第11讲h回归分析

合集下载

CHAP11 回归分析精品PPT课件

CHAP11 回归分析精品PPT课件

回归分析的模型
按是否线性分:线性回归模型和非线性回 归模型 按自变量个数分:简单的一元回归,多元 回归
回归分析的模型
基本的步骤:利用SPSS得到模型关系式, 是否是我们所要的,要看回归方程的显著 性检验(F检验)和回归系数b的显著性检 验(T检验),还要看拟合程度R2 (相关系数 的平方,一元回归用R Square,多元回归 用Adjusted R Square)
奇异值(Casewise或Outliers)诊断
概念 奇异值指样本数据中远离均值的样本数
据点,会对回归方程的拟合产生较大偏差影响。 诊断标准
一般认为,如果某样本点对应的标准化残 差值超出了[-3,+3]的范围,就可以判定该 样本数据为奇异值。
线性回归方程的预测
点估计
y0 区间估计
95%的近似置信区间: [y02Sy,y0+2Sy]. x0为xi的均值时,预测区 间最小,精度最高.x0越远离均值,预测区 间越大,精度越低.
11.1 线性回归(Liner)
一元线性回归方程: y=a+bx a称为截距 b为回归直线的斜率 用R2判定系数判定一个线性回归直线的拟合
程度:用来说明用自变量解释因变量变异的 程度(所占比例)
回归方程
回归方程的显著性检验 目的:检验自变量与因变量之间的线性关系是否 显著,是否可用线性模型来表示. 检验方法: t检验 F检验(一元回归中,F检验与t检验一致, 两种检 验可以相互替代)
回归分析的过程
Байду номын сангаас在回归过程中包括:
Liner:线性回归 Curve Estimation:曲线估计 Binary Logistic: 二分变量逻辑回归
回归分析的过程

定量分析方法(11-1)

定量分析方法(11-1)

第十一章 回 归 分 析本章以一元线性回归模型为重点介绍回归分析方法,对于一元线性回归模型所建立的理论与方法作适当的修改便可推广到多元线性回归模型。

§1 回归的概念一、变量之间的关系现实中,各种变量相互依赖、相互影响,存在着某种关系。

如:价格与需求量、利率与投资、收入与消费,等等。

大致可以归纳为两类关系:确定性关系(函数关系),非确定性关系(统计关系)。

1. 确定性关系:变量之间存在着某种完全确定的关系。

如:总收益Y 与产量X 之间的关系:X P Y ⋅=当价格一定时,Y 由X 完全确定。

表现在图形上,()Y X ,的所有点位于一条直线上。

一般地:()n X X X f Y ,,21= (多元函数)2. 非确定性关系:变量之间由于受到某些随机因素的影响而呈现出一种不确定的关系。

如:农业产量主要受到降雨量、施肥量、温度等的影响,但决定产量的并非完全是这些因素,还要受到许多其它因素的影响,如冰雹、蝗灾等自然灾害。

非确定性关系可以分为两大类:1) 相关关系:两个变量处于完全对等的位置,且两个变量皆为随机变量,常用相关系数来度量。

如:计量经济学成绩与统计学成绩,物价水平和股票价格,等等。

2) 回归关系:一个变量的变化是另一个变量变化的原因,而不是相反。

如:消费量Y 与可支配收入X 之间便是一种回归关系。

一般来讲,随着可支配收入的增加,消费增加,可支配收入是影响消费的主要因素,但并非唯一的因XYPX Y =素,影响消费的因素还有消费习惯、地区差异、年龄构成、宗教信仰等等。

同样收入的家庭,有的支出多,有的支出少,即使是同一家庭,其每个月的收入相同的话,各个月的支出也不会完全一样。

这样,对应于一个X 的值,Y 有多个不同的值相对应,X 与Y 呈现出不确定性的关系。

此时:()u X f Y += (u 为随机影响)表现在图形上,()Y X ,的点不是完全处于一条直线(或曲线)上,而是围绕在一条理论线的两旁变化。

回归分析法精选全文

回归分析法精选全文

可编辑修改精选全文完整版回归分析法用相关系来表示变量x和y线性相关密切程度,那么r数值为多大时才能说明它们之间线性关系是密切的?这需要数理统计中的显著性检验给予证明。

