月生产的体育器材月内能全部售完.(1)求制造商所获月利润L (x )(元)关于月产量x (台)的函数关系式;(2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.18.已知函数22()1x a f x x -=+为奇函数.(1)求实数a 的值:(2)求证:()y f x =在[1,1]-上为增函数;(3)求()y f x =的值域.19.定义在R 上的函数()f x 满足:对任意的实数1[,)x k ∈+∞,都存在唯一的实数2(,)x k ∈-∞,使得()()21f x f x =,则称函数()f x 是“()V k 型函数”.(1)判断2()1f x x =+是否为“(1)V -型函数”?并说明理由;(2)若存在实数k,使得函数()g x =“()V k 型函数”,求k 的最小值;(3)若函数21,1(),1x x h x x x a x ⎧+-≥⎪=⎨⎪-<⎩始终是“1V ()型函数”,求实数a 的取值范围.。
安徽省2024-2025学年高一上学期11月期中教学质量检测数学试题(含答案)
安徽省2024-2025学年高一上学期11月期中教学质量检测数学试题考试时间:120分钟满分150分一、单选题:本题共8小题,每小题5分,共40分.1.下列集合中表示同一集合的是()A. B.C. D.2.若,则下列不等式不能成立的是()A. B.C. D.3.不等式的解集为A.或B.或C.或D.4.函数的图象可能是()A. B. C. D.5.已知,则()A.27B.18C.15D.256.函数的单调递减区间是()A. B. C. D.7.已知是偶函数,且其定义域为,则()A. B.-1 C.1 D.78.已知函数,若存在,且两两不相等,则的取值范围为A. B. C.[0,1] D.{(3,2)},{(2,3)}M N=={4,5},{5,4}M N=={(,)1},{1}M x y x y N y x y=+==+=∣∣{1,2},{(1,2)}M N==a b<<||||a b>2a ab>11a b>11a b a>-23540x x-+->{3x x≤-∣2}x≥{3x x≤-∣1}x≥{31x x-≤≤∣2}x≥∅1(0,1)xy a a aa=->≠13a a-+=33a a-+=()f x=(,3]-∞-[1,1]-(,1]-∞-[1,)-+∞2()35f x ax bx a b=+-+[61,]a a-a b+=1725,0()22,0x xf xx x x->⎧=⎨+-≤⎩()()()123f x f x f x==123x x x、、123x x x++()(1,1)-(1,1]-(0,1]二、多选题:本题共3小题,共18分.9.(多选)下列说法正确的有( )A.命题,则B.“”是“”成立的充分条件C.命题,则D.“”是“”的必要条件10.若正实数a ,b 满足,则下列说法正确的是( )A.ab 有最大值C.有最小值4 D.11.对于函数的定义域中任意的,当时,如下结论正确的是( )A. B.C.D.三、填空题:本题共3小题,每小题5分,共15分.12.命题“对任意,都有”的否定是_______________.13.已知,求函数的最小值是_______________.14.已知是上的增函数,则实数的取值范围是_______________.四、解答题:本题共5小题,共77分.15.(本小题13分)已知集合,集合.(1)求;(2)设集合,且,求实数的取值范围.16.(本小题15分)已知二次函数.(1)若的解集为,求a ,b 的值;(2)若f (x )在区间上单调递增,求的取值范围.:,(0,1),2p x y x y ∀∈+<0000:,(0,1),2p x y x y ⌝∃∈+≥1,1a b >>1ab >2:,0p x R x ∀∈>2:,0p x R x ⌝∃∈<5a <3a <1a b +=14+11a b+22a b +()f x ()1212,x x x x ≠()2xf x =()()()1212f x x f x f x +=⋅()()()1212f x x f x f x ⋅=+()()12120f x f x x x ->-()()121222f x f x x x f ++⎛⎫<⎪⎝⎭x R ∈20x ≥54x >14245y x x =-+-2,1()4,12x a x f x a x x ⎧->⎪=⎨⎛⎫-≤ ⎪⎪⎝⎭⎩R a {22}A xx =-∣……{1}B x x =>∣()R B A ⋂ð{6}M xa x a =<<+∣A M M ⋃=a 2()3()f x x ax a R =--∈()0f x <{3}xx b -<<∣[2,)-+∞a17.(本小题15分)如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形菜园.设菜园的长为x m ,宽为y m.(1)若菜园面积为18m 2,则当x ,y 为何值时,可使所用篱笆总长最小?并求出最小值.(2)若使用的篱笆总长度为16m ,则当x ,y 为何值时,可使菜园面积最大?并求出最大值.18.(本小题17分)已知函数在上是偶函数,当时,,(1)求函数在上的解析式;(2)求单调递增区间和单调递减区间;(3)求在的值域.19.