传质导论部分题解
第八章 传质过程导论(化工原理)

第八章 传质过程导论第一节 概述8-1 化工生产中的传质过程均相物系的分离(提纯,回收)1.吸收2.气体的减湿3.液-液萃取4.固-液萃取(浸沥,浸取)5.结晶6.吸附(脱附)7.干燥 8精馏 目的:湿分离或混合8-2 相组成的表示法1. 质量分率和摩尔分率mm a A A =mm a B B =mm a C C =……….......+++=C B A m m m mA,B 两组分 a a -1 nn x A A =nn x B B =nn x C C =…….......+++=C B A n n n n .......1+++=C B A x x x互换 A A AA A m m a m m x ==BB B m m a x =…….∑=++=iii B B A A m a m m m a m m a n ...... ()....,,C B A i =故 ∑==iii AA A A m a m a nn xi iiAA A m xm a a ∑=2.质量比和摩尔比质量比 B A m m a /=摩尔比 B A n n X =()a a a -=1 ()x x X -=1)X X x -=13.浓度质量浓度 V m C A A = 3/m kg摩尔浓度 V n C A A = 3/m k m o l均相混合物的密度ρ即为各组分质量浓度的总和(体积与混合物相等)∑=++=iB A CC C ........ρρA V m a V m C A A A ===C x V n x V n C A A A A ===混合气体 RTp V n C A A A ==RTp MVn M Vm C AAAA A A ===气体总摩尔浓度 RTp Vn C ==摩尔分率与分压分率相等 pp nn y A A A ==气体混合物摩尔比可用分压比表示 BB A A BB A A BA Mp M p Mn M n n n Y ===第二节 扩散原理8-3 基本概念和费克定律分子扩散: 扩散速率与浓度梯度成正比 费克定律: 对双组分物系下表达为: dzdl D J A ABA -=A J —分子A 的扩散通量 s m kmol ⋅2/ 方向与浓度样应相反 AB D —比例系数 组分A 在介质B 中的扩散系数 s m /2A c —组分A 浓度,3/m kmoldz dc A —组分A 的浓度梯度 4/m kmol RTp c A A =得 dzdp RTD J AAB A -=定义A J 通过得截面是“分子对称”得,即有一个A 分子通过某一截面,就有一个B 分子反方向通过这一截面,填补原A 分子得空部位,这种分子对称面为固定时,较为简便。
化工原理第五章吸收(传质理论之一)超详细讲解

例5-2 解:SO2-水体系,20℃时溶液的浓度为2.5%(质量百分比), 求气相SO2的平衡分压,查附表九知:E= 0.36×107 Pa, 将质量百分比ω→xA 。
∴p*A=ExA=0.36*107*0.00716=25.78 kPa
例5-3:含NH320%(yA1)的NH3-空气混合气体100m3, 用水恒温吸收至混合体中含氨5%(yA2),求NH3被吸收 的体积。
传热过程
吸收过程
理论 将对流给热视为壁 实质 附近滞流层的热传
导过程—付立叶定
将吸收视为A穿过相界面附 近滞流双膜的分子扩散过 程—费克定律
At
T
T t
t
A1(T tw1) A2 (tw2 t)
N
DA C
Dg P
RTpB
g
A( p
吸收前1:nA1/nB=(nA1/n总1)/(nB/n总1)= yA1/yB1 =YA1
= yA1/(1-yA1) 吸收后2:nA2/nB=(nA2/n总2)/(nB/n总2)= yA2 /yB2 =YA2
= yA2/(1-yA2) 由此提示我们:要求A被吸收的量,要用到A在惰性气体 B中A的含量分率yA/yB,令为YA。 定义: YA –摩尔比/比摩尔分数(率)
注意:
1 吸收达平衡时:YA*=mXA或 XA*= YA/m,但两方程的意 义不同,YA*与YA不同。
2 yA=nA/nT YA=yA/yB=nA/nB xA=n`A/n`T XA=xA/xS=n`A/nS 3 溶解度 mA—g(A)/100g(S)
xA、CA、XA与mA的关系: xA= n`A/ n`T= (mA/MA)/( mA/MA+100/MS) XA=n`A / nS= (mA/MA)/(100/MS) CA= n`A/VT= [ρT(溶液)× mA/(100+mA)]/MA kmol/m3
化工原理 传质导论

NA= D/d (CA1-CA2) = kc(CA1-CA2)
第二节 扩散原理
P7 例8-2
第二节 扩散原理
2、通过停滞的B组分层的传质(单相扩散) NH3: CA JA NA b Air: CB CAi
特点:有总体流动 总体流动通量Nb: kmol/m2.s A组分的总体流动通量NAb: NAb = xANb B组分的总体流动通量NBb: NBb = xBNb
dcA DAB dz dcB DBA dz
du dy
A B A B A A B 组分B的扩散量JB,z B A
组分A的扩散量JA,z B B A B B A A
对照: 牛顿粘性定律:
t q 傅立叶定律: n
质量中心面
第二节 扩散原理
表示扩散方向与浓度梯度方向相反
思考3:双组分均相物系中,x与X的关系?w与的 w 关系?
X x 1 X x X 1 x
w
w 1 w
w w 1 w
思考4:xA与cA的关系?wA与A的关系?
c A x Ac
A wA
思考5:cA与A的关系?
cA
A
MA
思考6:对理想气体,c与 p的关系?y与p?与p?
例题 8-4 p11
第二节 扩散原理
液体的扩散系数: 对于很稀的非电解质溶液
第二节 扩散原理
第二节 扩散原理
二、两种基本的传质过程 1、等摩尔反向传质(扩散)
总体流动— 整个相沿着扩散方向宏观的定向运动
等摩尔反向传质没有总体流动,传质由分子扩散引起。
O2
N2 NA = JA; NB = JB
总摩尔浓度CM为定值: NA = - NB
《化工原理》8传质过程导论2