三、显著性检验是来用以说明变量之间线性相关的密切程度如何,或是用以说明所求得的回归模型有无实用价值。

为说明相关系数的概念,先观察图2-3。

回归分析的检验包括:相关系数的显著性检验、回归方程的显著性检验、回归系数的显著性检等,它们是从不同角度对回归方程的预测效能进行验证的。

关于显著性检验这涉及有关数理统计的内容,为此我们作一下简要回顾。

数理统计的主要内容包括:·参数估计;·假设检验;·方差分析等。

(1)相关系数检验。

相关系数的检验,需要借助于相关系数检验表来进行,这种表是统计学家按照有关的数学理论制定出的。

在相关系数检验表中,有两个参数需要说明。

1)f —称为自由度。

其含义为:如果有n个变量 x1,x2,...x n相互独立,且无任何线性约束条件,则变量的自由度个数为 f=n ,一般情况下有:f=n —约束条件式数对于一元线性回归,参数a,b要通过观测数据求出,有两个约束式,则失去两个自由度,因此 f=n-2 ,n为散点(观测点或统计数据点)个数。

2) a —称为显著性水平。

取值为0.01或0.05。

而1-a 称为置信度或置信概率,即表示对某种结论的可信程度。

当 a 取值为0.05时,则1-a 为0.95,这表示在100次试验中,约有5次犯错误(小概率事件发生)。

判断两个随机变量x,y间有无线性相关关系的方法是:首先根据要求确定某一显著性水平 a ,由散点数n计算出 f ,然后根据 a , f 利用相关系数检验表查出相关系数的临界值 r a,最后将计算出的相关系数r的绝对值与临界值 r a相比较。

r a表示在一定的置信概率下,所要求的相关系数起码值。

若,表示这两个随机变量之间存在线性相关关系;若,表示这两个随机变量之间线性相关程度不够密切。

matlAB第11讲回归分析

matlAB第11讲回归分析
别对模型进行训练和测试。
Part
03
多元线性回归
多元线性回归模型
多元线性回归模型是用来预测一 个因变量(目标变量)基于多个 自变量(特征)的线性关系。
模型的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βpXp + ε, 其中Y是因变量,X1, X2, ..., Xp 是自变量,β0, β1, β2, ..., βp是
回归模型的评估与选择
评估指标
为了评估回归模型的预测性能, 可以使用各种评估指标,如均方
误差(MSE)、均方根误差 (RMSE)、决定系数(R方)
等。
模型选择
根据评估指标,可以选择最佳的 回归模型。通常选择具有较高决 定系数和较低均方误差的模型。
交叉验证
为了更准确地评估模型的泛化能 力,可以使用交叉验证技术将数 据集分成训练集和测试集,并分
通过交叉验证、调整模型参数等方法可以对多元线性回归模型进行优化,提高预测精度。
Part
04
逻辑回归
逻辑回归模型
逻辑回归是一种用于解决二分类问题 的回归分析方法。它通过将线性回归 模型的输出转换为概率形式,来预测 一个事件发生的概率。
在逻辑回归中,自变量(特征)和因 变量(目标变量)之间的关系是非线 性的,通过sigmoid函数实现从线性 到非线性的转换。
示例代码:`X = [ones(n,1) x]; % 构造设计矩阵,包括常数项` `Y = y; % 因变量矩阵` `B = fitlm(X,Y); % 拟合多元线性回归模型` `Yfit = predict(B,X); % 进行预测`
多元线性回归的评估与优化
评估多元线性回归模型的性能可以使用各种统计指标,如均方误差(MSE)、均方根误 差(RMSE)、决定系数(R^2)等。

高中信息技术浙教版:回归分析教学课件(共17张PPT)

高中信息技术浙教版:回归分析教学课件(共17张PPT)
判断摄氏温度和华氏温度之间是否符合线性关系。
如符合,请通过回归分析计算出摄氏温度和华氏温度之间的线性回归方程。

本课小结
拓展链接——最小二乘法
最小二乘法是一种机器学习的优化技术,其将残差平方之和最小化作为目标
,找到最优模型来拟合已知的观测数据,使得模型所预测的数据与实际数据之间
误差的平方和最小,一般有线性最小二乘法和非线性最小二乘法两种方法。
用线性最小二乘法来解决线性回归模型存在封闭形式(closed-formsolution)

