(毕业设计)基于89C51和DS18B20的数字温度计设计
单片机课程毕业设计论文基于DS18B20数字温度计的设计
摘要本论文主要讲述了数字温度计的设计过程,主要包括硬件设计和程序设计。
硬件主要包括以AT89C51单片机为主要控制电路、温度采集电路、显示电路等。
温度采集传感器采用的是美国Datlas半导体公司(现已并入MAXIM公司)于20世纪90年代新推出的一种串行总线技术。
该技术只需要一根信号线(将计算机的地址线、数据线、控制线合为一根信号线)便可完成串行通信。
控制电路的核心器件就是AT89C51单片机,显示电路采用8位共阴极LED数码管。
由单片机控制传感器的读写来测量环境的温度,再通过与单片机连接的数码管将温度显示出。
由于采用了DS18B20作为侧位元器件,这使得本温度计与传统的温度计相比,硬件电路相对有减少。
因此本温度计成本降低,使用起来更加的方便。
关键词:单片机、显示电路、温度传感器DS18B20目录1.设计任务及方案分析2.芯片功能简介3. 硬件系统电路设计(一定要有硬件连接图)4. 软件编程调试及性能分析(应该包含程序框图和程序)5、总结参考文献谢辞1. 设计任务及方案分析一、任务要求设计内容:用单片机、温度传感器等器件实现温度采集,要求采集的温度精确到0.1ºC设计要求:1.硬件设计。
掌握单片机、温度传感器、显示电路等相关原理与知识;画出原理图2、软件设计3、用PROTEUS软件对硬件系统进行仿真4、两人一组做实物5、按照毕业论文要求交一份设计报告二、设计总体方案及方案论证按照系统的设计要求,本系统主要分为三个部分:主控制器AT89C51,温度传感器DS18B20及驱动显示电路。
方案比较1、测温元器件方案一:由于本电路是测温电路,因此可以采用热敏电阻来感应温度的变化,再根据其随温度变化的感应电阻阻值的变化来测得电流的变化进而计算出此时的温度值,不过这种方案需要设计模数转换电路,这会使得电路设计起来比较麻烦。
方案二、采用温度传感器作为温度采集原件,再通过单片机来控制其工作从而实现对传感器的控制和温度的读取,这使得读取温度非常的方便,电路也较前一个方案更加的简单,操作和设计起来都更加的容易。
(毕业设计)DS18B20数字温度计论文
DS18B20数字温度计的设计摘要温度是一种最基本的环境参数,人们生活与环境温度息息相关,在工业生产过程中需要实时测量温度,在工业生产中也离不开温度的测量,因此研究温度的测量方法和控制具有重要的意义。
本论文介绍了一种以单片机为主要控制器件,以DS18B20为温度传感器的新型数字温度计。
主要包括硬件电路的设计和系统程序的设计。
硬件电路主要包括主控制器,测温控制电路和显示电路等,主控制器采用单片机AT8 9C52,温度传感器采用美国DALLAS半导体公司生产的DS18B20,显示电路采用8位共阴极LED数码管,ULN2803A为驱动的动态扫描直读显示。
测温控制电路由温度传感器和预置温度值比较报警电路组成,当实际测量温度值大于预置温度值时,发出报警信号,即发光二极管亮。
系统程序主要包括主程序,测温子程序和显示子程序等。
DS18B20新型单总线数字温度传感器是DALLAS 公司生产的单线数字温度传感器, 集温度测量和 A /D转换于一体,直接输出数字量,具有接口简单、精度高、抗干扰能力强、工作稳定可靠等特点。
由于采用了改进型智能温度传感器DS18B20作为检测元件,与传统的温度计相比,本数字温度计减少了外部的硬件电路,具有低成本和易使用的特点。
DS18B20温度计还可以在高温报警、远距离多点测温控制等方面进行应用开发,具有很好的发展前景。
此外,还介绍了系统的调试和性能分析。
关键词:显示电路,单片机,AT89C52,温度传感器,DS18B20 ,单总线IThe Design of DS18B20 Digit ThermometerABSTRACTTemperature is a basic parameters of the environment, people's lives a nd the environment are closely related to temperature. in the course of ind ustrial production immediate need for temperature measurement in industrial production has to do with temperature measurement, The study o f the temperature measurement and control is of great significance.The paper introduced one kind new digital thermo meter that take the Micro Controller Unit as the primary control component and take DS18B20 as the temperature sensor. Mainly included the design of the hardware electric circuit and the design of the system program .The hardware electric circuit mainly included the master controller, the temperature measured electric circuit and the display circuit and so on, the master contro ller used Micro Controller Unit AT89C52, the temperature sensor used DS18B20 which the American DALLAS semiconductor company produces, the disp lay circuit used 8 altogether anodes LED numerical code tube by the dynamic scanning method straight to read the demo nstration.ULN2803A-driven dynamic scan showed straight time. Temperature control circuit fro m temperature sensors and preset temperature value compared alarm circuit components, When measured temperature greater than preset temperature value, issued warning signal that the bright light emitting diodes. The system program mainly included the master routine, the temperature subroutine, the data renovates subroutine and so on. DS18B20 is a digital temperature sensor of single bus .It is producted by DALLAS cooperation . DS18B20 assemb les temperature measure and A /D converter, exports digital signal directly, operation easily, better precise, protecting disturb, running steably and so on.IIBecause used the advanced version intelligence temperature sensor DS18B20 as the examine part, compared with the traditio nal thermo meter, this d igital thermo meter reduced the exterior hardware electric circuit, has characteristic that the low cost and was easy to use. The DS18B20 therm