三角函数解三角形第六节解三角形课件

合集下载

高考数学一轮复习第三章三角函数解三角形第六节正弦定理和余弦定理课件新人教版

高考数学一轮复习第三章三角函数解三角形第六节正弦定理和余弦定理课件新人教版

3 2.
由sin A= 3sin B及正弦定理得a= 3b.
于是3b22+b32b-2 c2= 23,由此可得b=c.
由③c= 3b,与b=c矛盾.
因此,选条件③时问题中的三角形不存在.
应用正、余弦定理的解题技能
技能 边化

角化 边
和积 互化
解读
将表达式中的边利用公式a=2Rsin A,b=2Rsin B,c=2Rsin C化为角的关系
得cos A·(sin B+sin C)=0,在△ABC中,sin B+sin C≠0,
则cos A=0,所以△ABC为直角三角形.
判断三角形形状的常用技能 若已知条件中既有边又有角,则 (1)化边:通过因式分解、配方等得出边的相应关系,从而判断三 角形的形状. (2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形 的形状.此时要注意应用A+B+C=π这个结论.

43 3
.由余弦定理DC2+BC2-
2DC·BCcos∠DCB=BD2,可得3BC2+4
3 ·BC-5=0,解得BC=
3 3

BC=-5 3 3(舍去).故BC的长为
3 3.
求解该题第(2)问时易出现的问题是不能灵活利用“AB⊥BC”, 将已知条件和第(1)问中所求值转化为△BCD内的边角关系.解决 平面图形中的计算问题时,学会对条件进行分类与转化是非常重 要的,一般来说,尽可能将条件转化到三角形中,这样就可以根 据条件类型选用相应的定理求解.如该题中,把条件转化到 △BCD中后,利用正弦定理和余弦定理就可以求出BC的长.
解析:选条件①. 由C=π6和余弦定理得a2+2ba2b-c2= 23. 由sin A= 3sin B及正弦定理得a= 3b. 于是3b22+b32b-2 c2= 23, 由此可得b=c. 由①ac= 3,解得a= 3,b=c=1. 因此,选条件①时问题中的三角形存在,此时c=1.

2025版高考数学全程一轮复习第四章三角函数与解三角形第六节函数y=Asinωx+φ的图象及应用课件

2025版高考数学全程一轮复习第四章三角函数与解三角形第六节函数y=Asinωx+φ的图象及应用课件
12

1
π
D.每个点的横坐标缩短到原来的 倍,纵坐标不变,再向左平移 个单位长
2

答案:D
12
2
cos
2
2
sin
2
(2)[2024·江西赣州模拟]将函数f(x)=
2x+
2x图象上的所有
点向左平移φ(φ>0)个单位长度(纵坐标不变)后得到函数g(x)=cos4x-
sin4x的图象,则φ的最小值为(
)
由函数y=cos x的图象经过怎样的变换得到?
π
6
π
6
π
2
π
3
解析:因为f(x)=2sin (2x+ )=2cos (2x+ − )=2cos (2x- ),
π
3
π
3
将y=cos x的图象上所有点向右平移 个单位长度,得到函数y=cos (x- )的图
π
3
1
2
象,再将y=cos (x- )的图象上所有点的横坐标缩短到原来的 (纵坐标不变),得
题后师说
三角函数模型的应用体现在两个方面:一是已知函数模型求解数学
问题;二是把实际问题抽象转化成数学问题,利用三角函数的有关知
识解决问题.
巩固训练3
π
(1)[2024·河北衡水模拟]将函数f(x)=sin 2x的图象向左平移 个单位长
4
度后得到函数y=g(x)的图象,则下列关于g(x)说法正确的是(
π
π
点间的距离为 ,且f(- )=-2,则φ=________.
2
8
π
答案:-
4
1 2π π
解析:由题意知 · = ,∴ω=2.
2 ω

【中考数学考点复习】第六节 锐角三角函数及其应用 课件(共33张PPT)

【中考数学考点复习】第六节  锐角三角函数及其应用 课件(共33张PPT)