之间

差的绝对值|-y|,将这个差的绝对值作为对应的真实值(即y)和模型预测值(即

)

之间的误差,这个误差通常称为“残差”。
2而不是|-y|引作为“残差”。这样
为了计算方便,在实际中一般使用(-y)


对于给定的n组(x,y)数据,可用不同的a和b来刻画这n组数据所隐含的y=ax+b关
系。对于这些不同的参数,最佳回归模型是最小化残差平方和的均值,即要求n
1

组(x,y)数据得到的残差平均值 σ(෤ − y)2最小。
从残差的定义可看出,残差平均值最小只与参数a和b有关,最优解即使得残
差最小所对应的a和b的值。
2.5.2回归分析中参数计算
可通过最小二乘法(leastsquare)来求解使得残差最小的a和b。
型称为回归模型。
一旦确定了回归模型,就可以进行预测等
分析工作,如从碳排放量预测气候变化程度、
从广告投人量预测商品销售量等。
2.5.1回归分析的概念
二氧化碳浓度在逐年缓慢增加,→二氧化碳浓度=a*年份+b
设时间年份为x、二氧化碳浓度为y,即y=ax+b。

高中数学11回归分析的基本思想及初步应用(2课时)新人教A版选修12PPT课件

高中数学11回归分析的基本思想及初步应用(2课时)新人教A版选修12PPT课件

线的附,所 近以身高和体重的 可关 用系 下面的线
回归模型来表 : y示bxae,
3
线性回归模型:
y=bx+a+e,其中a和b为模型的未知参数,e称为随
机误差。
思考:产生随机误差项e的原因是什么?
随机误差e的来源(可以推广到一般):
1、忽略了其它因素的影响:影响身高 y 的因素不只 是体重 x,可能还包括遗传基因、饮食习惯、生 长环境等因素;
回顾复习
回归分析方法研究问题的步骤:
(1)根据抽样的数据(xi,yi),画出散点图。
(2)求回归直线方程。yˆ bˆxaˆ
(3)用回归直线方程进行预报 yˆ bˆx aˆ
n
(xi x)( yi y)
bˆ i1 n
(xi x)2
i 1
aˆ y bˆx
( x , y ) 样本点中心
解 由于问题中要求根
70 y
65
据身高预报体重 ,因此选 60
取身高为自变量 x , 真实 体重为因变量 y .作散点
55
50
45
40
x
150 155 160 165 170 175 180
图 (图1 .1 1) :
图1.11
从图 1 .1 1中可以看出 ,
y
70
样本点呈条状分布
,身
65
60
高和体 重有比 较好的
线
单层 统 随抽 抽 机样 样 抽
的频率 分布估 计总体
数字特 征估计 总体数
性 回 归 分

分布
字特征

回顾复习
两个变量x,y的关系:函数关系 相关关系
脂肪含量 40 35 30 25 20 15 10 5 0

概率论与数理统计_回归分析

概率论与数理统计_回归分析

概率论与数理统计_回归分析第11章回归分析设x 为普通变量,Y 为随机变量。

如果当x 变化时,Y 随着x 的变化⼤体上按某种趋势变化,则称x 与Y 之间存在相关关系,即),0(~,)(2σεεN x f Y +=例如,某地⼈均收⼊x 与某种商品的消费量Y 之间的关系;森林中树⽊的断⾯直径x 与⾼度Y 之间的关系;某种商品的价格x与销售量Y 之间的关系;施⽤氮肥、磷肥、钾肥数量1x ,2x ,3x 与某种农作物产量Y 之间的关系。

在⽣产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的⼀批离散样点,要求由此建⽴变量之间的近似函数关系或得到样点之外的数据。

我们确定的函数要求在某种距离意义下的误差达到最⼩(通常⽤最⼩⼆乘法,即考虑使各数据点误差平⽅和最⼩)。

由⼀个(或⼏个)普通变量来估计或预测某个随机变量的取值时,所建⽴的数学模型及所进⾏的统计分析称为回归分析。

§11.1 ⼀元线性回归假设有⼀批关于x 与Y 的离散样点),(,),,(),,(2211n n y x y x y x集中在⼀条直线附近,说明x 与Y 之间呈线性相关关系,即),0(~,2σεεN bx a Y ++=称为⼀元线性回归模型。