统为单向扩散时(B为停滞组分), J A = J B
NA >NBຫໍສະໝຸດ 传质通量(总通量)等于扩散通量的条件是:等摩尔相互扩散
双组分气体混合物中,组分A的扩散系数是:
(A)系统的物质属性
(B)组分A的物质属性
(C)只取决于系统的状态 (D) 以上三者都不是
College of Power Engineering NNU WANG Yanhua
pB1
p pA2 p pA1 ln p pA2 p pA1
p A1
ln p
p pA1
ln
2 101.3
100.5kPa
101.3 2
D N ART(z2 z1) pBm P( pA1 pA2 )
7.7 107 8.314 293 (0.022 0.01) 100.5
101.3 (2 0) 1.12105 m2 / s
D2
D1
p1 p2
T2 T1
1.75
二、液体中的D 约10-5cm2/s
分子密集 D液<D气
计算:经验公式,p11式(8-23) 或表8-4
【例】: 在一直立的毛细玻璃管内装有乙醇,初始液面距离管 口10mm,如图所示。管内乙醇保持为293K(乙醇饱和蒸汽压为 1.9998kPa),大气压为101.3kPa。当有一空气始终平缓吹过管 口时,经100小时后,管内乙醇液面下降至距管口21.98mm处。
D RTZ
P pBm
( pA1
pA2 )
气相
NAL
D z
L
c csm
cAq
cA2
L
液相
与等摩尔相互扩散相比多了一个因子p/pBm——漂流因数。 漂流因数反映总体流动对传质速率的影响。 p/pBm>1 传质速率较大。 若pA p/pBm;反之pA p/pBm≈1
食品工程单元操作第六单元 传质原理习题答案

第七章传质原理7-1 乙醇水溶液中含乙醇的质量分数为30%,计算以摩尔分数表示的浓度。
又空气中氮的体积分数为79%,氧为21%,计算以质量分数表示的氧气浓度以及空气的平均相对分子质量。
解:x=(30/46)/(30/46+70/18)=0.1436 w=21×32/(21×32+79×28)=0.233M空=0.21×32+0.79×28=28.847-2 有一O2(A)和CO2(B)的混合物,温度为293K,压强为1.519×105Pa。
已知x A=0.4,u A=0.08m/s,u B=0.02m/s。
试计算:(1)混合物的平均摩尔质量;(2)混合物、组分A和组分B的质量浓度ρ,ρA,ρB;(3)c,c A,c B;(4)w A,w B;(5)u A-u,u B-u;(6)u A-u m,u B-u m;(7)N A,N B,N;(8)n A,n B,n;(9)j B,J B。
解:(1)M=0.4×32+0.6×44=39.2kg/kmol(2)取100kmol混合物,其中含A40kmol,含B60kmol。
V=100×103×8.314×293/(1.519×105)=1604 m3ρA=40×32/1604=0.798kg/m3ρB=60×44/1604=1.646kg/m3ρ=ρA+ρB=0.798+1.646=2.444kg/m3(3)c A=ρA/M A=0.798/32=0.0249kmol/m3c B=ρB/M B=1.646/44=0.0374kmol/m3 c=c A+c B=0.0249+0.0374=0.0623kmol/m3(4)w A=0.4×32/(0.4×32+0.6×44)=0.3265 w B=1-w A=0.6735(5)u=(ρA u A+ρB u B)/ρ=(0.798×0.08+1.646×0.02)/2.444=0.0396m/su A-u=0.08-0.0396=0.0404m/s u B-u=0.02-0.0404=-0.0204m/s(6)u m=(c A u A+c B u B)/c=(0.0249×0.08+0.0374×0.02)/0.0623=0.0439m/su A-u m=0.08-0.0439=0.0361m/s u B-u m=0.02-0.0439=-0.0239m/s (7)N A=c A u A=0.0249×0.08=1.992×10-3kmol/(m2.s)N B=c B u B=0.0374×0.02=7.48×10-4kmol/(m2.s)N=N A+N B=1.992×10-3+7.48×10-4=2.74×10-3kmol/(m2.s)(8)n A=ρA u A=0.798×0.08=0.06384kg/(m2.s)n B=ρB u B=1.646ρ0.02=0.03292kg/(m2.s)n=n A+n B=0.06384+0.03292=0.09676kg/(m2.s)(9)j B=ρB(u B-u)=1.646×(-0.0204)=-0.0336kg/(m2.s)J B=c B(u B-u m)=0.0374×(-0.0239)=8.94×10-4kmol/(m2.s)7-3 一浅盘内有4mm厚的水,在30℃气温下逐渐蒸发至大气中。
传质课后习题解答