返回目录
第1题图
第六节 锐角三角函数及其应用
返回目录
改编条件:题干改变“测量点的高度”;“两个非特殊角”改为“两个 特殊角” 2.(2020 贺州)如图,小丽站在电子显示屏正前方 5 m 远的 A1 处看“防溺 水六不准”,她看显示屏顶端 B 的仰角为 60°,显示屏底端 C 的仰角为 45°,已知小丽的眼睛与地面距离 AA1=1.6 m, 3.求电子显示屏高 BC 的值.(结果保留一位小数. 4.参考数据: 2≈1.414, 3≈1.732).
第 6 题图
第六节 锐角三角函数及其应用
解:如解图,延长 BC 交 MN 于点 F, 由题意得 AD=BE=3.5 米,AB=DE=FN=1.6 米,
在 Rt△MFE 中,∠MEF=45°,∴MF=EF,
在 Rt△MFB 中,∠MBF=33°,
∴MF=BF·tan33°=(MF+3.5)·tan33°,
第六节 锐角三角函数及其应用
返回目录
3. .如图,为测量电视塔观景台 A 处的高度,某数学兴趣小组在电视塔 附近一建筑物楼顶 D 处测得塔 A 处的仰角为 45°,塔底部 B 处的俯角为 22°.已知建筑物的高 CD 约为 61 米,请计算观景台的高 AB 的值.(结果 精确到 1 米,参考数据:sin 22°≈0.37,cos 22°≈0.93,tan 22°≈0.40)
形的边角 1. 三边关系:a2+b2=c2
关系
2. 两锐角关系:∠A+∠B=90° 3. 边角关系:sinA=cosB= a ;cosA=sinB= b;
tanA=
a
c
;tanB=
b
c
图②用
返回思维导图
返回目录
1.仰角、俯角:如图③,当从低处观测高处的目标时,视线与水平线 锐角三角 所成的锐角称为__仰__角____,当从高处观测低处的目标时,视线与水平 函数的实 线所成的锐角称为___俯__角___ 际应用 2.坡度(坡比)、坡角:如图④,坡面的铅直高度h和水平宽度l的比叫坡

数学人教A版(2019)必修第二册 三角函数与解三角形(课件)

数学人教A版(2019)必修第二册 三角函数与解三角形(课件)

基本公式:
三角函数:
si n y ,cos x , tan y
r
r
x









:(

三角形边角基
) 正 弦 定 理 、 余定 弦理 :



si n2 cos2 1
a a a 2R(R为 外 接 圆 半 径 )
在 单 位 圆 中r 1, si n y,cos x
三角函数诱导公式:
a b
2R 2R
si si
nA nB
s s
i i
nA nB
a 2R b 2R
c
2R sinC
s i nC
c 2R
角化边: 边化角:
a b
2R 2R
sinA s i nB
si nA si nB
a 2R b 2R
c
2R sinC
si nC
c 2R
角化边: 边化角:
a b
2R 2R
2
2
tanπ( ) tan tanπ( ) tan
单调性:
特 别 的 : 在 直 角 三 角 中 形 ,a2 b2 c2
三 角 函 数 的 和 差 倍 角式公: 辅 助 角 公 式 : csoinsπ((π22 ))
cos s i n
csoinsπ((π22 ))
cos sin
五点
(二)边、角
si
nx
:
π ( ,-1)(0,0)
(π,1)(π,0)(
3π,-1)
2
2
2
边 : 任 意 两 边 之 和 大 第 于 三 边 ,

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版

归纳法等方法推导出诱导公式。
03
诱导公式的应用
在解三角函数的方程、求三角函数的值、证明三角恒等式等方面有广泛
应用。例如,利用诱导公式可以简化计算过程,提高解题效率。
恒等式及其证明方法
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变量 取何值,等式都成立。
拓展延伸:反三角函数简介
01
02
03
04
反三角函数的定义
反正弦、反余弦、反正切等反 三角函数的定义及性质。
反三角函数的图像
反正弦、反余弦、反正切函数 的图像及其与对应三角函数的
关系。
反三角函数的应用
在几何、物理等领域中的应用, 如角度计算、长度测量等。
反三角函数的计算
利用计算器或数学软件进行计 算,求解三角方程等问题。
高中数学课件三角函 数ppt课件完整版
REPORTING
目录
• 三角函数基本概念与性质 • 三角函数诱导公式与恒等式 • 三角函数的加减乘除运算 • 三角函数在解三角形中的应用 • 三角函数在数列和概率统计中的应用 • 总结回顾与拓展延伸
PART 01
三角函数基本概念与性质
REPORTING
三角函数的定义及性质
PART 05
三角函数在数列和概率统 计中的应用
REPORTING
三角函数在数列求和中的应用
利用三角函数的周期 性,将数列求和转化 为定积分计算
结合三角函数的图像 和性质,分析数列的 收敛性和求和结果
通过三角函数的和差 化积公式,简化数列 求和过程
三角函数在概率统计中的应用
利用三角函数表示周期性随机 变量的概率密度函数

三角函数解三角形两角和与差的正弦余弦和正切公式课件文

三角函数解三角形两角和与差的正弦余弦和正切公式课件文

三角函数解三角形两角和与差的正弦余弦和正切公式课件xx年xx月xx日CATALOGUE目录•三角函数的定义•三角函数的基本性质•三角形中的边角关系•两角和与差的正弦余弦和正切公式•解直角三角形的方法•实例讲解01三角函数的定义1正弦函数23正弦函数是三角函数的一种,记作sin(x),定义域为所有实数,值域为[-1,1]。