⼀、模型中的参数估计 1、b a ,的估计⾸先引进记号∑∑∑∑∑=====-=-=-===ni i i xy ni i yy ni i xx ni ini iyx n y x S y n y S x n x S y n y x n x 11221221111按最⼩⼆乘法可得到xxxy S S b =? x b y a ??-= 称x b a y+=为Y 关于x 的⼀元线性回归⽅程。

2、2σ的估计)?(21?22xxyy S b S n --=σ求出关于的⼀元线性回归⽅程。

解:先画出散点图如下计算出 3985193282503.6714510======xy yy xx S S S y x n483.0?==xxxy S S b 735.2??-=-=x b y a 所求的回归⽅程是x y483.0735.2?+-=。

回归分析法(PPT)

回归分析法(PPT)
第五章
5.1 回归分析概述
回归分析法
5.2 一元线性回归分析法
5.3 多元线性回归分析法
5.4 非线性回归分析法
9/4/2018
1
信息分析方法与应用
第五章 学习目标
回归分析法
掌握一元回归分析法的数学模型、参数估计、回归 检验及在实际中的应用 掌握多元回归分析法的数学模型、参数估计、回归 检验及在实际中的应用 掌握非线性回归分析法的各种回归模型、参数估计、 回归检验及在实际中的应用 了解回归、回归分析的定义,回归变量之间的关系, 回归分析的类型 理解回归分析发的应用步骤
9/4/2018
33
信息分析方法与应用
5.4 非线性回归分析法
④据此,可以在对2009年~2018年的经济预测基 础上预测出相应的商品流通费用水平如表5–9。
9/4/2018
34
信ቤተ መጻሕፍቲ ባይዱ分析方法与应用
5.5 回归分析软件
(1)SPSS软件 SPSS 的基本功能包括数据管理、统计分析、 图表分析、输出管理等等。SPSS统计分析过程包 括描述性统计、均值比较、一般线性模型、相关 分析回归分析、对数线性模型、聚类分析、数据 简化、生存分析、时间序列分析、多重响应等几 大类,每类中又分好几个统计过程,比如回归分 析中又分线性回归分析、曲线估计、Logistic 回归、 Probit回归、加权估计、两阶段最小二乘法、非线 性回归等多个统计过程,而且每个过程中又允许 用户选择不同的方法及参数。
5.2.3回归检验 3.F检验
F检验的一般步骤如下:①计算F值;②对于给定的显
著水平a,查自由度为1,n-2的F分布的临界值表,得临界 F 值: ;③比较T值与 值的大小,如果 则认为线性回归显著,一元回归模型成立,否则认为线性 回归不显著,一元回归模型不成立。

回归分析 ppt课件

回归分析 ppt课件
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”4Fra bibliotek回归分析
•按照经验公式的函数类型: 线性回归和非线性回归;
•按自变量的个数: 一元回归和多元回归;
•按自变量和因变量的类型: 一般的回归分析、含有哑变量的回归分
析、Logistic回归分析
5
回归分析
6
回归分析
•对数据进行预处理,选择合适的变量进行回归分析; •做散点图,观察变量间的趋势,初步选取回归分析方法; •进行回归分析,拟合自变量与因变量之间的经验公式; •拟合完毕之后检验模型是否恰当; •利用拟合结果进行预测控制。
通过以上的简单线性回归分析,可知通货膨胀和失业 的替代关系在我国并不存在。
13
回归分析
我们经常会遇到变量之间的关系为非线性的情况,这时 一般的线性回归分析就无法准确的刻画变量之间的因果关系, 需要用其他的回归分析方法来拟合模型。曲线回归分析是一 种简便的处理非线性问题的分析方法。适用于模型只有一个 自变量且可以化为线性形式的情形,基本过程是先将因变量 或自变量进行变量转换,然后对新变量进行直线回归分析, 最后将新变量还原为原变量,得出变量之间的非线性关系。
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;