ometer also may used to the high temperature warning, the long-distance ran ge multi- spots temperature measured aspect and so on temperature contro l carries on the applicatio n development, has the very good prospects for development. In addition, introduced the system debugging and the perform ance analysis.KEY WORDS:Disp lay Circuit, Microcontroller Unit , AT89C52,Temperature Sensor, DS18B20,1-WireIII目录前言 (1)第1章设计任务及方案分析 (2)§1.1 设计任务及要求 (2)§1.2 设计总体方案及方案论证 (2)§1.3 温度测量的方案与分析 (2)§1.3.1 芯片选择 (2)§1.3.2 实现方法简介 (3)§1.3.3 测温流程图 (3)第2章芯片功能简介 (4)§2.1 A T89C52的功能简介 (4)§2.1.1 A T89C52芯片简介 (4)§2.1.2 引脚功能说明 (4)§2.2 DS18B20的功能简介 (7)§2.2.1 芯片简介 (7)§2.2.2 DS18B20外形和内部结构 (8)§2.2.3 DS18B20的工作时序 (11)§2.2.4 DS18B20与单片机的典型接口设计 (12)§2.2.5 DS18B20的各个ROM命令 (13)第3章系统硬件电路的设计 (15)§3.1 主控制电路和测温控制电路原理图 (15)§3.2 驱动电路模块原理图 (16)§3.3 显示模块原理图 (17)第4章软件编程调试及性能分析 (18)§4.1 主程序流程图 (18)§4.2 主程序 (19)§4.3 温度子程序 (21)§4.3.1 DS18B20复位子程序 (22)IV§4.3.2 读DS18B20子程序 (23)§4.3.3 写DS18B20子程序 (25)§4.3.4 比较报警子程序 (26)§4.3.5 按键子程序 (27)§4.4 显示子程序 (27)§4.5 调试性能分析和注意事项 (29)§4.5.1 调试性能分析 (29)§4.5.2 DS18B20使用中的注意事项 (30)结论 (31)参考文献 (32)致谢 (33)附录 (34)V前言日常生活及工农业生产中经常要用到温度的检测及控制,在冶金、食品加工、化工等工业生产过程中,广泛使用的各种加热炉、热处理炉、反应炉等,都要求对温度进行严格控制。
基于AT89C51DS18B20的数字温度计设计
基于AT89C51DS18B20的数字温度计设计一、本文概述Overview of this article本文旨在探讨基于AT89C51微控制器和DS18B20数字温度传感器的数字温度计设计。
我们将详细介绍如何利用这两种核心组件,结合适当的硬件电路设计和软件编程,实现一个能够准确测量和显示温度的数字温度计。
This article aims to explore the design of a digital thermometer based on AT89C51 microcontroller and DS18B20 digital temperature sensor. We will provide a detailed introduction on how to utilize these two core components, combined with appropriate hardware circuit design and software programming, to achieve a digital thermometer that can accurately measure and display temperature.我们将对AT89C51微控制器和DS18B20数字温度传感器进行简要介绍,包括它们的工作原理、主要特性和适用场景。
然后,我们将详细阐述硬件电路的设计,包括微控制器与温度传感器的连接方式、电源电路、显示电路等。
We will provide a brief introduction to the AT89C51 microcontroller and DS18B20 digital temperature sensor, including their working principles, main characteristics, and applicable scenarios. Then, we will elaborate on the hardware circuit design, including the connection method between the microcontroller and temperature sensor, power circuit, display circuit, etc.在软件编程方面,我们将介绍如何使用C语言对AT89C51微控制器进行编程,实现温度数据的读取、处理和显示。
毕业设计(论文)-基于at89c51单片机的简易数字温度计的设计[管理资料]
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P0口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
A
与MCS-51兼容;
4K字节可编程闪烁存储器;
寿命:1000写/擦循环;
数据保留时间:10年;
全静态工作:0Hz-24MHz;
三级程序存储器锁定;
128×8位内部RAM;
32可编程I/O线;
两个16位定时器/计数器;
5个中断源。
A
其引脚排列如图3-1所示:
各引脚功能简单介绍如下:
VCC:供电电压。
[Key words]digital thermometer; DS18B20; AT89C51;alarm.
现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。
基于89C51+DS18B20的智能温控器的研制
摘要:介绍了新型单总线结构温度传感器DSl8B20的结构特征、工作原理及控制方法,阐述了以89C205l 为单片机和以DSl8B20为传感器构成的智能温度控制器的电路组成、工作原理、程序设计,说明了在研制过程中总结出来的使用注意事项。
该温控器可广泛应用于人门日常生活、工农业生产和科学研究领域,具有一定的推广价值。
关键词:温度; DS18B20; 89C2051;程序;控制一、前言目前,国际上新型温度传感器正从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展。
智能温度传感器DS18B20将温度传感器、A/D传感器、寄存器、接口电路集成在一个芯片中,具有直接数字化输出、测试及控制功能强、传输距离远、抗干扰能力强、微型化、微功耗的特点。
DS18B20可以让我们可以构建适合自己的经济的测温系统。
二、DS18B20单线数字温度传感器1.DS18B20引脚分布图图1 DS18B20引脚分布图2.DS18B20内部结构图3 DS18B20的内部结构3、性能特点①采用单总线专用技术,既可通过串行口线,也可通过其它I/O口线与微机接口,无须经过其它变换电路,直接输出被测温度值(9位二进制数,含符号位),②测温范围为-55℃-+125℃,测量分辨率为0.0625℃,③内含64位经过激光修正的只读存储器ROM,④适配各种单片机或系统机,⑤用户可分别设定各路温度的上、下限,⑥内含寄生电源。
4、控制方法在硬件上,DS18B20与单片机的连接有两种方法,一种是Vcc接外部电源,GND接地,I/O与单片机的I/O 线相连;另一种是用寄生电源供电,此时UDD、GND接地,I/O接单片机I/O。
无论是内部寄生电源还是外部供电,I/O口线要接5KΩ左右的上拉电阻。
三、基于AT89C51+DS18B20的温度测量装置1.系统组成2.工作原理基于DS18B20的温度测量装置电图如图2所示:温度传感器DS18B20将被测环境温度转化成带符号的数字信号,传感器可置于离装置150米以内的任何地方,输出脚I/O直接与单片机的P1.1相连,R1为上拉电阻,传感器采用外部电源供电。