定义正弦函数的图像也称为正弦曲线,它是以原点为圆心,以1为半径的圆上的一部分。

图像正弦函数是周期函数,最小正周期为2π。

性质余弦函数是三角函数的一种,记作cos(x),定义域为所有实数,值域为[-1,1]。

余弦函数定义余弦函数的图像也称为余弦曲线,它是由一系列的水平和垂直线段组成的。

图像余弦函数是周期函数,最小正周期为2π。

性质图像正切函数的图像也称为正切曲线,它是由一系列的斜线组成的。

定义正切函数是三角函数的一种,记作tan(x),定义域为所有不等于π/2+kπ(k∈Z)的实数,值域为所有实数。

性质正切函数是奇函数,图像关于原点对称。

正切函数02三角函数的基本性质正弦函数和余弦函数的周期都是2π,即$f(x+2\pi)=f(x)$和$g(x+2\pi)=g(x)$。

正切函数的周期是π,即$h(x+π)=h(x)$。

周期性1 2 3正弦函数的振幅是1,即$f(x) \in [-1,1]$。

余弦函数的振幅也是1,即$g(x) \in [-1,1]$。

正切函数的振幅需要特别注意,它的振幅不是1,而是没有限制的,即$h(x) \in \mathbf{R}$。

正弦函数和余弦函数的相位可以用正负号来表示,例如$f(x)=sin\omega x$和$g(x)=cos\omega x$,其中$\omega >0$。

正切函数的相位需要特别注意,它没有固定的相位,也就是说$h(x)$中不存在相位的概念。

正弦函数和余弦函数的初相都是一个常数,例如$f(0)=A$和$g(0)=B$。

正切函数的初相需要特别注意,它没有固定的初相,也就是说$h(x)$中不存在初相的概念。

解直角三角形完整版PPT课件

解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。

高考数学一轮总复习第四章三角函数与解三角形 6正弦定理余弦定理课件

高考数学一轮总复习第四章三角函数与解三角形 6正弦定理余弦定理课件
变式2 (2022年全国乙卷)记的内角,,的对边分别为,, ,已知 .
(1)证明: .
(2)若,,求 的周长.
解:(1)证明:因为 ,所以 .所以 .所以,即,所以 .(2)因为,所以由(1)得 .由余弦定理,得 ,则,所以 .故 ,所以.所以的周长为 .
考点二 判断三角形的形状
例3 对于 ,有如下命题:①若,则 为等腰三角形;②若,则 为直角三角形;③若,则 为钝角三角形.其中所有正确命题的序号是____.
A. B. C. D.

解:对于A,由正弦定理,有,原式仅当 时成立,故A错误.对于B,因为,故,原式仅当 时成立,故B错误.对于C,,由余弦定理 ,得,原式仅当 时成立,故C错误.对于D,由正弦定理,可得,即 ,故D正确.故选D.
2.在中,角,,的对边分别为,,,已知,, ,则角 ( )
第四章 三角函数与解三角形
4.6 正弦定理、余弦定理
掌握余弦定理、正弦定理,并能用它们解决简单的实际问题.
【教材梳理】
1.正弦定理、余弦定理 在中,若角,,所对的边分别是,,,为 外接圆的半径,则
类别
正弦定理
余弦定理
文字语言
在一个三角形中,各边和它所对角的_______的比相等
考点四 与三角形面积有关的问题
例5 (2023年全国甲卷)记的内角,,的对边分别为,,,已知
(1)求 ;
(2)若,求 的面积.
解:(1)因为 ,所以,解得 .(2)由正弦定理,可得 ,即 ,即 .因为,所以 .又 ,所以 .故的面积为 .
【点拨】三角形面积计算问题要选用恰当公式,其中 等公式比较常用,可以根据正弦定理和余弦定理进行边角互化.
A. B. C. D.

解直角三角形ppt课件

解直角三角形ppt课件
经济学中的复利计算
在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。

《三角函数》第6讲:解斜三角形(学)

《三角函数》第6讲:解斜三角形(学)