第11讲回归分析

第11讲回归分析
第二十六页,共59页。
三、线性回归
5. SPSS操作及案例分析
进一步分析:
一、“回归”起源
Galton通过上述研究发现儿子的平均身高一般总是介于其父亲与其种族的 平均高度之间,即儿子的身高在总体上有一种“回归”到其所属种族高度的趋 势,这种现象称为回归现象,贯穿数据的直线称为回归线。
回归概念产生以后,被广泛应用于各个领域之中,并成为研究随机变量与一个或多 个自变量之间变动关系的一种统计分析技术。
相关系数R=0.916、判定系数R2=0.839、调整判定系数R2=0.830,说明自变量可 以解释因变量83.9%的变异,回归方程的拟合优度高。D-W值=2.06,表明残差具有
独立性。
表1 Variables Entered/Removebd
Model 1
Variables Entered 房 产a评 估 价值
线性回归分析 曲线估计分析 二维逻辑分析 多维逻辑分析 顺序分析 概率分析 非线性回归分析 加权估计分析 两阶最小二乘分析
第十一页,共59页。
线性回归
第十二页,共59页。
三、线性回归
1. 线性回归的概念
线性函数是变量之间存在的各种关系中最简单的形式,具有这种关系的回归叫做线 性回归。
拟合优度检验采用判定(决定)系数 (一元)和调整判定(决定)系数
(多元),来检验。其中R是自变量x和因R变2 量y之间的相关系数。
R2

R2 R 2
取值范围是0~1,越接近1表示拟合优度越高,反之就越低。
第十五页,共59页。
三、线性回归
3. 线性回归方程的统计检验 回归方程的显著性检验
y01x
y 0 1 x 1 2 x 2 . ..n x n

第十一讲 回归分析和卡方检验

第十一讲 回归分析和卡方检验

二、多样本的2检验
适用于检验不同样本的分配比率之间的差异。
小练习
• 1、练习数据1,以前测成绩为自变量,后测 成绩为因变量,进行一元回归分析,并列出 回归方程。 • 2、练习数据1,以前测成绩、动机总分和策 略总分为自变量,后测成绩为因变量进行逐 步回归,报告每个自变量的标准化回归系数。 • 3、练习数据2:某高校希望教师当中教授为 20%,副教授为50%,讲师为20%,助教为 10%。抽查了一部分教师的职称情况,请检 验其与校方的期望是否一致。
一、单样本的2检验
适用于检验单样本数据与期望分布之间 是否存在差异。
注意:Expected Values
• All categories equal:每个观测值 的比率相等,如1:1或者1:1:1等。 • Values:自己定义比率,但需要注 意的是,数值的排列次序和数据文 件中各类别的取值排列次序应相 同,二者一一对应。
a. Pre dictors : (Const ant), 初 始工 资 b. Dependent Variable: 当 前工 资
七、几个参数的解释
• R:相关系数 • R square(R2):决定系数(解释量) • Adjust R square(R2):校正后的决 定系数 • R square change( ∆ R2):每个自变 量的决定系数 • B:回归系数 • Constant:常数项 • Beta:标准化的回归系数
• 缺点:检验效能低
卡方(2)检验
以2分布为基础的一种常用的 假设检验方法,主要用于分类变量, 根据样本数据推断总体的分布与期 望分布是否有显著差异,或推断两 个分类变量是否相互关联或相互独 立。
正常情况下,地球 上的男性和女性之间的 比例(性别比)应该为1: 1。2009年在某市的几个 医院分时段随机抽取了 529名新生儿,发现其中 男孩288人,女孩241人。 请问,这个地区的性别 新生儿性别比是否失调? 据说现在的性别比是 1.2:1,那么该地区的性 别比是否符合这个比例?