(本小题17分)已知函数对任意实数x ,y 恒有,且当时,,又.(1)判断的奇偶性;(2)求证:是上的减函数并求函数在区间上的最大值;(3)若对任意,不等式恒成立,求的取值范围.()f x R 0x (2)()23f x x x =+-()f x R ()f x ()f x [4,4]-()f x ()()()f x y f x f y +=+0x >()0f x <(1)2f =-()f x ()f x R ()f x [3,3]-x R ∈()23()4f axf x <+a高一期中考试数学参考答案1.B2.D3.D4.D5.B6.B7.A8.D 7.A 8.D9.ABD 10.AC 11.ACD12.存在,使得13.514.[4,8)14.解:(1)由已知,又,所以;(2)因为,所以,又,所以,解得.所以的取值集合为.16.解:(1)的解集为,和是方程的两根,由根与系数关系得:;.(2)的对称轴为且在区间上单调递增,;.17.解:(1)由已知可得,而篱笆总长为;又因为,当且仅当时,即时等号成立所以菜园的长为6m ,宽为3m 时,可使所用篱笆总长最小,最小值为12;0x R ∈200x ≤{1}R B x x =≤∣ð{22}A x x =-∣……(){21}R B A xx ⋂=-∣......ðA M M ⋃=A M ⊆{22},{6}A x x M x a x a =-=<<+∣∣ (62)2a a +>⎧⎨<-⎩42a -<<-a {42}a a -<<-∣()0f x < {3}x x b -<<∣3∴-b 230x ax --=∴3,33b a b -+=-⨯=-2,1a b ∴=-=()f x 2ax =()f x [2,)-+∞22a∴≤-4a ∴≤-18xy =2L x y =+212x y +≥=2x y =6,3x y ==x y(2)由已知得,而菜园面积为,则,当且仅当即时取等号,菜园的长为8m ,宽为4m 时,可使菜园面积最大,最大值为32.18.解:(1)当时,,函数是偶函数,当时,,.(2)由(1)可画出函数在上的图像,如图所示,则的单调递增区间为和,单调递减区间为和.(3)由函数的定义域为,由(2)中所作函数图象可知,当或时,取得最小值,当或时,取得最大值,故函数的值域.19.(1)解:取,则,,取,则,216x y +=S xy =2112232222x y S xy x y +⎛⎫==⋅⋅≤⋅= ⎪⎝⎭2x y =8,4x y ==∴x y 0x (2)()23f x x x =+- ()y f x =0x >20,()()23x f x f x x x -<∴=-=--22230()230x x x f x x x x ⎧+-∴=⎨-->⎩…()y f x =R ()f x (1,0)-(1,)+∞(,1)-∞-(0,1)()y f x =[4,4]-1x =1x =-(1)(1)4f f =-=-4x =4x =-(4)(4)5f f =-=()f x [4,5]-0x y ==(00)2(0)f f +=(0)0f ∴=y x =-()()()f x x f x f x -=+-对任意恒成立,为奇函数.(2)证明:任取且,则,,又为奇函数,.故为上的减函数;为上的减函数,在区间上的最大值为,,故在上的最大值为6.(3)解:为奇函数,且,整理原式得,即可得,而在上是减函数,所以即恒成立,①当时不成立,②当时,有且,即,解得.故的取值范围为.()()f x f x ∴-=-x R ∈()f x ∴12,(,)x x ∈-∞+∞12x x <()()()2121210,0x x f x f x f x x ->+-=-<()()21f x f x ∴<--()f x ()()12f x f x ∴>()f x R ()f x R ()f x ∴[3,3]-(3)f -(3)3(1)236,(3)(3)6f f f f ==-⨯=-∴-=-=()f x [3,3]-()f x (2)(2)2(1)4f f f -=-=-=()22()()(2)f ax f x f x f +-<+-()2(2)()(2)f axf x f x f +-<+-()22(2)f ax x f x -<-()f x R 222ax x x ->-2320ax x -+>0a =0a ≠0a >0< 0980a a >⎧⎨-<⎩98a >a 9,8⎛⎫+∞ ⎪⎝⎭。
2024-2025学年浙江省杭州市高一第一学期期中数学质量检测试题
