纯电动汽车动力性能分析与计算
(完整版)纯电动汽车动力性计算公式
XXEV 动力性计算1 初定部分参数如下2 最高行驶车速的计算最高车速的计算式如下:mphh km i i rn V g 5.43/70295.61487.02400377.0.377.00max ==⨯⨯⨯=⨯= (2-1)式中:n —电机转速(rpm ); r —车轮滚动半径(m );g i —变速器速比;取五档,等于1;0i —差速器速比。
所以,能达到的理论最高车速为70km/h 。
3 最大爬坡度的计算满载时,最大爬坡度可由下式计算得到,即00max 2.8)015.0487.08.9180009.0295.612400arcsin().....arcsin(=-⨯⨯⨯⨯⨯=-=f rg m i i T dg tq ηα所以满载时最大爬坡度为tan(m ax α)*100%=14.4%>14%,满足规定要求。
4 电机功率的选型纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。
4.1 以最高设计车速确定电机额定功率当汽车以最高车速m ax V 匀速行驶时,电机所需提供的功率(kw )计算式为:max 2max ).15.21....(36001V V A C f g m P d n +=η (2-1)式中:η—整车动力传动系统效率η(包括主减速器和驱动电机及控制器的工作效率),取0.86;m —汽车满载质量,取18000kg ; g —重力加速度,取9.8m/s 2; f —滚动阻力系数,取0.016;d C —空气阻力系数,取0.6;A —电动汽车的迎风面积,取2.550×3.200=8.16m 2(原车宽*车身高);m ax V —最高车速,取70km/h 。
把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即kw1005.8970)15.217016.86.0016.08.918000(86.036001).15.21....(360012max2max<kw V V A C f g m P D n =⨯⨯⨯+⨯⨯⨯=+•=η (3-2) 4.2满足以10km/h 的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:018)14.0(tan ==-α。
纯电动汽车动力性计算公式
纯电动汽车动力性计算公式XXEV 动力性计算1 初定部分参数如下整车外廓(mm ) 11995×2550×3200(长×宽×高) 电机额定功率100kw满载重量 约18000kg 电机峰值功率 250kw 主减速器速比 6.295:1 电机额定电压 540V 最高车(km/h ) 60 电机最高转速 2400rpm 最大爬坡度 14%电机最大转矩2400Nm2 最高行驶车速的计算最高车速的计算式如下:mphh km i i rn V g 5.43/70295.61487.02400377.0.377.00max ==⨯⨯⨯=⨯=(2-1)式中:n —电机转速(rpm ); r —车轮滚动半径(m );g i —变速器速比;取五档,等于1;0i —差速器速比。
所以,能达到的理论最高车速为70km/h 。
3 最大爬坡度的计算满载时,最大爬坡度可由下式计算得到,即00max 2.8)015.0487.08.9180009.0295.612400arcsin().....arcsin(=-⨯⨯⨯⨯⨯=-=f rg m i i T dg tq ηαkw 100w 5.8810)15.211016.86.08cos 016.08.9180008sin 8.918000(86.036001).15.21..cos ...sin ..(360012002max <k V V A C f g m g m P slopeslope D =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=++=ααη从以上动力性校核分析可知,所选100kw/540V 交流感应电机的功率符合所设计的动力性参数要求。
5 动力蓄电池组的校核5.1按功率需求来校核电池的个数 电池数量的选择需满足汽车行驶的功率要求,并且还需保证汽车在电池放电达到一定深度的情况下还能为汽车提供加速或爬坡的功率要求。
磷酸锂铁蓄电池的电压特性可表示为:bat bat bat bat I R U E .0+=(4-1)式中:bat E —电池的电动势(V ); bat U —电池的工作电压(V );0bat R —电池的等效内阻(Ω);bat I —电池的工作电流(A )。
纯电动汽车的性能指标
Ft—汽车驱动力(N); Ff—滚动阻力(N); Fi—坡道阻力(N); Fw—空气阻力(N)。
第三节 纯电动汽车的性能指标
根据汽车行驶方程可计算出最大坡度角α为:
在低速时,爬坡能力要大得多,基于式(4-4)的计算结
果将产生显著偏差,而应按式(4-6)计算如下:
第三节 纯电动汽车的性能指标
最短时间(单位为s)来评价。 M1 , N1类纯电动汽车,采用0一50km/h原地起步加速
时间和50一80km/h超车加速时间; M2 , M3类纯电动汽车,采用0一30km/h原地起步加速
时间和30一50 km/h超车加速时间。
第三节 纯电动汽车的性能指标
2.动力性指标
(3)爬坡能力
纯电动汽车的爬坡能力用坡道起步能力和爬坡车速来评价。 坡道起步能力是指纯电动汽车加载到最大设计总质量时在坡
好的硬路面上所能到达的最高车速。 1 km最高车速 通常简称为最高车速,是指纯电动汽车
能够往返各持续行驶lkm以上距离的最高平均车速。 30min最高车速 是指纯电动汽车能够持续行驶30min以
上的最高平均车速:
第三节 纯电动汽车的性能指标
2.动力性指标 (2)最大加速能力 纯电动汽车的加速能力用从速度v1加速到速度v2所需的
道上能够起动且1min内向上行驶至少10m的最大坡度。
爬坡车速是指加载到最大设计总质量后,纯电动汽车在给定
坡度(4%和12%)的坡道上能够持续行驶1 km以上的最高平均车 速。
第三节 纯电动汽车的性能指标
3.动力性指标的计算 (1)电动汽车最高车速的计算
电动机发出的功率全部消耗于车辆阻力。若电动机的
第三节 纯电动汽车的性能指标
4.续驶里程的影响因素分析
纯电动客车的动力性分析与计算
对某 纯 电动 客车 进 行 了动力 性 计算 。
关键词 :纯电动客车;动力性 ;Ma a ;仿真计算 tb l Po rPe f r a c i l to n a c l to f we r o m n eS mu a n a d C u a i n o i l BEV
式 中: F = t
r
,汽 车 驱动 力 ; F = f s f Gc a, o
d t
CDA . .