回归分析学习课件PPT课件

回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调

回归分析法概念及原理

回归分析法概念及原理

回归分析法概念及原理回归分析定义:利用数据统计原理,对大量统计数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程(函数表达式),并加以外推,用于预测今后的因变量的变化的分析方法。

分类:1. 根据因变量和自变量的个数来分类:一元回归分析;多元回归分析;2. 根据因变量和自变量的函数表达式来分类:线性回归分析;非线性回归分析;几点说明:1. 通常情况下,线性回归分析是回归分析法中最基本的方法,当遇到非线性回归分析时,可以借助数学手段将其化为线性回归;因此,主要研究线性回归问题,一点线性回归问题得到解决,非线性回归也就迎刃而解了,例如,取对数使得乘法变成加法等;固然,有些非线性回归也可以直接进行,如多项式回归等;2. 在社会经济现象中,很难确定因变量和自变量之间的关系,它们大多是随机性的,惟独通过大量统计观察才干找出其中的规律。

随机分析是利用统计学原理来描述随机变量相关关系的一种方法;3. 由回归分析法的定义知道,回归分析可以简单的理解为信息分析与预测。

信息即统计数据,分析即对信息进行数学处理,预测就是加以外推,也就是适当扩大已有自变量取值范围,并承认该回归方程在该扩大的定义域内成立,然后就可以在该定义域上取值进行“未来预测”。

固然,还可以对回归方程进行有效控制;4. 相关关系可以分为确定关系和不确定关系。

但是不管是确定关系或者不确定关系,只要有相关关系,都可以选择一适当的数学关系式,用以说明一个或者几个变量变动时,另一变量或者几个变量平均变动的情况。

相关关系线性相关非线性相关彻底相关不相关正相关负相关正相关负相关回归分析主要解决的问题:回归分析主要解决方面的问题;1. 确定变量之间是否存在相关关系,若存在,则找出数学表达式;2. 根据一个或者几个变量的值,预测或者控制另一个或者几个变量的值,且要估计这种控制或者预测可以达到何种精确度。

回归模型:回归分析步骤:1. 根据自变量与因变量的现有数据以及关系,初步设定回归方程;2. 求出合理的回归系数;3. 进行相关性检验,确定相关系数;4. 在符合相关性要求后, 即可根据已得的回归方程与具体条件相结合, 来确定事物的未来 状况,并计算预测值的置信区间;回归分析的有效性和注意事项:有效性: 用回归分析法进行预测首先要对各个自变量做出预测。

第11讲h回归分析

第11讲h回归分析

ˆ 0 t1 2 ( n 2 )ˆ e1 n L x x 2 ,x ˆ 0 t1 2 ( n 2 )ˆ e1 n L x x 2 x
和 ˆ 1 t( n 2 )ˆ e /L x,x ˆ 1 t( n 2 )ˆ e /L x x
以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi) 在平面直角坐标系上标出.
解答
102
100 98
y01x
96
94
92
90
88
86
840
165
2019/11/1
散点图
4
一 般 地 , 称 由 y01x确 定 的 模 型 为 一 元 线 性 回 归 模 型 ,
进 行 检 验 .
假 设 H 0 : 1 0 被 拒 绝 , 则 回 归 显 著 , 认 为 y 与 x 存 在 线 性 关
系 , 所 求 的 线 性 回 归 方 程 有 意 义 ; 否 则 回 归 不 显 著 , y 与 x 的 关 系 不 能 用 一 元 线 性 回 归 模 型 来 描 述 , 所 得 的 回 归 方 程 也 无 意 义 .
2019/11/1
9
(Ⅰ)F检验法 当 H 0成 立 时 ,FQ e/U n (2)~F( 1, n-2)
n
其 中 U y ˆiy2( 回 归 平 方 和 ) i 1
故 F>F 1(1,n2), 拒 绝 H 0 , 否 则 就 接 受 H 0 .
(Ⅱ)t检验法
当 H 0 成 立 时 , T L ˆ x e ˆ 1 x ~ t ( n - 2 )
n
n
n
n
( 经 验 ) 回 归 方 程 为 : y ˆ ˆ 0 ˆ 1 x y ˆ 1 ( x x )

