晶体三极管的结构及封装
3晶体三极管
2.三极管内部载流子的运动规律
集电结反偏, 集电结反偏, 有少子形成的反 向电流ICBO。 基区空穴 向发射区的 扩散形成电流 IEP可忽略。 可忽略。 进入P 进入P 区的电 子少部分与基区 的空穴复合, 的空穴复合,形 成电流IBN ,多 数作为非平衡少 子扩散到集电结 B RB IB IBN E IE IC ICBO C ICN
v
v
i
i
输出特性曲线各区的特点: 输出特性曲线各区的特点:
(1)饱和区 a.发射结正偏,集电结正偏或反 发射结正偏, 发射结正偏 偏电压很小。 偏电压很小。 UCE≤UBE b. iC明显受uCE控制, 明显受 控制 iC<βiB
1
4 3
i
C/
mA
iB =
µ 100 A 80 60
饱和区
随着VCE的变化而迅速变化。 的变化而迅速变化。 随着
∆iC
∆iB
β=
放大区 截止区
∆iC ∆iB
U CE =常量
β是常数吗?什么是理想三极管?什么情况下 β = β ? 是常数吗?什么是理想三极管? 是常数吗
2. 输出特性
iC = f (uCE ) I
数 B =常
对应于一个I 就有一条i 变化的曲线。 对应于一个 B就有一条 C随uCE变化的曲线。 输出特性曲线特点: 输出特性曲线特点: a. 各条特性曲线形状相同 b. 每条输出特性起始部分很陡 V时 uCE=0 V时,因集电极无收 b (集电结反压增加, 当集电结反压增加, 吸引电子能力增强,ic增大 增大) 吸引电子能力增强 增大) 集作用, =0。 集作用,iC=0。 c.每条输出特性当超过某一数 u c .CE ↑ → Ic ↑ 。 值时( ),变得平坦 值时(约1V),变得平坦 ), d. 曲线比较平坦的部分, 曲线比较平坦的部分, 的增加而略向上倾斜。 随vCE的增加而略向上倾斜。 d每条输出特性当超过某一数值时(约1V),变得平坦 每条输出特性当超过某一数值时( 1V),变得平坦 ), 这是基区宽变效应) (这是基区宽变效应) • CB ↑→ 基区宽带变窄 → B 1V后 当uCE >CE后,收集电子的能力足够强。这时,发射到基区的电子 1V ↑→ 收集电子的能力足够强。这时, 变小 • 都被集电极收集, 再增加, 基本保持不变。 都被集电极收集,形成iC。所以uCE再增加,iC基本保持不变。 iC •→ β = iB ↑→ iB 若不变则 C ↑
晶体三极管的结构和类型
晶体三极管的结构和类型双极结型三极管相当于两个背靠背的二极管PN结。
正向偏置的EB 结有空穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的CB 结势垒电场的作用下到达集电区,形成集电极电流I C。
在共发射极晶体管电路中, 发射结在基极电路中正向偏置, 其电压降很小。
绝大部分的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。
由于V BE很小,所以基极电流约为I=5V/50kΩ=0.1mA。
B如果晶体管的共发射极电流放大系数β=I C / I B=100, 集电极电流I C=β*I B=10mA。
在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流i b,在集电极电路中将出现一个相应的交变电流ic,有c/i b=β,实现了双极晶体管的电流放大作用。
金属氧化物半导体场效应三极管的基本工作原理是靠半导体表面的电场效应,在半导体中感生出导电沟道来进行工作的。
当栅G 电压V G增大时,p 型半导体表面的多数载流子棗空穴逐渐减少、耗尽,而电子逐渐积累到反型。
当表面达到反型时,电子积累层将在n+ 源区S 和n+ 漏区 D 之间形成导电沟道。
当V DS≠0时,源漏电极之间有较大的电流I DS流过。
使半导体表面达到强反型时所需加的栅源电压称为阈值电压V T。
当V GS>V T并取不同数值时,反型层的导电能力将改变,在相同的V DS下也将产生不同的I DS, 实现栅源电压V GS对源漏电流I DS的控制。
二、晶体管的命名方法晶体管:最常用的有三极管和二极管两种。
三极管以符号BG(旧)或(T)表示,二极管以D表示。
晶体三极管_结构及放大原理
晶体三极管又称晶体管、双极型晶体管;在晶体管中有两类不同的载流子参与导电。
一、晶体管的结构和类型
1.晶体管的结构
在同一个硅片上制造出三个掺杂区域,并形成两个PN结,就形成三极管。
2.晶体管的类型
基极为P的称为NPN型,基极为N的称为PNP型。
二、晶体管的电流放大作用
晶体管的放大状态的外部条件:发射结正偏且集电结反偏。
发射结正偏:发射区的载流子可以扩散到基区
集电结反偏:基区的非平衡少子(从发射区扩散到基区的载流子)可以漂移到集电区。
如果发射结正偏,集电结也正偏,出现的情况将是发射区的载流子扩散到基区,同时集电区的载流子也漂移到基区。
1.晶体管内部载流子运动
①发射结正偏:发射区载流子向基区扩散,基区空穴向发射区漂移
②集电极反偏,非平衡少子运动:从发射区过来的载流子到达基区后,称为非平衡少子(基区是P带正电,载流子是电子,所以是非平衡少子;基区空穴虽然是多子,但是数量比较少),一方面与基区的空穴复合(少量);另一方面,由于集电极反偏,会产生非平衡少子的漂移运动,非平衡少子从基区漂移到集电极,从而产生漂移电流。