【1-1】试说明传递现象所遵循的基本原理和基本研究方法。
答:传递现象所遵循的基本原理为一个过程传递的通量与描述该过程的强度性质物理量的梯度成正比,传递的方向为该物理量下降的方向。
传递现象的基本研究方法主要有三种,即理论分析方法、实验研究方法和数值计算方法。
【1-2】列表说明分子传递现象的数学模型及其通量表达式。
【1-3】阐述普朗特准数、施米特准数和刘易斯准数的物理意义。
答:普朗特准数的物理意义为动量传递的难易程度与热量传递的难易程度之比;施米特准数的物理意义为动量传递的难易程度与质量传递的难易程度之比;刘易斯准数的物理意义为热量传递的难易程度与质量传递的难易程度之比。
【2-1】试写出质量浓度ρ对时间的全导数和随体导数,并由此说明全导数和随体导数的物理意义。
解:质量浓度的全导数的表达式为:d dx dy dz dt t x dt y dt z dt ρρρρρ∂∂∂∂=+++∂∂∂∂,式中t 表示时间质量浓度的随体导数的表达式为x y zD u u u D tt xyz ρρρρρ∂∂∂∂=+++∂∂∂∂全导数的物理意义为,当时间和空间位置都发生变化时,某个物理量的变化速率。
随体导数的物理意义为,当观测点随着流体一起运动时,某个物理量随时间和观测点位置变化而改变的速率。
【2-2】对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。
⑴ 在矩形截面管道内,可压缩流体作稳态一维流动; ⑵ 在平板壁面上不可压缩流体作稳态二维流动; ⑶ 在平板壁面上可压缩流体作稳态二维流动; ⑷ 不可压缩流体在圆管中作轴对称的轴向稳态流动; ⑸ 不可压缩流体作球心对称的径向稳态流动。
解:⑴ 对于矩形管道,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t x y z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦由于流动是稳态的,所以0tρ∂=∂,对于一维流动,假设只沿x 方向进行,则0y z u u ==于是,上述方程可简化为()0x u xρ∂=∂⑵ 对于平板壁面,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t x y z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦由于流动是稳态的,所以0tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为y x z u u u xyz∂∂∂++∂∂∂=由于平板壁面上的流动为二维流动,假设流动在xoy 面上进行,即0z u =,上式还可以进一步简化为y x u u xy∂∂+∂∂=⑶ 对于平板壁面,选用直角坐标系比较方便,直角坐标系下连续性方程的一般形式为()()()y x z u u u t x y z ρρρρ∂⎡⎤∂∂∂=-++⎢⎥∂∂∂∂⎣⎦由于流动是稳态的,所以0tρ∂=∂,由于平板壁面上的流动为二维流动,假设流动在xoy面上进行,即0z u =,则上式可以简化为()()0y x u u xyρρ∂∂+∂∂=⑷ 由于流动是在圆管中进行的,故选用柱坐标系比较方便,柱标系下连续性方程的一般形式为()()()110z r u u ru t rrrzθρρρρθ∂∂∂∂+++=∂∂∂∂由于流动是稳态的,所以tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为()()()110r z u ru u rrr zθθ∂∂∂++=∂∂∂由于仅有轴向流动,所以0, 0r z u u u θ==≠,上式可简化为z u z∂=∂⑸ 由于流体是做球心对称的流动,故选用球坐标系比较方便,柱球系下连续性方程的一般形式为22111()(sin )()0sin sin r r u u u t rr r r θϕρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂由于流动是稳态的,所以tρ∂=∂,对于不可压缩流体ρ=常数,所以上式可简化为22111()(sin )()0sin sin r r u u u rr r r θϕθθθθϕ∂∂∂++=∂∂∂由于流动是球心对称的,所以0, 0r u u u ϕθ==≠,上式可简化为221()0r r u rr ∂=∂整理得:20r r u u rr∂+=∂【2-3】加速度向量可表示为D u D θ,试写出直角坐标系中加速度分量的表达式,并指出何者为局部加速度的项,何者为对流加速度的项。
传质试卷及答案

总吸收系数K 近似等于(D )。
A. 气膜; B. 液膜; C. 气液膜同时; D. k ;
9、酒精精馏塔顶产生的蒸汽浓度为89%(摩尔%),在冷凝器内全部冷凝为液体时,则馏出 液的浓度x 为( A) A. =89% ; B. <89%; C. >89% ; 10、当回流从全回流逐渐减小时,精馏段操作线向平衡线靠近,为达到给定的分离要求, 所需的理论板数(A )。 A. 逐渐增多; B. 逐渐减少; C. 不变 D 不确定
B 以扩散速率表示
C 以主体流动速度表示
D 以扩散速度表示
6. 气体吸收过程中,下列描述哪项是正确的( A )
A 吸收过程是溶质由气相转移至液相的相际传质过程
B 就溶质的形态而言吸收得到一种纯净物
C 吸收过程中只有物理变化
D 吸收可分为物理吸收、等温吸收和组分吸收
7. 在精馏操作中,回流比增大,所需理论板数( C )
A、提高温度
B、提高吸收剂里有量
C、提高压力
D、减少处理的气体量
8、平衡常数较小的组份是( D )。
A、难吸收的组份
B、最较轻的组份
C、挥发能力最大的组份 D、吸收剂中的溶解度大
9、气体在同一种溶质中的溶解度随温度的升高而( B )。
A、增大 B、减小 C、不变 D、无关
10、用清水吸收空气与 A 的混合气中的溶质 A,物系的相平衡常数 m=2,入塔气体浓度
(Y)
(3)对于湍流传质问题求对流传质系数,目前主要的方法有类比法,经验公式法和分析法。
(N)
(4)填料塔是一种连续的接触式设备,塔内各截面的吸收速率不相等。
(N)
(5)矩鞍环填料是由瓷质材料制成,其性能优于拉西环。
(Y)
8.2_传质过程导论