《三角函数》第6讲:解斜三角形知识梳理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.三角形面积公式:S △ABC = (h 表示边a 上的高) ; S △ABC =12ab =12 sin A = a sin B ; S △ABC =abc4R ;(海伦公式)S △ABC = ,其中 p =a+b+c 2为半周长3.一些tips1.在△ABC 中,若sinA >sinB ,则2.在△ABC 中,大边对 , 对小角,即若a >b ,则 3.在△ABC 中,若三个角成等差数列,一定有个角为4.在△ABC 中,A+B+C= ,如sinC=sin[180°—(A+B)]= 5.解斜三角形的方法:1)化边为角;2)化 为6.如何选用定理?正定:已知 或者 ;余定:已知 或者典例剖析题型一 利用正弦定理解三角形例1 在△ABC 中,a =3,b =5,sin A =13,则sin B =( ) A. 15 B. 59 C. 53D .1变式训练 在△ABC 中,若A =60°,B =45°,BC =32,则AC =________.题型二 利用余弦定理解题例2 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B. 932 C. 332D .3 3变式训练 在△ABC 中,若AB =5,AC =5,且cos C =910,则BC = .题型三 综合利用正余弦定理解题例3 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知(b -2a )cos C +c cos B =0. (1)求C ;(2)若c =7,b =3a ,求△ABC 的面积.变式训练 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.当堂练习1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B. 932 C. 332D .3 32.在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知b =2,B =30°,C =15°,则a 等于( ) A .22 B .2 3 C . 6- 2 D .43. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为( )A .23+2 B. 3+1 C .23-2 D. 3-14.(2015重庆理)在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.5.(2015江苏)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长;(2)求sin 2C 的值.课后作业一、 选择题1. (2015广东文)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b 等于( ) A .3 B .2 2 C .2 D. 32.已知△ABC ,a =5,b =15,A =30°,则c =( ) A .25 B. 5 C .25或 5 D .均不正确3.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b 等于( ) A .10 B .9 C .8 D .54.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定5.在某次测量中,在A 处测得同一平面方向的B 点的仰角是50°,且到A 的距离为2,C 点的俯角为70°,且到A 的距离为3,则B 、C 间的距离为( )A. 16B. 17C. 18D. 196.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( ) A .2 3 B .2 C. 2 D .17.在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =( )A. 1010B. 105C. 31010D. 558.(2014年江西卷)在△ABC 中,内角A ,B ,C 所对应的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A .3 B. 932 C. 332D .3 3二、填空题9.(2015福建文)在△ABC 中,AC =3,A =45°,C =75°,则BC =________.10. (2015重庆文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.11. (2015北京文)在△ABC 中,a =3,b =6,A =2π3,则B =________.三、解答题12. (2015天津文)在△ABC 中,A ,B ,C 所对的边为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值;(2)求cos ⎝⎛⎭⎫2A +π6的值.13.(2015新课标Ⅰ文)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积.。

解直角三角形(共30张)PPT课件

解直角三角形(共30张)PPT课件

比例性质应用
利用相似三角形中对应边 之间的比例关系进行计算。
实际应用举例
测量问题
利用相似三角形原理解决 测量中的实际问题,如测 量建筑物高度、河宽等。
航海问题
在航海中,利用相似三角 形原理解决船只定位、航 向确定等问题。
物理问题
在物理实验中,利用相似 三角形原理解决光学、力 学等问题,如光的折射、 力的合成与分解等。
利用相似三角形求边长
通过已知边长和相似比,可以求出未知边长。
利用相似三角形求角度
通过已知角度和相似关系,可以求出未知角度。
利用相似三角形求面积
通过已知面积和相似比,可以求出未知面积。
相似比计算方法和技巧
01
02
03
直接计算法
根据已知条件直接计算相 似比。
间接计算法
通过引入辅助线或构造特 殊图形来计算相似比。
解直角三角形(共30张)PPT课 件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 三角函数在解直角三角形中应用 • 相似三角形在解直角三角形中作用
目录
• 复杂图形中解直角三角形策略探讨 • 拓展延伸:非直角三角形解法探讨
01
直角三角形基本概念与性 质
直角三角形定义及特点
有一个角为90度的三角形称为直角三角形。
案例三
在三角形中解直角三角形问题。 通过作高线构造直角三角形,并
结合相似性质进行求解。
总结归纳与提高建议
总结归纳
在复杂图形中解直角三角形的关键在于构造直角三角形并利用 已知条件进行推理和计算。通过添加辅助线、利用相似性质和 三角函数关系等方法,可以有效地解决这类问题。
提高建议
为了更好地掌握解直角三角形的技巧和方法,建议多做相关练 习题并总结归纳经验。同时,也可以学习一些高级的数学知识 和技巧,如三角函数恒等式、极坐标等,以便更好地应对复杂 的数学问题。

第4章第6节正弦定理余弦定理课件共47张PPT

第4章第6节正弦定理余弦定理课件共47张PPT


6+ 4
2 .
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
点评:在△ABC中,若A=m,则B+C=π-m.从而B=π-m-C 或C=π-m-B,由此可消去B或C.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
[跟进训练]
=4或b=5.]
1234
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
02
细研考点·突破题型
考点一 考点二 考点三
利用正、余弦定理解三角形 利用正、余弦定理解决三角形面积问题 判断三角形的形状
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
2.三角形常用面积公式
(1)S=12a·ha(ha 表示边 a 上的高);
(2)S=12absin
1
1
C=___2_a_c_s_in__B___=____2_b_c_s_in__A__;
(3)S=12r(a+b+c)(r 为内切圆半径).
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
因此,选条件②时问题中的三角形存在,此时c=2 3.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
方案三:选条件③.
由C=π6和余弦定理得a2+2ba2b-c2=
3 2.