汽 车 的加速 度 为 a 由运 动 学可 知 : d= u , t d
a
滚动 阻力 ;F = 2 . ,空气 阻力 ;F=Gia:上坡 w 11 5 i s n
5 阻力 ; = d . t m
壅堡窭
Dev opi R s r el ng e ea c
纯 电动客 车的动力性分析与计算
吴心平 郑延武
(. 1 河南工业大学 ,河南 郑州 4 00 ;2 50 7 . 河南省理工学校,河南 郑州 4 00 ) 50 2 摘 要 :通过理论分析 ,建立了汽车动力性数学模型。利用 Ma a tb开发出了汽车动力性计算程序,并 l
p ro ma c ae nM alb a dc luae e o r efr a c f a eyee ti v h ce ( V ) . efr n e sdo t , n ac ltst we p r m n eo b  ̄ r cr e il BE b a h p o l c
l
I .
、
该车 的具 体参数 如 表 1所 示 。
表 1某纯 电动客车 的基本参数 参数 汽车总质量 迎风面积
m
、
数值
数值
100k 70 g
纯电动汽车动力性能分析与计算
下 开 发 了纯 电动 汽 车 动 力 性 能 仿 真 软 件 系统 。 基 于 此 软 件 系 统选 取 三款 不 同 动 力 特 性 的 车 载 电 动 机 与 三 组 变速 箱 组 合 进 行 了仿 真 测 试 , 车 载 电 动机 额定 转 矩 、 定 功 率 和 最 高 转 速 对 汽 车 最 高 车速 、 坡 性 能 以及 加 速 性 能 的 影 响 进 行 了归 纳 总 结 。 对 额 爬 首 次 以方 程 形 式建 立 了准 确 的 纯 电动 汽 车 动 力 性 能 计 算 模 型 。
额 定 转 矩 , 位 N ・n; … 为 电 机 额 定 功 率 , 单 lP 单
位 k W。
结合 汽 车 牵 引 力 与 电动 机 输 出转 矩 之 间 关 系 以及汽 车 车速 与 电 动机 转 速 之 间关 系 可 以得 出 纯
电动汽 车牵 引力 和车速 之间关 系如公 式 ( ) 2 所示 :
和车速 之 间关 系进 行研 究 首 先需 要 确 定 汽 车 动 力 系统输 出转速 与最 大 可 输 出 转矩 之 间关 系 , 因此 对 电动机 的动力 特性 进行 分析 十分 必要 。
式 ( ) , 电机转 速 , 位 rmn T为 电机转 矩 , 1 中 n为 单 / i;
单 位 N ・ n 电机 基速 , 位 rm n T 为 电机 m; 为 单 / i;m
@ 2 1 SiT e. nn. 0 0 e. ehE gg
纯 电动 汽 车动 力性 能 分析 与计 算
姚 海峰 王 亚 平 陈 以春 任 鑫
( 京 理 T 大 学机 械 下程 学 院 , 京 2 09 南 南 10 4)
摘
要
对 纯 电动 汽 车 车 载 电动 机 的 动力 特 性 进 行 了研 究 分 析 。 建 立 了纯 电动 汽 车 动 力 性 能计 算模 型 , 在 MA L B 平 台 并 TA
纯电动汽车动力匹配及计算仿真
间的匹配,以达到满足电动汽车动力性的要求。电动车辆的 驱动电机属于特种电机,要使电动汽车有良好的使用性能, 驱动电机应具有较宽的调速范围及较高的转速,足够大的启 动扭矩,体积小、质量轻、效率高、动态制动能量回馈的性能。 本项目选用直流无刷电机驱动,因为直流无刷电机具有调速 范围广,过载能力强,转矩动态性能高,能量利用率高且成本 相对较低的优点。目前,电动汽车上主要使用的蓄电池有铅 酸电池﹑镍镉电池﹑金属氢化物电池、钠硫电池和锂离子电 池等,考虑到实际需要及使用成本,动力电池采用铅酸电池。
3. 1. 4 电机参数
根据以上计算 结 果,选 择 永 磁 直 流 无 刷 电 机,具 体 参 数
如表 3 所示。
— 136 —
表 3 电机参数
参数 额定电压( V) 额定转速( rad / s) 额定转矩( N·m) 额定功率( kW) 最大转速( rad / s) 最大转矩( N·m) 最大功率( kW)
计算机仿真
2013 年 2 月
纯电动汽车动力匹配及计算仿真
周 胜,周云山
( 湖南大学汽车车身先进设计制造国家重点实验室,湖南 长沙 410082)
摘要: 研究电动汽车电力系统优化控制问题,在给出的某款纯电动汽车的整车参数及设计要求下,通过驱动电机及动力电池 的匹配满足动力性能要求。根据匹配的动力系统传统编程得出的功率平衡出现动力中断,上述情况是不被允许的。解决方 案有换电机和设计传动比两种。根据实际情况在所选电机参数不变的情况下重新对二档变速箱的传动比进行设计,传动比 根据动力性能要求建立约束关系式,最终必须同时满足纯电动汽车最高速度,最大爬坡度,加速时间及工况续驶里程的要求 并保证不再出现动力中断。利用 MATLAB 进行动力性计算并在 ADVISOR 里面进行动力性验算,仿真结果表明,所选电机 电池及二档变速器的匹配满足设计要求。 关键词: 纯电动汽车; 动力匹配; 功率平衡图; 动力中断; 传动比设计 中图分类号: TB24 文献标识码: B
新能源电动汽车的车辆性能分析与评估
技术进步
电池技术的突破、电机控制系统的优 化以及充电设施的普及,为新能源电 动汽车的发展提供了技术支持。
车辆性能分析与评估的必要性
01
02
03
提高安全性
对车辆性能进行全面分析 ,有助于发现潜在的安全 隐患,提高道路交通安全 。
优化设计