2024-2025学年浙江省杭州市高一第一学期期中数学质量检测试题考生须知:1.本卷共4页满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字.3.所必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1. 已知全集,集合,,则( ){1,2,3,4,5}U ={1,2,3}M ={2,3,4}N =()UM N = ðA. B. {5}{2,3}C. D. {1,4}{1,4,5}2. 下列说法正确的是( )A. , B. “且”是“”的充R x ∀∈|1|1x +>2x >3y >5x y +>要条件C. ,D. “”是“”的必要不充分0x ∃>3x x=-20x x -=1x =条件3. 已知集合,则的值为( ){}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭20242024ab +A. 0 B. 1C .D. 1或1-1-4. 设函数,则( )1()22x x f x =-()f x A. 是奇函数,且在上单调递增 B. 是奇函数,且在上单调递(,)-∞+∞(,)-∞+∞减C. 是偶函数,且在上单调递增D. 是偶函数,且在上单调递(,)-∞+∞(,)-∞+∞减5. 下列函数中最小值为4的是( )A. B.224y x x =++4y x x=+C.D.2y 22x x-=+y =6. 函数的图象大致为( )262xy x -=+A. B.C.D.7. 下列命题为真命题的是( )A. 若,则B. 若,则0a b >>22ac bc>a b >22a b>C. 若,则 D. 若,则0a b <<22a ab b>>a b <11a b >8. 若定义在上的偶函数在上单调递减,且,则满足R ()f x (,0]-∞(2)0f =的的取值范围是( )(1)(2)0x f x --≥x A. B. [0,1][4,)+∞ (,2][2,)-∞-+∞ C .D. [0,1][2,)⋃+∞[0,1][2,4]二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.少选得部分分,错选得0分.9. 已知幂函数,则以下结论正确的是( )12()f x x =A. 的定义域为 B. 是减函数()f x [0,)+∞()f xC. 的值域为D. 是偶函数()f x [0,)+∞()f x 10. 已知集合,,则下列选项中正确的{}1,2,3,4,5A ={}(,),,B x y x A y A x y A =∈∈-∈是( )A. 集合有32个子集B. A (2,1)B ∈C. 中所含元素的个数为10个D. B (2,3)B∈11. 下列说法正确的是( )A. 函数在定义域内是减函数1()f x x =B. 若,则函数的最大值为12x <4221y x x =+-3-C. 若不等式对一切实数恒成立,则23208kx kx +-<x 30k -<≤D. 若,,,则的最小值为20x >0y >3x y xy ++=x y +非选择题部分三、填空题:本题共3小题,每小题5分,共15分.12. 已知的定义域为,则的定义域是__________.()f x [1,3]-()2f x 13.__________.3110.7535=64162---⎛⎫+++ ⎪⎝⎭14. 设的最大值为__________.0,0,22x y x y >>+=四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步器.15. 已知集合,.{}21A x x =-≤≤{}12B x x a =-<<(1)若,求,;1a =A B ⋂()UA B ð(2)若,求实数的取值范围.A B B = a 16. 已知()||(2)().(R)f x x a x x x a a =--+-∈(1)当时,求不等式的解集;1a =()0f x <(2)若在上为增函数,求的取值范围.()f x R a 17. 某工厂生产某种玩具车的固定成本为15000元,每生产一辆车需增加投入80元.已知总收入(单位:元)关于月产量(单位:辆)满足函数:R x 21380(0500),()275000(500).x x x R x x ⎧-≤≤⎪=⎨⎪>⎩(1)将利润(单位:元)表示为月产量(单位:辆)的函数;P x (2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收入=总成本+利润)18. (1)已知,,且,求的最小值;0a >0b >1ab =114a b a b +++(2)设,,若,求的最小值;0a >1b >2a b +=211ab +-(3)求函数的最大值.()f x =19. 已知定义在上的奇函数,且.R 2()1ax bf x x +=+13310f ⎛⎫= ⎪⎝⎭(1)求函数的解析式;()f x (2)判断在上的单调性,并证明你的结论;()f x [1,1]-(3)设,若,对,有()()()()21112g x x f x m x =++++-⎡⎤⎣⎦[]11,2x ∃∈[]21,1x ∀∈-成立,求实数的取值范围.()()122g x f x ≤m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学测试题
1错误!未指定书签。
.若{1,2,3,4},{1,2},{2,3}U M N ===,则()N M C U Y 是 (A ){1,2,3} (B ){2} (C ){1,3,4} ( D ){4}
2、下列函数中,在其定义域内既是奇函数又是减函数的是
(A )3 ,y x x R =-∈ (B ) sin ,y x x R =∈ (C.) ,y x x R =∈ ( D )x 1
() ,2
y x R =∈
3、
函数()(0,2)f x x π=∈的定义域是
(A.)[
]62
ππ
, ( B.) 5[,
]66
ππ
(C.)