三角函数解三角形正弦定理和余弦定理课件文

三角函数解三角形正弦定理和余弦定理课件文

三角函数解三角形正弦定理和余弦定理课件文ppt xx年xx月xx日CATALOGUE 目录•引言•三角函数的定义与性质•正弦定理和余弦定理的证明•解三角形的思路和方法•经典例题解析•结论与展望01引言课程背景课程名称:三角函数解三角形正弦定理和余弦定理课件所属学科:数学涉及内容:三角函数、解三角形、正弦定理、余弦定理理解三角函数的概念、性质及基本公式;掌握解三角形的方法和步骤;提高学生分析问题和解决问题的能力。

熟悉正弦定理和余弦定理的应用;三角函数的概念及基本公式;解三角形的几种常见方法;余弦定理的证明及应用。

正弦定理的证明及应用;02三角函数的定义与性质三角函数的定义正弦函数(sine function)定义为直角三角形中,一个锐角的对边与斜边的比值。

余弦函数(cosine function)定义为直角三角形中,一个锐角的邻边与斜边的比值。

正切函数(tangent function)定义为直角三角形中,一个锐角的对边与邻边的比值。

正弦函数和余弦函数都是周期函数,它们的周期是2π。

三角函数的性质周期性正弦函数的振幅是1,余弦函数的振幅是-1。

振幅正弦函数和余弦函数的相位差是π/2。

相位1三角函数的应用23利用正弦定理和余弦定理可以解决一些角度和边长的问题。

解三角形三角函数在信号处理中有着广泛的应用,例如正弦波、余弦波、方波等都是信号处理的常用波形。

信号处理在物理和工程中,三角函数也有着广泛的应用,例如机械振动、电磁波、电路等分析中都离不开三角函数。

物理和工程03正弦定理和余弦定理的证明三角形中任意两边长度与其中一边的对角正弦值乘积相等证明过程通过几何和三角函数方法,利用三角形面积公式进行推导三角形中任意两边长度和它们夹角的余弦值相等证明过程通过作辅助线,将三角形分解为两个直角三角形,再利用勾股定理进行推导正弦定理和余弦定理的应用已知三角形三个角度和一条边,求其他两条边解三角形已知三条边长度,判断三角形形状判断三角形形状已知两边及其夹角,求第三边或其他角度三角形计算在工程、航海、气象等领域有广泛应用实际应用04解三角形的思路和方法解三角形的基本思路直接应用正弦定理或余弦定理,解出未知量;利用三角形面积公式、海伦公式等,求出未知量;利用三角形的内角和定理、正弦定理或余弦定理,求出未知量;根据已知条件,利用三角形内角和定理等基本定理,求出未知量;直接应用正弦定理或余弦定理,解出未知量;直接法利用三角形内角和定理等基本定理,求出未知量;消元法根据已知条件,不断迭代,最终求出未知量;迭代法采用优化算法,如梯度下降法等,求解未知量;优化算法解三角形的方法解三角形的步骤收集已知条件,确定未知量;按照选择的公式或定理,进行计算求解;根据已知条件,选择合适的定理或公式,如正弦定理、余弦定理、海伦公式等;对所求的解进行验证,保证求解的正确性;05经典例题解析总结词在已知一个三角形的两边及其夹角的情况下,如何求解该三角形的第三边、高度等元素。