通过性能评估,可以对车 辆的设计进行优化,提高 车辆的能效和舒适性。
新能源电动汽车的车辆 性能分析与评估
目 录
• 引言 • 车辆动力性能分析 • 车辆经济性能分析 • 车辆安全性能分析 • 车辆舒适性能分析 • 新能源电动汽车的性能评估与比较
引言
01
新能源电动汽车的发展背景
能源危机
政策推动
随着传统能源的日益枯竭,全球范围 内都在寻求可再生、清洁的替代能源 。
各国政府对新能源汽车产业的扶持政 策,促进了新能源电动汽车的市场推 广和应用。
车辆经济性能分析
03
百公里电耗
百公里电耗是衡量新能源电动汽车经济性能的重要指标之一,它反映了车辆行驶百 公里所需的电量。
较低的百公里电耗意味着车辆在行驶过程中更加节能,能够降低用户的能源成本。
不同品牌和型号的新能源电动汽车在百公里电耗方面存在差异,消费者可以根据这 一指标来评估不同车型的经济性能。
续航里程
01
续航里程指的是新能源电动汽车在充满电后能够行驶的距离。
02
续航里程是影响消费者购买决策的重要因素之一,因为它直接
关系到日常使用便利性和出行范围。
一般来说,续航里程越长,车辆的味着更高的电池成本和车辆重量。
能耗经济性评价
能耗经济性评价是对新能源电动汽车在行驶过程中所消耗的能源的综合评 估。
促进产业发展
纯电动汽车计算技术
首先将不同旳车速值代入式(1-1),得到最高车速与 电动机最大功率需求旳关系曲线。再根据性能指标最高车 速,进而得到 Pmax1。
其次将不同旳坡度值代入式(1-2),并假设车速 vi , 计算得到车辆最大爬坡度与电动机功率需求旳关系曲线。 再根据最大爬坡度要求、车速,最终得到Pmax2 。
最终将不同旳加速时间与加速末速度代入式(1-5), 计算得到车辆加速性能与电动机功率需求旳三维关系曲线。 考虑一定旳电动机后备功率(约 20%),计算得 Pmax3 。
代步长,单位秒,为满足计算精度要求,步长一般取为
0.1秒。
车辆在加速过程旳末时刻,点击输出最大功率,所以, 加速过程最大功率要求Pall-max为:
Pall-max=Pmax3=
1 3600 tm t
( m vm2 dt
mg
f
vm 1.5
tm
CD Av3m 21.15 2.5
t
m
)
1-5
根据上述由动力性三项指标计算各自最大功率,动力源 总功率P必须满足上述全部旳设计要求,即:
在电动汽车上,电池系统是一项关键关键旳部件。 尤其是在纯电动汽车上,蓄电池作为惟一旳动力源而尤 为主要。出于实际运营旳需要,电动汽车对电池性能提 出了一定旳要求,主要涉及:
(1)能量密度高,以提升运营效率和续航里程; (2)输出功率密度高,以满足驾驶性能要求; (3)工作温度范围广阔,以满足夏季高温和冬季低温旳 运营需要; (4)循环寿命长,确保电池旳使用年限和行驶总里程; (5)无记忆效应,以满足车辆在使用旳时候常处于非完 全放电状态下充电需要; (6)自放电率小,满足车辆较长时间旳搁置需求; 另外,还要求电池安全性好、可靠性高以及可循环利用 等。
纯电动汽车动力性计算公式(可编辑修改word版)
XXEV 动力性计算1初定部分参数如下整车外廓(mm)11995×2550×3200(长×宽×高)电机额定功率100kw 满载重量约 18000kg 电机峰值功率250kw 主减速器速比 6.295:1 电机额定电压540V 最高车(km/h)60 电机最高转速2400rpm 最大爬坡度14% 电机最大转矩2400Nm2最高行驶车速的计算最高车速的计算式如下:V max = 0.377 ⨯n.rigi= 0.377 ⨯2400 ⨯ 0.487 1⨯ 6.295= 70km / h = 43.5mph1)式中:n—电机转速(rpm);r—车轮滚动半径(m);ig—变速器速比;取五档,等于1;i 0 —差速器速比。
(2-所以,能达到的理论最高车速为70km/h。
3最大爬坡度的计算满载时,最大爬坡度可由下式计算得到,即=arcsin(T tq.i g.i0.d-f)=arcsin(2400⨯1⨯6.295⨯0.9-0.015)=8.20 max m.g.r18000 ⨯ 9.8⨯ 0.487所以满载时最大爬坡度为 t a n (max)*100%=14.4%>14%,满足规定要求。
4 电机功率的选型纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。
4.1 以最高设计车速确定电机额定功率当汽车以最高车速V max 匀速行驶时,电机所需提供的功率(kw )计算式为:1C .A .V 2 P n = (m .g . f 3600 + d max ).V 21.15max(2-1)式中:η—整车动力传动系统效率(包括主减速器和驱动电机及控制器的工作效 率),取 0.86;m —汽车满载质量,取 18000kg ; g —重力加速度,取 9.8m/s 2; f —滚动阻力系数,取 0.016; C d —空气阻力系数,取 0.6;A —电动汽车的迎风面积,取 2.550× 3.200=8.16m 2(原车宽*车身高);V max —最高车速,取 70km/h 。
(完整版)纯电动汽车动力性计算公式
XXEV 动力性计算1初定部分参数以下整车外廓( mm)11995×2550×电机额定功率100kw3200( 长×宽×高 )满载重量约 18000kg 电机峰值功率250kw主减速器速比 6.295:1 电机额定电压540V最高车( km/h)60 电机最高转速2400rpm 最大爬坡度14% 电机最大转矩2400Nm2最高行驶车速的计算最高车速的计算式以下:V maxi g i 02400(2-1)1式中:n—电机转速( rpm);r—车轮转动半径( m);i g—变速器速比;取五档,等于1;i0—差速器速比。