C
D
NA z
c c cAB11
A2
cA1
NB
DcB2 z
cB1 cB2
气相:
NA
D 0
RTz
pA1 pA2 扩散距离 z
NB
zcAR2 DTz
pB1 pB2
等分子反向扩散
二、等摩尔相互扩散及速率方程 长江大学机械工程学院 School of Mechanical Engineering
讨论:
D N A z cA1 cA2
NA
D RTz
p
A1
pA2
(1) NA∝(cA1-cA2) NA∝(pA1-pA2)
(2)组分的浓度与扩散距离z成直线关系。
(3)等分子反向扩散发生在蒸馏过程中。
汽 相(A+B) A
B
液 相(A+B)
三、单向扩散及速率方程
1.单相扩散
总体流动:气相主体中的 溶质A扩散到界面并溶解 于溶剂中,造成的空位由 混合气体填补,致使气相 主体与界面产生一小压差, 促使混合气体由气相主体 向界面处的流动。
NA
Nb
cB c
Nb
cA c
Nb
cB
cA c
Nb
NA
JA
Nb
cA c
D
dcA dz
NA
cA c
NA
Dc c cA
dcA dz
气相扩散:
cA
pA RT
c p RT
N
A
RT
D p
pA
dpA dz
D dpA 长江大学机械工程学院
School of Mechanical Engineering
三、单向扩散及速率方程 N A
第八章 传质过程导论

几点说明:
A、与导热不同,分子扩散的特点是:当一个 分子沿扩散方向移去后,留下的空位由其他分 子填空。 B、对JA的定义是通过“分子对称”的截面: 既有一个净A分子通过这截面,也有相等的净 B分子反方向通过同一截面,填补A的净空位。
C、分子对称面在空间上既可以是固定,也可 以是移动的。
费克定律同傅利叶定律及牛顿粘性定律
热量传递(热量扩散)
dQ dA t
n
(热量通量)= -(热量扩散系数)×(热量浓度梯度)
(通量)= -(扩散系数)×(浓度梯度)
分子传递基本定律,在固体中、静止或层流流动的流体内才会产生这种传 递过程。
质量传递(扩散)?
?
(质量通量)= -(质量扩散系数)×(质量浓度梯度)
简单回顾3:
总体 N A J A J B Nb Nb
1 PA1
AB
1’
JA
Nb
JB
F
F’
NA,b NB,b
PA2 2
AB 2’
总体流动通量Nb与A穿过界面2-2’的
Z
传质通量NA相等
NA
由组分B的恒算式
Nb
c cB
JB
c cB
JA
代入组分A恒算式得
NA
JA
cA c
c
cB
JA
1
cA cB
J A
液相 A+B
相界面
气相 A+B
A 精馏
B
分离依据
利用液相各组分 的挥发度差异
传质推动力
ΔP、ΔC Δy 、Δx
吸附和干燥过程
相界面
气液相
固相
A+B
C
A 吸附
7. 化工原理 传质理论 题目(含答案)

传质理论基础-概念题(题目)[一]单选择题(1) x07a02103单向扩散中的漂流因数__________。
(1) >1 , (2) <1, (3) =1 , (4)不一定(2) x07a02107根据双膜理论,当被吸收组分在液体中溶解度很小时,以液相浓度表示的总传质系数_________。
(1)大于气相分传质系数;(2)近似等于液相分传质系数;(3)小于气相分传质系数;(4)近似等于气相分传质系数。
(3) x07a02110扩散通量式 J A=-D(dC A/dZ):可以用于多组分系统;只能用于双组分系统;只能用于稀溶液;只能用于理想气体;只能用于液相;可以同时用于液相或气相系统。
(4) x07b02100在双膜模型中,气液界面没有传质阻力的假定等同于下述论点____________。
(1)y*=y (2)x*=x (3)x i*=x i(4)y i=x i(5) x07b02104传质速率N A等于扩散通量J A的条件是:(1) 单向扩散,(2) 等分子相互扩散,(3) 湍流流动,(4) 稳定过程(6) x07b02105双组分气体混合物中,组分A的扩散系数是__________。
(1) 系统的物质属性;(2)组分A的物质属性;(3)只取决于系统的状态;(4)以上三者皆不是。
(7) x07b02106双组分气体(A,B)进行稳定分子扩散。
设J A、J B及N A、N B分别表示在传质方向上某截面处溶质A、B 的扩散通量与传质速率。
当整个系统为单向扩散时,有(1) |J A|>|J B|,|N A|>|N B| (2) |J A|=|J B|,|N A|=|N B|(3) |J A|=|J B|,,N A|>|N B| (4) |J A|=|J B|,|N A|>|N B|>0(8) x07b02112双组分气体(A、B)在进行定常分子扩散,J A及N A分别表示在传质方向上某截面处溶质A 的分子扩散速率与传质速率,当整个系统为单向扩散时:┃J A ┃(A 大于、B 等于、C 小于)┃J B ┃┃N A ┃(A 大于、B 等于、C 小于)┃N B ┃(9) x07b05066双组分理想气体混合物中,组分A 的扩散系数是——————(①系统的物质属性;② 组分A 的物质属性;③只取决于系统的状态);当系统总浓度增加时,此扩散系数将——————(①增加、;② 减少;③不变;④ 不定);当系统中组分B 的分子量增加时,此扩散系数将——————(①增加、;② 减少;③不变;④ 不定)。
化工原理 第八章 传质过程导论.doc