第四篇 三角函数、解三角形第6讲 正弦定理和余弦定理

第四篇 三角函数、解三角形第6讲 正弦定理和余弦定理

第6讲 正弦定理和余弦定理1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法. 【复习指导】1.掌握正弦定理和余弦定理的推导方法.2.通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的优化选择.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin Aa =b sin Ab sin A <a <ba ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =csin C , 即1032=c 22.∴c =1063. 答案 C2.在△ABC 中,若sin A a =cos Bb ,则B 的值为( ). A .30° B .45° C .60° D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75° 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ). A .3 3 B .2 3 C .4 3 D. 3 解析 ∵cos C =13,0<C <π, ∴sin C =223, ∴S △ABC =12ab sin C=12×32×23×223=4 3. 答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32, 故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°, ∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin Csin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin Csin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A =2,sin 2A +cos 2A =1, 联立解得sin A =255, 再由正弦定理得a sin A =bsin B , 代入数据解得a =210.答案255 210考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.[审题视点] 由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac , cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π. (2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.解(1)由2cos2A2+cos A=0,得1+cos A+cos A=0,即cos A=-1 2,∵0<A<π,∴A=2π3.(2)由余弦定理得,a2=b2+c2-2bc cos A,A=2π3,则a2=(b+c)2-bc,又a=23,b+c=4,有12=42-bc,则bc=4,故S△ABC =12bc sin A= 3.考向三利用正、余弦定理判断三角形形状【例3】►在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)sin C,试判断△ABC的形状.[审题视点] 首先边化角或角化边,再整理化简即可判断.解由已知(a2+b2)sin(A-B)=(a2-b2)sin C,得b2[sin(A-B)+sin C]=a2[sin C-sin(A-B)],即b2sin A cos B=a2cos A sin B,即sin2B sin A cos B=sin2A cos B sin B,所以sin 2B=sin 2A,由于A,B是三角形的内角.故0<2A<2π,0<2B<2π.故只可能2A=2B或2A=π-2B,即A=B或A+B=π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练3】 在△ABC 中,若a cos A =b cos B =ccos C ;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径).∴sin A cos A =sin B cos B =sin C cos C .即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎨⎧ a 2+b 2-ab =4,ab =4,解得⎩⎨⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6, a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎨⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2. (1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103, 所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35, 所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a+c)2-2ac=20,(a+c)2=40.所以a+c=210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a =3,b=2,1+2cos(B+C)=0,求边BC上的高.错因忽视三角形中“大边对大角”的定理,产生了增根.实录由1+2cos(B+C)=0,知cos A=12,∴A=π3,根据正弦定理asin A=bsin B得:sin B=b sin Aa=22,∴B=π4或3π4.以下解答过程略.正解∵在△ABC中,cos(B+C)=-cos A,∴1+2cos(B+C)=1-2cos A=0,∴A=π3.在△ABC中,根据正弦定理asin A=bsin B,∴sin B=b sin Aa=22.∵a>b,∴B=π4,∴C=π-(A+B)=5 12π.∴sin C=sin(B+A)=sin B cos A+cos B sin A=22×12+22×32=6+24.∴BC边上的高为b sin C=2×6+24=3+12.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a;(2)若c2=b2+3a2,求B.[尝试解答](1)由正弦定理得,sin2A sin B+sin B cos2A=2sin A,即sin B(sin2A+cos2A)=2sin A.故sin B=2sin A,所以ba= 2.(2)由余弦定理和c2=b2+3a2,得cos B=(1+3)a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=12,又cos B>0,故cos B=22,所以B=45°.。

第五章第六节正弦定理和余弦定理课件共58张PPT

第五章第六节正弦定理和余弦定理课件共58张PPT

A,bsin
C=csin
B,
cos
C=a2+2ba2b-c2
2.三角形中常用的面积公式
(1)S=12 ah(h 表示边 a 上的高);
(2)S=12
1
1
bcsin A=___2__a_c_s_in_B____=__2__a_b_si_n_C___;
(3)S=12 r(a+b+c)(r 为三角形的内切圆半径).
解析: 在△ABC 中, 由余弦定理及 a=2 2 ,b=5,c= 13 ,有 cos
C=a2+2ba2b-c2

2 2
π .又因为 C∈(0,π),所以 C= 4
.
π 在△ABC 中,由正弦定理及 C= 4 ,a=2 2 ,c= 13 ,可得 sin A=
a sin C c
=2 1313
.
答案:
π 4
变形
(1)a=2R sin A,b=_2_R_s_in_B___,c= __2_R_s_in_C___;
cos A=b2+2cb2c-a2

(2)a∶b∶c=_si_n_A_∶__s_i_n_B_∶__s_in_C___; cos B=c2+2aa2c-b2 ;
(3)asin B=bsin asin C=csin A
考点·分类突破
⊲学生用书 P84
利用正弦、余弦定理解三角形
(1)(2020·全国卷Ⅲ)在△ABC 中,cos C=23 ,AC=4,BC=3,则
tan B=( )
A. 5
B.2 5
C.4 5
D.8 5
(2)(2020·广东省七校联考)若△ABC 的内角 A,B,C 所对的边分别为 a,
b,c,已知 2b sin 2A=3a sin B,且 c=2b,则ab 等于( )