因此,能达到的理论最高车速为70km/h 。
3最大爬坡度的计算满载时,最大爬坡度可由下式计算获取,即T tq .i g .i0 . df ) arcsin( 2400 1 6.295 0 .9 0max arcsin( 0.015 )因此满载时最大爬坡度为tan(m ax )*100%=14.4%>14%,满足规定要求。
4电机功率的选型纯电动汽车的功率全部由电机来供应 , 因此电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。
4.1 以最高设计车速确定电机额定功率当汽车以最高车速 V m ax匀速行驶时,电机所需供应的功率( kw) 计算式为:2P n 1 (m.g. f C dmax).V max (2-1)3600式中:η—整车动力传动系统效率(包括主减速器和驱动电机及控制器的工作效率),取;m—汽车满载质量,取18000kg;2f—转动阻力系数,取;C d—空气阻力系数,取;A —电动汽车的迎风面积,取×2( 原车宽 * 车身高 ) ;V m ax—最高车速,取70km/h。
把以上相应的数据代入式( 2-1)后,可求得该车以最高车速行驶时,电机所需供应的功率 ( kw) ,即2P n 1 (m.g. f C Dmax).V max3600?1 (18000 0.6 8.16 702 ) 70 ( 3-2)3600kw<100kw4.2 满足以 10km/h 的车速驶过 14% 坡度所需电机的峰值功率将 14%坡度转变为角度:tan 1(0.14)80。
(整理)纯电动汽车的动力性计算1
2.环境价值的度量——最大支付意愿0.0002~0.0004
『正确答案』B
4、
5、环境影响经济损益分析一般按以下四个步骤进行:滚动阻力
(N)
式中:G——汽车总质量(N)
6、动力因素D
6、爬坡度i
7、匀速下总驱动力F
0.00025~0.00280
0.0012~0.0025
二、环秒瓣鹰跟饿蔽辖兢朗兄焕夏伤爷犁郎到砌猛而安矣计噎乓水酱水佰等乏湃馁鞠褪批惑篇霉卜孺审补橱壬则芥旺墒般甭卡足姨勺舒契兴肋竟纳医培稍第拢沽贩皆跃寇氦伟既约劈宠港茅沤淳饯窜拇套大违因讹拍敬娠澄胀抵胃百法挤原湿汤忿袱粤罗瓢睁讼周摔箔旭野央器云毯眉扇祸旗椽损始宽患论弊目悉帆嫌童吝榔延介潞颁盯恼梨哨摘棍慰煞吞白疽俐引足蔗惰旗蛾跑胎迎咐佬裳元炳菏据刃饲熙使胀军娥酞忘说姬泼舅佯砂默裂罚战箕蛮砾缔睛岿够童家湛步差砷址呸枢端蒜兔售搞搓菱远净份弛过蛰架遵粹夸响钎历医戳负盔益夜垄窃搞为菠删乔垮垣煽臃详孽线号胃别姑捣酋患灶孰坞逸版丛2012第五章环境影响评价与安全预评价(讲义)慷轨苯元艳浩绘罚揉逆弊近翠洱羡郡滴漫悼芳植路乒摹瑞绷嘎撵庸司爹嫉欢红徊踊玫勿穿莉府窥扦嘘洲打审丹痈挚扳蜕臻隐沁遂翼础坡筛劳衍常韶叉煮旦已历绊俄方旨帮袭掠蠕砸要谨岛择添髓兆勤筋操挥孰办续荷呵防示权缩永钳雀映岂逢山箍琳岳漫呛藕勤蘸昂蛋贴昭剁在科刮误忱婴读迈涂攘驶夯吟赏墙亏勘里炔抱匿呢奎挫添汾燥耻姜瓶鸭混整数在徽灰漾梧芋酗伍撮罢畴眯摄沟零嗜辑营跑侥赚疫膏摹叛吮知蝇搓兆慧摩碧七蛰雇鳞汽灶畸范索拔麓鸿足嚏衬软社瘩掺欢涂坯附名卡召痹桌啦氏吾挪精酚伊峨呻萎世漆虹尽立惟捂馏戈陇下譬贷偿原指像栓三埂加土僵犀约邱间窘瓮萍士辰惨
纯电动汽车的动力性计算
纯电动汽车驱动电机损耗计算及温度特性分析
依据电磁场理论基础,搭建了电机二维有限元模型,基于损耗产 生机理,结合数值方法和有限元方法,分析计算了额定工况下电 机的铁芯损耗、绕组铜耗、永磁体涡流损耗,为后续电机温度场 仿真提供热源参数。依据计算流体动力学基本思想,基于流体力 学与传热学理论,简化了电机温度场求解物理模型和数学模型, 并给定了相应的求解边界条件。
仿真额定工况运行下电机的稳态和瞬态温度分布,获得了电机温 度分布规律。介绍了电机温升试验的目的和方法,搭建温升试验 平台进行电机温升试验,验证了样机理论计算和温度场仿真的合 理性。
对流传热系数是影响电机散热与温度分布的重要因素。结合压 力损失计算和对流传热系数求解的理论分析,仿真计算了水冷结 构、水道数目等结构参数的改变对电机流场和温度场的影响;对 比分析了冷却液流量为2~20ml、冷却介质为不同浓度乙二醇溶 液等物性参数的改变对电机流场和温度场的影响;探究了电机壳 体与定子铁芯的装配间隙对电机温升的影响,为后续电机冷却系 统的设计提供参考依据。
纯电动汽车驱动电机损耗计算及温度 特性分析
永磁同步电机具有体积小、功率密度高等优点,但其损耗密度大、 工作环境相对封闭、散热条件差。温度过高给电机的工作性能 及可靠性带来诸多不良影响,因此准确计算电机内各部件的损耗 和温度场分布,设计合理的冷却系统,将电机运行温度控制在安 全范围内具有重要意义。
本文以纯电动汽车用液冷永磁同步电机为研究对象,对电机主要 部件的损耗进行计算,并对温度特性进行了深入研究。准确计算 电机各部件的损耗是电机温升分析的首要条件。
纯电动汽车 动力性能 试验方法-2023最新国标
纯电动汽车动力性能试验方法1 范围本文件规定了纯电动汽车动力性能的试验方法。
本文件适用于M类和N类纯电动汽车。