由于集电极面积非常大,所以可以产生比较大的漂移电流(到达基区的载流子,由于集电极反偏,所以对基区的非平衡少子有吸引,集电极带正电,非平衡少子带负电)
③集电极反偏,少子漂移电流:由于集电结反偏,处于基区的少子(电子)会漂移运到到集电区;集电区的少子(空穴)会漂移运动到基区
2.晶体管中的电流分关系
三、共射电路放大系数
1.直流放大系数:放大系数:I c=(1+β)I B
2.交流放大系数:直流电流放大系数可以代替交流电流放大系数
四、结语
希望本文对大家能够有所帮助。
晶体三极管详细说明
晶体三极管晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
目录[隐藏]∙ 1 工作原理∙ 2 主要作用∙ 3 主要参数∙ 4 特性曲线∙ 5 产品检测∙ 6 工作状态∙7 产品分类∙8 主要类别∙9 基极判别∙10 判断口诀∙11 基本放大电路∙12 判断好坏∙13 主要特点∙14 判断故障∙15 注意事项∙16 产品展示∙17 相关词条18 参考资料晶体三极管-工作原理晶体三极管晶体三极管(以下简称三极管)按材料分有两种:储管和硅管。
而每一种又有NPN和PNP 两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
NPN管它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN 结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。
当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。
在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。
由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β=△Ic/△Ib式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。
三极管
I / mA
600 0 20
60
40 20
0 0.4 0.8 U / V
iC
温度对输入特性的影响 600 200
负温度系数。
3、温度每升高 1C, 增 加 0.5%~1.0%。
结论:温度升高,三极 管输入特性曲线左移, 输出特性曲线上移且间 距增大。
iB
O
温度对输出特性的影
uCE
六、三极管的命名方法
三极管的命名由5部分组成,如图1.21所示。其中第二、三 部分各字母含义如表1.10所示。
表1.10 第 二 部 分
第二、三部分各字母含义 第 三 部 分
字
A B C D
母
在以后的计算中,一般作近似处理: = 。
2.集-基极反向截止电流 ICBO
ICBO –
A
+
EC
ICBO是由少数载流子的 漂移运动所形成的电流, 受温度的影响大。 温度ICBO
3.集-射极反向截止电流(穿透电流)ICEO – A + IB=0 ICEO ICEO受温度的影响大。 温度ICEO,所以IC 也相应增加。三极管的 温度特性较差。
截止
反偏 反偏
放大
正偏 反偏
饱和
正偏 正偏
解:
对NPN管而言,放大时VC > VB > VE 对PNP管而言,放大时VC < VB <VE (1)放大区 (2)截止区 (3)饱和区
五、 主要参数
表示晶体管特性的数据称为晶体管的参数,晶体管的参 数也是设计电路、选用晶体管的依据。
1. 电流放大系数,
晶体三极管及其特性
晶体三极管及其特性半导体三极管又称品体三极管。
在各种屯子电路中都离不开这里所讲的三极管是目前使用十分普遍的半导体三极管。
1 •电路符号及外形三极管的电路符号及部分常见三极管的外形,如图图(a)所示为国标最新规定的NPN型半导体三极管电路符号图(b)所示为我国最新规定的PNP型半导体三极管电路符号。
在集成电路中仅用这两种电路符号。
图(c)所示是我国最新规定的集电极接管子外壳的NPN型管子电路符号,这种管子迥常是功率较大的管于,它的引脚只有两个,即只有基极和发射极两个引脚,而集电极是接外壳的,外壳接电路。
对于PNP型管子集电极接外壳时,电路符号基本相同,只是发射极的箭头方向不同。
图(d)所示是我国以前使用的三极管电路符号,在目前大量书刊、资料的电路图个还有这种电路符号。
图(e)所示是B96普遍采用的塑料封装三极管,塑料封装的三极管还有许多其他形状。
图⑴所示是金局外壳的三极管外形图(g)所示是大功率三极管,管子外壳体积很大2 •半导体三板管的结构 三极管按照极TI 代理性划分有两种,即 PNP 型和NPN 型,三极管的结构示意 图如图2所示。
图(a )所示为N 州型管结构示意图,从图中可以看出,它由三块半导体 组成,构成两个PN 结,即集电结和发射结,共引出三个电极,分别是集电极、基 极和发射极。
管中工作电流有集电极电流 IC 、基极电流IB 、发射极电流IE ; IC 、IB汇合后从发射极流出,电路符号中发射极箭头方向朝外形象地表明了电流的流动方向, 这对读固有帮助。
上述代表各极的字母也可用小写字母 c 、b 、e 表示|】E =十♦其中1匚=* A ;》J" /c Q Zg图(b )所示是PNP 型管结构示意图,不同之处是 P 、N 型半导体的排列方向不同,其他基本一样。