基于单片机AT89C51芯片DS18B20传感器的智能温度计设计
uchar data temp_data[2]={0x00,0x00};
uchar data display[5]={0x00,0x00,0x00,0x00,0x00};
DQ=0;_nop_();_nop_();_nop_();_nop_(); //5 us
DQ=val&0x01;
delay(6);
val=val/2;
}
DQ=1;
delay(1);
}
//DS18B20读1字节函数//
uchar read_byte(void)
{
uchar i;
uchar value=0;
delay(50);
DQ=1;
delay(6);
presence=DQ; //presence=0
}
delay(45);
presence=~DQ;
}
DQ=1;
}
//DS18B20写命令函数//
void write_byte(uchar val)
{
uchar i;
for(i=8;i>0;i--)
{
DQ=1;_nop_();_nop_();
图3-3复位电路
3.2
测温电路方面,我选择的温度传感器是DS18B20.这是美国DALLAS半导体公司最新推出的一种改进型只能温度传感器,不同于传统的热敏电阻,DS18B20能够直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字读书方式。
DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。另一种是寄生电源供电方式,如图4所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。
基于51单片机和DS18B20的数字温度计设计
题目:基于89C51和DS18B20的数字温度计设计一、设计要求数字式温度计要求测温范围为-55~125°C,精度误差在0.1°C以内,LED 数码管直读显示。
二、方案论证根据系统的设计要求,选择DS18B20作为本系统的温度传感器,选择单片机AT89C51为测控系统的核心来完成数据采集、处理、显示、报警等功能。
选用数字温度传感器DS18B20,省却了采样/保持电路、运放、数/模转换电路以及进行长距离传输时的串/并转换电路,简化了电路,缩短了系统的工作时间,降低了系统的硬件成本。
该系统的总体设计思路如下:温度传感器DS18B20把所测得的温度发送到AT89C51单片机上,经过51单片机处理,将把温度在显示电路上显示,本系统显示器用4位共阳LED数码管以动态扫描法实现。
检测范围-55摄氏度到125摄氏度。
按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路。
数字温度计总体电路结构框图如图1所示。
图1 数字温度计总体电路结构框图三、系统硬件电路的设计温度计电路设计原理图如图2所示,控制器使用单片机AT89C51,温度传感器使用DS18B20,用4位共阳LED数码管实现温度显示。
图2 数字温度计设计电路原理图1、主控制器AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
2、显示电路显示电路采用4位共阳LED数码管,从P0口输出段码,列扫描用P3.0~P3.3口来实现,列驱动用8550三极管。
3、温度传感器工作原理DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
DS18B20数字温度计毕业设计(毕业设计)详解
DS18B20数字温度计设计西南大学工程技术学院,重庆 400716摘要:本文介绍了利用美国DALLAS半导体公司最新推出的一种改进型智能温度传感DS18B20和ATMEL公司生产的AT89C2051,结合四位共阳型LED,采用动态显示的方法实现室内温度的检测和读数。
本文设计的数字温度计基于DS18B20单线总线结构,与单片机的接口电路简单无须外部电路,同时由于DS18B20能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式,因而使得整体设计思路简单,可以实现-55~+125゜C的温度测量,精度误差在0.1゜C以内。
本文给出了具体的硬件电路和软件设计。
关键词:单片机DS18B20智能温度传感器DS18B20 DIGITAL THERMOMETER DESIGNLI XuejianCollege of Engineering and Technology, Southwest University, Chongqing 400716, ChinaAbstract:This paper presents the method for a digital thermometer design made of DS18B20,a newly-product of advaced Programmable Resolution 1-Wire® Digital Thermometer(DALLAS),and AT89C2051 (ATMEL).This design adopts dynamic dispay method with four LED to measu re room temperature.This digital thermometer is based on the one wire configuration of DS18B 20, and no external circuit is required.Since the measured temperature can be directly read by DS18B20 and 9-12 digits reading can be implemented through simple programming, the overall design concept is simple. Temperature within -55~+125゜C can be measured with an error of +/-0.1゜C. Detailed circuits and softwaredesign are given here.Key Words:single-chip computer DS18B20 smart temperature sensor文献综述自动控制领域中,温度检测与控制占有很重要地位。
基于AT89C51利用DS18B20做温度计的完整程序
sbit RS=P2^6;
sbit RW=P2^5;
sbit EN=P2^7;
uchar code str1[]={"temperature: "};
uchar data disdata[5];
uint tvalue;//温度值
{
uchar flagdat;
disdata[0]=tvalue/1000+0x30; //百位数
disdata[1]=tvalue%1000/100+0x30;//十位数
disdata[2]=tvalue%100/10+0x30;//个位数
disdata[3]=tvalue%10+0x30;//小数位
tflag=0;
else
{
tvalue=~tvalue+1;
tflag=1;
}
tvalue=tvalue*(0.625);//温
度值扩大10倍,精确到1位小数
return(tvalue);
uchar tflag;//温度正负标志
/*************************lcd1602程序**************************/
void delay1ms(uchar ms)//延时1毫秒(不够精确的)
{
uchar i;
uchar j;
for(i=0;i<ms;i++)
}
/*******************************************************************
基于单片机AT89C51芯片DS18B20传感器的智能温度计设计
专业课程设计报告题目:基于单片机的数字温度计设计所在学院专业班级学生姓名学生学号同组队员指导教师提交日期2012年12月13 日电气工程学院专业课程设计评阅表学生姓名学生学号同组队员专业班级题目名称基于单片机的数字温度计设计一、学生自我总结二、指导教师评定目录一、设计目的 (1)二、设计要求和设计指标 (1)三、设计内容 (1)3.1主控制电路 (2)3.1.1 晶振电路 (2)3.1.2 复位电路 (2)3.2 测温电路 (3)3.3 显示电路 (3)3.4 仿真分析 (4)四、本设计改进建议 (5)五、总结 (5)六、主要参考文献 (6)附录6一、设计目的这次基于单片机的温度计设计,加强了我对单片机的理论了解,也深入学习了单片机线路的设计和编程。