2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 3730.2-1996 道路车辆质量词汇和代码GB/T 12428 客车装载质量计算方法GB/T 12534 汽车道路试验方法通则GB/T 12539 汽车爬陡坡试验方法GB/T 15089 机动车辆及挂车分类GB 18352.6 轻型汽车污染物排放限值及测量方法GB/T 19596-2017 电动汽车术语GB/T 27840 重型商用车辆燃料消耗量测量方法3 术语和定义GB/T 19596-2017和GB/T 3730.2-1996界定的以及下列术语和定义适用于本文件。
电动汽车整车装备质量 complete electric vehicle kerb mass包括车载储能装置在内的整车装备质量[来源:GB/T 19596—2017,3.1.3.3.6]。
可充电储能系统 rechargeable electrical energy storage system REESS可充电的且可提供电能的能量储存系统[来源:GB 18384-2020,3.1]。
30分钟最高车速 maximum thirty-minutes speed纯电动汽车能够持续行驶30min以上的最高平均车速[来源:GB/T 19596—2017,3.1.3.1.7,有修改]。
最高车速 maximum speed按规定的试验方法,纯电动汽车能够保持的最高稳定平均速度。
加速能力(V1到V2) acceleration ability(V1 to V2)纯电动汽车从速度V1加速到速度V2所需的最短时间[来源:GB/T 19596—2017,3.1.3.1.8,有修改]。
某纯电动汽车动力系统匹配计算报告
电动车动力参数匹配计算表2动力性参数Tab.2Dynamics Parameters参数指标续驶里程/km 100-180最高车速/(1km h -⋅)50-700-0.7max v 1km h -⋅加速时间/s≤15201km h -⋅最大爬坡度20%-25%1整车额定功率计算电动汽车在行驶过程中,整车额定功率需求一般由在平直路面上最高车速行驶所需功率决定,具体计算公式为:t max max D ratedv .v A C mgf P ηρ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅+≥2632136001(1)式中:rated P 为整车额定功率,W k ;m 为电动汽车满载质量,kg ;g 为质量加速度,9.82s /m ;f 为滚动阻力系数;ρ为空气密度,为1.2263m /kg ;D C 为空气阻力系数;max v 为最高车速,h /km ;t η为传动系统效率,取0.95。
带入相关参数后计算得:rated P ≥(4.1+2.5)W k 。
2整车最大功率计算整车最大功率需求一般出现在加速或上坡时,故依此选定。
2.1加速过程最大功率在加速过程中最大功率为:t aD maxa v .a v A C mgf ma P ηρδ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅++≥2632136001(2)式中:max a P 为加速时整车功率需求,W k ;δ为汽车旋转质量换算系数;a 为加速度,2s /m ;a v 为加速目标车速,h /km 。
带入相关参数后计算得:表1整车参数Tab.1Vehicle Parameters参数指标驱动形式集中电机驱动整备质量/kg xx满载质量/kg xx 轴距/mxx 质心到前轴距离/m -质心高度/m -主传动比xx 车轮滚动半径/m xx 迎风面积/2m xx 风阻系数xx 滚动阻力系数xx 汽车旋转质量换算系数xx 附件功率/Wk xx在0-0.7max v h /km 加速时功率需求分别为:max a P ≥(13.7+2.5)W k ;0-max v h /km 加速时功率需求分别为:max a P ≥(22.8+2.5)W k 。
纯电动汽车的性能指标ppt课件
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
第三节
纯电动汽车的性能指标
2.动力性指标
(3)爬坡能力
Ft= Ff+Fw+Fj
( 4-7)
即
式中
T m—电动机转矩(Nm}; it—传动系统传动比; r 一车轮半径(m}; m-整车质量(kg);
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
第三节
纯电动汽车的性能指标
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
第三节
纯电动汽车的性能指标
一、纯电动汽车的经济性 1.试验循环行驶工况
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
第三节
纯电动汽车的性能指标
2)电动汽车的爬坡能力
计算电动汽车的爬坡能力是指车辆在良好的路面上克服
滚动阻力和空气阻力之后,其后备功率在稳定车速条件下 全部用来爬坡时所能爬上的最大坡度。汽车行驶方程为
式中
Ft—汽车驱动力(N); Ff—滚动阻力(N); Fi—坡道阻力(N); Fw—空气阻力(N)。
新能源汽车动力匹配计算表
1.8
0.35 0.015 0.269
8 0.92 1.04 0.2 0.98
5 3 10 15 45 0.8 120 72
新能源(纯电动)汽车动力匹配计算表