电流方向是从发射极流向管子内,基极电流和集电极电流都是从管子 流出,这从PNP 型管电路符号中发射极箭头所指方向也可以看出。
第三讲 晶体三极管
§2.2.3 三极管的主要参数
电流放大系数 三极管的参数是 用来表征管子性 能优劣适应范围 的,是选管的依 据,共有以下三 大类参数。
极间反向电流ICBO 、 ICEO
极限参数
• 极限参数:ICM、PCM、U(BR)CEO
最大集电 极电流 c-e间击穿电压 最大集电极耗散功 率,PCM=iCuCE
4.下列NPN型三极管各个极的电位,处于放 大状态的三极管是( ) A VC=0.3V,VE=0V, VB=0.7V B VC=-4V, VE=-7.4V,VB=-6.7V C VC=6V, VE=0V, VB=-3V D VC=2V, VE=2V, VB=2.7V 5.如果三极管工作在截止区,两个PN结状 态( ) A.均为正偏 B.均为反偏 C.发射结正偏,集电结反偏 D.发射结反偏,集电结正偏
三极管符号
结构特点:
基区很薄且杂质浓度很低;
发射区掺杂浓度高; 集电区面积很大。
二.分类
(1)按半导体结构不同:NPN 型和 PNP 型。
(2)按功率分:小功率管和大功率管。
(3)按工作频率分:低频管和高频管。
(4)按管芯所用半导体材料分:锗管和硅管。
(5)按结构工艺分:合金管和平面管。
(6)按用途分:放大管和开关管。
放大区:发射结正向偏置,集电结反向偏置。
饱和区:发射结和集电结均正向偏置。
截止区:发射结电压小于开启电压,集电结 在电路中的连接方式
共发射极连接 共基极连接 共集电极连接
三极管的特性曲线
概 念
特性曲线是 指各电极之 间的电压与 电流之间的 关系曲线
输入特性曲线
输出特性曲线
(1)三极管的电流放大作用,实质上是用较小的基极电 流信号控制集电极的大电流信号,是“以小控大”的作用。 (2)三极管的放大作用,需要一定的外部条件。
三极管9011,9012,9013,9014,8050,8550引脚图_封装外形-参数
三极管9012.90139013参数最大耗散功率(P CM):0.625W最大集电极电流(I CM):0.5A集电极-发射极击穿电压(V CEO):25V集电极-基极击穿电压(V CBO):45V发射极-基极击穿电压(V EBO):5V集电极-发射极饱和压降(V CE):0.6V特怔频率(fr):150MHZ放大倍数:D64-91 E78-112 F96-135 G122-166H144-220 I190-3009012参数s9012s9013,s9014, s9015,,s9018系列的晶体小功率三极管,把显示文字平面朝自己,从左向右依次为e发射极b基极c集电极;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c,s8050,8550,C2078 也是和这个一样的。
用下面这个引脚图(管脚图)表示:三极管引脚图e b c当前,国内各种晶体三极管有很多种,管脚的排列也不相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置(下面有用万用表测量三极管的三个极的方法),或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。
非9013,9014系列三极管管脚识别方法:(a) 判定基极。
用万用表R×100或R×1k挡测量管子三个电极中每两个极之间的正、反向电阻值。
当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。
这时,要注意万用表表笔的极性,如果红表笔接的是基极b。
黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测管子为PNP型三极管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管如9013,9014,9018。
(b) 判定三极管集电极c和发射极e。
(以PNP型三极管为例)将万用表置于R×100或R×1K挡,红表笔基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值会是一个大一些,一个小一些。
三极管知识及极性判别方法
三极管知识及极性判别方法三极管知识及极性判别方法晶体三极管的结构和类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
发射极箭头向外。
发射极箭头指向也是PN结在正向电压下的导通方向。
硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
三极管的封装形式和管脚识别常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。
目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。
晶体三极管的电流放大作用晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。
这是三极管最基本的和最重要的特性。