第八章传质过程导论第一节概述8-1 物质传递过程(传质过程)传质过程• 相内传质过程• 相际传质过程相内传质过程:物质在一个物相内部从浓度(化学位)高的地方向浓度(化学位)高的地方转移的过程。
实例:煤气、氨气在空气中的扩散,食盐在水中的溶解等等。
相际传质过程:物质由一个相向另一个相转移的过程。
相际传质过程是分离均相混合物必须经历的过程,其作为化工单元操作在工业生产中广泛应用,如蒸馏、吸收、萃取等等。
几种典型的相际传质过程●吸收:物质由气相向液相转移,如图8-1所示A图8-1 吸收传质过程●蒸馏:不同物质在汽液两相间的相互转移,如图8-2所示。
相界面AB图8-2 蒸馏传质过程●萃取,包括液-液萃取和液-固萃取液-液萃取:物质从一个相向另一个相转移。
例如用四氯化碳从水溶液中萃取碘。
液-固萃取:物质从固相向液相转移。
●干燥:液体(通常为水)由固相向气相转移其它相际传质过程:如结晶、吸附、气体的增湿、减湿等等。
传质过程与动量传递、热量传递过程比较有相似之处,但比后二者复杂。
例如与传热过程比较,主要差别为: (1)平衡差别传热过程的推动力为两物体(或流体)的温度差,平衡时两物体的温度相等;传质过程的推动力为两相的浓度差,平衡时两相的浓度不相等。
例如1atm,20ºC 下用水吸收空气中的氨,平衡时液相的浓度为0.582 kmol/m3 ,气相的浓度为3.28×10 - 4kmol/m3 ,两者相差5个数量级。
(2)推动力差别传热推动力为温度差,单位为ºC ,推动力的数值和单位单一;而传质过程推动力浓度有多种表示方法无(例如可用气相分压、摩尔浓度、摩尔分数等等表示),不同的表示方法推动力的数值和单位均不相同。
8-2浓度及相组成的表示方法1. 质量分数和摩尔分数● 质量分数:用w 表示。
以A 、B 二组分混合物为例,有w A = (8-1)● 质量分数:用x 或y 表示。
以A 、B 二组分混合物为例,有x A = (8-2)2. 质量比与摩尔比 ● 质量比:混合物中一个组分的质量对另一个组分的质量之比,用w 表示。
化工原理考试试卷答案

0.0256 0.0430
Ya1.68Xa0(1分)
yb
yb
yb
0.07 0.0430
0.0270
(1分)
Ya
Ya
Ya
0.0021 0 0.0021
Ym
Yb
Ya
0.0270 0.0021
Kya
4•解:⑴
NOG
HOG
0.0370
HOG0.5
Ya
yb
min
1.2
Xb
yb
Yb1.8Xb
yb
Ya
Ya
yb
b
0.015 0.05 0.001
L 0.0200 0
L 0.0368kmol m
S1(1分)
(2)Yb1.75 Xb1.75 0.0200
0.0350
Ya1.75 Xa0
(1分)
Yb
Yb
Yb
0.05 0.0350 0.0150
(1分)
Ya
Ya
Ya
0.001 0 0.001
Ym
Yb
ln上
Ya
Ya
0.0150 0.001
(1分)
0.001
0.0167 0.0004
1.1656(1分)
1.5 1.1656 1.7485(1分〉
y∣j
y∣j
Yb
L G
Yb
Ya
Ym
h°
Ya
Xa
1.2 0.0113
Yb
Yb
OG
0.02 0.001
1.7485
0.01356
0.02 0.01356
Ya
Ya
0.0004 0.0113
化工原理课后答案(中国石化出版社) 第8章 传质过程导论