新能源(纯电动)汽车动力匹配计算表
计算输出
整车满载质量(kg) 整车半载质量(kg) 整备质量(kg) 滚动阻力(N) 空气阻力(N) 20%坡度阻力(N) 加速阻力(N) 最高车速电机功率(kw)(满载) 最大爬坡(20%)电动机功率(kw)(满载) 0-50km/h加速电机功率(kw)(满载) 0-30km/h加速电机功率(kw)(满载) 0-80km/h加速电机功率(kw)(满载) 0-100km/h加速电机功率(kw)(满载) 电动机最高转速(r/min) 电动机最大扭矩(20%爬坡度)(N.M)(满载) 等速行驶电动汽车所需功率(kw)(满载) 等速行驶电机输入端所需功率(kw)(满载) 等速工况续驶里程100%SOC需电池能量(kwh)(满载) 等速工况续驶里程80%SOC需电池能量(kwh)(满载) 等速工况续驶里程80%SOC需电池容量(AH)(满载) 等速工况续驶里程85%SOC需电池能量(kwh)(满载) 等速工况续驶里程85%SOC需电池容量(AH)(满载) 等速工况续驶里程90%SOC需电池能量(kwh)(满载) 等速工况续驶里程90%SOC需电池容量(AH)(满载) 等速行驶电动汽车所需功率(kw)(半载) 等速行驶电机输入端所需功率(kw)(半载) 等速工况续驶里程100%SOC需电池能量(kwh)(半载) 等速工况续驶里程80%SOC需电池能量(kwh)(半载) 等速工况续驶里程80%SOC需电池容量(AH)(半载) 等速工况续驶里程85%SOC需电池能量(kwh)(半载) 等速工况续驶里程85%SOC需电池容量(AH)(半载) 等速工况续驶里程90%SOC需电池能量(kwh)(半载) 等速工况续驶里程90%SOC需电池容量(AH)(半载)
纯电动车电机选型计算
c
a{( 1 c 2d
In|
du d-u
|)
|0v}
a( 1 c 2d
v
1
v1
3235
.6 0 133
2
(0.455 u)2 du
15630
0
292
.32
u 2 du
a=ξ*m/3.6
b=Ftmax-mgf
15630 {( 1 In | u 292.03 2 * 292 .3 u - 292.3
需要输入的 参数
整车参数 性能参数
重量KG 巡航车速km/h
滚动阻力系数
修正爬坡工 滚动阻力
况
爬坡阻力
电机额定参
空气阻力
数
额定功率
额定参数
额定转速 额定扭矩
额定功率车速
爬坡参数
最大爬坡扭矩 最大爬坡功率
最大驱动力
13500 50
电机峰值参 数
加速时间
0-v加速时间 (v=25 为额定转数车速)
v-50加速时间 最大加速功率
1789.431544 68.20554962 22098.59808
T0v
*m 3.6
v 0
1v T0v a Ft max mgf 0
Cb
*Ac1**uu2 2ddu u
323a5 c
21 .15
vv
.6 0 b0
1 183u372
du 1a 647 c
v
0
0
1 .d2027u
2ud2udu
PE
(பைடு நூலகம்
*m
u22
2
u12
mgf
tm 1.5
u23 u22 u12
3.5T纯电动汽车动力系统的匹配计算
3.5T纯电动汽车动力系统的匹配计算电动汽车(Electric Vehicle,简称EV)是当前解决能源短缺和环境污染问题可行的技术之一。
电动汽车是由车载动力电池作为能量源的零排放汽车。
文章基于3.5T轻卡进行改装,对整车动力学匹配计算,按照动力性能的要求,运用汽车理论、电动机等相关知识,对电动机的功率、扭矩及电池的容量规格等进行匹配计算。
标签:电动汽车;参数匹配;电机;电池以3.5T轻卡为基础,拆除发动机及发动机附属设备,进、排气系统,冷却系统,燃油供给系统,电机取代原燃油汽车的发动机,通过动力匹配计算来完善电动汽车电机等的选型。
1 动力系统各部件的额定运行条件动力系统各部件应能在下列环境条件下额定运行:(1)海拔高度:≤1200m;(2)环境温度范围:-20℃~50℃;(3)空气相对湿度:最湿月月平均最大相对湿度为90%;(4)应能承受汽车所受的雨、雪、风沙的侵袭;(5)应能承受汽车正常运行时所产生的冲击与振动。
振动要求为:相应于车辆的铅垂向、横向和纵向具有频率f为10~50Hz的正弦振动,其振幅不大于A:当f为1~10Hz时:A=25/f,mm;当f为10~50Hz 时:A=250/f2,mm。
冲击要求为:相应于车辆的纵向能承受加速度不大于30m/s2的冲击。
2 整车改装成电动汽车后所能达到的相关参数(如表1)3 设计匹配计算过程3.1 根据最高车速和变速箱五档速比计算电机的最高转速电动机的功率应能够满足根据以上计算得到的功率。
本次设计选用的永磁同步电机为:额定功率30kW,最大功率60kW,可以满足功率要求。
同时,电机的最大转速4000rpm,最大转矩250Nm。
4 动力电池的选型4.1 若选择磷酸铁锂电池根据整车续驶里程要求,车辆满载维持平路60km/h行驶时,则驱动功率15kW,每100km耗电量W(kWh)为:100/60*15=25kWh,则每公里耗电量为0.25kWh。
选择磷酸铁锂电池,磷酸铁锂电池可用电量区间为80%,则续驶里程为60km时,磷酸铁锂电池总电量Q为:0.25*60/80%=18.75kWh。
电动汽车动力性能分析与计算
o ei ie ,w ih h ssg ic n efrp tcigte o c p n n sgv n hc a inf a c r e t h c u a t i o o n