我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。
电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。
晶体三极管的三种工作状态截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
5.晶体三极管
5、晶体三极管的主要参数 1)、共发射极直流放大倍数HFE 共发射极直流放大倍数HFE是指在没有交流信号输入时,共发 射极电路输出的集电极直流电流与基极输入的直电流之比。这 是衡量晶体三极管有无放大作用的主要参数,正常三极管的 HFE应为几十至几百倍。常用的三极管的外壳上标有不同颜色 点,以表明不同的放大倍数。 放大倍数:-15-25-40-55-80-120-180-270-400 色标点: 棕 红 橙 黄 绿 蓝 紫 灰 白 黑 例如:色点为黄色的三极管的放大倍数是40~55倍之间,色点 是灰色的三极管的放大倍数为180~270倍之间等等。
iB 30A
iB 20A
iB 10 A
放大区
iB 0A
0 VCE(sat)
截止区
V(BR)CEO
v CE
它分为四个区域: 放大区 截止区 饱和区 击穿区
称为击穿电压。
操作2: 三极管各个极的对地电压及其判断 根据表中给出的在放大电路中测得的三极管各个极对地的电压, 判断各个极的名称、管型和材料。 表 三极管的各个极的对地电压及其判断
晶体管在放大状态下内部载流子的传递
N+ IE E IEP
注入空穴
P 扩散电子 IB1 IB B IB2
N
收集电子
IEN 注入电子
ICN1
IC C
ICN2 ICBO ICP
发射结 复合电子
集电结
漂移空穴 漂移电子
VBE
VCB
8、三极管的工作状态 半导体三极管在工作时,根据各引脚所施加的工作电压大小,可以 使晶体三极管工作在饱合、截止、放大等状态下。 依据晶体管的发射结(EBJ)和集电结(CBJ)的偏置情况,晶体管的工 作状态如表所示: 注:VBE=VB-VE VBC=VB-VC VB-晶体三极管基极电压 VC-晶体三极管集电极电压 VE-晶体三极管发射极电压
晶体三极管的结构和类型
晶体三极管的结构和类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
发射极箭头向外。
发射极箭头指向也是PN结在正向电压下的导通方向。
硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
三极管的封装形式和管脚识别常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,如图对于小功率金属封装三极管,按图示底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。
目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。
晶体三极管的电流放大作用晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。
这是三极管最基本的和最重要的特性。
我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。
电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。
晶体三极管的三种工作状态截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
第4讲晶体三极管及场效应管
2. 绝缘栅型场效应管
增强型管
大到一定 值才开启
高掺杂 耗尽层 空穴
衬底 SiO2绝缘层
反型层
uGS增大,反型层(导电沟道)将变厚变长。当 反型层将两个N区相接时,形成导电沟道。
动画演示
增强型MOS管uDS对iD的影响
刚出现夹断
iD随uDS的增 大而增大,可
uGD=UGS(th), 预夹断
变电阻区
夹断 电压
在恒流区iD时 ID, O(UuGGSS(th)1)2 式中 IDO为uGS2UGS(t时 h) 的 iD
3. 场效应管的分类 工作在恒流区时g-s、d-s间的电压极性
结型PN沟 沟道 道((uuGGS> S<00, ,uuDDS< S>00)) 场效应管 绝缘栅型 耗 增尽 强型 型 PPN N沟 沟 沟 沟道 道 道 道((((uuuuG GG GSS< 极 SS> 极00, 性 , 性uu任 D任 DS< S> 意 意 00)u)u, , DDS< S>00))
区
区
低频跨导:
夹断区(截止区)
iD几乎仅决 定于uGS
击 穿 区
夹断电压
gm
iD uGS
UDS常量
不同型号的管子UGS(off)、IDSS 将不同。
动画演示Байду номын сангаас
(1)可变电阻区
i
是uDS较小,管子尚未预夹断时
的工作区域。虚线为不同uGS是预夹
断点的轨迹,故虚线上各点
uGD=UGS(off),则虚线上各点对应的 uDS=uGS-UGS(off)。
uDS的增大几乎全部用 来克服夹断区的电阻
iD几乎仅仅 受控于uGS,恒 流区
用场效应管组成放大电路时应使之工作在恒流区。N 沟道增强型MOS管工作在恒流区的条件是什么?