多彩课堂20192019学年高中数学人教A版选修12课件:11回归分析-课时1

多彩课堂20192019学年高中数学人教A版选修12课件:11回归分析-课时1

yi2ny2)
i1
i1
i1
i1
建立回归模型的基本步骤 (1)确定研究对象,明确哪个变量是解释变量,哪个变量 是预报变量. (2)画出确定好的解释变量和预报变量的散点图,观察它 们之间的关系(如是否存在线性关系等). (3)由经验确定回归方程的类型(如我们观察到数据呈线 性关系,则选用线性回归方程). (4)按一定规则(如最小二乘法)估计回归方程中的参数. (5)得出结果后分析残差图是否有异常(如个别数据对应 残差过大,或残差呈现不随机的规律性等).若存在异 常,则检查数据是否有误,或模型是否合适等.
从某大学中随机选取8名女大学生,其身高和体重数 据如下表所示:
编号
12345678
身高/cm 165 165 157 170 175 165 155 170
体重/kg 48 57 50 54 64 61 43 59
怎样根据一名女大学生的身高预报她的体重,并预 报一名身高为172 cm的女大学生的体重?
提示:它们都是刻画两个变量之间的的相关关系的,区
别是R2表示解释变量对预报变量变化的贡献率,其表
n
2
yi yi
达式为R2=1-i
1 n
yi
y
;2
i1
相关系数r是检验两个变量相关性的强弱程度,
n
xixyiy
n
xiyinxy
其表达式为 r
i1
n
2n
xix
i1
.
2
yiy
n
(
xi2nx2)(n
为研究重量x(单位:克)对弹簧长度y(单位:
厘米)的影响,对不同重量的6个物体进行测量,数 据如下表所示:
x
5
10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yˆ (x) y, yˆ (x) y
要求 y y 2 (x) .若 yˆ (x) y, yˆ (x) y 分别有解x
和 x ,即 yˆ (x) y, yˆ (x) y .
则x, x 就是所求的 x 的控制区间.
8
三、检验、预测与控制
1、回归方程的显著性检验
对回归方程Y 0 1x 的显著性检验,归结为对假设 H 0 : 1 0; H1 : 1 0
进行检验.
假设 H 0 : 1 0 被拒绝,则回归显著,认为 y 与 x 存在线性关 系,所求的线性回归方程有意义;否则回归不显著,y 与 x 的关系 不能用一元线性回归模型来描述,所得的回归方程也无意义.
(Ⅰ)F检验法
U /k
当 H0 成立时, F Qe /(n k 1) ~ F (k, n k 1)
如果 F > F1-α (k,n-k-1),则拒绝 H0,认为 y 与 x1,…, xk 之间显著
地有线性关系;否则就接受 n
H0,认为
y

x1,… n ,
xk
之间线性关系不
显著. 其中 U yˆi y2 (回归平方和) Qe ( yi yˆi )2 (残差平方和)

yi 0 x1 i , i 1,2,..., n E i 0, D i 2 且1 2,..., n相互独立
n
n

Q Q(0 , 1)

2 i

yi 0 1xi 2
i 1
i 1
最小二乘法就是选择0 和 1 的估计ˆ0 , ˆ1 使得
n
Lxx
特别,当 n 很大且 x0 在x 附近取值时,
y 的置信水平为1 的预测区间近似为





ˆ
e u1 2
,


ˆ
e
u
1

2

2019/5/10
13
(2)控制
要求: y 0 1x 的值以1 的概率落在指定区间y, y
只要控制 x 满足以下两个不等式
使用次数
10 11 12 13 14 15 16
增大容积
10.49 10.59 10.60 10.80 10.60 10.90 10.76
解答
2019/5/10
15
11
10.5
10
9.5
9
8.5
8
7.5
7
6.5
6
2
4
6
8
பைடு நூலகம்10
12
14
16
散 点 图
此即非线性回归或曲线回归 问题(需要配曲线) 配曲线的一般方法是:
一元线性回归分析的主要任务是:
1、用试验值(样本值)对0 、 1 和 作点估计;
2、对回归系数0 、 1 作假设检验;
3、在 x=x0 处对 y 作预测,对 y 作区间估计.
2019/5/10
返回 5
二、模型参数估计
1、回归系数的最小二乘估计
有 n 组独立观测值,(x1,y1),(x2,y2),…,(xn,yn)
2019/5/10
返回
14
四、可线性化的一元非线性回归 (曲线回归)
例2 出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀, 容积不断增大.我们希望知道使用次数与增大的容积之间的关 系.对一钢包作试验,测得的数据列于下表:
使用次数
2 3 4 5 6 7 8 9
增大容积
6.42 8.20 9.58 9.50 9.70 10.00 9.93 9.99
数学建模与数学实验
回归分析
2019/5/10
1
实验目的
1、直观了解回归分析基本内容。 2、掌握用数学软件求解回归分析问题。
实验内容
1、回归分析的基本理论。 2、用数学软件求解回归分析问题。 3、实验作业。
回归分析
一元线性回归
多元线性回归
* *
* *
数 学 模 型 及 定 义
模 型 参 数 估 计
n
Q yi 0 1xi1 ... k xik 2 i 1
选择 0 ,..., k 使 Q 达到最小。
解得估计值 ˆ
XX T
1
XY T
注意:ˆ 服从 p+1 维正态分
得到的ˆi 代入回归平面方程得:
y ˆ0 ˆ1x1 ... ˆk xk
故 T t (n 2) ,拒绝H 0 ,否则就接受H 0 .
1
2n
n
其中Lxx (xi x)2 xi2 nx 2
i 1
i 1
2019/5/10
10
(Ⅲ)r检验法
n
(xi x)( yi y)