解三角形PPT课件

解三角形PPT课件
第13页/共40页
解 法 三: a2 b2 c2 2bccos A
(1) 2
2
2 2
32 c2 22
3 c cos45
c2 2 6c 4 0.解 得c 6 2 ABC有 两 解
(2) 112 222 c2 2 22 c cos30
c2 22 3c 363 0. 解 得c 11 3 ABC有 一 解
A. 0 a 4 3
B. a 6
C. a 4 3或a 6 D. 0 a 4 3或a 6
点评:可通过正弦定理或几何作图很容易 看出三角形有一个解的情况有两种。这些 有些同学容易出现误区,直接令关于C的一 元二次方程有一解,很容易少考虑a>b的情 况,以后做题时要注意。
第15页/共40页
2 sin15 sin45
6 2
2
第19页/共40页
方 法 二用 余 弦 定 理
b2 a2 c2 2accosB 2 3 c2 2 3 cos45 即c2 6c 1 0 解 之 , 得c 6 2
2
点评:此类问题求解需要主要解的个数的讨论,比 较上述两种解法,解法二比较简便。
2
2
cos A B sinC ;
2
2
tan A B cotC
2
2
(5)在ABC中,tanA tanB tanC tanA tanB tanC
第4页/共40页
(6)ABC 中,A、B、C成等差数列的充要条件
是B=60
(7) ABC为正三角形的充要条件是A、B、C成等差数 列,a、b、c成等比数列.
(3) 182 202 c2 2 20 c cos150 c2 20 3c 76 0. 解 得c 10 3 4 11 10 3 4 11 0 ABC无 解

三角函数解三角形正弦定理余弦定理的应用举例课件理ppt

三角函数解三角形正弦定理余弦定理的应用举例课件理ppt
重点掌握三角函数的概念、公式和性质。 能够熟练运用三角函数解决实际问题。
理解正弦定理、余弦定理及其应用。 理解解三角形的基本原理和方法。
回顾学习目标及收获
通过对三角函数、正弦定理、余弦定理等知识的 学习,掌握其基本概念和应用方法。
熟悉解三角形的基本步骤和技巧,能够解决一些 实际问题。
了解三角函数在数学、物理、工程等学科中的应 用,拓宽知识面和视野。
利用正弦定理和余弦定理解决一般三角形问题
确定三角形形状
通过已知一般三角形中两边及其夹角或两角及其夹边,利用正弦定理、余弦 定理可确定该三角形的形状(如等边、等腰或直角三角形)。
求解三角形中其他元素
当已知一般三角形中一些元素(如两边及其夹角或三边),利用正弦定理、 余弦定理可求解出三角形中其他元素(如角度、高度等)。
三角函数解三角形正弦定理余弦定 理的应用举例课件理ppt
xx年xx月xx日
目 录
• 引言 • 基础知识复习 • 应用举例 • 案例分析 • 实践练习 • 总结与回顾
01
引言
课程背景
三角函数是数学中 的基础知识之一
本课件重点介绍三 角函数在解三角形 方面的应用
三角函数在解三角 形、测量学、振动 分析等领域有着广 泛的应用
THANKS
学习目标
掌握正弦定理、余弦定理的推 导及证明过程
会用正弦定理、余弦定理解决 解三角形的实际问题
掌握解三角形的计算技巧和规 律
课程大纲
余弦定理的推导及证明
用余弦定理解决解三角形问题
正弦定理的推导及证明
用正弦定理解决解三角形问题
解三角形的计算技巧和规律总结
02
基础知识复习
三角函数的定义
三角函数是研究三角形性质的重要工具,包括正弦、余弦和正切等函数 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=-14,而 0<∠DBC<π,所以 sin12∠DBC>0,所以 sin12∠DBC= 410,因此 cos
∠BDC= 410。
答案
15 2
10 4
三角函数解三角形第六节解三角形
13
解析:求△BDC 的面积同上述解法。先在△BDC 中,由余弦定理,得 CD2=BC2+BD2-2BC·BD·cos∠DBC=22+22-2×2×2×-14=10,所以 CD= 10。取 CD 的中点 E,连接 BE。因为 BD=BC,所以 BE⊥CD。在 Rt△BDE 中,因为 BD=2,DE=12CD= 210,所以 cos∠BDC=DBDE= 410。
三角函数解三角形第六节解三角形
4
解析 依题意知,在△ACD 中,∠CAD=30°,由正弦定理得 AC= CDsinsi3n04°5°=2 2,在△BCE 中,∠CBE=45°,由正弦定理得 BC=CsEisni4n56°0° =3 2。因为在△ABC 中,由余弦定理得 AB2=AC2+BC2-2AC·BCcos∠ACB =10,所以 AB= 10。
三角函数解三角形第六节解三角形
6
【变式训练】 如图,嵩山上原有一条笔直的山路 BC,现在又新架设 了一条索道 AC,小李在山脚 B 处看索道 AC,发现张角∠ABC=120°;从 B 处攀登 400 米到达 D 处,回头看索道 AC,发现张角∠ADC=150°;从 D 处 再攀登 800 米可到达 C 处,则索道 AC 的长为________米。
= 5
5
7=2
7。
14
在△CED 中,CD2=CE2+DE2-2CE·DE·cos∠CED=7+28-2× 7×
2 7×-12=49。所以 CD=7。
三角函数解三角形第六节解三角形
10
利用正、余弦定理解决平面几何问题的一般思路 1.把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利 用正弦、余弦定理求解。 2.寻找各个三角形之间的联系,交叉使用公共条件,求出结果。 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角 关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合, 才能顺利解决问题。
答案 10
三角函数解三角形第六节解三角形
5
利用正、余弦定理解决实际问题的一般步骤 1.分析——理解题意,分清已知与未知,画出示意图。 2.建模——根据已知条件与求解目标,把已知量与求解量尽量集中在 相关的三角形中,建立一个解斜三角形的数学模型。 3.求解——利用正弦定理或余弦定理有序地解三角形,求得数学模型 的解。 4.检验——检验上述所求的解是否符合实际意义,从而得出实际问题 的解。
答案 400 13
三角函数解三角形第六节解三角形
8
考点二 正、余弦定理在平面几何中的应用
【典例 2】 (2018·成都诊断)如图,在平面四边形 ABCD 中,已知 A=π2,
B=23π,AB=6。在 AB 边上取点 E,使得 BE=1,连接 EC,ED。若∠CED
=23π,(2)E求C=CD
的长。 7。
第三章 三角函数、解三角形 第六节 解三角形
三角函数解三角形第六节解三角形
1
第2课时 解三角形的综合应用(提升课)
微考点·大课堂
三角函数解三角形第六节解三角形
2
微考点 ·大课堂
三角函数解三角形第六节解三角形
3
考点一 三角形的实际应用 【典例 1】 如图,为了测量河对岸 A,B 两点之间的距离,观察者找 到一个点 C,从 C 点可以观察到点 A,B;找到一个点 D,从 D 点可以观察 到点 A,C;找到一个点 E,从 E 点可以观察到点 B,C;并测量得到:CD =2,CE=2 3,∠D=45°,∠ACD=105°,∠ACB=48.19°,∠BCE=75°, ∠E=60°,则 A,B 两点之间的距离为________。cos48.19°取23
(1)求 sin∠BCE 的值。
解 (1)在△BEC 中,由正弦定理,知sin∠BEBCE=sCinEB。
3
因为 B=23π,BE=1,CE=
7,所以
sin∠BCE=BEC·sEinB=
2= 7
1241。
(2)