三极管基本认识(教案)
三极管基本认识(教案)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March晶体三极管教案【教学内容】本课学习的是“中等职业教育规划教材”电子工业出版《电子技术基础》的第一章第三节的第一部分内容。
这节课内容包括三极管的结构,三极管的类型符号、三极管的分类方法和三极管的放大作用。
【地位和作用】这节课是在学生学习了半导体、PN结和二极管之后安排的,也是为今后学习三极管工作原理打下理论基础。
三极管是电子电路中最重要的电子元器件。
【教学目标】1. 知识目标:①、了解三极管的概念、分类、符号。
②、掌握晶体三极管的结构及类型的判断。
③、了解三极管内部载流子的运动。
④、掌握晶体三极管的电流放大作用。
2. 能力目标:①培养学生分析问题及解决问题的能力。
②培养学生的实际动手操作能力。
③激发学生创新精神和创造思维,以达到知识探索、能力培养、素质提高的目的。
3.情感目标:①激发学生学习这门课程的兴趣及热情,学以致用。
②培养学生事实求是的科学态度和一丝不苟的严谨作为和主动探索的精神【课堂类型】精讲型(理论基础课)【教学重/难点】重点:三极管的结构及类型的判断,三极管电流的放大条件。
难点:晶体三极管的电流放大作用及内部载流子的运动。
【学生情况分析】学生基础相对薄弱,初中刚刚毕业,且物理学习成绩很差。
【教学工具】教材电子元器件三极管若干个粉笔【教学方法】引导思考法互动教学法类比推理法【课时安排】二节课【教学过程】一、课前复习1、PN结①提问:什么是PN结?答:把P型半导体和N型半导体制作在同一硅片或锗片上,所形成的交接面。
②提问:PN结具有什么特性?答:单向导电性2、二极管③提问:二极管与PN结有什么联系?答:PN结用外壳材料封装起来,并加上电极引线就形成了二极管。
P区接阳极,N区接阴极。
④提问:二极管的导电性是否与PN结一样了?答:是二、新课导入如图所示是一个扩音器的示意图:声音图 1 扩音器示意图其中如图所示:话筒是将声音信号转换为电信号,经放大电路放大后,变成大功率的电信号,推动扬声器,再将其还原为声音信号。
第三节三极管
国家标准对半导体器件型号的命名举例如下: 国家标准对半导体器件型号的命名举例如下:
3DG110B
用字母表示同一型号中的不同规格 用数字表示同种器件型号的序号 用字母表示器件的种类 用字母表示材料 三极管
第二位: 锗 第二位:A锗PNP管、B锗NPN管、 管 锗 管 C硅PNP管、D硅NPN管 硅 管 硅 管 第三位: 低频小功率管 低频小功率管、 低频大功率管 低频大功率管、 第三位:X低频小功率管、D低频大功率管、 G高频小功率管、A高频大功率管、K开关管 高频小功率管、 高频大功率管 高频大功率管、 开关管 高频小功率管
BJT是由两个 结组成的。 是由两个PN结组成的 是由两个 结组成的。
一.BJT的结构 的结构
NPN型
发射结 集电结
PNP型
发射结 集电结
e 发射极
N
-
P
N
c
集电极
e 发射极
P
-
N
P
c
集电极
发射区 基区 集电区
发射区 基区 集电区
基极
基极
b
eb
-
-
c
b
符号: 符号
eb
-
-
c
三极管的结构特点: 三极管的结构特点 >>集电区掺杂浓度 (1)发射区的掺杂浓度>>集电区掺杂浓度。 )发射区的掺杂浓度>>集电区掺杂浓度。 (2)基区要制造得很薄且浓度很低。 )基区要制造得很薄且浓度很低。
(2)输出特性曲线 iC=f(uCE) iB=const 输出特性曲线
现以i 一条线加以说明。 现以 B=60uA一条线加以说明。 一条线加以说明 (1)当uCE=0 V时,iC=0。 ) 时 。 (2) uCE ↑ → Ic ↑ 。 ) (3) 当uCE >1V后,收 )
《PNP型三极管》课件
PNP型三极管的特性
1 放大作用
PNP型三极管能够将微弱的输入信号放大到较大的输出信号,用于信号增强和放大电路。