r
i 1
n
n
(xi x)2 ( yi y)2
16
通常选择的六类曲线如下:
(1)双曲线 1 a b
y
x
(2)幂函数曲线 y=axb , 其中 x>0,a>0
(3)指数曲线 y=aebx 其中参数 a>0.
(4)倒指数曲线 y=aeb / x 其中 a>0,
(5)对数曲线 y=a+blogx,x>0
(6)S 型曲线 y 1 a bex
先对两个变量 x 和 y 作 n 次试验观察得(xi , yi ), i 1,2,..., n 画出散点图,
根据散点图确定须配曲线的类型.然后由 n 对试验数据确定每一类曲线的未知
参数 a 和 b.采用的方法是通过变量代换把非线性回归化成线性回归,即采用
非线性回归线性化的方法.
2019/5/10
解例 2.由散点图我们选配倒指数曲线 y=eab/ x
根据线性化方法,算得bˆ 1.1107 , Aˆ 2.4587
2019/5/10
返回
由此 aˆ e Aˆ 11.6789
1.1107

最后得 y 11.6789 e x
17
一、数学模型及定义
一般称
Y X E( ) 0, COV ( , ) 2 I n
n i1
其中 x 1
xi , y 1
yi , x 21
xi , xy
2
1
xi yi .
n
n
n
n
(经验)回归方程为:
yˆ ˆ0 ˆ1x y ˆ1(x x)
2019/5/10
7
2、 2 的无偏估计
n
记 Qe Q(ˆ0 , ˆ1 )
2019/5/10
检 验 、 预 测 与 控 制
性可 回线 归性 (化 曲的 线一 回元 归非 )线
数 学 模 型 及 定 义
模 型 参 数 估 计
检 验 与 预 测
多 元 线 性 回



逐 步 回 归 分 析
3
一、数学模型
例1 测16名成年女子的身高与腿长所得数据如下:
身高 143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164
x1, x2 ,..., xk 之间的数量关系;
(2)在 x1 x01, x2 x02 ,..., xk x0k , 处对 y 的值作预测与控制,即对 y 作区间估计.
2019/5/10
18
二、模型参数估计
1、对 i 和 2 作估计
用最小二乘法求0 ,..., k 的估计量:作离差平方和
腿长
88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102
以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi) 在平面直角坐标系上标出.
解答
102
100
98
y 0 1x
96
94
92
90
88
86
84
140
145
150
155
160
165
为高斯—马尔柯夫线性模型(k 元线性回归模型),并简记为(Y , X , 2 I n )
y1
1 x11 x12 ... x1k
0
1
Y


...


X


1
x21
x22
...
x2k




1




2

...
... ... ... ... ...
2
Qe (n
2)

2019/5/10
12
3、预测与控制
(1)预测
用 y0 的回归值 yˆ0 ˆ0 ˆ1x0 作为 y0的预测值.
y0 的置信水平为1 的预测区间为
yˆ0 (x0 ), yˆ0 (x0 )
其中
(x0
)

ˆ
e
t
1
(n

2)
2
1 1 x0 x2
...
...

y
n


1
x n1
xn2
...
x
n
k


k


n

y 0 1x1 ... k xk 称为回归平面方程.
相关文档
最新文档