理论联系实际,通过自己对基于51芯片的单片机板设计,熟悉了各元件的识别和作用,也掌握了如何使用Protues画线路图。
还加强掌握了C语言的编程应用,学习了使用Keil对单片机编程,并通过Protues进行仿真。
通过这次实训,学到东西之余,也增强了动手能力,提高了学习的兴趣,培养了创新意识。
二、设计要求和设计指标(1) 设计一个数字温度计,实现温度的采集,范围0-100℃,误差小于0.1℃;(2)选择单片机作为主控器;(3)选择合适的温度传感器进行温度测试;(4)能把采集到的温度显示出来。
三、设计内容这次设计,我们采用了AT89C51单片机芯片,做一个采温、显示功能的数字温度计。
在测温电路上,可以采用热敏电阻(如PT100)之类的器件,利用其感温效应,然后采集不同温度下的电压或者电流,进行A/D转换,然后通过单片机的数据处理,就可以获得所测的温度。
但这种设计电路较为复杂,还涉及到A/D转换,在程序的设计上面也相应变得复杂一些。
因此这次设计不予采用。
而是选择温度传感器DS18B20,DS18B20读书较为方便,通过对温度的采集,经过单片机的处理,用四位的共阴极数码管显示温度值。
基于AT89C51单片机和DS18B20的数字温度计
基于AT89C51单片机和DS18B20的数字温度计1课题说明随着现代信息技术的飞速发展和传统工业改造的逐步实现;能够独立工作的温度检测和显示系统应用于诸多领域..传统的温度检测以热敏电阻为温度敏感元件..热敏电阻的成本低;但需后续信号处理电路;而且可靠性相对较差;测温准确度低;检测系统也有一定的误差..这里设计的数字温度计具有读数方便;测温范围广;测温精确;数字显示;适用范围宽等特点..本设计选用AT89C51型单片机作为主控制器件;DS18B20作为测温传感器;通过LCD1602实现温度显示..通过DS18B20直接读取被测温度值;进行数据转换;该器件的物理化学性能稳定;线性度较好;在0℃~100℃最大线性偏差小于0.01℃..该器件可直接向单片机传输数字信号;便于单片机处理及控制..另外;该温度计还能直接采用测温器件测量温度;从而简化数据传输与处理过程..2 实现方法采用数字温度芯片DS18B20 测量温度;输出信号全数字化..采用了单总线的数据传输;由数字温度计DS18B20和AT89C51单片机构成的温度测量装置;它直接输出温度的数字信号;也可直接与计算机连接..采用AT89C51单片机控制;软件编程的自由度大;可通过编程实现各种各样的算术算法和逻辑控制;而且体积小;硬件实现简单;安装方便..该系统利用AT89S51芯片控制温度传感器DS18B20进行实时温度检测并显示;能够实现快速测量环境温度;并可以根据需要设定上下限温度..该系统扩展性非常强..该测温系统电路简单、精确度较高、实现方便、软件设计也比较简单..系统框图如图1所示..图1 DS18B20温度测温系统框图3 硬件设计3.1 单片机最小系统设计3.1.1 电源电路图2 电源电路3.1.2 振荡电路与复位电路图3 振荡电路图4 复位电路3.2 DS18B20与单片机的接口电路图5 DS18B20与单片机的接口电路3.3 PROTEUS仿真电路图图6 PROTEUS仿真电路图4 软件设计系统程序主要包括主程序、读取温度子程序、数据转换子程序、显示数据子程序等..4.1 程序流程4.1.1 主程序流程图主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值;温度测量每1s进行一次..这样可以在一秒之内测量一次被测温度;其程序流程见图7所示..图7 主程序流程图4.1.2 各子程序流程图1、初始化程序所有操作都必须由初始化脉冲开始;波形如图;单片机先输出一个480~960us低电平到DQ引脚;再将DQ引脚置高电平;过15~60us后检测DQ引脚状态;若为低电平则DS18B20工作正常;否则初始化失败;不能正常测量温度..2、读取温度子程序读取温度子程序的主要功能是读出RAM中的9字节;在读出时需进行CRC校验;校验有错时不进行温度数据的改写..主要包括以下三个命令:1写暂存器命令 4EH这个命令为由TH寄存器开始向DS18B20暂存器写入数据;4EH命令后的3字节数据将被保存到暂存器的地址2、3、4TH、TL、CONFIG三个字节..所有数据必须在复位脉冲前写完..即如果只想写一个字节的数据到地址2;可按如下流程:1、初始化;2、写0CCH;跳过ROM检测;3、写4EH;4、写1字节数据;5、复位;即向DQ输出480~960us低电平2读暂存命令BEH这个命令由字节0读取9个暂存器内容;如果不需要读取所有暂存内容;可随时输出复位脉冲终止读取过程3转换温度命令44H这个命令启动温度转换过程..转换温度时DS18B20保持空闲状态;此时如果单片机发出读命令; DS18B20将输出0直到转换完成;转换完成后将输出1..图8 读取温度子程序3、写流程图写时隙:写时隙由DQ引脚的下降沿引起..18B20有写1和写0两种写时隙..所有写时隙必须持续至少60μs;两个时隙之间至少有1μs的恢复时间..DS18B20在DQ下降沿后15μs~60μs间采样DQ引脚;若此时DQ为高电平;则写入一位1;若此时DQ为低电平;则写入一位0;如图9所示..所以;若想写入1;则单片机应先将DQ置低电平;15us后再将DQ置高电平;持续45μs;若要写入0;则将DQ置低电平;持续60μs..图9 写流程图4、读流程图读时隙:读时隙由DQ下降沿引起;持续至少1μs的低电平后释放总线DQ置1DS18B20的输出数据将在下降沿15μs后输出;此时单片机可读取1位数据..读时隙结束时要将DQ置1..所有读时隙必须持续至少60μs;两个时隙之间至少有1μs的恢复时间..图10 读流程图4.4 汇编语言程序源代码DATA_BUS BIT P3.3FLAG BIT 00HTEMP_L EQU 30HTEMP_H EQU 31HTEMP_DP EQU 32HTEMP_INT EQU 33HTEMP_BAI EQU 34HTEMP_SHI EQU 35HTEMP_GE EQU 36HDIS_BAI EQU 37HDIS_SHI EQU 38HDIS_GE EQU 39HDIS_DP EQU 3AHDIS_ADD EQU 3BHORG 0000HAJMP STARTORG 0050HSTART:MOV SP; #40H MAIN: LCALL READ_TEMP LCALL PROCESSAJMP MAIN;读温度程序READ_TEMP:LCALL RESET_PULSEMOV A; #0CCHLCALL WRITEMOV A; #44HLCALL WRITELCALL DISPLAYLCALL RESET_PULSEMOV A; #0CCHLCALL WRITEMOV A; #0BEHLCALL WRITELCALL READRET;复位脉冲程序RESET_PULSE:RESET: SETB DATA_BUSNOPNOPCLR DATA_BUSMOV R7; #255DJNZ R7; $SETB DATA_BUSMOV R7; #30DJNZ R7;$JNB DATA_BUS; SETB_FLAG CLR FLAGAJMP NEXTSETB_FLAG:SETB FLAGNEXT: MOV R7; #120DJNZ R7; $SETB DATA_BUSJNB FLAG; RESETRET;写命令WRITE: S ETB DATA_BUSMOV R6; #8CLR CWRITING:CLR DATA_BUSMOV R7; #5DJNZ R7; $RRC AMOV DATA_BUS; CMOV R7; #30HDJNZ R7; $SETB DATA_BUSNOPDJNZ R6; WRITINGRET;循环显示段位DISPLAY:MOV R4; #200DIS_LOOP:MOV A; DIS_DPMOV P2; #0FFHMOV P0; ACLR P2.7LCALL DELAY2MSMOV A; DIS_GEMOV P2; #0FFHMOV P0; ASETB P0.7CLR P2.6LCALL DELAY2MSMOV A; DIS_SHIMOV P2; #0FFHMOV P0; ACLR P2.5LCALL DELAY2MSMOV A; DIS_BAIMOV P2; #0FFHMOV P0; AMOV