本文由tiger2100贡献doc文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
第八章传质过程导论第八章传质过程导论1.含有 CCl 4 蒸汽的空气,由 101.3kPa(绝)、293K 压缩到 l013kPa(绝)后,进行冷却冷凝,测出 313K 下开始有 CCl 4 冷凝,混合气出冷凝器时的温度为 300K 求: (l)压缩前、压缩后开始冷凝前与出冷凝器时,CCl 4 蒸汽的质量分率、质量比和摩尔浓度。
(2)出冷凝器时 CCl 4 蒸汽冷凝的百分率。
四氯化碳的饱和蒸汽压数据如下: 273 283 288 T /K 293 89.8 300 123 313 210p / mmHg 33.7 注:1mmHg = 133.3 p a55.671.1解:(1)l013kPa(绝),313K 下开始有 CCl 4 冷凝,则210 × 101.3 760 y= = 0.0276 1013 0.0276 × 154 压缩前: a = = 0.131 0.0276 ×154 + (1 0.0276) × 29 0.0276 × 154 a= = 0.15 (1 0.0276) × 29 yp 0.0276 × 101.3 C= = = 1.15 × 10 3 kmol / m 3 RT 8.314 × 293 压缩后开始冷凝前: a = 0.131 , a = 0.15 yp 0.0276 × 1013 C= = = 1.07 × 10 2 kmol / m 3 RT 8.314 × 313 123 × 101.3 760 出冷凝器时: y ' = = 0.0162 1013 0.0162 × 154 a' = = 0.080 0.0162 × 154 + (1 0.0162) × 29 0.0162 × 154 a'= = 0.087 (1 0.0162) × 29第 1 页第八章传质过程导论yp 0.0162 × 1013 = = 6.58 × 10 3 kmol / m 3 RT 8.314 × 300 a a' 0.15 0.087 × 100% = 42% (2) × 100% = a 0.15 C=2.二氧化硫与水在 30℃下的平衡关系为: a (kgSO2 / 100kgH 2 O) 0.1 0.2 0.3 0.5 0.7 52 1.0 79 1.5 1254.7 11.8 19.5 36 试求总压为 101.3kPa(绝)下的 x y 关系,并作图。
化工原理下册习题及答案

ni V
;(1 分)
密度:单位总体积内所有物质的质量, m ;(1 分) V
密度和质量浓度的关系: A B i (1 分) i
ci
质量浓度和物质量浓度的关系:
i Mi
(1 分)
3
4.单向扩散的过程中,总体流动是如何形成的,总体流动对传质过程有何影响?
.答:以吸收为例,在单向扩散中,当气相中的 A 被吸收时,A 分子向下扩散后留有空位, 只能由其上方的混合气来填补,因而产生趋向于相界面的“总体流动”(3 分)。 总体流动和扩散方向一致有利于传质(2 分)。
C.表达某个组分在介质中的扩散快慢
D.其值随温度的变化不大
4.气体 A 分子在 B 中扩散,B 的密集程度对 A 的扩散系数有何影响?(
)
A.B 分子越密集,扩散系数越大
1
B.B 分子越密集,扩散系数越小
C.扩散系数的大小和 B 分子的密集程度无关
D.扩散系数的大小与温度 T 成正比,与压力 P 成反比
度 yi 应为(
)。平衡关系 y 0.5 x 。
A.0.01 B.0.02 C.0.015 D.0.005
13.已知 SO2 水溶液在三种温度 t1、t2、t3 下的亨利系数分别为 E1=0.0035atm、E2=0.011atm、
E3=0.00625atm,则(
)。
A. t1<t2 B. t3>t2 C. t1>t2 D. t3<t1 14. 吸收塔的设计中,若填料性质及处理量(气体)一定,液气比增加,则传质推动力
C.气液是否有与主流方向相反的运动引起的混合机相互大小
D.气液两相的液气比
7.对于气膜控制体系,若气体流量变大,气相分传质单元高度将(
化工原理考研辅导:第8、9章 传质过程导论及吸收

导
1 1 1 H
k x mk y k L
kG
cG* cL ci cL
故 1 1 KL kL
1 1 Kx kx
NA kL (cG* cL ) kx (x* x)
27
提高传质速率的措施:提高液体流速;
考 双膜控制:
加强液相湍流程度。
研 气膜阻力和液膜阻力均不可忽略
辅
1 1 m 1 1 1
气膜 液膜
研 2. 界面两侧各有一层有效膜, pG
组成
辅 所有阻力集中在这两层膜中,
pi
膜中传质为定态的分子扩散,
导 湍流区的阻力可以忽略;
气相主体
Ci
传质方向 液相主体
气相推动力:pG-pi
CL
G
L
液相推动力:ci-cL
z
距离
3.在相界面处,气液两相达到平衡。
双膜模型
20
双膜理论将整个相际传质过程简化为通过气、液两膜层的
X
Xa
Ya
LS GB
X
Xb
Yb
-----操作线方程
GBYa
Ga ya
LS Xa
La xa
(二)涡流扩散
D2
D1
T2 1 T12
研
J AB
DE
dcA dz
陈敏恒教材: 无论气相或液相,物 质传递的机理包括分 子扩散和对流传质
辅 湍流流体中进行涡流扩散的同时,也存在着分子扩散。
称为对流传质
导
J AB
D
DE
dcA dz
层流:D占主要地位; 湍流:DE占主要地位。
过渡区:D和DE 数量级相当,不可忽略
分子扩散过程。
西北大学09年
第三章 传质引论 参考答案