5[]26ππ, ( D ).5[]33
ππ
, 4若2log 2,log 3,m n
a a m n a +==则等于
(A ) 7 ( B ) 8 (C ) 9 (D ) 12
5.设1
2
3
2,2
()log (1),2x e x f x x x -⎧<⎪=⎨-≥⎪⎩则((2))f f 的值为 (A) 0 ( B) 1 (C ) 2 (D ) 3 6 三个数6.05,56.0,5log 6.0的大小顺序是
(A) 6.06.0555log 6.0<< (B) 5log 56.06.06.05<< (C) 56.06.06.055log << (D) 6.056.056.05log <<
7.已知31log 231
(2)log 2ln 32
x
f x e +=
-+,则(3)f 的值等于 (A ) 5 (B ) 6 ( C ) 23log 2+ ( D ) 3+2log 3
8、若)(x f 是R 上的奇函数,在[)+∞,0上图象如图所示 则满足的解集合是0<)x (xf
9已知函数()x f 是R 上的偶函数,且()()[]()211,0.,1f x f x x f x x -=+∈=当时,则函数
()的零点有x lg x f y -= (个)
10已知函数
]1,1[,3)3
1
(2)91()(-∈+-=x a x f x x
(Ⅰ)若)(x f 的最小值记为)(a h ,求)(a h 的解析式.
(Ⅱ)是否存在实数m ,n 同时满足以下条件:① 3m n >>;② 当()h a 的定义域为[,]n m 时值域为22[,]n m ;若存在,求出,m n 的值;若不存在,说明理由.
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D
B
C
A
B
D
C
C
D
B
B
D
6解222,3()4312m n m n m n a a a a a +==∴==⨯=g 8.解03(2)log 31((2))(1)22f f f f e ==∴===
9解:0.4550,40.60.651,00.61,log 50log 50.65><<<∴<< 11.
31log 23311111
(2)log 2ln 3()log 32(3)6622222x x f e f x x f +=-+⇒=-+⨯⇒=-+=
解12, 设,,AE AF BC 0AD BC 0AD BC AB AC AE AF AB AC ==+•=•=∴⊥u u u r u u u r
u u u
r u u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 则原式化为
()即 AEDF EAD=DAC ∴∠∠Q 四边形是菱形
11
cos cos 22AE AF AE AF BAC BAC •=<=∴∠=u u u r u u u r u u u r u u u r Q
006030BAC BAD DAC ∴∠=∴∠=∠=
060ABH AHC AB AC BAC ABC ≅⇒=∠=∴V V Q V 是等边三角形
(13). 2 (14).32
(15).}{11>-<x ,x x 或 (16). 23
-
(17).○
1 x x f 4
sin 2)(π
= ○
222+ (18) 9 解14.223
,(32)()032012182
a b a b a b a b λλλλ⊥+•-=∴-=∴=∴=r r r r r r r r Q
解15.函数()f x 在R 上的图像如图
()0x f x ∴•<的解集}{11>-<x ,x x 或
18.解:由已知f(x)的图像关于1x =对称
(1)(1)(2)()()()2f x f x f x f x f x f x T +=-∴+=-=∴=Q 是周期函数,
令y=0,则f(x)=lg x 在同一坐标系中作y=f(x),和y=lg x 图像如题 有9个零点
22(本题满分12分)
解:(Ⅰ)设 1
()3
x t =,∵[1,1]x ∈-, ∴ 1[,3]3
t ∈------------------------1分 则原函数可化为2221()23()333t t at t a a t ϕ⎡⎤=-+=-+-∈⎢⎥⎣⎦
,, ------------2分
讨论 ① 当13a <时,min 1282()()()393
a
h a t ϕϕ===
-
-------------3分 ② 当133
a ≤≤时,2min ()()()3h a t a a ϕϕ===- -------------4分 ③ 当3a >时,min ()()(3)126h a t a ϕϕ===- --------------5分 2
2821()
9331
()3(3)3
126(3)
a
a h a a a a a ⎧-<⎪⎪⎪
∴=-≤≤⎨⎪
->⎪⎪⎩
--------------6分
(Ⅱ) 因为()126h a a =-在(3,)+∞上为减函数,而3m n >>
()h a ∴在[,]n m 上的值域为[(),()]h m h n -------------------------------7分
Θ()h a 在[,]n m 上的值域为2
2
[,]n m ,22()()h m n h n m ⎧=∴⎨=⎩ 即: 2
2
126126m n n m ⎧-=⎨-=⎩
-----9分 两式相减得: 6()()()m n m n m n -=-+ ---------------------------------10分
又3m n >> 6m n ∴+=, 而3m n >>时有6m n +>,矛盾。
-----------11分 故满足条件的实数,m n 不存在. -------------------12分。