A; TEMP_BAICJNE A; #0;SKIPAJMP NEXTT SKIP: CLR P2.4LCALL DELAY2MS NEXTT: NOPDJNZ R4; DIS_LOOPRET;读命令READ: SETB DATA_BUS MOV R0; #TEMP_LMOV R6; #8MOV R5; #2CLR C READING:CLR DATA_BUSNOPNOPSETB DATA_BUSNOPNOPNOPNOPMOV C; DATA_BUSRRC AMOV R7; #30HDJNZ R7; $SETB DATA_BUSDJNZ R6; READINGMOV @R0; AINC R0MOV R6; #8SETB DATA_BUSDJNZ R5; READINGRET;数据处理PROCESS:MOV R7; TEMP_LMOV A; #0FHANL A; R7MOV TEMP_DP;AMOV R7; TEMP_LMOV A; #0F0HANL A; R7SWAP AMOV TEMP_L; AMOV R7; TEMP_HMOV A; #0FHANL A; R7SWAP AORL A; TEMP_LMOV B; #64HDIV ABMOV TEMP_BAI;AMOV A; #0AHXCH A; BDIV ABMOV TEMP_SHI;AMOV TEMP_GE;BMOV A; TEMP_DPMOV DPTR; #TABLE_DPMOVC A; @A+DPTRMOV DPTR; #TABLE_INTER MOVC A; @A+DPTR MOV DIS_DP; AMOV A; TEMP_GEMOV DPTR; #TABLE_INTER MOVC A; @A+DPTRMOV DIS_GE; AMOV A; TEMP_SHIMOV DPTR; #TABLE_INTER MOVC A; @A+DPTRMOV DIS_SHI; AMOV A; TEMP_BAIMOV DPTR; #TABLE_INTER MOVC A; @A+DPTRMOV DIS_BAI ;ARETDELAY2MS:MOV R6; #3LOOP3: MOV R5; #250DJNZ R5; $DJNZ R6; LOOP3RETTABLE_DP:DB00H;01H;01H;02H;03H;03H;04H;04H;0 5H;06HDB 06H;07H;08H;08H;09H;09H TABLE_INTER:DB 03FH;006H;05BH;04FH;066HDB 06DH;07DH;07H;07FH;06FHEND5 DS18B20简单介绍DALLAS 最新单线数字温度传感器DS18B20是一种新型的“一线器件”;其体积更小、更适用于多种场合、且适用电压更宽、更经济..DALLAS 半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器..温度测量范围为-55~+125 摄氏度;可编程为9位~12 位转换精度;测温分辨率可达0.0625摄氏度;分辨率设定参数以及用户设定的报警温度存储在EEPROM 中;掉电后依然保存..被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可以在远端引入;也可以采用寄生电源方式产生;多个DS18B20可以并联到3 根或2 根线上;CPU只需一根端口线就能与诸多DS18B20 通信;占用微处理器的端口较少;可节省大量的引线和逻辑电路..因此用它来组成一个测温系统;具有线路简单;在一根通信线;可以挂很多这样的数字温度计;十分方便..5.1 DS18B20 的性能特点如下:●独特的单线接口方式;DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯●DS18B20支持多点组网功能;多个DS18B20可以并联在唯一的三线上;实现组网多点测温●DS18B20在使用中不需要任何外围元件;全部传感元件及转换电路集成在形如一只三极管的集成电路内●适应电压范围更宽;电压范围:3.0~5.5V;在寄生电源方式下可由数据线供电●温范围-55℃~+125℃;在-10~+85℃时精度为±0.5℃●零待机功耗●可编程的分辨率为9~12位;对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃;可实现高精度测温●在9位分辨率时最多在93.75ms内把温度转换为数字;12位分辨率时最多在750ms内把温度值转换为数字;速度更快●用户可定义报警设置●报警搜索命令识别并标志超过程序限定温度温度报警条件的器件●测量结果直接输出数字温度信号;以"一线总线"串行传送给CPU;同时可传送CRC校验码;具有极强的抗干扰纠错能力●负电压特性;电源极性接反时;温度计不会因发热而烧毁;但不能正常工作以上特点使DS18B20非常适用与多点、远距离温度检测系统..DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器..DS18B20的管脚排列、各种封装形式如图12所示;DQ 为数据输入/输出引脚..开漏单总线接口引脚..当被用着在寄生电源下;也可以向器件提供电源;GND为地信号;VDD为可选择的VDD引脚..当工作于寄生电源时;此引脚必须接地..图12 外部封装形式5.2 DS18B20使用中的注意事项DS18B20 虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点;但在实际应用中也应注意以下几方面的问题:●DS18B20 从测温结束到将温度值转换成数字量需要一定的转换时间;这是必须保证的;不然会出现转换错误的现象;使温度输出总是显示85..●在实际使用中发现;应使电源电压保持在5V 左右;若电源电压过低;会使所测得的温度精度降低..●较小的硬件开销需要相对复杂的软件进行补偿;由于DS1820与微处理器间采用串行数据传送;因此;在对DS1820进行读写编程时;必须严格的保证读写时序;否则将无法读取测温结果..在使用PL/M、C等高级语言进行系统程序设计时;对DS1820操作部分最好采用汇编语言实现..●在DS18B20的有关资料中均未提及单总线上所挂DS18B20 数量问题;容易使人误认为可以挂任意多个DS18B20;在实际应用中并非如此;当单总线上所挂DS18B20 超过8 个时;就需要解决微处理器的总线驱动问题;这一点在进行多点测温系统设计时要加以注意..●在DS18B20测温程序设计中;向DS18B20 发出温度转换命令后;程序总要等待DS18B20的返回信号;一旦某个DS18B20 接触不好或断线;当程序读该DS18B20 时;将没有返回信号;程序进入死循环;这一点在进行DS18B20硬件连接和软件设计时也要给予一定的重视..5.3 DS18B20内部结构图13为DS1820的内部框图;它主要包括寄生电源、温度传感器、64位激光ROM 单线接口、存放中间数据的高速暂存器内含便笺式RAM;用于存储用户设定的温度上下限值的TH 和TL 触发器存储与控制逻辑、8位循环冗余校验码CRC 发生器等七部分..DS18B20采用3脚PR -35 封装或8脚SOIC 封装;其内部结构框图如图 6所示图 13DS18B20内部结构框图64 b 闪速ROM 的结构如下:MSBLSBMSBLSBMSBLSB开始8位是产品类型的编号;接着是每个器件的惟一的序号;共有48 位;最后8位是前面56 位的CRC 检验码;这也是多个DS18B20 可以采用一线进行通信的原因..温度报警触发器TH和TL;可通过软件写入户报警上下限..主机操作ROM 的命令有五种;如表所列DS18B20 温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM..高速暂存RAM 的结构为8字节的存储器;结构如图14所示..便笺式存储器上电状态指 令 说 明读ROM33H 读DS1820的序列号匹配ROM55H 继读完64位序列号的一个命令;用于跳过ROMCCH 此命令执行后的存储器操作将针对搜ROMF0H 识别总线上各器件的编码;为操作各报警搜索ECH仅温度越限的器件对此命令作出响Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8图 14 高速暂存RAM 结构图前2个字节包含测得的温度信息;第3和第4字节TH和TL的拷贝;是易失的;每次上电复位时被刷新..第5个字节;为配置寄存器;它的内容用于确定温度值的数字转换分辨率..DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值..