2 开关作用
PNP型三极管可以作为开关元件,控制电流的通断,用于逻辑门和数字电路中。
PNP型三极管的应用
放大器
PNP型三极管广泛应用于音频放大器、射频 放大器以及各种传感器和检测电路中。
1
选型要点
在选择PNP型三极管时,需考虑输入/
PNP型三极管的使用方法
2
输出特性、最大电流/功率、封装类型 和工作温度等因素。
正确的引脚连接和偏置电路设计是
PNP型三极管正常工作的关键,需按
照电路要求进行连接。
3
注意事项
在使用PNP型三极管时,需注意静电、 短路、过压和过温等问题,以防止器 件损坏或故障。
重点知识回顾
- PNP型三极管是一种双极型晶体管,具有放大和开关作用。 - PNP型三极管应用广泛,如放大器、开关电路、稳压电路和振荡电路。
课程学习建议
- 深入了解PNP型三极管的特性和应用,掌握选型与使用的技巧。 - 实践设计和调试电路,加深对PNP型三极管的理解和应用能力。
PNP型三极管的常见故障及排除方法
PNP型三极管故障包括漏电流过大、 放大倍数降低和失效等问题。
针对常见故障,可以通过检查电路连接、 替换故障器件和调整偏置电路等方式来排 除故障。
小结
本课件介绍了PNP型三极管的结构、工作原理、应用、参数以及选型与使用等内容。希望能够帮助大家 更好地理解和应用PNP型三极管。
《PNP型三极管》PPT课 件
# PNP型三极管
PNP型三极管是一种重要的电子器件,具有广泛的应用场景和特性。本课件 将介绍PNP型三极管的结构、工作原理、应用、参数以及选型与使用等内容。
第4讲晶体三极管
结构特点:内部条件
• 发射区的掺杂浓度最高;
• 集电区掺杂浓度低于发射 区,且面积大;
• 基区很薄,一般在几个微 米至几十个微米,且掺杂 浓度最低。
++
管芯结构剖面图
基区很薄(几微米~几十微米) 发射区掺杂浓度最大
集电区的面积最大
C 集电极
集电结
N
B
P
基极
N
发射结
E
发射极
集电区: 面积较大
基区:较薄, e b 掺c 杂浓度低
4.1.1 BJT结构简介
1. NPN型
集电极 c
N
基极 b
P
N
vCEvCBvBE 发射极 e
集电区 集电结
基区 发射结
发射区
c
b e
符号
4.1.1 BJT结构简介
1. PNP型 集电极 c
集电区
基极 b
NP NN
P
集电结
c
基区
发射结 b
发射区
e
发射极 e
符号
vCEvCBvBE
4.1.2 放大状态下BJT的工作原理
___IIC B
1.5 37.5 0.04
IC 2.31.5 40
IB 0.06 0.04
在以后的计算中,一般作近似处理: =
2.集-基极反向截止电流ICBO
ICBO A
ICBO是集 电结反偏 由少子的 漂移形成 的反向电 流,受温 度的变化 影响。
3. 集-射极反向截止电流ICEO
集电结反 ICEO= (1+ ) ICBO
三极管内有两 种载流子(自 由电子和空穴) 都参与导电,
故称为双极型 三极管BJT 。
晶体管外形封装(to)外部结构
晶体管的外形封装(TO,Transistor Outline)是指晶体管外壳的标准化尺寸和形状。
封装的主要功能是保护半导体芯片免受物理损害和环境因素(如湿气、灰尘)的影响,同时提供电气连接和散热通道。
晶体管的TO封装外部结构通常包括以下几个部分:
1. 引脚(Leads/Pins):引脚是晶体管与电路板连接的金属部分,可以是直插式(Through-Hole Technology, THT)或表面贴装式(Surface-Mount Device, SMD)。
引脚数量根据晶体管的复杂程度而定,常见的有2引脚、3引脚、4引脚等。
2. 封装壳体:壳体通常由塑料、陶瓷或金属材料制成,用于固定和保护内部的半导体芯片。
封装壳体的形状和尺寸根据TO标准的不同而有所变化。
3. 顶部和底部:封装的顶部通常是平坦的,有的可能带有散热片或其他特征。