第三章 传质引论习题 3.5已知: s kg H C m/102.88146-⋅= , D=50mm=0.05m, L=20cm=0.20 m, 482.0,146=i H C Y ,s m D air H C /100.824146--⋅=(1)求:146"H C m解: 根据质量通量的定义 A m" (方程3.2): 6146146148C H C H C H 222x sec m m 8.210kg m"A D /40.05/4s m 6145C H 2kg m" 4.1710s m (2)求气-液界面上正己烷蒸气的宏观整体通量 解: 根据定义(方程3.3a ,根据Stefan 流问题的推论,空气通量为0,混合气流总通量等于正己烷蒸气的总通量,也就是蒸发速率):正己烷的宏观整体通量≡614614''552C H C H ,im Y 4.17100.482 2.01310kg /s m (3) 求 C 6H 14 的扩散通量解: 根据扩散通量的定义 (方程3.3b): 正己烷扩散通量dx dY D H C 146ρ-≡;根据斯蒂芬问题的推导公式(方程3.35):614614614614C H C H C H C H .i dY Dm"m"Y dx =614614552C H ,i C H i (1Y )m"(10.482)4.17610 2.16310kg /s m习题3-10已知: 一个直径 1-mm 的水珠,温度为75℃,在500K ,1 atm 的干空气中蒸发,求水珠的蒸发常数。
假设: 水珠蒸发是准稳态的,水珠温度均匀, 热物理特性参数为常数, 球形对称,水蒸气是理想气体。
这是一个简单的球坐标的斯蒂芬问题。
气-液界面的水蒸气摩尔分数和质量百分比可以通过查水蒸气表获得,热物理参数可以根据平均温度估算。
蒸发常数定义为书上的3.58式。
《化工原理》8传质过程导论1.