温度低位 温度高位 THTL 配置 保留 保留 保留8位CRCLSB MSB当DS18B20接收到温度转换命令后;开始启动转换..转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1;2字节..单片机可通过单线接口读到该数据;读取时低位在前;高位在后;数据格式以0.062 5 ℃/LSB 形式表示..温度值格式如下:23 2221 20 2-1 2-2 2-3 2-4 MSBLSB MSBLSB这是12位转化后得到的12位数据;存储在18B20的两个8比特的RAM 中;二进制中的前面5位是符号位;如果测得的温度大于0;这5位为0;只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0;这5位为1;测到的数值需要取反加1再乘于0.0625即可得到实际温度..图中;S 表示位..对应的温度计算:当符号位S=0时;表示测得的温度植为正值;直接将二进制位转换为十进制;当S=1时;表示测得的温度植为负值;先将补码变换为原码;再计算十进制值..例如+125℃的数字输出为07D0H;+25.0625℃的数字输出为0191H;-25.0625℃的数字输出为FF6FH;-55℃的数字输出为FC90H..DS18B20温度传感器主要用于对温度进行测量;数据可用16位符号扩展的二进制补码读数形式提供;并以0.0625℃/LSB 形式表示..表2是部分温度值对应的二进制温度表示数据..表2 部分温度值温度测量值MSB50H TH 高温寄存器 TL 低温寄存器 配位寄存器 预留FFH 预留OCH 预留IOH 循环冗余码校验CRCTH 高温寄存器 TL 低温寄存器 配位寄存器SSSSS262524温度/℃ 二进制表示 十六进制表示 +125 07D0H +25.06250191H85℃E 2PRO就把测得的温度值与RAM中的TH、TL字节内容作比较;若T>TH或T<TL;则将该器件内的告警标志置位;并对主机发出的告警搜索命令作出响应..因此;可用多只DS18B20同时测量温度并进行告警搜索..在64位ROM的最高有效字节中存储有循环冗余校验码CRC..主机根据ROM的前 56位来计算CRC值;并和存入DS18B20中的CRC值做比较;以判断主机收到的ROM数据是否正确..5.4DS18B20测温原理DS18B20的测温原理如图15所示;图中低温度系数晶振的振荡频率受温度的影响很小;用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其震荡频率明显改变;所产生的信号作为减法计数器2的脉冲输入;图中还隐含着计数门;当计数门打开时;DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数;进而完成温度测量.计数门的开启时间由高温度系数振荡器来决定;每次测量前;首先将-55 ℃所对应的基数分别图15 DS18B20测温原理图在正常测温情况下;DS1820的测温分辨力为0.5℃;可采用下述方法获得高分辨率的温度测量结果:首先用DS1820提供的读暂存器指令BEH读出以0.5℃为分辨率的温度测量结果;然后切去测量结果中的最低有效位LSB;得到所测实际温度的整数部分Tz;然后再用BEH指令取计数器1的计数剩余值Cs和每度计数值CD..考虑到DS1820测量温度的整数部分以0.25℃、0.75℃为进位界限的关系;实际温度Ts可用下式计算:Ts=Tz-0.25℃+CD-Cs/CD6 总结与体会在本次设计的过程中;我发现很多的问题;虽然以前还做过这样的设计但这次设计真的让我长进了很多;单片机课程设计重点就在于软件算法的设计;需要有很巧妙的程序算法;虽然以前写过几次程序;但我觉的写好一个程序并不是一件简单的事;举个例子;以前写的那几次;数据加减时;我用的都是BCD码;这一次;我全部用的都是16进制的数直接加减;显示处理时在用除法去删分;感觉效果比较好;有好多的东西;只有我们去试着做了;才能真正的掌握;只学习理论有些东西是很难理解的;更谈不上掌握..从这次的设计中;我真真正正的意识到;在以后的学习中;要理论联系实际;把我们所学的理论知识用到实际当中;学习单机片机更是如此;程序只有在经常的写与读的过程中才能提高;这就是我在这次课程设计中的最大收获..。
基于AT89C51_DS18B20的数字温度计设计
由于该系统需要稳定的 5 V 电源, 因此设计时必须采用 能满足电压、电流和稳定性要求的电源。 该电源采用三端集 成 稳 压 器 LM7805。 它 仅 有 输入 端 、 输 出端 及 公 共 端 3 个 引 脚,其内部设有过流保护、过热保护及调整管安全保护电路, 由于所需外接元件少,使用方便、可靠,因此可作为稳压电 源。 图 4 为电源电路连接图。
1 引言
INTEL 公司生产的 MCS-51 系列单片机中的基础产品 , 采用 了可靠的 CMOS 工艺制造技术 , 具有高性能的 8 位 单 片机 ,
随 着 现 代 信 息 技 术 的 飞 速 发 展 和 传 统 工 业 改 造 的 逐 步 属于标准的 MCS-51 的 CMOS 产品。 不仅结合了 HMOS 的高
Abstract:A new type digital thermometer is introduced,which take a micro controller unit as primary control component and DS18B20 as temperature sensor.The hardware circuit mainly includes master controller,temperature measurement circuit and display circuit.The software development can be made up from temperature,when the temperature is not in the rank of written in,the thermometer can pared with the traditional thermometer,this digital thermometer can reduce external hardware circuit, and it features low lost and easily use. Key words: thermometer; sensor; controller; thermistor; temperature measurement circuit; show circuit
基于AT89C51单片机和DS18B20数字温度传感器的温度测量系统-论文
目录☆摘要 (2)☆课题任务 (4)☆第1章总体方案设计 (5)☆第2章.智能开发版部分2.1. 51系列单片机的原理图 (7)2.1.1.基本51系列单片机的原理图及STC12C5A60S2主要性能 (7)2.1.2. STC12C5A60S2单片机部内部结构 (7)2.2 51系列单片机的引脚功能 (9)2.2.1. I/O端口线输入输出引脚 (9)2.2.2.控制线控制引脚 (10)2.2.3.外接晶体端 (10)2.3 51系列单片机的时序 (10)2.4.1 智能最小系统的LED显示器接口 (11)2.4.2 音频放大电路 (12)☆第3章.关于DS18B20的介绍3.1.DS18B20简介 (13)3.2单总线数字温度计硬件设计原理部分 (13)3.3 DS18B20的封装及内部结构 (14)3.4 DS18B20的测温原理 (14)3.5 DS18B20的工作时序 (15)3.6 DS18B20与单片机的典型接口设计 (15)3.7 DS18B20的精确延时问题 (16)3.8 DS18B20工作原理及应用 (16)3.9 控制器对18B20操作流程 (17)3.10 DS18B20芯片与单片机的接口 (18)☆第4章.程序4.1温度监测51单片机程序 (18)4.2测温程序流程框图 (25)☆第5章.调试过程软件、硬件调试 (27)☆第6章效果展示6.1实现效果 (27)6.2 实物效果图 (27)☆附一:硬件原理图 (28)☆附二:材料清单 (28)☆致谢 (30)☆参考文献 (31)摘要温度是一种最基本的环境参数,在工农业生产及日常生活中对温度的测量及控制具有重要意义。
温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。