CED

B

2π 3,ຫໍສະໝຸດ 所以∠DEA


BCE



cos∠ DEA=
1-sin2∠DEA= 1-sin2∠BCE= 1-238=5147。 因为 A=π2,所以△AED 为直角三角形,又 AE=5,所以 ED=cos∠AEDEA
三角函数解三角形第六节解三角形
11
【变式训练】 (2017·浙江高考)已知△ABC,AB=AC=4,BC=2。点 D 为 AB 延长线上一点,BD=2,连接 CD,则△BDC 的面积是________, cos∠BDC=________。
解析 在△ABC 中,由余弦定理,得 cos∠ABC=BA2+2BBAC·B2-C AC2= 422+×242×-242=14。因为∠ABC+∠DBC=π,所以 cos∠DBC=cos(π-∠ABC)
三角函数解三角形第六节解三角形
7
解析 在△ABD 中,BD=400 米,∠ABD=120°。因为∠ADC=150°, 所以∠ADB=30°。所以∠DAB=180°-120°-30°=30°。由正弦定理,可 得sin∠BDDAB=sin∠ADABD,所以si4n0300°=sinA1D20°,得 AD=400 3(米)。在△ ADC 中,DC=800 米,∠ADC=150°,由余弦定理得 AC2=AD2+CD2- 2·AD·CD·cos ∠ ADC = (400 3 )2 + 8002 - 2×400 3 ×800×cos150°= 4002×13,解得 AC=400 13(米)。故索道 AC 的长为 400 13米。
=-cos∠ABC=-14。因为 0<∠DBC<π,所以 sin∠DBC= 1-cos2∠DBC

1--142= 415。
三角函数解三角形第六节解三角形
12
所以△BDC 的面积 S=12BC·BD·sin∠DBC=12×2×2× 415= 215。在△BDC
中,因为 BD=BC,所以∠BDC=∠BCD,所以∠BDC=π-∠2DBC,则 cos ∠BDC=cosπ-∠2DBC=sin12∠DBC。又因为 cos∠DBC=1-2sin12∠DBC2
相关文档
最新文档