D RT
dpA dz
将上式中的p、z 对应积分,整理得:
D
NA RTz (pA1 pA2 )
同理,组分B有
D
NB
JB
RTz
pB1 pB2
若为液相,则有
D
N A z cA1 cA2
D
NB z cB1 cB2
例1. 氨气(A)与氮气(B)在一等径管两端相互扩散,管 子各处的温度均为298K,总压均为1.013×105Pa。在端点 1处,氨气的摩尔分数yA1=0.15;在端点2处,yA2=0.06, 点1、2间的距离为1m。已知此时扩散系数DAB=2.3×105m2/s。试求A组分的传质通量。
§8-1-2 相组成的表示方法
1、质量分数和摩尔分数
质量分数
wA
mA m
wB
mB m
wi 1
摩尔分数
xA
nA n
xB
nB n
xi 1
相互换算关系:
wA
xA M A
wi
i Mi
(一般液相用x,气相用y)
wA xAM A
xi M i
i
2、质量比和摩尔比(常见于双组分物系)
扩散:物质在单一相内的传递过程
流体中物质扩散的基本方式:
扩散方式 分子扩散 涡流扩散
作用物 流体分子 流体质点
作用方式 热运动 湍动和旋涡
作用对象 静止、滞流
湍流
分子扩散:
推动力 浓度差 物质传递 简称为扩散
终点: 浓度差为〇
扩散快慢?
College of Power Engineering NNU WANG Yanhua
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 传质过程导论
1. 求例8-1中以摩尔比和质量浓度表示时的平衡关系。
解:例8-1表示出的平衡关系为:气相氨分压mmHg p 6=,液相氨的质量比1a =1g 氨/100g 水 (1)以摩尔比表示:
气相 ()00796.07546==-=p P p Y 液相 ()()01059.01810017
1===W
AL
n n X
(2)以质量浓度表示:
气相300558.0000328.017m Kg C M C AG A AG =⨯== 液相390.9582.017m Kg C M C AL A AL =⨯== 式中AG C ,AL C 之值取自例8-1。
2.空气中含有4ccl 蒸气,由atm 1,K 293压缩到atm 10后通入一冷凝器,测得K 313下开始有4ccl 冷凝,混合气出冷凝器时的温度为K 300,求,
(1)压缩前及冷凝前、后4ccl 蒸气的质量分率、质量比和摩尔浓度。
(2)4ccl 蒸气冷凝的百分率。
4ccl 的饱和蒸气压数据0p 如下:
提示:在过程中那一参数保持不变?应当用什么组成进行计算?
解:(1)冷凝后4ccl 在空气中的分压3p 等于K 300下的蒸气压:mmHg p 1233=;冷凝前的分压2p 等于K 313下的蒸气压mmHg p 2102=;压缩前的分压1p 为2p 的
101,即mmH g 21。
4ccl 的分子量154=M 。
由于混合气体的分子量尚未求得,故
以先计算质量比为便。
压缩前 质量比1a =
()空气M M
p p ⨯
-11760 =29
15473921⨯=1509.0 质量分率1a =1
11a a +=
1509
.11509
.0=1311.0 摩尔浓度1c =
11RT p =293
36.6221⨯=300115.0m Kmol 冷凝前质量比和质量分率在压缩过程中保持不变,故
1509012.a a ==,1311.012==a a
而摩尔浓度取为K 313下的:
2c =
22RT p =313
36.62210⨯=301076.0m Kmol 冷凝后 3a =
29154760033⨯
-p p =29
154
7477123⨯=0874.0 3a =0803.00874.10874.0=
=3c 300657.030036.62123m Kmol =⨯
(2)在冷凝过程中气相中的空气量不变,故应当用空气为物料衡算的基准,即用比质量分率作计算: 冷凝分率
2
3
2a a a -=-
11509
.00874
.0=421.0 即1.42﹪ 3.一园筒形容器高m 2.1,直径m 1,内盛4ccl 液体至32,器顶有一与外界平衡压力的小孔。
由于昼夜温度的差异,器内的空气将因空气的膨胀、收缩而通过小孔发生“呼吸”现象(取大气压为atm 1,忽略其变化所引起的呼吸)。
若某天的最高、最低温度分别为20℃及10℃,试求因呼吸而损失的4ccl 量(可作适当的简化近似,如蒸气压可取平均温度下的,作为常数)。
解:呼出的气体重:△n =
⎪⎪⎭
⎫
⎝⎛-=-212111T T R pV RT pV RT pV 式中 =p a t m 1, V =()()314.012.143212=⎪⎭
⎫ ⎝⎛⎪⎭⎫ ⎝
⎛-π3
m
K T 2831=,K T 2932=, ∴ △n =
Kmol 4
1061.42931283108206.0314.01-⨯=⎪⎭
⎫ ⎝⎛-⨯,
其中4ccl 蒸气所占的分率等于分压分率。
现取4ccl 的分压A p 为平均温度K 288下的蒸气压,由上题数据, 知 mmHg p A 1.71=。
故呼出的4ccl 为: Kmol P
p n n A
A 541032.47601.711062.4--⨯=⨯⨯=⋅
∆= 或 Kg M n G A A 551065.61541032.4--⨯=⨯⨯=⋅=
4.浅盘内盛有深mm 6的水,在atm 1及K 298下向大气蒸发。
假定传质阻力相当于
mm 3厚的静止气层,气层外的水蒸气分压可以忽略,求水蒸发完所需的时间。
扩散系数由表8-2查取。
解:由表8-2查得atm 1及K 298下水蒸气在空气中的扩散系数为:s cm D 2256.0=,即s m 251056.2-⨯。
水蒸气通过静止气层的扩散速率按式8-20: ()21A A BM
A P P P P
RTZ D N -⋅
=
式中1A P 为K 298 下的饱和水蒸气压,查得为KPa 168.3, 题中给出02=A P ,KPa P 3.101=,m Z 003.0=,而
()()
KPa P P P P P A A Bm 8.992
163.33.1012
21=-=-+-=
故 ()s m Kmol N A ⋅
--⨯=⎪⎭
⎫ ⎝⎛⨯⨯⨯=25510108.1168.38.993.101003.0298314.81025.2
化成 h m Kg N G A A ⋅=⨯⨯=2718.0360018
厚mm 5的水层,每2m 的质量为Kg 5,故蒸发完所需的时间θ为: h 97.6718
.05
==
θ 5.估计atm 1及K 293下HCl 在空气中及水(极稀盐酸)中扩散系数。
解:HCl 在空气中的扩散系数G D 在表8-2中未列出,需从式8-21估算。
现
atm P 1=,K
T 293=,5.36=A M ,29=B M ,∑1.20=B V ,∑5.215.1998.1=+=A V
故 ()
m D G 252
31
312
175
.17
1071.11.205.2112915.361293
10--⨯=⎪⎪⎭
⎫ ⎝⎛+⨯+⨯=
H C l 在水中的扩散系数L D 按式8-23估算。
式中水的缔合参数6.2=α,分子量18=S M ,粘度(K 293)cP 005.1=μ,分子体积mol cm V A 33.286.247.3=+=
()s cm D L 256
.02
1
8
1099.13
.28005.1293
186.2104.7--⨯=⨯⨯
⨯⨯⨯=或s m 291099.1-⨯ 6 求例8-6在总压增倍后,A N ,G K ,Y K 的变化,并作简单说明。
解:从式8-19看:A N :RTZ PD
N B =
㏑1
3B B P P D P ⨯
不随总压P 而变(参看式8-21:P D 1α),13B B P P 亦不随P 变化
(2B P ,1B P 随P 同样增减)。
故P 对A N 的影响需看P 对Z 的影响。
若气体的流速不变,雷诺数Re 将随P 增倍(μρlw =Re 中的ρ与P 成正比,余不变),使Z 近于减半,A N 也近于增倍;若气体的质量流速不变,Re 不变,A N 也将不变。
从式8-29看P 对G K 的影响:Bm
G G G P P
RT D K ⋅
=
σ式中Bm P P 不随P 变化,G D 与P 成反比,故P 对G K 的影响主要看P 对G σ的影响。
如上述(这里G σ相当于
式8-19中的Z )。
P 对Y K 的影响可从例8-6中P K K G Y =而得知:当气体流速不变,G K 近于不变,Y K 近于与P 同样增倍;当气体质量流速不变,Y K 不变。
7 一填料塔在常压和K 295下操作,用水泥洗去含氨气体中的氨。
在塔内某处,
氨在气相中的浓度5=A y ﹪,液相的平衡分压Pa P A 660=*
,物质通量
s m k m o l N A ⋅=-2410,气相扩散系数cm D G 224.0=,试求气膜的当量厚度。
解:本题可先求出y K 及G K ,然后应用式8-29算G σ。
现 00651.010
3.101660
3
=⨯=
*y ()
()s m kmol y
y N K A y ⋅--*
⨯=-=-=2341030.200651.005.010 kPa s m kmol P
K K y
G ⋅⋅⨯=⨯=
=--253
1027.23
.1011030.2
()()[]kPa P Bm
5.982
106603.10105.013.1013
=-+-=
()
m P P RT K D Bm G G G 000443.0295
314.81027.26.983.1011024.05
4=⨯⨯⨯⋅⨯=⋅=--σ或mm 443.0。