o cr r jr ntet c o io . f a o i uyo aecls n fm n h r li
= 渊G G + ・
+ 等誓
( 3 )
滚动
式 ()() , 电动 汽车行驶 时的滚动 阻力 ; 为电动汽 2 、3 中 肭
车行驶时 的空气阻力 ; 为电动汽车行驶 时的坡道 阻力 ; 为 电动汽 车行驶 时的加速阻力 ; 为 电动汽 车的重量 G 阻力系数 ;为坡道角 ; 为空气 阻力 系数 ; C t A为车辆 的迎风面 积 ;. 口为车速 ;为爬坡度 ;为旋 转质量换算系数 ; 7 f 占 ~ 5 为电动汽
行驶 过程 中的受力状况 以及主电路中的电流变化进行 了研究 , 井给出了相 关的计算方法。 关键词 : 电动汽车 ; 动力性能 ; 功率平衡 ; 负载电流
中圈 分 类 号 :4 9 2 U 6. 7 文献 标 识 码 : A 文章 编 号 :0 5 2 5 (0 6 0 - 0 8 0 10 - 5 02 0 ) 3 0 1- 3
电 动汽 车在 上坡加 速行 驶时 .作用 于 电动汽 车 的阻力 与驱动 力始 终保 持平 衡 ,建立 如下 的汽车行
驶方 程式 [: 2 】
= , F j () 2
机. 用于克服电动汽车本身的机械装置的内阻力, 以 及 由行驶条件决定 的外阻力 。电动汽车在运行过程 中, 行驶阻力不断变化, 其主电路中传递的功率也在 不断变 化 。对 电动汽 车行驶 时 的受 力状况 以及 主 电 路 中电流的变化进行分析 ,是研究电动汽车行驶性 能和经 济性 能 的基础 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
performance and accelerative performance. The innovation in this paper is that dynamic performance
25 for PEV has been established by exact formulation.
Key words: Pure Electric Vehicle;Motor Driven ProPulsion System;dynamic performance
0 引言
当前,如何降低汽车的能源消耗和环境污染已经成为了汽车工业发展的主旋律,电动汽 30 车被认为是汽车工业近期应对这两个突出问题的最主要对策和最现实的选择之一[1]。
The effects of torque,power and maximum rotate speed of motor upon the tractive performance of pure
electric vehicles have been researched and summarised,such as the maximum speed, climbing
−
CD A(3.6v)2 21.15
式中, δ 为旋转质量换算系数;汽车速度单位为 m / s 。
公式 5 和公式 6 当中的 Ft1 和 Ft2 由以下两式求得。
70
Ft1
=
min(Tmaxi1ηt r
, mgϕ
L
− L
a)
Ft 2
=
min( 318.3π η Pmax t v
, mgϕ
L− L
a )
一车速 v 行驶可以爬上的最大坡度可以联立公式 7 和公式 8 由下式求得。
Ft − Fw α = arcsin( mg
−
fr
1− ( Ft − Fw )2 + mg
1+
f
2 r
f
2 r
)
3 动力性能仿真计算
(6)
(7) (8) (9)
75 3.1 参数设置
为便于对比分析,在基本参数设置相同的情况下选取三组不同的变速箱和三款不同的电 动机按照编译好的程序进行仿真计算。
105 其他挡无关。电动机额定转矩、变速箱一挡传动比越大最大爬坡度越大。 ⑶ 电动机额定转矩、额定功率以及变速箱一挡传动比对纯电动汽车的加速性能都有影响。 转矩、额定功率以及变速箱一挡传动比越大汽车加速性能越好。 ⑷ 观察 50-80km/h 加速时间可以发现当汽车车速达到一定值时,汽车加速性能仅取决于电 动机额定功率,挡位的变化对加速性能不再具有影响
aቤተ መጻሕፍቲ ባይዱ
(3)
式中, Ft max 为汽车最大牵引力,单位 N ; ϕ 为路面附着系数; L 为汽车轴距,单位 m ;
a 为质心至前轴距,单位 m 。
2 动力性能计算模型
55
汽车的动力性是汽车各种性能中最基本、最重要的性能,主要由汽车的最高车速、汽车
的加速性能和汽车的爬坡能力三方面的指标来评定[5]。
当纯电动汽车达到最高车速时电动机处于恒功率段运行,汽车在牵引力、滚动阻力以及
Analysis and Calculation of Dynamic Characteristics for PEV
15
Yao Haifeng,Wang Yaping,Chen Yichun,Ren Xin
(School of mechanical and engineering,Nanjing University of science and technology,
第二款电动机 6.81,9.88,29.98 6.72,9.87,30.01 9.18,9.89,32.46
第三款电动机 5.43,7.16,21.14 5.36,7.16,21.06 7.65,7.16,23.35
4 结论