底部则是引脚延伸出来的地方,用于将晶体管安装到电路板上。
4. 标记:封装上会有印刷或激光刻印的标记,显示制造商信息、型号、生产批号等。
5. 散热片:对于功率较大的晶体管,封装顶部可能会加装散热片以帮助散热。
TO封装标准由JEDEC(Joint Electron Device Engineering Council)等组织制定,常见的TO封装系列包括TO-92、TO-220、TO-247等。
每种系列都有其特定的尺寸、引脚配置和封装材料,适用于不同的应用场景和性能要求。
例如,TO-220通常用于通过孔安装的中大功率晶体管,而TO-92则多用于小功率信号晶体管。
三 极 管
三极管一、晶体三极管的结构和类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
发射极箭头向外。
发射极箭头指向也是PN结在正向电压下的导通方向。
硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
电压须在外部施用,以使晶体管操作。
施用电压以使电流朝著发射极箭头的方向移动。
施用电压时,发射极电流Ie、集电极电流Ic和基点电流Ib将产生以下的关系:Ie = Ic+Ib晶体管类型:按材料分类,可分为:硅晶体管、锗晶体管按电极分类,可分为:NPN晶体管、PNP晶体管按功能分类,可分为:光敏三极管、开关三极管、功率三极管二、三极管的封装形式和管脚识别常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,如图对于小功率金属封装三极管,按图示底视图位臵放臵,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放臵,则从左到右依次为e b c。
电子制作中常用的三极管有90××系列,包括低频小功率硅管9013(NPN)、9012(PNP),低噪声管9014(NPN),高频小功率管9018(NPN)等。
它们的型号一般都标在塑壳上,而样子都一样,都是TO-92标准封装。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体三极管的结构及封装
晶体三极管是各种电子设备中的核心器件。
其突出特点是在一定条件下具有电流放大作用,可用做电子开关,在电子电路中被广泛应用。
晶体三极管由两个PN结和三个电极构成,用途及功率不同,封装尺寸也不同。
常用的有平面型小功率、中功率及大功率三极管。
小功率三极管的封装尺寸及实物图如下图(a)所示。
中功率三极管的封装尺寸及实物图如下图(b)所示。
大功率三极管的封装尺寸及实物图如下图(c)所示。
贴片式三极管的封装尺寸及实物图如下图(d)所示。
常用的合金型小功率、中功率、大功率三极管有以下几种:
小功率合金型三极管实物图如下图(e)所示。
中功率合金型三极管实物图如下图(f)所示。
大功率合金型三极管实物图如下图(g)所示。
常见的三极管结构有平面型和合金型两类,分别如图5-15(a)和(b)所示。
硅管主要是平面型,锗管主要是合金型。
不同类型的三极管虽然制造方法不同,但在结构上都分成PNP或NPN三层。
因此又将三极管分为NPN型和PNP型两种。
国产硅三极管主要是NPN型,锗管主要是PNP型下图是它们的结构示意图和电路符号。
晶体三极管在电路中的表示方法有:国内最早用BG表示,彩色电视机电路中用Q和V表示。
目前的电子电路中用VT来表示。
各种三极管都分为发射区、基区和集电区等三个区域。
三个区域的引出线分别称为发射极、基极和集电极,并分别用E,B和C表示。
发射区与基区之间的PN结称为发射结,基区与集电区之间的P-N结称为集电结。
NPN型三极管和PNP型三极管的工作原理相同,不同的只是使用连接电源的极性不同,管子各极之间的电流方向也不同。
下面以NPN晶体三极管为例进行介绍。