由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位,约占50%。
以往,在实际的温度控制系统中,多采用热敏电阻器或热电偶测量温度。
基于AT89C51和DS18B20的最简温度测量系统的设计
基于AT89C51和DS18B20的最简温度测量系统的设计张 海(厦门大学 福建厦门 361005)摘 要:设计了以美国DALL AS 半导体公司的单总线温度传感器DS18B20为核心,以A TM EL 公司的A T89C51为控制器的最简温度测量系统。
介绍了系统的结构、硬件和软件,并给出了A T89C51与DS18B20通讯的部分汇编语言代码。
与传统装置比,具有结构简单、抗干扰能力强、测量精度高、适用范围广等特点。
关键词:最简温度检测系统;DS18B20;A T89C51;温度传感器中图分类号:TP212111 文献标识码:B 文章编号:1004-373X (2007)09-085-02Design of Min -temperature Measurement System B ased on AT89C51and DS18B20ZHAN G Hai(Xiamen University ,Xiamen ,361005,China )Abstract :In this paper ,Min -temperature Measurement System (M TMS )is designed.The Single Bus Temperature Sen 2sor DS18B20of US Semiconductor Company DALL AS and the A T89C51of A TM EL Company are used in M TMS as kernel and controller respectively.This paper introduces the configuration ,hardware and software of M TMS.Moreover ,the assemb 2ler of communication between A T89C51and DS18B20is paring with the traditional temperature control de 2vices ,this M TMS has the character of more simple structure ,stronger anti -jamming ability ,higher precision and wider appli 2cation.K eywords :M TMS ;DS18B20;A T89C51;temperature sensor收稿日期:2006-12-261 引 言温度的测量和控制在激光器、光纤光栅的使用及其他的工农业生产和科学研究中应用广泛。
基于DS18B20的数字温度计的设计与实现
基于DS18B20的数字温度计的设计与实现一、实验目的1.了解DS18B20数字式温度传感器的工作原理。
2.利用DS18B20数字式温度传感器和89C51设计温度控制系统。
二、实验内容与要求1.基本要求:(1)检测的温度范围:0℃~100℃。
(2)检测精度 0.5℃。
(3)能对所测试的温度进行显示。
三、数字温度传感器DS18B20由DALLAS半导体公司生产的DS18B20型单线智能温度传感器,属于新一代适配微处理器的智能温度传感器,可广泛用于工业、民用、军事等领域的温度测量及控制仪器、测控系统和大型设备中。
它具有体积小,接口方便,传输距离远等特点。
1.DS18B20性能特点DS18B20的性能特点:①采用单总线专用技术,既可通过串行口线,也可通过其它I/O 口线与微机接口,无须经过其它变换电路,直接输出被测温度值(9位二进制数,含符号位),②测温范围为-55℃-+125℃,测量分辨率为0.0625℃,③内含64位经过激光修正的只读存储器ROM,④适配各种单片机或系统机,⑤用户可分别设定各路温度的上、下限,⑥内含寄生电源。
2.DS18B20内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM,温度传感器,非挥发的温度报警触发器TH和TL,高速暂存器。
64位光刻ROM是出厂前被光刻好的,它可以看作是该DS18B20的地址序列号。
不同的器件地址序列号不同。
DS18B20的管脚排列如图1所示。
图1 DS18B20引脚分布图DS18B20高速暂存器共9个存储单元,如表所示:序号寄存器名称作用序号寄存器名称作用0 温度低字节以16位补码形式存放4 配置寄存器1 温度高字节5、6、7保留2 TH/用户字节1存放温度上限8 CRC3 HL/用户字节2存放温度下限以12位转化为例说明温度高低字节存放形式及计算:12位转化后得到的12位数据,存储在18B20的两个高低两个8位的RAM中,二进制中的前面5位是符号位。
基于单片机AT89C51芯片DS18B20传感器的智能温度计设计(word文档良心出品)
专业课程设计报告题目:基于单片机的数字温度计设计所在学院专业班级学生姓名学生学号同组队员指导教师提交日期2012年12月13 日电气工程学院专业课程设计评阅表学生姓名学生学号同组队员专业班级题目名称基于单片机的数字温度计设计一、学生自我总结二、指导教师评定目录一、设计目的 (1)二、设计要求和设计指标 (1)三、设计内容 (1)3.1主控制电路 (2)3.1.1 晶振电路 (2)3.1.2 复位电路 (2)3.2 测温电路 (3)3.3 显示电路 (3)3.4 仿真分析 (4)四、本设计改进建议 (5)五、总结 (5)六、主要参考文献 (6)附录6一、设计目的这次基于单片机的温度计设计,加强了我对单片机的理论了解,也深入学习了单片机线路的设计和编程。
理论联系实际,通过自己对基于51芯片的单片机板设计,熟悉了各元件的识别和作用,也掌握了如何使用Protues画线路图。
还加强掌握了C语言的编程应用,学习了使用Keil对单片机编程,并通过Protues进行仿真。
通过这次实训,学到东西之余,也增强了动手能力,提高了学习的兴趣,培养了创新意识。
二、设计要求和设计指标(1) 设计一个数字温度计,实现温度的采集,范围0-100℃,误差小于0.1℃;(2)选择单片机作为主控器;(3)选择合适的温度传感器进行温度测试;(4)能把采集到的温度显示出来。
三、设计内容这次设计,我们采用了AT89C51单片机芯片,做一个采温、显示功能的数字温度计。
在测温电路上,可以采用热敏电阻(如PT100)之类的器件,利用其感温效应,然后采集不同温度下的电压或者电流,进行A/D转换,然后通过单片机的数据处理,就可以获得所测的温度。
但这种设计电路较为复杂,还涉及到A/D转换,在程序的设计上面也相应变得复杂一些。
因此这次设计不予采用。
而是选择温度传感器DS18B20,DS18B20读书较为方便,通过对温度的采集,经过单片机的处理,用四位的共阴极数码管显示温度值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、设计要求数字式温度计要求测温范围为-55~125°C,精度误差在0.1°C,采用AT89C51单片机和DS18B20温度传感器,设定温度报警的最低值和最高值。
采用点阵字符型液晶模块作为数字温度计的显示器,分两行显示,第一行显示DS18B20工作状态,第二行显示实测温度值和状态符号,>H表示实测温度大于温度报警范围,<L表示实测温度小于设置温度报警范围,!表示实测温度在正常范围内,当实测温度超过设定温度限制范围是,发出声光警报信号。
二、方案论证根据系统的设计要求,选择DS18B20作为本系统的温度传感器,选择单片机A T89C51为测控系统的核心来完成数据采集、处理、显示、报警等功能。
选用数字温度传感器DS18B20,省却了采样/保持电路、运放、数/模转换电路以及进行长距离传输时的串/并转换电路,简化了电路,缩短了系统的工作时间,降低了系统的硬件成本。
该系统的总体设计思路如下:温度传感器DS18B20把所测得的温度发送到AT89C51单片机上,经过51单片机处理,将把温度在显示电路上显示,本系统显示器用点阵液晶模块LCD1602实现显示。
检测范围-55摄氏度到125摄氏度。
按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路。
数字温度计总体电路结构框图如图1所示。