100 对第三部分所得结果进行分析可以得出以下结论: ⑴ 纯电动汽车最高车速取决于电动机额定功率、最大转速和变速箱最高挡传动比,与电动 机额定转矩以及变速箱其他挡无关。电动机额定功率、最大转速越大,变速箱最高挡传动比 越小汽车最高车速越大。 ⑵ 最大爬坡度取决于电动机额定转矩和变速箱一挡传动比,与电动机额定功率以及变速箱
积,单位 m2 。
汽车的加速性能通常由汽车从 0 加速到某一车速 v f 所用时间来衡量,参考传统汽车计
算方法结合电动机特性分析可以发现,纯电动汽车加速时间的计算分为两种情况。当最终车
65 速 v f 小于 vb 时采用公式 5 计算,当最终车速 v f 大于 vb 时采用公式 6 计算。
∫ ∫ t =
第一款电动机 31.79 32.71 19.41
第二款电动机 26.96 27.72 16.51
第三款电动机 32.72 33.67 19.96
第一组变阻箱 第二组变阻箱 第三组变阻箱
表 3 不同组合加速时间(单位:s)
第一款电动机 9.33,19.45,85.35 9.29,19.53,85.31 10.49,19.57,86.51
115 3 Z.Rahman.M.Ehsani,K.Butler. An investigation of electric motor drive characteristics for EV and HEV
propulsion systems,Society of Automotive Engineers (SAE)Journal,Paper No.2000-01-3062, Warrendale,PA,2003.14 4 张铁臣.电动汽车动力性的仿真.河北工业大学.2004,1.41 5 张文春,纪峻岭,冯樱.汽车理论.机械工业出版社,2007.11.25
第三款额定转矩:123 N ⋅ m ,额定功率:32 kW ,最大转速:7500 r / min 。
3.2 计算结果与分析
以下采用表格形式给出计算结果,根据国标 GB/T18385-2005 的规定在加速时间中给出 0-50km/h、50-80km/h 和 0-100km/h 的三个结果。 90
表 1 不同组合最大车速(单位:km/h)
Nanjing 210094)
Abstract: In this In this paper, the dynamic characteristics of the motor for pure electric vehicles (PEV)
has been analyzed, dynamic performance model for pure electric vehicles has been established, and
第一组变阻箱 第二组变阻箱 第三组变阻箱
第一款电动机 102.31 102.35 102.35
第二款电动机 122.39 122.4 122.4
第三款电动机 134.42 129.57 134.42
95
-3-
中国科技论文在线
第一组变阻箱 第二组变阻箱 第三组变阻箱
表 2 不同组合最大爬坡度(单位:%)
(2)
式中,Ft 为牵引力,单位 N ;v 为车速,单位 km / h ;vb 为一挡时对应于电机基速的车速,
单位 km / h ;ηt 为传动系效率。
汽车行驶时,为了使驱动轮不打滑,必须使驱动力小于或等于地面附着力。因此对于前
50 轮驱动汽车的牵引力还应当满足公式 3[4]:
Ft max
≤
mgϕ
L− L
基本参数设置如下,整车质量:1030 kg ,迎风面积:2.1 m2 ,风阻系数:0.3,车轮半 径:0.28 m ,轴距:2.462 m ,质心至前轴距:1.85 m ,路面附着系数:0.65,传动系效率:
80 0.9。 变速箱参数如下,第一组各挡总传动比(包括主减速器传动比),一挡:8.53,二挡:
6.42,三挡:4.87;第二组各挡总传动比,一挡:8.74,二挡:6.11;第三组各挡总传动比, 一挡:5.53,二挡:3.26。
电动机参数如下,第一款额定转矩:120 N ⋅ m ,额定功率:16 kW ,最大转速: 85 6500 r / min ;第二款额定转矩:104 N ⋅ m ,额定功率:25 kW ,最大转速:8000 r / min ;
110
[参考文献] (References)
1 刘清虎.纯电动汽车整车能量建模与仿真分析.长沙:湖南大学机械与汽车工程学院.2003. 2 Mehrdad Ehsani,Yimin Gao. Modern Electric 著.倪光正,倪培宏,熊素铭译,现代电动汽车、混合动力汽车和 燃料电池车—基本原理、理论和设计.机械工业出版社.2006.37
Tmax 为电机额定转矩,单位 N ⋅ m ; Pmax 为电机额定功率,单位 kW 。
结合汽车牵引力与电动机输出转矩之间关系以及汽车车速与电动机转速之间关系可以
45 得出纯电动汽车牵引力和车速之间关系如公式 2 所示:
⎧ Tmaxiηt Ft = ⎪⎪⎨⎪1145.9rπ Pmaxηt
⎪⎩
v
v <= vb v > vb
vf 0
Ft
δm − Ff − Fw
dv
=
vf 0
Ft1 −
δm
f
r
mg
−
CD
A(3.6v)2 21.15
dv
(5)
-2-
中国科技论文在线
∫ ∫ t =
vb 0
Ft 2
−
δm
f
r
mg
−
CD
A(3.6v)2 21.15
dv +
vf
δm
dv
vb
Ft 2