图1 数字温度计总体电路结构框图三、系统硬件电路的设计温度计电路设计原理图如图2所示,控制器使用单片机A T89C51,温度传感器使用DS18B20,用4位共阳LED数码管实现温度显示。
D图2 数字温度计设计电路原理图1、主控制器AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器。
该器件采用A TMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
2、显示电路显示电路采用点阵液晶显示器LCD1602能够同时显示16x02即32个字符,实行双行显示。
3、温度传感器工作原理DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
DS18b20内部主要有三个数字部件:64位激光ROM、温度传感器、非易失性温度报警触发器TH和TL。
DS18B20 的性能特点如下:●独特的单线接口方式仅需要一个端口引脚进行通信;●多个DS18B20可以并联在唯一的三线上,实现多点组网功能;●无需外部器件;●可通过数据线供电,电压范围:3.0~5.5V;●测温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃●零待机功耗●温度以9或12位数字量读出;●用户可定义的非易失性温度报警设置●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作DS18B20采用3脚PR-35 封装或8脚SOIC封装,其内部结构框图如图3所示图3 DS18B20内部结构框图64 b闪速ROM的结构如下:开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48 位,最后8位是前面56 位的CRC 检验码,这也是多个DS18B20 可以采用一线进行通信的原因。
温度报警触发器TH和TL,可通过软件写入户报警上下限。
主机操作ROM 的命令有五种,如表1所列表1 主机操作ROM 的命令DS18B20 温度传感器的内部存储器还包括一个高速暂存RAM 和一个非易失性的可电擦除的EERAM 。
高速暂存RAM 的结构为8字节的存储器,结构如图4所示。
E2RAM图 4 高速暂存RAM 结构图前2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。
第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。
DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。
DS18B20提供如下存储器命令:1.温度转换,代码为44H,用于启动DS18B20进行温度测量,温度转换命令被执行后DS18b20保持等待状态。
如果主机在这条命令后跟着发出读时间间隙,而DS18B20又忙于进行温度交换的话,DS18b20将在总线上输出0,若温度完成转换,则输出1。
如果使用寄生电源,主机必须在发出这条命令后立即启动强上拉,并保持750ms,在这段时间内部允许进行任何其他操作。
2.读暂存器,代码为BEH,用于读取暂存器中的内容,从字节0开始最多可以读9个字节,如果不想读完所有字节,主机可以在任何时间发出复位命令来终止读取。
3.写暂存器,代码为4EH,用于将数据写入到DS18B20暂存器的地址2和地址3(TH和TL字节)。
可以在任何时刻发出复位命令来终止写入4.复制暂存器,代码为48H,用于将暂存器的内容复制到DS18B的非易失性E2RAM中,即使、把温度报警触发字节存入非易失性存储器中,如果主机在这条命令之后发出读时间隙,而DS18B20有忙在吧暂存器的内容复制到E2RAM存储器,DS18B20就会输出一个0,如果复制结束的哈,DS18B20输出1,如果使用寄生电源,主机必须在这条命令发出后立即启动强行上拉并至少保持10ms,在这段时间内部允许进行任何其他操作。
5.重读E2RAM,代码为B8H,用于将存储器在非易失性E2RAM中的内容重新读入到暂存器中,这种复制操作在DS18B20上电时自动执行,这样一上电,暂存器里马上就存在有效数据了。
若在这条命令发出之后发出读时间隙,器件就会输出温度转换忙的标志:0代表忙1代表完成。
6.读电源,代码为B4H,用于将DS18B20的供电方式信号送到主机。
若在这条名令发出后发出读时间隙,DS18B20将返回它的供电模式:0代表寄生电源,1代表外部电源。
当DS18B20接收到温度转换命令后,开始启动转换。
转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。
单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式以0.062 5 ℃/LSB形式表示。
温度值格式如下:这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM 中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。
图中,S 表示位。
对应的温度计算:当符号位S=0时,表示测得的温度植为正值,直接将二进制位转换为十进制;当S=1时,表示测得的温度植为负值,先将补码变换为原码,再计算十进制值。
例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。
DS18B20温度传感器主要用于对温度进行测量,数据可用16位符号扩展的二进制补码读数形式提供,并以0.0625℃/LSB形式表示。
表2是部分温度值对应的二进制温度表示数据。
表2 部分温度值DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较,若T>TH或T<TL,则将该器件内的告警标志置位,并对主机发出的告警搜索命令作出响应。
因此,可用多只DS18B20同时测量温度并进行告警搜索。
在64位ROM的最高有效字节中存储有循环冗余校验码(CRC)。
主机根据ROM的前56位来计算CRC值,并和存入DS18B20中的CRC值做比较,以判断主机收到的ROM数据是否正确。
3)DS18B20测温原理DS18B20的测温原理如图5所示,图中低温度系数晶振的振荡频率受温度的影响很小用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量.计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55 ℃所对应的一个基数值。
减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温图2中的斜率累加器用于补偿和修正测温过程中的非线性其输出用,于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。
另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。
系统对DS18B20的各种操作必须按协议进行。
操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。
在正常测温情况下,DS1820的测温分辨力为0.5℃,可采用下述方法获得高分辨率的温度测量结果:首先用DS1820提供的读暂存器指令(BEH)读出以0.5℃为分辨率的温度测量结果,然后切去测量结果中的最低有效位(LSB),得到所测实际温度的整数部分Tz,然后再用BEH指令取计数器1的计数剩余值Cs和每度计数值CD。
考虑到DS1820测量温度的整数部分以0.25℃、0.75℃为进位界限的关系,实际温度Ts可用下式计算:Ts=(Tz-0.25℃)+(CD-Cs)/CD图5 DS18B20测温原理图四系统程序的设计系统程序主要包括主程序、DS18b20复位与检测子程序、读温度子程序、温度数据处理子程序、温度显示子程序、按键扫描子程序报警值设定子程序、温度比较子程序等。
主程序首先进行初始化,当检测到DS18B20存在时发出温度转换命令和度温度命令,再分别调用相应的子程序,完成测温及显示工作。
DS18B20复位温度与检测子程序的主要功能是位检测DS18b20是否存在。
若存在则将标志位FLAG1置1,不存在则将标志位FLEG1置0。
后续程序可以通过标志位来决定进行那种操作。
读温度子程序只读出DS18b20暂存器前4个字节的数据:温度值LSB、温度值MSB、温度报警值TH和TL,并将它们分别存入26~29H。